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ABSTRAKT 
Cílem této práce je se seznámení s možnostmi programu Matlab z hlediska detailní analýzy 

deterministických dynamických systémů. Jedná se především o analýzu časové posloupnosti a o 
nalezení Lyapunových exponentů. Dalším cílem je navrhnout algoritmus umožňující specifikovat 
chování systému na základě znalosti příslušných diferenciálních rovnic. To znamená, nalezení 
chaotických systémů.  

 

KLÍ ČOVÁ SLOVA  

Chaos, atraktor, dynamické systémy, Lyapunovy exponenty, genetický algoritmus, 
optimalizace, multikriteriální optimalizace, fraktál, fraktální dimenze, PSO, metoda roje částic, 
časová posloupnost 

 

 

 

 

 

ABSTRACT 
This work aims to familiarize with the possibilities of Matlab in terms of detailed analysis of 

deterministic dynamical systems. This is essentially a analysis of time series and finding Lyapunov 
exponents. Another objective is to design an algorithm allowing to specify the system behavior 
based on knowledge of the relevant differential equations. That means finding chaotic systems. 

 

 

KEYWORDS 
Chaos, attractor, dynamical systems, Lyapunov exponents, genetic algorithm, optimization, 

multicriteria optimization, fractal, fractal dimension, PSO, particle swarm method, timing 
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1 INTRODUCTION TO NONLINEAR DYNAMICS  
 

The essence of science is the assumption that all the experiments are carried out predictable 
and repeatable. It was therefore surprising when a simple deterministic systems (under certain 
circumstances), were not predictable or repeatable. Instead, it showed a phenomenon known as 
chaos. Under the term deterministic chaos we understand a system which is extremely sensitive to 
initial conditions. As a result of this sensitivity to the behavior of these physical systems exhibiting 
chaos, seems to be random, although the model system is the 'deterministic' in the sense that it is 
well defined and contains no random parameters. The roots of chaos theory can be dated back to 
1900, Henri Poincare in studies on the problem of movement of objects to 3 mutual gravitational 
force, the problem of three objects. Poincare discovered that there may be orbits which are non-
periodical, and which are not constantly increasing or close to a fixed point. Later studies, also on 
the topic of nonlinear differential equations, were implemented GD Birkhoff, AN Kolmogorov, ML 
Cartwright, J.E. Littlewood, and Stephen Smale. In addition Smale, perhaps the first pure 
mathematician studied nonlinear dynamics, these studies were all directly inspired by physics: the 
problem of three bodies in the case of Birkhoff, turbulence and astronomical problems in the case 
Kolmogorov, and radio technology in the case Cartwright and Littlewood. Although the chaotic 
movement of planets has been observed, experimenters encountered turbulence in the movement of 
liquids and non-periodical oscillations in the radio circuit, without the support of the theory that 
would explain their observations. 

 
Chaos theory quickly progressed in the middle of last century, when it became clear to some 
scientists that linear theory, the prevailing theory of systems in this period, simply cannot explain 
the observed behavior in certain experiments, such as the logistic map. The main catalyst for the 
development of chaos theory was the electronic computer. Most of the mathematical theory of 
chaos involves a simple re-iteration, the development is impractical to test manually. Electronic 
computer research in such systems facilitate highly. One of the first electronic computers, ENIAC, 
was used to study simple models of weather forecasts. One of the first pioneer this theory was 
Edward Lorenz, whose interest in chaos arose randomly during his work on weather prediction in 
1961. Lorenz used the computer Royal McBee LPG-30 to calculate its model simulating weather. I 
see again the sequence, and to save time, the simulation began brokering. It is printed data from 
previous simulation and is entered as input data to your model.  

 
To his surprise the weather forecast was quite different than its original model. Lorenz examined 
why, and discovered the cause of their group. Report rounded variable to 3 decimal places, while 
the computer worked with 5 decimal places. This difference is small and should not have to deal 
with practical impact. However, Lorenz discovered that small changes in initial conditions lead to 
large changes in output in the long term.  

 
The concept of chaos, as used in mathematics, was established applied mathematician James A. 
Yorke. Moore Act and the availability of cheaper computers have extended the possibility of 
examining the theory of chaos. Currently, continuing very actively exploring this theory.  

 
Systems that exhibit mathematical chaos are in a sense, complex manner. This is the meaning of the 
word in mathematics and physics in non-compliance with the usual understanding of the word 
chaos as total disarray. The origin of this word can be found in Greek mythology. 
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2 EXAMPLES OF DYNAMICAL SYSTEMS 

2.1 Astronomical objects 

For example, the movement of astronomical bodies described by the universal law of gravity 
(F = G * m1 * m2 / r ^ 2) and the second movement Newton law (F = ma). It is an inverse quadratic 
dependence on the separation of forces of matter is non-linearity, which allows for chaos. However, 
it does not guarantee it. It is true that the movements of bodies are among the most predictable 
processes in nature. Planetary movements have been comprehensively described Johannes Kepler 
many years ago the analysis of astronomical observations of Tycho de Brahe. The problem is, as we 
have already indicated in the introduction, for example, when the planet will orbit the binary stars 
(the three body problem). Track this planet is unpredictable. An example of one of the many 
trajectories is shown in the picture.  

 

 

Fig. 1. Planet orbiting a binary star 

 

 

2.2 Liquids 

 

Another example is the movement of fluids (gas, or plasma). In general, the liquid consisting of 
a large (and infinitely large) amount of molecules to each other at each other operates. Each 
neighboring molecule, therefore, responds to its surroundings. It is therefore evident that such a 
trivial mixing of fluids is a nonlinear dynamic phenomenon. In terms of prediction of mixing is a 
chaotic phenomenon. It is known that divided the flow of liquids in the laminar and turbulent 
(chaotic). However, it is difficult to identify when and under what circumstances, turbulent flow 
occurs.  
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2.3 Non-physical systems 

 

Rhythmic changes in blood pressure, heart and other cardiovascular ratio values indicate the 
importance of dynamic aspects in the understanding of cardiovascular rhythms. Several studies 
point to the fact that some cardiac arrhythmias are an example of chaos. This is important because it 
can help determine treatment. For example, cardiac arrhythmias, Atrial fibrillation, bradycardia, 
cardiac acceleration activity, hollow core and other arrhythmias.  

Ventricular arrhythmias, both chambers fibrillation and ventricular tachycardia, the most 
serious of the diseases. These arrhythmias cause many deaths. Cardiac instability can be understood 
as a spontaneous asynchronous download of cardiac muscle fibers. Atrial chambers become 
spontaneous and irregular heart rhythm disorder. This can quickly proceed to the heart rhythm 
becomes incompatible with life.  

Cardiac rhythm is one of the best indicators arrhythmic events and may lead to sudden death 
after myocardial infarction. Cardiac rhythm is partly controlled by an autonomous nerve system. 
Autonomous System (not to affect the will of man) - management of autonomous function of the 
nature of reflective, independent of our consciousness. The autonomic nervous system is divided 
into subsystems, compassionate (SNS) and parasympathetic (PNS) nervous systems. Short-term 
variability is mediated parasympathetic nervous system, while long-term variability of the two: 
sympathetic (SNS) and parasympathetic (PNS) nervous system. As you know, heart rate may vary 
even in the absence of physical or mental pressure.  

 

Several studies demonstrate the relationship between cardiac arrhythmias and chaos. This is 
related to the deterministic characteristics of any of these arrhythmias. Clinical arrhythmia has the 
greatest potential for therapeutic applications of chaos theory to non-periodic tachycardia, including 
atrium and ventricle fibrillation. Such an approach in the evaluation could be implemented to 
promoters. This could be avoided, for example fibrillation chambers.  

There are already some interesting comparisons between the dynamic characteristics of healthy 
individuals and patients with high risk of sudden cardiac fibrillation. Hearts with a high risk of 
sudden cardiac arrhythmia course shows chaotic signals. These methods could pose an important 
diagnostic tool for clinical purposes.           

We can simplify the situation so that the heart is a type of oscillator. Question is, if the 
oscillator is valid for the nonlinear dynamic equations. The problem is, however, that these 
equations contain many state variables - there are many factors affecting heart rhythm. In clinical 
conditions of the situation but we can simplify and reduce to fewer variables. There is a chance that 
it will to some extent (i.e. with a short time and limited initial conditions) to predict heart rhythm. 
Such a device would become a very important tool in the operating theater. Surgeon should be able 
to prepare a situation with time.   
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3 SENSITIVITY TO INITIAL CONDITIONS 
 

Sensitivity to initial conditions means that two close trajectories in phase space with 
increasing time of launching. In other words, a small change in initial conditions leads over time to 
a very different outcome. The system behaves identically, only when the same initial conditions. 
The combined sensitivity is the so-called Butterfly. The weather can be so sensitive that just sweep 
butterfly wings on one side and on the other planets (for a longer period of time) can cause 
tornadoes. We will test the sensitivity to initial conditions of the program Matlab. Consider Lorenzo 
equation is a solution for different initial conditions. Then we compare the time course of both 
solutions.  
 
The equation describing Lorenz attractor:         (1.) 

                                                         

bzxy
dt

dz

yzrx
dt

dy

xy
dt

dx

−=

−−=

−=

)(

)(σ

 

 

 

Fig. 2. Different results with different initial conditions 

Coefficients Lorenz equations (2.3.1) are: σ = 10, b = 8 / 3 and r = 28.  
Initial conditions: x1 (0) = 8, y1 (0) = 3, z1 (0) = 4 and x2 (0) = 8, y2 (0) = 3.000000001 
,Z2(0)=4  

The graph shows that even if the difference between the initial conditions is only 
0.000000001, during a longer period of time leads to significant deviations. 
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Note, that sensitivity on the initial conditions isn't a privilege of nonlinear dynamics. It also 
happens in linear systems. For example, take the following time-discrete dynamical system 
 

xn+1 = 2xn. 

 

Fig. 3. Stretching and folding [9] 

 
The distance between two different solutions increases by the factor two in each time step. But 

of course, this is not deterministic chaos. It is a kind of trajectory explosion. Sensitivity on the 
initial conditions leads to chaos only if the trajectories are bound. That is, the system cannot blow 
up to infinity.  

With linear dynamics, you can have either sensitivity on the initial conditions or bound 
trajectories, but not both. With nonlinearities, you can have both. The figure shows why this is 
possible. Imagine the phase space is a piece of dough from which you want to make flaky pastry for 
croissants: You roll it out and fold it. Usually you repeat this step a few times. Suppose at the 
beginning two “poppy-seeds”, are located next to each other. Each time the dough is rolled out the 
distance between the seeds increases. Eventually, this increase is stopped when the seeds are on 
different sides of the folding line. At that moment the distance changes unpredictable. Thus, 
stretching and folding are responsible for deterministic chaos. And there is no folding without 
nonlinearities [9]. 
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4 STRANGE ATTRACTORS  
 

More often than not, orbit trajectory of chaotic system, will be painted in a small area of the 
state space. With the development time, the trajectory will vary deterministically, but you can not 
accurately predict. Movement trajectories of the object fractal called strange attractor. Strange 
attractors are often a manifestation of chaos. They are called "strange" because of its fractal 
structure. It is also possible to use the term "chaotic attractor. These terms are often 
interchangeable. Depends on whether it is the geometric and dynamic properties. However, some 
authors these names differ from each other. 

 

It is important to discuss their properties and investigate their samples, because the most 
important thing is to recognize the chaotic behavior when it occurs in the experimental data. If we 
had a large number of objects it is possible to address the statistical issue of how common it is 
chaos. What are the most common value of Lyapunov exponents, size dimensions and other 
properties. 

 
Fig. 4. An example of Chua's strange attractor 
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5 SPECTRUM OF CHAOTIC SIGNALS 
As we know, we can express the signal using the harmonic signals, i.e. the functions sin () and 

cos () function is generally complex exponentials. With such simple considerations, we can convert 
the signal from time domain into the frequency domain. For a general transfer of signals from the 
time domain there is a Fourier’s transformation. Fourier transform S (ω) of function s (t) is defined 
by an integral relationship: ���� � � ����	
��
��∞
∞ .      (3.) 

The definition clearly shows that the spectrum is a complex quantity. There are therefore 
amplitude spectrum and phase spectrum. We see that the spectrum is a continuous function defined 
from minus infinity to infinity. This, however, for many signals cannot be calculated analytically. It 
can be for example digital signals. Using computational tools, such as a PC, always leads to 
discretization of the signal. So if we have discrete samples, it is possible to replace the function of 
integral by function sum (). ��Ω� � ∑ ����	
�Ω�∞��
∞ .     (4.) 

Then for each  Ω there is a sum of products weighted by exponent. Theoretically, the chaotic 
signal, we know has no period. This means that it is in each time different. If would signal be an 
infinitely long (in time sense), it would mean that the range of its spectrum is also endless.  

Also we know that the attractors are attracted to the equilibrium. So if you re-introduce the 
state space and the length of signal is infinite, there is a demarcation, which has resulted in a 
reduction spectrum width. This means, that we can claim, that the spectrum of such signal is very 
wide-banded. 

In the real world, we have limited bandwidth, so we tried to simulate a reconstruction of signal 
after filtration and how it affects results. It is important to investigate, because we know the 
sensitivity to initial conditions.

 

Fig. 5 Spectrum of filtered and original Lorenz attractor 
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Fig. 6 Reconstructed signal by IFFT 

In this example can be seen a short segment of the spectrum filtration Lorenz attractor. After 
the reconstruction of signal it is visible that cropping of spectrum quite reflected the results. In 
communications technology, this example can be solved and repaired. But if we use a very long 
signal (in this case signal generated by Labyrinth chaos), how it is used in next figure, we can prove 
what we claimed before. The spectrum of signal is wider. In this example we have crop the 
spectrum more. 

 

Fig. 7 Labyrinth chaos for b=0.1 

 

Fig. 8 Spectrum of long chaotic signal (Labyrinth chaos) 
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Fig. 9 Time series after reconstruction 

In this case, we can see that the filtered reconstructed signal varies from the original signal. 
This means, that any jamming or filtering of signal can lead to different results. 
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6 FRACTAL DIMENSION  
The value of dimension of the chaotic system is used for estimating the rate of how chaotic the 

system is. It is also called the fractal dimension. For systems without fractal structures, such as 
fixed points, limit cycles and others, fractal dimension is an integer value. In contrast, fractal 
dimension for chaotic attractors with a fractal structure is a real number. Dimension can be interpret 
as a number of real parameters needed to determine the point position on object, or as an exponent 
expressing the change in quantity when resizing. Quantity we consider for example volume. And 
size means a chosen characteristic dimension. So it is a statistical quantity that gives an indication 
of how completely a fractal appears to fill space, as one zooms down to finer and finer scales. There 
are many specific definitions of fractal dimension. The most important theoretical fractal 
dimensions are the Rényi dimension, the Hausdorff dimension and packing dimension. Practically, 
the box-counting dimension and correlation dimension are widely used, partly due to their ease of 
implementation.  

Although for some classical fractals all these dimensions do coincide, in general they are not 
equivalent. 

6.1 Rényi dimensions 

The box-counting, information, and correlation dimensions, can be seen as special cases of a 
continuous spectrum of generalized or Rényi dimensions of order α, defined by 

�� � lim���
���� �� ∑ !"�"�� �# .        (5.) 

where the numerator in the limit is the Rényi entropy of order α. The Rényi dimension with 
α=0 treats all parts of the support of the attractor equally. 

6.2 Hausdorff–Besicovitch dimension 

The Hausdorff dimension introduced by Felix Hausdorff, gives a way to accurately measure 
the dimension of complicated sets such as fractals. The Hausdorff dimension agrees with the 
ordinary (topological) dimension on "well-behaved sets", but it is applicable to many more sets and 
is not always a natural number.  

� � �� $�� �% .          (6.) 

Where N is the number of parts, at which an object (system) we divide. The variable s 
corresponds to the N-fold reduction in scale. 

6.2.1 The Box Counting Dimension 
Box-counting dimension is a simple way of estimating the Hausdorff dimension for fractals. 

We compute the box-counting dimension from a grid that is superimposed on a fractal image and 
counting how many boxes in the grid contain part of the fractal. Then you increase the number of 
boxes in the grid (but covering the same area: the boxes get smaller) and count again. If the 
numbers of boxes in the first and second grids are G1 and G2, and the counts are C1 and C2, then you 
compute a dimension by the formula:  
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� � �� &'&��� ()')�
.          (7.) 

This method is very suitable for implementation in computer algorithms. Therefore, it is also 
very popular. Its disadvantage is the time required for multiple state variables. Using parallel 
processing method would have gone faster. 

6.3 Kaplan-Yorke Dimensions  

 

The calculation using the dimensions of this method is very simple. It builds on knowledge 
Lyapunov exponent. But exponents obtained, should be made by orthonormalization, because we 
need to ensure squareness. For computer solutions to the problems we'll deal with Gram-Schmidt 
method.            
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,          
(8.)

 

where the value of j is the maximum number of exponents Lyapunov. From this value we can 
estimate, if the tested object can be considered as chaos. It is because chaos system doesn’t usually 
have an integer value of dimension as we are used. 

 

Name Dimension 
 

Sierpinski triangle 

 

1,585 
 

Lorenz attractor 

 

2,060 
 

Surface of lungs 

 

2,970 
 

Cantor set 

 

0.6309 

Table 1. Examples of well known systems and theirs Kaplan Yorke dimension 
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7 POINCARE MAP 
 

To create the illustration for the phase portrait of systems with higher dimension, we don't have 
enough methods that we have been using. The only way to capture the characteristics of the phase 
space portrait in the lower dimension is a projection or cut multidimensional general body surface. 
Simply Poincare map can be seen as a slice (subset) of the phase portrait, in which one or more state 
variables constant value.  

 

More precisely, one considers a periodic orbit with initial conditions on the Poincare section 
and observes the point at which this orbits first returns to the section, thus the name first recurrence 
map. The transversality of the Poincare section basically means that periodic orbits starting on the 
subspace flow through it and not parallel to it. A Poincare map can be interpreted as a discrete 
dynamical system with a state space that is one dimension smaller than the original continuous 
dynamical system. Because it preserves many properties of periodic and quasi-periodic orbits of the 
original system and has a lower dimensional state space it is often used for analyzing the original 
system. In practice this is not always possible as there is no general method to construct a Poincare 
map.  

 

 

From this definition it is apparent that a system exhibiting chaotic behavior will have a 
different Poincare's section. We can expect that the chaotic signal has many intersections with 
Poincare's plane. These intersections are irregular - chaotic. But it is a method that will help us 
decide whether the signal is chaotic. For example, the system will have periodic intersections, 
which are equidistant from each other, or they coincide.  

Fig. 10. Principle of Poincare map 
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Fig. 11. Planes in state space – Lorenz attractor 

 

 

Fig. 12. Intersections with planes (for computer processing, there have to be a small range of values) 

Despite its simple implementation of the algorithm, this method doesn't seem to be suitable for 
computer analysis. One of the problems that need to be solved in developing the algorithm is fitting 
the plane perpendicularly to the flow of signal. This can be solved using Gram-Schmidt 
orthogonalization process.   
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8 LYAPUNOV EXPONENTS 
 

One measure (and most used) of sensitivity to initial conditions are Lyapunov exponents λn. It 
is the average value of divergence (or convergence) of two neighboring trajectories. The 
mathematics is Lyapunov exponent or characteristic exponent Lyapunov dynamic system variable, 
which characterizes the separation of infinitely close trajectories. So to describe the behavior of 
trajectories in the vicinity of any trajectory Γ used Lyapunov exponents, which are generalizing 
their own numbers or multipliers. Lyapunov exponents (LE) are real numbers that can be usefully 
applied for the classification non-chaotic and chaotic attractors. If the system in an unstable state 
can show that the two near trajectories are moving away faster than polynomial. Distance l of two 
points close to the trajectories can be approximated relationship  

         (9.) 

 

where λ is the local Lyapunov exponent.  

 

 

Fig. 13. Transformation circular trajectory to elliptical trajectory 

 

Choose where sufficient space only one vector, we get one-Lyapunov exponent. In multi-phase 
space defined by the global spectrum Lyapunov exponents (each state variable corresponds to one). 
For one selected vector in the tangential space holds: 

         (10.) 

 

 

Know if this range, then we can conclude that if all exponents are non-positive, the stable 
behavior of the system and if at least one exponent is positive. The system then behaves 
chaotically.  
 
Lyapunov exponents are ordered to the time quantifications of the chaos. More is described in Table 
2:  
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λ1 λ2 λ3 λ4 Attractor Dimension 

- - - - Equilibrium point 0 

0 - - - Limit cycle 1 

0 0 - - 2-torus 2 

0 0 0 - 3-torus 3 

+ 0 - - Strange (chaotic) >2 

+ + 0 - Strange (hyperchaotic) >3 

Table 2. Characteristic of the attractors for a four-dimensional flow [1] 

We see that there are certain conditions that must be met for the emergence chaotic attractor. 
These characteristics are most used in the classification system, so when the subsequent 
optimization. 

  



-27 - 

 

9 ESTIMATING LYAPUNOV EXPONENTS FROM 
DYNAMICAL EQUATIONS 

 

There are two basic methods for calculating Lyapunov exponents. The first is precisely when 
we know the system of differential equations. Use them in some ways we get the Lyapunov 
exponents. The second way may be a set of data, or values (it is of course already on the integrated 
data). We will devote the first of the methods. 

To get the vectors, we must first multiply the equation appropriate by Jacobi’s matrix 
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where the matrix with vectors A-I represents Jacobi’s matrix, which is made by derivation`s 
of appropriate variables. For example, vector A have the following form: * � +,, - 2/�,0,, - �,0,12 - �,0,34 - 2�10,, - 4�30,,.    (12.) 

Next step is to integrate the differential equations (numerically) and the variation equation with 
random initial conditions.  The system gives you information about the time development of small 
perturbation of x. It is a good idea to perform the Gramm-Schmidt orthogonalization of various y.  
Then  

     52 � ,
  log �9�
�9����     (13.) 

approaches the largest Lyapunov exponent. 

 

 

Fig. 14. Dynamics of Lyapunov Exponents (example for Lorenz`s equations) 
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10 TIME SERIES ANALYSIS 
Few years ago, determining chaos from noise has become an important problem in many 

diverse fields. This is because, new numerical algorithms for quantifying chaos using experimental 
time series has been developed. There exist many methods. For example calculating a correlation 
dimension. The dimension gives us an estimate of the system complexity. The most discussed 
method is calculating the characteristic Lyapunov exponents. That is because the exponents give us 
an estimate of the level of chaos in the dynamical systems. When we know the level of chaos, we 
can start to predict the data.  Because of this, we know, how accurate is our prediction. 

10.1 Lyapunov spectrum defined 

Now we define the Lyapunov spectrum in the manner most relevant to spectral calculations. In 
given dynamical continuous system (n-dimensional),   we monitor in the long term the evolution of 
an infinitesimal n-sphere.  When the n-sphere evolves from initial conditions, it deforms and 
become n-ellipsoid, following the flow. The i-th Lyapunov exponent is then defined along the 
principal ellipsoidal axis pi(t): 

 

Fig. 15 Meaning of the Lyapunov exponents 

 

:� � lim
�∞
1� log1 <����<��0�.                                      (14.) 

Where the λi is aligned from the largest to smallest. But as the system evolves throw the time,  
the direction of exponent changes an many various ways. So we cannot speak about well defined 
direction given by exponent. exponents can also vary, because we can use a different base of 
logarithm. But most used are base of 2 and e. Generally we can say, that one or more positive 
exponents for dissipative attractor means that the system is “strange” of “chaotic”. When we have 
marginally stable orbit, the exponent is zero. 



-29 - 

 

 

Fig. 16 Periodic data 

  

10.2 Wolf’s method  

Given the time series x (t), an m dimensional phase portrait is reconstructed with time delay 
method, because usually in experimental data, we don’t obtain all variables. So we locate the 
nearest point (in Euclidian sense) to the initial point {x(t0), …x(t0+(m1)τ} and denote the distance 
between a point on attractor given by {x(t), …x(t0+(m-1)τ}. The distance is designate by L(t0). The 
next distance will be L’(t1). The length element is propagated throw the attractor for a time short 
enough so that only small scale attractor structure is likely to be examined.  

 

Fig. 17 Discribing the Wolf’s method 

 

If the evolution is to large, we may see L’ shrink as it pass throw the folding area of attractor. 
So that could lead to underestimate Lyapunov exponents. As we know, the most important for 
identifying chaotic series is only the largest Lyapunov exponent. It is because, the other spectrum 
tells us, how the trajectory evolves. But for understanding how chaotic data are, is most important 
the largest exponent. Usually positive largest Lyapunov exponent leads to chaotic data. We can 
even say that scale of largest Lyapunov exponent is measure, how chaotic the time series is.  

Now we look for a new data point that fulfils two criteria sufficiently well. The step separation 
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of L(t1) has to be small to fiducial  trajectory. And the angular separation between evolved and 
replaced point is small. If we cannot find an adequate replacement point we keep the points that 
were being used. We should repeat this procedure, until the entire fiducial trajectory is traversed. In 
this point we can estimate 

 

        :, � ,
?

@ ∑ log1 AB�
C�A�
C��� D��,   ( 15.) 

 

where M is the total number of replacement steps. [4] 

 

10.2.1  Estimating λ1+ λ2 
The algorithm is basically almost similar to estimating largest λ. But it is much more 

complicated in implementation to the program. A trio of data points is chosen. Containing a fiducial 
point and two nearest points. By this we have defined an area A(t0). This area evolution is 
monitored. This evolution also has to satisfy previous criteria. Propagation and replacement steps 
are repeated until the fiducial trajectory has traversed the entire data set. In this point we can 
estimate 

 

             :, - :1 � ,
?

@ ∑ log1 E′�
C�E�
C���D��,   ( 16.) 

 

Where tk is the time of k-th replacement step. 

 

 

Fig. 18 Discribing the Wolf’s method – the area calculating 

 

It is possible to verify result for :, throw the use of calculation :, -  :1. For attractors, that are 
very nearly two dimensional there is no need to worry about preserving orientation when we replace 
triples of points. These elements may rotate and deform within the plane of the attractor. But the 
replacement of triples always lies in the same plane. Since the :1 equals to zero, area evolution 
provides direct estimation of :,.  We didn’t impellent this algorithm because it is computational 
heftiness. [4] 
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10.3 The Rosenstein’s algorithm 

Rosenstein et al. [9], first step in this approach is also reconstructing the attractor dynamics 
from single time series. The approach is already mentioned before. They also use a delays method, 
where X is a matrix, where each row is phase-state vector. After reconstruction of dynamic the 
algorithm locate the nearest neighbors of each point on the trajectory. The nearest point FĜ is found 
by minimizing the distance between reference point FI. This is expressed as 

�I�0� � minF K̂LF K̂ M FNL, ( 17.) 

where O… O denotes Euclidian norm and dj(0) is the initial distance from the jth point to its 
nearest neighbor.  They define the additional limitation that the nearest neighbors have separation 
greater than the mean period (median frequency of the magnitude spectrum) of the time series, 

 |R M Ŝ| T U	+V <	WXY�. ( 18.) 

  

This allows us to take each pair of neighbors as almost initial conditions for initial trajectories. 
Then the largest Lyapunov exponent is estimated as mean rate of separation of the nearest 
neighbors.  This method is easy to implement and fast, because it does not require large data sets 
and it uses a simple measure of exponential divergence that outwits the need to approximate the 
tangent map.  It also simultaneously yields to the correlation dimension. This algorithm is also 
better than Wolf’s, because it takes advantage of all available data. It does not focus on fiducial 
trajectory. 

:,�X� � 1X∆� . 1�Z M X� [ ln �I�X��I�0�
D
�
I�, . ( 19.) 

Where ∆t is the sampling period of time series, dj(i)  is distance from the jth point to its nearest 
neighbor after ith time steps. M is a number of reconstructed points. From the previous definition of :, we expect that the jth pair of nearest neighbor diverge approximately by rate given by largest 
Lyapunov exponent. �I�X� \ ]I	^���.∆
�. ( 20.) 

Where Cj is the initial separation. When we logarithm both sides, we obtain 

 ln ��I�X�� \ ln_]I` - λ,�i.∆t� ( 21.) 

  

Equation represents set of parallel lines, each slope is proportional to :,. The largest Lyapunov 
exponent is then accurately calculated using least-square fit to the line defined by 

 

2�X� � ,
∆
 bln��I�X�c. ( 22.) 

  

Where b… c denotes average over all values of j. This process is key to calculation the exponent 
value. When we have a noisy data set, we have to especially take care about this part. [9] 
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Fig. 19 Algorithm diagram 

10.4 Time Delay Embedding 

The simplest method to embed scalar data is the method of delays. This works by 
reconstructing the pseudo phase-space from a scalar time series, by using delayed copies of the 
original time series as components of the reconstruction matrix. It involves sliding a window of 
length m through the data to form a series of vectors, stacked row-wise in the matrix. Each row of 
this matrix is a point in the reconstructed phase-space. Letting {Xi} represent the time series, the 
reconstruction matrix is represented as: 

 

d � ed� f d�g
,�hi j idk f dkl�g
,�hm. 
(23.) 

 
 where m is the embedding dimension and {τ} is the embedding delay (in samples). Fixing an 

optimal value of m requires domain specific knowledge about the time series being analyzed. The 
method of false-nearest neighbors can be useful to some extent in this regard. Underestimating the 
value for delay leads to highly correlated vector elements, which would now be concentrated 
around the diagonal in the embedding space, and the structure perpendicular to the diagonal is not 
captured adequately. On the other hand, a very large estimate of the delay will result in the elements 
of each vector to behave as if they are randomly distributed. Quantitative tools like auto-correlation 
and auto-mutual information are useful guides in choosing the optimal value of {τ}. 
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Fig. 20 Imput data 

 

Fig. 21 Data after reconstruction 

10.5 Estimating tau 

10.5.1  Autocorrelation 

A number of criteria for selecting τ   w depend upon the autocorrelation function, Rxx (τ ). 
Number of criteria for the selection τ   w depends on the autocorrelation function Rxx (τ  ).  
Autocorrelation function provides a measure of similarity between the signal x (t), and delayed 
version of itself, because Rxx (τ ) is maximized when the delay is zero. Autocorrelation function is 
not required to provide a reasonable transition from redundancy to irrelevance (depending on the 
delay). Usually τw chosen as the delay where Rxx (τ ) first drops to a fraction of its original value. 
Similarly, it may be τw selected location first inflection point Rxx (τ  ). Related criterion based on 
Fourier transform Rxx (τ  ), i.e. the power spectrum of x (t) is the inverse group-off 
frequency. Autocorrelation-based methods have the advantage of short calculation time is 
calculated using the fast Fourier transform (FFT) algorithm. As suggested by a number of changes, 
however, these methods tend to be inconsistent. This means that a particular criterion may be better 
for a dynamic system and bad for another. This is not surprising, given the ill-defined relationship 
between the location of the reconstructed attractor and the temporal autocorrelation single time 
series. 
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10.5.2  Mutual information 
In contrast to the linear dependence measured by autocorrelation, mutual information, I(τ), 

supplies a measure of general dependence. Therefore, I(τ ) is expected to provide a better measure 
of the shift from redundancy to irrelevance with nonlinear systems. Mutual information answers the 
following question: Given the observation of x(τ), how accurately can one predict x(t + τ)? Thus, 
successive delay coordinates are interpreted as relatively independent when the mutual information 
is small. The minima of I(τ ) has the same value as the correlation integral, Cm(r; τ). The 
computation is less demanding as computing the minima of I(τ ). 

 

Co �r; τ� � 2M�M M 1� [ θsr M LXu M XvLw
uxv y, (24.) 

 
where M is the number of reconstructed points, q[..] is the Heaviside function, and denotes 
the Euclidean norm. It follows that an algorithm for calculating correlation dimension is easily 
adapted to estimate τ . The problem is, that this approach But requires enormous computational 
costs. 

 

10.5.3  Symplectic geometry 
 

Symplectic geometry is a branch of differential geometry and differential topology which 
studies symplectic manifolds. Symplectic geometry has its origins in the Hamiltonian formulation 
of classical mechanics where the phase space of certain classical systems takes on the structure of a 
symplectic manifold. A symplectic geometry method is proposed to determine the appropriate 
embedding dimension from a scalar time series. Symplectic geometry has measure preserving 
characteristic and can keep the essential character of the primary time series unchanged when 
performing symplectic similar transform. 

10.6 Experimental results 

It is very important to distinguish deterministic chaos from noise. When we have equations 
describing the system, it is more easy to decide whether the system embody  marks of chaos. For 
testing the algorithm we have chosen a series of differential equations. We integrate to get the 
solution. Then we use only one signal to set as primary. Next thing, we have to reconstruct the data. 
It is normal, that we get only one or two signals, but the system contains much more.
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Fig. 22 Input data set 

On this figure we can see the original data. We use a delay method for reconstruction with 
parameters of m=3 and tau=20. Of course, we can vary the parameter, but this combination was 
estimated by symplectic  geometry method (m) and from FFT(tau). 

 

On this figure, we can see the result of reconstruction. To estimate the largest Lyapunov 
exponent, we wrote an algorithm based on Rosenstein’s algorithm. We were trying to make this 
algorithm fully automatic. That means to estimate the largest exponent without any knowledge of 
the system or parameters. But it is almost impossible, because in the algorithm we need to estimate 
the slope. That is not a problem. Problem is to choose the right area for estimating the slope. For 
experimental data obtained from Lorenz attractor with parameters: 

 

 

 �/�� � 16. �2 M /��2�� � /�45.92 M 4� M 2�4�� � /2 M 4. 4.

 
(25.) 
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Fig. 23 Lorenz attractor with 5000 points 

We used only signal x, reconstructed  as mentioned before with parameters tau=17 and m=3. 
For this parameters we obtained λ1=1.59 (base of e) and the expected λ1 is 1.50. But as we said it is 
not easy to find the right region as shown on the next figure. 

 

Fig. 24 Lyapunov curve and its slope 
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 On the next figure is shown the slope sensitivity. 

 

Fig. 25 Largest Lyapunov exponent – slope sensitivity 

As we can see, we can very easily obtain an error in this part. But we can also very easily 
decide whether the data are chaotic.  

We also tested the algorithm for periodic data to verify the correctness of its results. We took 
an equation y = cos( t ) and reconstructed it with parameters m = 3, tau = 17.  

 

Fig. 26 Testing the algorithm 

As we can see, the data doesn’t contain any noise. To obtain data without noise with 
measurement is almost impossible.  
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Fig. 27 Lyapunov curve and its slope for periodic data set. 

Based on theory, what represents Largest Lyapunov exponent, the value have to be 0. We have 
obtained λ1= 3.1522e-004. 

We have also tested the algorithm with adding the white Gaussian noise to the periodic data. 
We have added the noise with SNR=20dB.  

 

Fig. 28 Periodic data with white Gaussian noise 

As we can see, the noise is added to the data set. The results are quite satisfactory. We again 
obtained result λ1= 0.0011.
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Fig. 29 The Lyapunov curve and it’s slope 

As we can see, the slope is oscillating about zero. That means that the algorithm is comfortable 
consentaneous to the theoretical expectations. 

System 

The number of 

data points 

Reconstruction 

delay 

Embedding 

dimension 

Calculated :, 

Expected :, 

Error 

[%] 

  400 8 3 0,0372 0,0900 58,7 

  800     0,0722   19,8 

Rössler 1200     0,1100   -22,2 

  1600     0,0953   -5,9 

  2000     0,0882   2,0 

  2000 8 1 - 0,0900 - 

      3 0,0877   2,6 

Rössler     5 0,0866   3,8 

      7 0,0850   5,6 

      9 0,0832   7,6 

  1000 11 3 1,7550 1,5000 -17,0 

  2000     1,3450   10,3 

Lorenz 3000     1,3720   8,5 

  4000     1,3920   7,2 

  5000     1,5230   -1,5 

  5000 11 1 - 1,5000 - 

      3 1,5380   -2,5 

Lorenz     5 1,4770   1,5 

      7 1,5820   -5,5 

      9 1,5900   -6,0 

Table 3 Experimental results for known systems 
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10.7 Testing the real data 

To test the algorithm, we have set up the Chua’s circuit. Chua’s circuit is a simple electronic 
circuit that exhibits classic chaos theory behavior. It was introduced in 1983 by Leon O. Chua. An 
autonomous circuit made from standard components (resistors, capacitors, inductors) must satisfy 
three criteria before it can display chaotic behavior. It has to contain: 

1. one or more nonlinear elements 
2. one or more locally active resistors 
3. three or more energy-storage elements. 

Chua’s circuit is the simplest electronic circuit meeting these criteria. As shown in the figure, 
the energy storage elements are two capacitors and an inductor. There is an active resistor. There is 
a nonlinear resistor made of two linear resistors and two diodes. At the far right is a negative 
impedance converter made from three linear resistors and an operational amplifier. 

 

 

Fig. 30. Chua's  testing circuit (left – circuit, right – time series) 

 

 

 

 

 

 

 

 

 

 

So we take the input data and we analyzed them with Rosenstein’s algorithm. Problem was, 
that the data were not enough consistent. Matlab algorithm trend to result infinity exponents or it 

Fig. 31. 2D Notation in XY plane 
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wasn’t a number. So we have to try to reduce the noise. It fortunately solved the problem. As we 
can see on the figure below, the attractor is smoother. The problem was in measuring the distance 
between neighbor points. 

 

 

 

 

 

 

 

 

 

 

By this method we obtained largest Lyapunov exponent 1.3767. 

 

We have also decided to analyze the more common signal. We explore the ECG signal. We 
analyzed it as one dimensional object (although we know, it has more variables), but the chaos was 
also detected.  

 

We get largest Lyapunov exponent equal to 0.74 which tell us about the level of chaos. 

 

  

Fig. 32. Chua's attractor in Matlab and Curve for estimating the exponent 

Fig. 34. ECG signal Fig. 33. Slope obtained from ECG signal 
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11 FINDING THE CHAOS 

11.1 Variation of variables 

In order to find a chaotic system, we can use the speed of data processing technology and to 
generate all combinations of variables different systems. For them we can then calculate the 
Lyapunov exponents, which may be regarded as quantifier chaotic system. The main problem is that 
the system is very sensitive to initial conditions. So we can find only approximate solution. The 
problem of the procedure is, however, not only in sensitivity, but also delays the calculations, 
because we combine all variations of variables. For example we can try to generate a system with 
two unknown variables. 

Fig. 35. Largest Lyapunov exponent generated by two variables 
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Fig. 36. Contour plot of Largest Lyapunov exponent generated by two variables 

 

11.2 Optimization 

 

Mathematical optimization task is an effort to find such values of variables for which the target 
or purpose function becomes a minimum or maximum value. Many theoretical problems and 
problems in the real world lead to the role of optimization solutions. Often occurs when modeling 
physical phenomena, where the target function f has a physical energy system, which is in the 
steady state system, be minimal. 

 

11.3 Genetic algorithm  

 

Genetic algorithm used for solving a special form of entertainment-inspired biological 
chromosomes and to generate new solutions to the crossing and mutation. Before a detailed 
description of the genetic algorithm, therefore, recall a few well-known knowledge of related areas. 
In each cell living organism is a set of chromosomes consisting of DNA. Chromosomes form a 
model of the entire body and consist of genes (units of DNA). Very simply speaking, that each gene 
represents a feature or characteristic, such as eye color. Possible states of a gene called allele, such 
as eye color may be blue, brown, etc. Each gene has a solid position in the chromosome. The entire 
genetic material of an organism is called genome. The specific "set" of genes in the genome is 
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called genotype. The genotype determines the phenotype, the external characteristics of the 
organism (physical and mental - eye color and intelligence).  

During the reproduction of organisms there is a crossover (recombination), which shall be 
selected genes taken from their parents and their combinations to create a descendant genotype. 
During or after reproduction may be a mutation - a random change of the minor genotype. The 
success of the organism (fitness - its rating) in the biology indicates a likelihood that the organism 
survives in its reproduction, or as a number of his descendants. Evolutionary theory then says that 
only certain organisms to survive and reproduce, the more likely to succeed them better. The entire 
above uses genetic algorithm. An acceptable solution to the problem, which solves the GA, is 
represented using the genome, i.e. a set of genes. The specific set of genes is the state and represents 
the genotype and phenotype, which is a concrete solution. Based on the phenotype is therefore 
determined by assessment solution and so are the assessment of genotype. Crossing and mutation, 
however, takes place only at the level of genotype. Genetic algorithm maintains a population of 
solutions in the form of genotypes (chromosomes), which mutates and crosses that favors genotypes 
with higher pay, and thus seeks to "grow" a good solution. At the beginning of your run will create 
a random population (first generation) and in this manner creates a new offspring (next generation) 
is not satisfied until a terminating condition (e.g., number of generations, time, the best fitness, 
etc.). Genetic algorithm can be described roughly as follows:  

 

 

Fig. 37. Basic flow of genetic algorithm 

 

 

The main strength of the genetic algorithm is its parallelism i.e. that searches multiple points of 
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solutions at once (the whole population). As a result mainly of its resistance to deadlock in a local 
extreme (Imagine that, looking for the highest point in the mountains - if we look only at one place 
close around them, as well as much of the other optimization methods, and only by the will decide 
on the way, can we state that we find only a local peak (extra) and it is already in this move). 
Genetic algorithm is able to work without any special requirements for the scanned area and can, 
unlike other methods of finding good solutions even when the scanned area is "wild". Another 
important difference from other optimization methods is the separation of genotype and the creation 
of new solutions (the procedure in the solution space) from the phenotype and suitability assessment 
solutions. 

For finding the results, we have chosen the implemented Genetic Algorithm and Direct Search 
Toolbox in Maltab.  This toolbox can find minima of multiple functions using genetic algorithm. 
For implementing we can chose to use a single criteria function and create appropriate fitness 
function. We think that it is better to use multiple optimizations. Only disadvantage is that 
computing algorithm is not very transparent. Advantage is its simplicity of implementing it to our 
algorithm. Another thing is that this algorithm allows using automatic parallel computing. Of course 
that can speed up the process.  

Serious problem we have to face, in finding the parameters, is to choose good integrating 
function for solving the ordinary differential equations. So if we choose the right parameters, the 
function can tend to diverge very quickly. This mean that the numbers can overflow in computer 
memory and it can lead to freezing the cycle. Using the build-in function ODE45 (or other 
functions) was problematic because of these deficiencies. Even though they function as a reference 
in the help of Matlab is noted that the integration is a Runge-Kutta algorithm, we were not able to 
prevent freezing. We therefore decided to write our own function for integration. For the integration 
it is necessary to use a function with regard to speed and accuracy, because we know that chaotic 
functions are sensitive even to a small change in initial conditions. 

The best we seemed to use Runge-Kutta fourth order for finding approximate solutions. For 
more accurate calculation, we used the integrative function of the eighth order. 

As already mentioned, this method has the advantage that it allows parallel processing of data 
for different input parameters. It was used the optimization toolbox in Matlab, which offers many 
options, as well as parallel processing. It should be noted that this is not a full parallel processing 
because of its matter. This is also because the Matlab process data only serially. Parallel option was 
introduced only recently, but on multiprocessor stations still uses only one processor. Even so, this 
option is speed up the calculation. For the calculation was created multidimensional fitness 
function, which was designed to maximize the greatest Lyapunov exponent and second exponents 
closer to zero. Throughout the program, it is added to the evaluation algorithm, which controls the 
values of exponents. At the time when meeting the conditions for the emergence of chaos, the value 
of variables, including exponents placed in a matrix. It is thus possible to re-check the calculations. 

% Fitness function 
fitnessFunction = @spousteni; 
% Number of Variables 
nvars = 1 ; 
lb=[];%[-30 -30 -30]; 
ub=[];%[30 30 30]; 
  
% Start with the default options 
options = gaoptimset; 
% Modify options setting 
options = gaoptimset(options, 'Generations' , 200); 
options = gaoptimset(options, 'PopulationSize'  ,100); 
options = gaoptimset(options, 'PopInitRange' , [-20;20]); 
options = gaoptimset(options, 'OutputFcns'  ,{ [] }); 
fgoalopts = optimset( 'UseParallel' , 'always' ); 



 

  
[x,fval,exitflag,output,population,score] = 
 gamultiobj(fitnessFunction,nvars,[],[],[],[],lb,ub, options)

 

Using the described algorithms have been found, for example, the following systems:

Fig. 38. Find parameter b=0.02210921 for the Labyrinth chaos

Fig. 39. Find parameters a=0.23444 b=7.345 c=2.985 for Lorenz equations
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[x,fval,exitflag,output,population,score] = ... 
gamultiobj(fitnessFunction,nvars,[],[],[],[],lb,ub, options) ; 

algorithms have been found, for example, the following systems:

Find parameter b=0.02210921 for the Labyrinth chaos

Find parameters a=0.23444 b=7.345 c=2.985 for Lorenz equations

algorithms have been found, for example, the following systems: 

 

Find parameter b=0.02210921 for the Labyrinth chaos 

 

Find parameters a=0.23444 b=7.345 c=2.985 for Lorenz equations 
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11.4 Particle swarm optimization 

Particle swarm optimization (PSO) is an algorithm based on swarm intelligence. It finds a 
solution to an optimization problem in a search space, or model and predicts social behavior in the 
presence of objectives. PSO is a direct search method for finding the optimal solution for specified 
function in searched space. This function is called a fitness function (or an objective function).  This 
algorithm is good, because it is easy to implement by a programmer and in its basic form, it return 
satisfying results. Also this method can be used by anyone without understanding the mathematical 
background and optimization theory.   

PSO is a stochastic, population based computer algorithm, modeled on the swarm intelligence. 
Swarm intelligence is based on social-psychological principles and provides insights into social 
behavior, as well as contributing to engineering applications. The particle swarm optimization 
algorithm was first described in 1995. The swarm is typically modeled by particles in 
multidimensional space that have a position and a velocity. These particles fly through hyperspace 
and have two essential reasoning capabilities. Their memory of own best position and knowledge of 
the global or their neighborhood's best.  

In a minimization optimization problem, problems are formulated so that "best" simply means 
the position with the smallest objective value. Members of a swarm communicate good positions to 
each other and adjust their own position and velocity based on these good positions. 

For optimizing the problem, first we need to set a fitness function, describing the solution. We 
know that PSA is searching the minimum of the function. Also we know, that sign of each 
Lyapunov exponent is important. We have to consider the complexity of our problem. We are 
trying to find a solution for infinity variations of parameters.  For example, if we have a nonlinear 
dynamic function with chaotic behavior (in special conditions). We can expect results with many 
local minimums. 

As stated before, PSO simulates the behaviors of bees flocking. Suppose the following 
scenario: a group of bees are randomly searching flowers in an area. There is only one flower in the 
area being searched. All the bees do not know where the flower is. But they know how far the 
flower is in each iteration. So what's the best strategy to find the flowers? The effective one is to 
follow the bee which is nearest to the flower.  

After finding the two best values, the partije (bee) updates its velocity and positions with 
following equations: � � � - 0,. W+V�. �<���
 M <W	�	V�� - 01. W+V�. �����
 M <W	�	V��  (26.) <W	�	V� � <W	�	V� - �        (27.) 

 
v[] is the particle velocity, persent[] is the current particle (solution). pbest[] and gbest[] are defined 
as stated before. rand () is a random number between (0,1). c1, c2 are learning factors. usually c1 = 
c2 = 2.  
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Fig. 40 Description of PSO algorithms 

 

11.5 Results of particle swarm optimization 

Finding the parameters for which the system becomes chaotic, it may seem at first glance a 
simple task. But we have to search the entire state space. However, we know that the system is very 
sensitive to initial conditions. This supposition greatly complicates the situation. Distribution of 
state space into regions is unnecessary, because the sensitivity of the parameters the solution may 
exist with many local extremes.  

It is therefore necessary to define a proper fitness function. Because we know that the 
algorithm searches the minimum function, define the required function: 
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Φ�/� � 10 ∑ :,���$��1� - �1000 ∑ :1���$��1� � - ∑ :3���$��1�    (28.) 
 
 
The function Φ�/� looks complicated at first glance, but it is defined by sensitivity to the first 

expolent :, and greater sensitivity to the second exponent :1, after which calls for close to zero. We 
see that the exponents �, �, � starting up from number 20. This is because we did not have biased 
the results. We could say that, we wait until the trajectory of attractor is stabilized. 

 

 

Fig. 41 Overal distribution of particles 

 

Fig. 42 Distribution of particles in first step (blue) and last step (red) of iteration 

Again we had to, to create an algorithm, be careful to select the correct integration features. 
Speeding up the calculation could be achieved by splitting the state space of subspaces and the 
launch parallel computing - separated. For the control algorithm was used as generators known 
Lorenz system of equations (equation 10.) and a new system known as the Labyrinth chaos [24] 
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(equation 29.). /� � sin 2 M �/ 2� � sin 4 M �24� � sin / M �4            (29.) 

For the first system, we found many solutions that were exhibiting chaotic behavior. Here are 
those that exhibit strong chaos: 

p r b λ1 λ 2 λ 3 

55,49341 1,217994 3,67807 0,631487 0,038927 -6,57041 

16,85988 1,105048 11,34285 0,39375 0,009977 -13,8537 

Table 4. Solutions for Lorenz system 

 

Fig. 43. Lorenz system for found parameters 

 

Fig. 44. Spectrum of exponents for solution 

 

The second system exhibits weak chaos. By our algorithm we found 368 possible solutions for 
a quite short time. All solutions were correlation about b=0.1. What we know [24], this is a point of 
chaotic behavior.  
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11.6 Comparisons between Genetic Algorithm and PSO 

From the procedure, we can learn that PSO shares many common points with GA. Both 
algorithms start with a group of a randomly generated population, both have fitness values to 
evaluate the population. Both update the population and search for the optimum with random 
techniques. Both systems do not guarantee success.  

 
However, PSO does not have genetic operators like crossover and mutation. Particles update 
themselves with the internal velocity. They also have memory, which is important to the algorithm.  
 
Compared with genetic algorithms (GAs), the information sharing mechanism in PSO is 
significantly different. In GAs, chromosomes share information with each other. So the whole 
population moves like a one group towards an optimal area. In PSO, only gBest gives out the 
information to others. It is a one -way information sharing mechanism. The evolution only looks for 
the best solution. Compared with GA, all the particles tend to converge to the best solution quickly 
even in the local version in most cases. This is the general method comparison.  But we know that 
solution for our problem is not as easy. We know that the solution in real space R consists of many 
local sharp solutions. We can draw a solution, which each of methods suit for a different set of 
equations. 

 

In future it would be interesting to combine PSO as generator for initial population for genetic 
algorithm. This can guarantee enough diversity for initial population. And can reduce time needed 
for computation.  
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12 SUMMARY 
The aim of this work is to find the universal ways in which it is possible to investigate the 

dynamic system of differential equations. The methods that were used can be considered successful, 
because using them was found new solutions that meet the conditions. The proposed program in the 
Matlab language is universal. Just enter the general differential equations and their Jaccobi`s matrix 
and run the calculation. We have also tested other methods using a fractal dimension. This was 
useful, but it was very time consuming. Easiest to implement was box counting method. This 
method can be applied to time series without knowledge the equations. This method also was very 
slow. But it can be improved by using parallel computing. Another method was to use Poincare 
maps. Also quite simple method, but the problem is in analyzing the results. It cannot be easily 
decided, whether the results tend to be chaotic either not.    

We have created algorithms in Matlab to calculate determine and find chaos in time series. The 
best showed up using Lyapunov exponents. How, in examining the issue turned out not needs the 
calculation of the spectrum, since the calculation of the greatest exponents is sufficient and simpler. 
These algorithms, we finally managed to create. We have implemented the calculation using the 
two best-known calculations.  

Wolf's calculation, which appears to be relatively simple to mention, however, tends to be 
divergent. And second method is Rosenstein's. The algorithm we seemed much better and more 
stable. We tried to do an automated algorithm that works without prior knowledge of the system or 
issue. Unfortunately it was not possible to do. Algorithm seems to be very sensitive to the 
evaluation results. We must also choose the correct interval for the accuracy of the maximum 
Lyapunov exponent. The program underwent tests on models created by differential equations. We 
compared the results with the empirically calculated values. Indeed, we added a noise the signal, we 
tested the accuracy of the calculation. This proved to be very impressive.  

Finally, we tested on real data. For testing we used Chua's oscillator and the real ECG signal. 
We were faced with the noise in the measured signal. He had to be removed before the actual 
implementation of the calculation. For Chua's oscillator exponent we walked around 1.3767, which 
already indicates a relatively high degree of chaos. And for ECG, we set its value to 0.74, which 
also indicates the presence of chaos.  

The last object was to create an algorithm, which will find the system parameters for finding 
the chaos. We deal with several ways to find the parameters of dynamic differential equations, 
which exhibit chaotic behavior and are displayed in state space attractors. Best results in terms of 
delays, had multi-criteria genetic algorithm and Particle swarm optimization. When there is 
sufficiently large parental population and a large number of generations that should be sufficient for 
testing the system. However, it is recalled that it is not indifferent to the integration of numerical 
methods used. If the system integrate in time, it is possible that the solution is divergent. It can 
cause problems in the calculation. With great precision (meaning small numerical error) calculation 
may also be divergent and the computer will not be able to find a solution. The control in terms of 
accuracy and time cost is to use the integration method of Runge-Kutta 4th order. Interesting would 
be to use a fully parallel processing. This could greatly speed up the calculation (for example, using 
four-core processors up to 40%).  
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14 ENCLOSURE LIST 
CD with source codes in MATLAB: 

- Poincare map 
- Lyapunov exponents from ODEs 
- Rosenstein’s method 
- Wolf’s method 
- Simple variation of parameters 
- Optimizing by genetic algorithm 
- Multi-objective optimizing by genetic algorithm 
- Optimizing by particle swarm algorithm 
- Spectrum of time series by FFT and filtering 
- Reconstruction of dynamics by time delay method 
- Autocorrelation for estimating tau 
- Estimating Mutual information and correlation integral 
- Estimating embedded dimension – symplectic geometry 

 


