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ABSTRAKT

Cilem této prace je se sezndmeni s moznostmi pmaghatlab z hlediska detailni analyzy
deterministickych dynamickych systémJedna seipdevSim o analyztiasové posloupnosti a o
nalezeni Lyapunovych exponénDalSim cilem je navrhnout algoritmus umojici specifikovat
chovani systému na zakkadnalosti pisluSnych diferencialnich rovnic. To znamena, reiéz
chaotickych systétn

KLi COVA SLOVA

Chaos, atraktor, dynamické systémy, Lyapunovy eg&pbn geneticky algoritmus,
optimalizace, multikriterialni optimalizace, fraktdraktalni dimenze, PSO, metoda rajastic,
¢asova posloupnost

ABSTRACT

This work aims to familiarize with the possibilgi@f Matlab in terms of detailed analysis of
deterministic dynamical systems. This is essegtmlhnalysis of time series and finding Lyapunov
exponents. Another objective is to design an algoriallowing to specify the system behavior
based on knowledge of the relevant differentialatigms. That means finding chaotic systems.

KEYWORDS

Chaos, attractor, dynamical systems, Lyapunov exmsn genetic algorithm, optimization,
multicriteria optimization, fractal, fractal dimeos, PSO, particle swarm method, timing
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1 INTRODUCTION TO NONLINEAR DYNAMICS

The essence of science is the assumption thabeléxperiments are carried out predictable
and repeatable. It was therefore surprising whesingle deterministic systems (under certain
circumstances), were not predictable or repeatdbftead, it showed a phenomenon known as
chaos. Under the term deterministic chaos we utalesa system which is extremely sensitive to
initial conditions. As a result of this sensitivity the behavior of these physical systems exhipiti
chaos, seems to be random, although the modelnsystéhe 'deterministic’ in the sense that it is
well defined and contains no random parameters.rdbts of chaos theory can be dated back to
1900, Henri Poincare in studies on the problem o¥ement of objects to 3 mutual gravitational
force, the problem of three objects. Poincare dised that there may be orbits which are non-
periodical, and which are not constantly increaginglose to a fixed point. Later studies, also on
the topic of nonlinear differential equations, warplemented GD Birkhoff, AN Kolmogorov, ML
Cartwright, J.E. Littlewood, and Stephen Smale. alidition Smale, perhaps the first pure
mathematician studied nonlinear dynamics, thesdietuvere all directly inspired by physics: the
problem of three bodies in the case of Birkhoffptuence and astronomical problems in the case
Kolmogorov, and radio technology in the case Cagiwrand Littlewood. Although the chaotic
movement of planets has been observed, experingseziepuntered turbulence in the movement of
liquids and non-periodical oscillations in the kadircuit, without the support of the theory that
would explain their observations.

Chaos theory quickly progressed in the middle st keentury, when it became clear to some
scientists that linear theory, the prevailing tlyeof systems in this period, simply cannot explain
the observed behavior in certain experiments, siscthe logistic map. The main catalyst for the
development of chaos theory was the electronic cwenp Most of the mathematical theory of
chaos involves a simple re-iteration, the develapmg impractical to test manually. Electronic

computer research in such systems facilitate highhe of the first electronic computers, ENIAC,
was used to study simple models of weather forec&me of the first pioneer this theory was
Edward Lorenz, whose interest in chaos arose ralydduring his work on weather prediction in

1961. Lorenz used the computer Royal McBee LPGa3tatculate its model simulating weather. |
see again the sequence, and to save time, theasiomubegan brokering. It is printed data from
previous simulation and is entered as input daj@tw model.

To his surprise the weather forecast was quiteeidifft than its original model. Lorenz examined
why, and discovered the cause of their group. Reapoinded variable to 3 decimal places, while
the computer worked with 5 decimal places. Thiged#nce is small and should not have to deal
with practical impact. However, Lorenz discoverbdttsmall changes in initial conditions lead to
large changes in output in the long term.

The concept of chaos, as used in mathematics, stablished applied mathematician James A.
Yorke. Moore Act and the availability of cheapemputers have extended the possibility of
examining the theory of chaos. Currently, contigumery actively exploring this theory.

Systems that exhibit mathematical chaos are imsese&omplex manner. This is the meaning of the
word in mathematics and physics in non-compliand whe usual understanding of the word
chaos as total disarray. The origin of this word ba found in Greek mythology.

-12 -



2 EXAMPLES OF DYNAMICAL SYSTEMS

2.1  Astronomical objects

For example, the movement of astronomical bodieserdeged by the universal law of gravity
(F=G*ml*m2/r”2)and the second movemeawtdn law (F = ma). It is an inverse quadratic
dependence on the separation of forces of mattesridinearity, which allows for chaos. However,
it does not guarantee it. It is true that the moset® of bodies are among the most predictable
processes in nature. Planetary movements have doeeprehensively described Johannes Kepler
many years ago the analysis of astronomical obsengof Tycho de Brahe. The problem is, as we
have already indicated in the introduction, forrapée, when the planet will orbit the binary stars
(the three body problem). Track this planet is edptable. An example of one of the many
trajectories is shown in the picture.

%10

Fig. 1. Planet orbiting a binary star

2.2 Liquids

Another example is the movement of fluids (gagylasma). In general, the liquid consisting of
a large (and infinitely large) amount of molecutleseach other at each other operates. Each
neighboring molecule, therefore, responds to itsosundings. It is therefore evident that such a
trivial mixing of fluids is a nonlinear dynamic pm@menon. In terms of prediction of mixing is a
chaotic phenomenon. It is known that divided th@wflof liquids in the laminar and turbulent
(chaotic). However, it is difficult to identify wimeand under what circumstances, turbulent flow
occurs.

-13 -



2.3 Non-physical systems

Rhythmic changes in blood pressure, heart and aeliovascular ratio values indicate the
importance of dynamic aspects in the understandingardiovascular rhythms. Several studies
point to the fact that some cardiac arrhythmiasaarexample of chaos. This is important because it
can help determine treatment. For example, cardidtythmias, Atrial fibrillation, bradycardia,
cardiac acceleration activity, hollow core and otlxehythmias.

Ventricular arrhythmias, both chambers fibrillati@nd ventricular tachycardia, the most
serious of the diseases. These arrhythmias causg aeaths. Cardiac instability can be understood
as a spontaneous asynchronous download of cardiesclen fibers. Atrial chambers become
spontaneous and irregular heart rhythm disorders Tan quickly proceed to the heart rhythm
becomes incompatible with life.

Cardiac rhythm is one of the best indicators atrimyt events and may lead to sudden death
after myocardial infarction. Cardiac rhythm is partontrolled by an autonomous nerve system.
Autonomous System (not to affect the will of manpanagement of autonomous function of the
nature of reflective, independent of our consciegsn The autonomic nervous system is divided
into subsystems, compassionate (SNS) and paradyetiga{PNS) nervous systems. Short-term
variability is mediated parasympathetic nervoustesys while long-term variability of the two:
sympathetic (SNS) and parasympathetic (PNS) nersgsiem. As you know, heart rate may vary
even in the absence of physical or mental pressure.

Several studies demonstrate the relationship betweediac arrhythmias and chaos. This is
related to the deterministic characteristics of ahyhese arrhythmias. Clinical arrhythmia has the
greatest potential for therapeutic applicationshaos theory to non-periodic tachycardia, including
atrium and ventricle fibrillation. Such an approachthe evaluation could be implemented to
promoters. This could be avoided, for example lfdtiton chambers.

There are already some interesting comparisonsdegithe dynamic characteristics of healthy
individuals and patients with high risk of suddeardiac fibrillation. Hearts with a high risk of
sudden cardiac arrhythmia course shows chaoti@igithese methods could pose an important
diagnostic tool for clinical purposes.

We can simplify the situation so that the heartisype of oscillator. Question is, if the
oscillator is valid for the nonlinear dynamic edqaas. The problem is, however, that these
eguations contain many state variables - theraremey factors affecting heart rhythm. In clinical
conditions of the situation but we can simplify aeduce to fewer variables. There is a chance that
it will to some extent (i.e. with a short time almited initial conditions) to predict heart rhythm
Such a device would become a very important todhéoperating theater. Surgeon should be able
to prepare a situation with time.

14 -



3 SENSITIVITY TO INITIAL CONDITIONS

Sensitivity to initial conditions means that twoos¢ trajectories in phase space with
increasing time of launching. In other words, a lbfzange in initial conditions leads over time to
a very different outcome. The system behaves idahti only when the same initial conditions.
The combined sensitivity is the so-called Butterfihie weather can be so sensitive that just sweep
butterfly wings on one side and on the other pkr(&r a longer period of time) can cause
tornadoes. We will test the sensitivity to inita@nditions of the program Matlab. Consider Lorenzo
equation is a solution for different initial condits. Then we compare the time course of both

solutions.

The equation describing Lorenz attractor: 1) (
dx
—=0(y—X
p (y=x)
dy
——=X(r-2)-
at (r-2-y
dz
— =Xxy—bz
a

0 : : .

|
m. [ -
107 |I|r|||||I || l”l | | | } ||1 ‘ I i
W, I
s | 'I (i M [5
= O L-. NIRRT ,ﬂfl- J
£ [|1 | "|'I|| ’“;!"\ vl I[. M
I||'|' | ‘ ' | ]IH ||'.“r|l1 IRt
10 J| M ‘ Iv I||| ||| d | IH
I
| q
— 1. 1[0)=3 l
—— y2, y2(0)=3.000000001
0 5 10 15 20 2 30 3 40
1
Fig. 2. Different results with different initial oditions
Coefficients Lorenz equations (2.3.1) are: = 10, b = 8 / 3 and r = 28.
Initial conditions: x1 (0) = 8, y1 (0) = 3, z1 (® 4 and x2 (0) = 8, y2 (0) = 3.000000001

72(0)=4

The graph shows that even if the difference betwden initial conditions is only
0.000000001, during a longer period of time leadsignificant deviations.
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Note, that sensitivity on the initial conditionsiisa privilege of nonlinear dynamics. It also
happens in linear systems. For example, take thllewiog time-discrete dynamicakystem

Xn+1 = .

1. step: rolling out folding

two poppy seeds

after the 2. step:

Fig. 3. Stretching and folding [9]

The distance between two different solutions ineesaby the factor two in each time step. But
of course, this is not deterministic chaos. It i&iad of trajectory explosion. Sensitivity on the
initial conditions leads to chaos only if the ti@ies are bound. That is, the system cannot blow
up to infinity.

With linear dynamics, you can have either sengjtian the initial conditions or bound
trajectories, but not both. With nonlinearities,uyoan have both. The figure shows why this is
possible. Imagine the phase space is a piece ghdivom which you want to make flaky pastry for
croissants: You roll it out and fold it. Usually yaepeat this step a few times. Suppose at the
beginning two “poppy-seeds”, are located next wheather. Each time the dough is rolled out the
distance between the seeds increases. EventuaByintrease is stopped when the seeds are on
different sides of the folding line. At that momethte distance changes unpredictable. Thus,
stretching and folding are responsible for deterstim chaos. And there is no folding without
nonlinearities [9].
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4 STRANGE ATTRACTORS

More often than not, orbit trajectory of chaoticstgm, will be painted in a small area of the
state space. With the development time, the trajgatill vary deterministically, but you can not
accurately predict. Movement trajectories of thgeobfractal called strange attractor. Strange
attractors are often a manifestation of chaos. Taey called "strange" because of its fractal
structure. It is also possible to use the term dthaattractor. These terms are often
interchangeable. Depends on whether it is the ge@mrend dynamic properties. However, some
authors these names differ from each other.

It is important to discuss their properties andestigate their samples, because the most
important thing is to recognize the chaotic behawben it occurs in the experimental data. If we
had a large number of objects it is possible toresklthe statistical issue of how common it is
chaos. What are the most common value of Lyapungoreents, size dimensions and other
properties.

Chua attractor c1=9 c2=1 m0=-8/7 m1=-5/7 c3=100,7;

Fig. 4. An example of Chua's strange attractor
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5 SPECTRUM OF CHAOTIC SIGNALS

As we know, we can express the signal using thebiaic signals, i.e. the functions sin () and
cos () function is generally complex exponentissth such simple considerations, we can convert
the signal from time domain into the frequency domBor a general transfer of signals from the
time domain there is a Fourier’'s transformationurir transform Scf) of function s (t) is defined
by an integral relationship:

S(w) = f_oooos(t)e_i“’tdt. (3.)

The definition clearly shows that the spectrum isamplex quantity. There are therefore
amplitude spectrum and phase spectrum. We segéhthapectrum is a continuous function defined
from minus infinity to infinity. This, however, fanany signals cannot be calculated analytically. It
can be for example digital signals. Using compatal tools, such as a PC, always leads to
discretization of the signal. So if we have disereamples, it is possible to replace the function o
integral by function sum ().

S(Q) = Yr__, s(k)e ¥, 4.

Then for eachQ there is a sum of products weighted by exponemeoietically, the chaotic
signal, we know has no period. This means that ihieach time different. If would signal be an
infinitely long (in time sense), it would mean thiaé range of its spectrum is also endless.

Also we know that the attractors are attractedhw e@quilibrium. So if you re-introduce the
state space and the length of signal is infinitere is a demarcation, which has resulted in a
reduction spectrum width. This means, that we daimg that the spectrum of such signal is very
wide-banded.

In the real world, we have limited bandwidth, sotwed to simulate a reconstruction of signal
after filtration and how it affects results. It isiportant to investigate, because we know the
sensitivity to initial conditions.

Filtered magnitude spectrum of chaotic signal - Lorenz attractor solution

12000 ; :

Original spectrum
Filtered spectrum
10000 — -

8000 — —

6000 [+ —
|

Magnitude of spectrum

4000 [ | -

2000 (1| —

I
“E: w‘:““\
o b Mty | |

| |
0 500 1000 1500 2000 2500
Units of frequency

Fig. 5 Spectrum of filtered and original Lorenzattor
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Comparison of filtered and non-filtered chaotic time series
20 \ \ \
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Fig. 6 Reconstructed signal by IFFT

In this example can be seen a short segment a$gbetrum filtration Lorenz attractor. After
the reconstruction of signal it is visible that gping of spectrum quite reflected the results. In
communications technology, this example can beesbbnd repaired. But if we use a very long
signal (in this case signal generated by Labyrahitaos), how it is used in next figure, we can prove
what we claimed before. The spectrum of signal idew In this example we have crop the
spectrum more.

Labyrinth chaos for b=0.1 Long time ewolution

Fig. 7 Labyrinth chaos for b=0.1

3 x 10° Filtered and non-filtered spectrum of Labyrinth chaos
I I I
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Filtered data
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Fig. 8 Spectrum of long chaotic signal (Labyrintiaos)
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Filtered and non-filtered time series of Labyrinth chaos
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Fig. 9 Time series after reconstruction

In this case, we can see that the filtered recootd signal varies from the original signal.
This means, that any jamming or filtering of sigoah lead to different results.
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6 FRACTAL DIMENSION

The value of dimension of the chaotic system igliee estimating the rate of how chaotic the
system is. It is also called the fractal dimensibar systems without fractal structures, such as
fixed points, limit cycles and others, fractal dim®n is an integer value. In contrast, fractal
dimension for chaotic attractors with a fractalisture is a real number. Dimension can be interpret
as a number of real parameters needed to detethenaoint position on object, or as an exponent
expressing the change in quantity when resizingan@ty we consider for example volume. And
size means a chosen characteristic dimension. Saistatistical quantity that gives an indication
of how completely a fractal appears to fill spaa®pne zooms down to finer and finer scales. There
are many specific definitions of fractal dimensiohhe most important theoretical fractal
dimensions are the Rényi dimension, the Hausdariedsion and packing dimension. Practically,
the box-counting dimension and correlation dimemsice widely used, partly due to their ease of
implementation.

Although for some classical fractals all these disiens do coincide, in general they are not
equivalent.

6.1 Reényi dimensions

The box-counting, information, and correlation dimsi@ns, can be seen as special cases of a
continuous spectrum of generalized or Rényi dinmmrssdf orden, defined by

1
= logXip/’

Da == limg_,o 1
logg

(5)

where the numerator in the limit is the Rényi epyr@f ordera. The Rényi dimension with
a=0 treats all parts of the support of the attraetqrally.

6.2 Hausdorff=Besicovitch dimension

The Hausdorff dimension introduced by Felix Hauffidajives a way to accurately measure
the dimension of complicated sets such as fracE® Hausdorff dimension agrees with the
ordinary (topological) dimension on "well-behavedss, but it is applicable to many more sets and
is not always a natural number.

D =—+. (6.)

Where N is the number of parts, at which an objsgstem) we divide. The variable s
corresponds to the N-fold reduction in scale.

6.2.1 The Box Counting Dimension

Box-counting dimension is a simple way of estimgitthe Hausdorff dimension for fractals.
We compute the box-counting dimension from a gniat is superimposed on a fractal image and
counting how many boxes in the grid contain parthef fractal. Then you increase the number of
boxes in the grid (but covering the same area:bitvees get smaller) and count again. If the
numbers of boxes in the first and second grid€Garend G, and the counts are;@nd G, then you
compute a dimension by the formula:
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C
logc—j

- \% (7.)

This method is very suitable for implementationcomputer algorithms. Therefore, it is also
very popular. Its disadvantage is the time requii@d multiple state variables. Using parallel
processing method would have gone faster.

D =

6.3 Kaplan-Yorke Dimensions

The calculation using the dimensions of this metiwgery simple. It builds on knowledge
Lyapunov exponent. But exponents obtained, shoaldnbde by orthonormalization, because we
need to ensure squareness. For computer solubotie tproblems we'll deal with Gram-Schmidt
method.

At A
DKYEJ_/]— (8)

j-1

where the value of j is the maximum number of exgmis Lyapunov. From this value we can
estimate, if the tested object can be considerathass. It is because chaos system doesn’t usually
have an integer value of dimension as we are used.

Name Dimension
Sierpinski triangle 1,585
Lorenz attractor 2,060
Surface of lungs 2,970
Cantor set 0.6309

Table 1. Examples of well known systems and theislan Yorke dimension
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7/ POINCARE MAP

To create the illustration for the phase portrégystems with higher dimension, we don't have
enough methods that we have been using. The onfytaoveapture the characteristics of the phase
space portrait in the lower dimension is a progtir cut multidimensional general body surface.
Simply Poincare map can be seen as a slice (sufdbf) phase portrait, in which one or more state
variables constant value.

More precisely, one considers a periodic orbit witiial conditions on the Poincare section
and observes the point at which this orbits fiestims to the section, thus the name first recagen
map. The transversality of the Poincare sectioichtg means that periodic orbits starting on the
subspace flow through it and not parallel to itPAincare map can be interpreted as a discrete
dynamical system with a state space that is oneeréion smaller than the original continuous
dynamical system. Because it preserves many prepat periodic and quasi-periodic orbits of the
original system and has a lower dimensional stpéees it is often used for analyzing the original
system. In practice this is not always possibléhage is no general method to construct a Poincare
map.

Fig. 10. Principle of Poincare map

From this definition it is apparent that a systerfiliting chaotic behavior will have a
different Poincare's section. We can expect thatdhaotic signal has many intersections with
Poincare's plane. These intersections are irregutdnaotic. But it is a method that will help us
decide whether the signal is chaotic. For examible, system will have periodic intersections,
which are equidistant from each other, or they cde
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Planes in state spce for Poincare map

0.04

Fig. 11. Planes in state space — Lorenz attractor
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Fig. 12. Intersections with planes (for computergasssing, there have to be a small range of values)

Despite its simple implementation of the algorithiins method doesn't seem to be suitable for
computer analysis. One of the problems that neée taolved in developing the algorithm is fitting
the plane perpendicularly to the flow of signalisTtan be solved using Gram-Schmidt

orthogonalization process.

24 -



8 LYAPUNOV EXPONENTS

One measure (and most used) of sensitivity tcain@dnditions are Lyapunov exponeits It

is the average value of divergence (or convergerafefwo neighboring trajectories. The
mathematics is Lyapunov exponent or charactergstponent Lyapunov dynamic system variable,
which characterizes the separation of infinitelgsel trajectories. So to describe the behavior of
trajectories in the vicinity of any trajectofy used Lyapunov exponents, which are generalizing
their own numbers or multipliers. Lyapunov exposefitE) are real numbers that can be usefully
applied for the classification non-chaotic and dltaattractors. If the system in an unstable state
can show that the two near trajectories are mosingy faster than polynomial. Distance | of two
points close to the trajectories can be approxichegkationship

I(t) =d, e, ®.)

where is the local Lyapunov exponent.

Fig. 13. Transformation circular trajectory to gfical trajectory

Choose where sufficient space only one vector, &t@ge-Lyapunov exponent. In multi-phase
space defined by the global spectrum Lyapunov expisn(each state variable corresponds to one).
For one selected vector in the tangential spaagshol

(10.)

i Ll
A ‘!'IE;'”(T)-

Know if this range, then we can conclude that ifeddponents are non-positive, the stable
behavior of the system and if at least one expongnpositive. The system then behaves
chaotically.

Lyapunov exponents are ordered to the time quaati@ins of the chaos. More is described in Table
2.
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M Ao A3 Aa Attractor Dimension
- - - - Equilibrium point 0

0 - - - Limit cycle 1

0 0 - - 2-torus 2

0 0 0 - 3-torus 3

+ 0 - - Strange (chaotic) >2

+ + 0 - Strange (hyperchaotic) >3

Table 2. Characteristic of the attractors for a-fdimensional flow [1]

We see that there are certain conditions that fpeishet for the emergence chaotic attractor.
These characteristics are most used in the clessdn system, so when the subsequent
optimization.
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9 ESTIMATING LYAPUNOV EXPONENTS FROM
DYNAMICAL EQUATIONS

There are two basic methods for calculating Lyapuexponents. The first is precisely when
we know the system of differential equations. Ukent in some ways we get the Lyapunov
exponents. The second way may be a set of datalwes (it is of course already on the integrated
data). We will devote the first of the methods.

To get the vectors, we must first multiply the etipraappropriate by Jacobi’s matrix

a; 8, az) (X Cu Cp GCg| (X d, b)(A D G J
Qy Ay Ay |YY|H[Cy Cyp Cyu|UY [ﬂx y Z) d, |+| b, B E H|=|:
Q3 83 Q) \Z Cyu Cp GCy3) \Z d, b,){C F | U ,

(11.)

where the matrix with vectors A-l represents Jasatiatrix, which is made by derivation's
of appropriate variables. For example, vector Aehidne following form:

A =aqq + 2xdicqq +dic1py +dic132 + ydycqq + zd3cqyq- (12.)

Next step is to integrate the differential equagigmumerically) and the variation equation with
random initial conditions. The system gives yofoimation about the time development of small
perturbation of x. It is a good idea to perform GBeamm-Schmidt orthogonalization of various y.
Then

_1 y(®)
Ly - t log (y(O)) (13)
approaches the largest Lyapunov exponent.

Dynamics of Lyapunow exponents

Lyapunow exponents

1
10 20 3a 40 a0 B0 70 g0 aa 100

ns 1 1 1 1
]

Tirne

Fig. 14. Dynamics of Lyapunov Exponents (examptd_firenz’s equations)
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10 TIME SERIES ANALYSIS

Few years ago, determining chaos from noise haenbecan important problem in many
diverse fields. This is because, new numericalrdlyns for quantifying chaos using experimental
time series has been developed. There exist matlyoa®e For example calculating a correlation
dimension. The dimension gives us an estimate efsiystem complexity. The most discussed
method is calculating the characteristic Lyapungpoments. That is because the exponents give us
an estimate of the level of chaos in the dynansgatems. When we know the level of chaos, we
can start to predict the data. Because of thikmwesv, how accurate is our prediction.

10.1 Lyapunov spectrum defined

Now we define the Lyapunov spectrum in the mannestmelevant to spectral calculations. In
given dynamical continuous system (n-dimensionalge monitor in the long term the evolution of
an infinitesimal n-sphere. When the n-sphere eslfrom initial conditions, it deforms and
become n-ellipsoid, following the flow. The i-th &gunov exponent is then defined along the
principal ellipsoidal axis pi(t):

Fig. 15 Meaning of the Lyapunov exponents

pi(t) (14.)
pi(0)

Where thé\; is aligned from the largest to smallest. But asdisstem evolves throw the time,
the direction of exponent changes an many varioagswSo we cannot speak about well defined
direction given by exponent. exponents can alsy,Viaecause we can use a different base of
logarithm. But most used are base of 2 and e. @Gyere can say, that one or more positive

exponents for dissipative attractor means thasystem is “strange” of “chaotic”. When we have
marginally stable orbit, the exponent is zero.

4 = lim —log,
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Fig. 16 Periodic data

10.2 Wolf's method

Given the time series x (t), an m dimensional phastrait is reconstructed with time delay
method, because usually in experimental data, wet ditain all variables. So we locate the
nearest point (in Euclidian sense) to the initiainp {x(to), ...X(lb+(m1)} and denote the distance
between a point on attractor given by {x(t), ..¢¢(in-1)c}. The distance is designate by d)(tThe
next distance will be L'(). The length element is propagated throw the citirafor a time short
enough so that only small scale attractor struasiligely to be examined.

b .
L)g >

Fig. 17 Discribing the Wolf's method

If the evolution is to large, we may see L’ shraxkit pass throw the folding area of attractor.
So that could lead to underestimate Lyapunov expsnéds we know, the most important for
identifying chaotic series is only the largest Lyapv exponent. It is because, the other spectrum
tells us, how the trajectory evolves. But for urst@nding how chaotic data are, is most important
the largest exponent. Usually positive largest lyagy exponent leads to chaotic data. We can
even say that scale of largest Lyapunov exponanessure, how chaotic the time series is.

Now we look for a new data point that fulfils twoteria sufficiently well. The step separation
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of L(t1) has to be small to fiducial trajectoryné the angular separation between evolved and
replaced point is small. If we cannot find an adgdggqueplacement point we keep the points that
were being used. We should repeat this procedut# tlie entire fiducial trajectory is traversed. |
this point we can estimate

__1 M L' (tx)
A = P— k=1108> R (15)

where M is the total number of replacement stefis. [

10.2.1Estimating A1+ A2

The algorithm is basically almost similar to estimg@ largesti. But it is much more
complicated in implementation to the program. A of data points is chosen. Containing a fiducial
point and two nearest points. By this we have defimn area A{}. This area evolution is
monitored. This evolution also has to satisfy poesi criteria. Propagation and replacement steps
are repeated until the fiducial trajectory has erged the entire data set. In this point we can
estimate

1 A
M+ Ay = I log, 20 (16)

—to 2 A(tk-1)

Where { is the time of k-th replacement step.

-/ aa)

T d

Fig. 18 Discribing the Wolf's method — the areacoédting

It is possible to verify result fot; throw the use of calculatiohy + 4,. For attractors, that are
very nearly two dimensional there is no need torywabout preserving orientation when we replace
triples of points. These elements may rotate aridrsiewithin the plane of the attractor. But the
replacement of triples always lies in the same gl&ince thel, equals to zero, area evolution
provides direct estimation af;. We didn’t impellent this algorithm because itc@mputational
heftiness. [4]
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10.3 The Rosenstein’s algorithm

Rosenstein et al. [9], first step in this appro&lalso reconstructing the attractor dynamics
from single time series. The approach is alreadgtimeed before. They also use a delays method,
where X is a matrix, where each row is phase-state veétfter reconstruction of dynamic the
algorithm locate the nearest neighbors of eachtpwirthe trajectory. The nearest pa¥jtis found

by minimizing the distance between reference p¥jniThis is expressed as
d;(0) = ming[|X; — X]], (17.)

where]|...|| denotes Euclidian norm ang(@ is the initial distance from thé jpoint to its
nearest neighbor. They define the additional Ation that the nearest neighbors have separation
greater than the mean period (median frequendyeofrtagnitude spectrum) of the time series,

|j — j| > mean period. (18))

This allows us to take each pair of neighbors a®at initial conditions for initial trajectories.
Then the largest Lyapunov exponent is estimatednaan rate of separation of the nearest
neighbors. This method is easy to implement ast faecause it does not require large data sets
and it uses a simple measure of exponential dimeey¢hat outwits the need to approximate the
tangent map. It also simultaneously yields to ¢berelation dimension. This algorithm is also
better than Wolf's, because it takes advantageldvailable data. It does not focus on fiducial
trajectory.

1 1 . d) (19.)

M) = E—(M ) Z, nd]-(O)'

WhereAt is the sampling period of time seriegj)dis distance from thé"jpoint to its nearest
neighbor after'f time steps. M is a number of reconstructed poftsm the previous definition of
A, we expect that théhjpair of nearest neighbor diverge approximately &g rgiven by largest
Lyapunov exponent.

dj(i) a Cje/‘ll(i.At)_ ( 20.)
Where Gis the initial separation. When we logarithm bsithes, we obtain

In (d; (1)) = In(C;) + A, (i. At) (21)

Equation represents set of parallel lines, eaghesi® proportional td,. The largest Lyapunov
exponent is then accurately calculated using Isqsére fit to the line defined by

y(@D) =5 (In(d;®). (22)

Where(...) denotes average over all values of j. This proteksy to calculation the exponent
value. When we have a noisy data set, we havepecesly take care about this part. [9]

-31 -



Estimate tau and mean
period using FFT

A
Reconstruct attractor
dynamics using time

delay method

A

Find nearest
Neighbors
Hamper temporal
separation

A

Average separation of
neighbors.

A

Fit the line to the data
— least squares

Fig. 19 Algorithm diagram

10.4 Time Delay Embedding

The simplest method to embed scalar data is thehadebf delays. This works by
reconstructing the pseudo phase-space from a siwalarseries, by using delayed copies of the
original time series as components of the recoastmu matrix. It involves sliding a window of
length m through the data to form a series of wactstacked row-wise in the matrix. Each row of
this matrix is a point in the reconstructed phasaecs. Letting {Xi} represent the time series, the
reconstruction matrix is represented as:

Xo = Xm-vr (23.)
Xn Xn+(m—1)r

wherem is the embedding dimension ang {s the embedding delay (in samples). Fixing an
optimal value ofm requires domain specific knowledge about the tierges being analyzed. The
method of false-nearest neighbors can be usefsbiwe extent in this regard. Underestimating the
value for delay leads to highly correlated vecttameents, which would now be concentrated
around the diagonal in the embedding space, andttheture perpendicular to the diagonal is not
captured adequately. On the other hand, a verg kesgmate of the delay will result in the elements
of each vector to behave as if they are randondifiduted. Quantitative tools like auto-correlation
and auto-mutual information are useful guides inoding the optimal value oft}.
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Fig. 21 Data after reconstruction

10.5 Estimating tau

10.5.1Autocorrelation

A number of criteria for selecting w depend upon the autocorrelation function, RxX (
Number of criteria for the selection w depends on the autocorrelation function Rxx)(
Autocorrelation function provides a measure of Enty between the signal x (t), and delayed
version of itself, because Rxx Y is maximized when the delay is zero. Autocorietafunction is
not required to provide a reasonable transitiomfredundancy to irrelevance (depending on the
delay). Usuallyr,, chosen as the delay where RxX {irst drops to a fraction of its original value.
Similarly, it may bet,, selected location first inflection point Rxx (. Related criterion based on
Fourier transform Rxx 1( ), i.e. the power spectrum of x (t) is the invergeoup-off
frequency. Autocorrelation-based methods have tHeargage of short calculation time is
calculated using the fast Fourier transform (FHgpathm. As suggested by a number of changes,
however, these methods tend to be inconsisterd. Mkans that a particular criterion may be better
for a dynamic system and bad for another. Thisotssarprising, given the ill-defined relationship
between the location of the reconstructed attraatat the temporal autocorrelation single time
series.
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10.5.2Mutual information

In contrast to the linear dependence measured tpc@uwelation, mutual information, Ty,
supplies a measure of general dependence. Therdfo)as expected to provide a better measure
of the shift from redundancy to irrelevance witmhioear systems. Mutual information answers the
following question: Given the observation oft)x(how accurately can one predict x(t)? Thus,
successive delay coordinates are interpreted asvedly independent when the mutual information
is small. The minima of 1) has the same value as the correlation integai(r; ). The
computation is less demanding as computing themairof I ).

M
, (24.)
Cm (1) = mz B[ — [|X; — Xy[1,

i#j

where M is the number of reconstructed points] i the Heaviside function, and denotes

the Euclidean norm. It follows that an algorithnr fmalculating correlation dimension is easily
adapted to estimate. The problem is, that this approach But requaaermous computational
costs.

10.5.3Symplectic geometry

Symplectic geometry is a branch of differential metry and differential topology which
studies symplectic manifolds. Symplectic geometayg fis origins in the Hamiltonian formulation
of classical mechanics where the phase space tafrcetassical systems takes on the structure of a
symplectic manifold. A symplectic geometry methadproposed to determine the appropriate
embedding dimension from a scalar time series. $3cetip geometry has measure preserving
characteristic and can keep the essential charafténe primary time series unchanged when
performing symplectic similar transform.

10.6 Experimental results

It is very important to distinguish deterministibaos from noise. When we have equations
describing the system, it is more easy to decidetldr the system embody marks of chaos. For
testing the algorithm we have chosen a series fédrdntial equations. We integrate to get the
solution. Then we use only one signal to set asgmy. Next thing, we have to reconstruct the data.
It is normal, that we get only one or two signalsjt the system contains much more.
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Fig. 22 Input data set

On this figure we can see the original data. We aiskelay method for reconstruction with
parameters of m=3 and tau=20. Of course, we cay thar parameter, but this combination was
estimated by symplectic geometry method (m) aoohfEFT (tau).

On this figure, we can see the result of reconsbmc To estimate the largest Lyapunov
exponent, we wrote an algorithm based on Roserstalgorithm. We were trying to make this
algorithm fully automatic. That means to estimdte kargest exponent without any knowledge of
the system or parameters. But it is almost impéssiiecause in the algorithm we need to estimate
the slope. That is not a problem. Problem is tooskahe right area for estimating the slope. For
experimental data obtained from Lorenz attractdh \warameters:

dx (25.)
i 16.(y — x)
@ _ 45.92
T x(45. z)—y
dz 4
otz
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Experimental results - Larenz attractor (5000 points)

Gl

Fig. 23 Lorenz attractor with 5000 points

We used only signal x, reconstructed as mentidogddre with parameters tau=17 and m=3.
For this parameters we obtainegd1.59 (base of e) and the expecigds 1.50. But as we said it is
not easy to find the right region as shown on e figure.
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Fig. 24 Lyapunov curve and its slope
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On the next figure is shown the slope sensitivity.
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Fig. 25 Largest Lyapunov exponent — slope sensitivi

As we can see, we can very easily obtain an errdhis part. But we can also very easily
decide whether the data are chaotic.

We also tested the algorithm for periodic dataeafy the correctness of its results. We took
an equation y = cos( t ) and reconstructed it wahameters m = 3, tau = 17.

Testing the algorithrm - periodic process

Fig. 26 Testing the algorithm

As we can see, the data doesn’'t contain any ndiseobtain data without noise with
measurement is almost impossible.
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Fig. 27 Lyapunov curve and its slope for periodatadset.

Based on theory, what represents Largest Lyapuxperent, the value have to be 0. We have
obtainedy;= 3.1522e-004.

We have also tested the algorithm with adding théevGaussian noise to the periodic data.
We have added the noise with SNR=20dB.

Fig. 28 Periodic data with white Gaussian noise

As we can see, the noise is added to the dat@lsetesults are quite satisfactory. We again
obtained result;= 0.0011.
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Fig. 29 The Lyapunov curve and it's slope

As we can see, the slope is oscillating about ZEnat means that the algorithm is comfortable
consentaneous to the theoretical expectations.

The number of Reconstruction Embedding Calculated | Expected | Error

System data points delay dimension A A [%]
400 8 3 0,0372 0,0900 58,7

800 0,0722 19,8
Rossler 1200 0,1100 -22,2
1600 0,0953 -5,9

2000 0,0882 2,0

2000 8 1 - 0,0900 -

3 0,0877 2,6

Rossler 5 0,0866 3,8
7 0,0850 5,6

9 0,0832 7,6
1000 11 3 1,7550 1,5000 -17,0

2000 1,3450 10,3

Lorenz 3000 1,3720 8,5
4000 1,3920 7,2

5000 1,5230 -1,5

5000 11 1 - 1,5000 -

3 1,5380 -2,5

Lorenz 5 1,4770 1,5
7 1,5820 -5,5

9 1,5900 -6,0

Table 3 Experimental results for known systems
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10.7 Testing the real data

To test the algorithm, we have set up the Chuatuiti Chua’s circuit is a simple electronic
circuit that exhibits classic chaos theory behaviowas introduced in 1983 by Leon O. Chua. An
autonomous circuit made from standard componertss{ors, capacitors, inductors) must satisfy

three criteria before it can display chaotic bebaut has to contain:
1. one or more nonlinear elements
2. one or more locally active resistors
3. three or more energy-storage elements.

Chua’s circuit is the simplest electronic circuieaing these criteria. As shown in the figure,
the energy storage elements are two capacitorsuamductor. There is an active resistor. There is
a nonlinear resistor made of two linear resistard awo diodes. At the far right is a negative
impedance converter made from three linear resistod an operational amplifier.
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Fig. 30. Chua's testing circuit (left — circuight — time series)
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Fig. 31. 2D Notation in XY plane

So we take the input data and we analyzed themRwgenstein’s algorithm. Problem was,
that the data were not enough consistent. Matlgdxiéhm trend to result infinity exponents or it
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wasn’'t a number. So we have to try to reduce theendt fortunately solved the problem. As we
can see on the figure below, the attractor is shevoiThe problem was in measuring the distance
between neighbor points.

Chua’s attractor from experimental circuit Logisti
ogistic

Iyapunovcurve(\)

-1.8 -1 0.5 0 0s 1 15 o 50 00 150 200 250 300 350 400 450 &S00

XM i
Fig. 32.Chua’s attractor in Matlab and Curve for estimating the exponent
We have also decided to analyze the more commaralsigvVe explore the ECG signal. We

analyzed it as one dimensional object (althougtkmav, it has more variables), but the chaos was
also detected.
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Fig. 34.ECG signal Fig. 33.Slope obtained from ECG signal

We get largest Lyapunov exponent equal to 0.74 hvtett us about the level of chaos.
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11 FINDING THE CHAOS

11.1 Variation of variables

In order to find a chaotic system, we can use peea of data processing technology and to
generate all combinations of variables differenstesns. For them we can then calculate the
Lyapunov exponents, which may be regarded as digrdhaotic system. The main problem is that
the system is very sensitive to initial conditios® we can find only approximate solution. The
problem of the procedure is, however, not only émsdtivity, but also delays the calculations,
because we combine all variations of variables. é&@mple we can try to generate a system with
two unknown variables.

03

2 Parameter

1. Parameter

Fig. 35. Largest Lyapunov exponent generated byaviables
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Fig. 36. Contour plot of Largest Lyapunov expongetierated by two variables

11.2 Optimization

Mathematical optimization task is an effort to fiswch values of variables for which the target
or purpose function becomes a minimum or maximurue/aMany theoretical problems and
problems in the real world lead to the role of opziation solutions. Often occurs when modeling
physical phenomena, where the target function f dagshysical energy system, which is in the
steady state system, be minimal.

11.3 Genetic algorithm

Genetic algorithm used for solving a special formh emtertainment-inspired biological
chromosomes and to generate new solutions to tbesiog and mutation. Before a detailed
description of the genetic algorithm, thereforeatea few well-known knowledge of related areas.
In each cell living organism is a set of chromossmensisting of DNA. Chromosomes form a
model of the entire body and consist of genes §wfiDNA). Very simply speaking, that each gene
represents a feature or characteristic, such asage Possible states of a gene called alleleh su
as eye color may be blue, brown, etc. Each gena lsatid position in the chromosome. The entire
genetic material of an organism is called genontee 3pecific "set" of genes in the genome is
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called genotype. The genotype determines the pheaotthe external characteristics of the
organism (physical and mental - eye color and ligesice).

During the reproduction of organisms there is assover (recombination), which shall be
selected genes taken from their parents and tloerbmations to create a descendant genotype.
During or after reproduction may be a mutation raadom change of the minor genotype. The
success of the organism (fitness - its ratinghi biology indicates a likelihood that the organism
survives in its reproduction, or as a number ofdascendants. Evolutionary theory then says that
only certain organisms to survive and reproduce,niore likely to succeed them better. The entire
above uses genetic algorithm. An acceptable solutiothe problem, which solves the GA, is
represented using the genome, i.e. a set of géhesspecific set of genes is the state and repiesen
the genotype and phenotype, which is a concretatisnl Based on the phenotype is therefore
determined by assessment solution and so are sessasent of genotype. Crossing and mutation,
however, takes place only at the level of genotypenetic algorithm maintains a population of
solutions in the form of genotypes (chromosomegjclvmutates and crosses that favors genotypes
with higher pay, and thus seeks to "grow" a goddtsm. At the beginning of your run will create
a random population (first generation) and in thenner creates a new offspring (next generation)
is not satisfied until a terminating condition (¢.gumber of generations, time, the best fitness,
etc.). Genetic algorithm can be described roughlipbows:

Begin

Iriti alisation
(n)® Generati on

+ ( (n+ 1) Generation )
Ewvaluation f Fitness 1
Comp _utm 2 Ilutati on
(eg. travel time, cost) p .
Crossover
, Feproduction )

P

Yes
End

Fig. 37. Basic flow of genetic algorithm

The main strength of the genetic algorithm is d@safielism i.e. that searches multiple points of
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solutions at once (the whole population). As a ltasainly of its resistance to deadlock in a local
extreme (Imagine that, looking for the highest painthe mountains - if we look only at one place
close around them, as well as much of the othemagation methods, and only by the will decide
on the way, can we state that we find only a Iquedk (extra) and it is already in this move).
Genetic algorithm is able to work without any spécequirements for the scanned area and can,
unlike other methods of finding good solutions ewemen the scanned area is "wild". Another
important difference from other optimization methasl the separation of genotype and the creation
of new solutions (the procedure in the solutiorcepdrom the phenotype and suitability assessment
solutions.

For finding the results, we have chosen the implget Genetic Algorithm and Direct Search
Toolbox in Maltab. This toolbox can find minima wofultiple functions using genetic algorithm.
For implementing we can chose to use a singler@iteinction and create appropriate fitness
function. We think that it is better to use mulkdpbptimizations. Only disadvantage is that
computing algorithm is not very transparent. Adeget is its simplicity of implementing it to our
algorithm. Another thing is that this algorithmaadls using automatic parallel computing. Of course
that can speed up the process.

Serious problem we have to face, in finding theapaaters, is to choose good integrating
function for solving the ordinary differential edims. So if we choose the right parameters, the
function can tend to diverge very quickly. This mehat the numbers can overflow in computer
memory and it can lead to freezing the cycle. Uding build-in function ODE45 (or other
functions) was problematic because of these dekoes. Even though they function as a reference
in the help of Matlab is noted that the integratisra Runge-Kutta algorithm, we were not able to
prevent freezing. We therefore decided to writeaun function for integration. For the integration
it is necessary to use a function with regard teslpand accuracy, because we know that chaotic
functions are sensitive even to a small changeifiai conditions.

The best we seemed to use Runge-Kutta fourth dodeinding approximate solutions. For
more accurate calculation, we used the integrédiinetion of the eighth order.

As already mentioned, this method has the advartegat allows parallel processing of data
for different input parameters. It was used thampiation toolbox in Matlab, which offers many
options, as well as parallel processing. It shdagdhoted that this is not a full parallel procegsin
because of its matter. This is also because théaMptocess data only serially. Parallel option was
introduced only recently, but on multiprocessotiste still uses only one processor. Even so, this
option is speed up the calculation. For the catmiawas created multidimensional fitness
function, which was designed to maximize the gigatapunov exponent and second exponents
closer to zero. Throughout the program, it is adaethe evaluation algorithm, which controls the
values of exponents. At the time when meeting tralitions for the emergence of chaos, the value
of variables, including exponents placed in a mattiis thus possible to re-check the calculations
% Fitness function
fitnessFunction = @spousteni;

% Number of Variables
nvars=1;

Ib=[];%[-30 -30 -30];
ub=[];%[30 30 30];

% Start with the default options
options = gaoptimset;
% Modify options setting

options = gaoptimset(options, '‘Generations' , 200);
options = gaoptimset(options, 'PopulationSize' ,100);
options = gaoptimset(options, 'PoplnitRange’ , [-20;20]);
options = gaoptimset(options, 'OutputFcns' A0D;
fgoalopts = optimset( '‘UseParallel’ , 'always' );
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[x,fval,exitflag,output,population,score] =
gamultiobj(fitnessFunction,nvars,[],[1.[],[].1b,ub, options)

Using the describedlgorithms have been found, for example, the falhgusystem:

Laburinth chaos b=0,0221032134749137

Fig. 38.Find parameter b=0.02210921 for the Labyrinth ¢

Lorenz chaos a=[0.234446394283693] b=[7.345203404743601] c=[2.98575706667965: ]

IPRE

10 —

Fig. 39.Find parameters a=0.23444 b=7.345 ¢=2.985 for Loeguation
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11.4 Particle swarm optimization

Particle swarm optimization (PSO) is an algorithasdxd on swarm intelligence. It finds a
solution to an optimization problem in a searchcepar model and predicts social behavior in the
presence of objectives. PSO is a direct searchaddtr finding the optimal solution for specified
function in searched space. This function is calidiiness function (or an objective function).igh
algorithm is good, because it is easy to implentgna programmer and in its basic form, it return
satisfying results. Also this method can be usedryone without understanding the mathematical
background and optimization theory.

PSO is a stochastic, population based computeritdgg modeled on the swarm intelligence.
Swarm intelligence is based on social-psychologpraiciples and provides insights into social
behavior, as well as contributing to engineeringligptions. The particle swarm optimization
algorithm was first described in 1995. The swarm typically modeled by particles in
multidimensional space that have a position anélacity. These particles fly through hyperspace
and have two essential reasoning capabilities.rthemory of own best position and knowledge of
the global or their neighborhood's best.

In a minimization optimization problem, probleme &rmulated so that "best" simply means
the position with the smallest objective value. Mbems of a swarm communicate good positions to
each other and adjust their own position and vatdmsed on these good positions.

For optimizing the problem, first we need to sditreess function, describing the solution. We
know that PSA is searching the minimum of the fiowct Also we know, that sign of each
Lyapunov exponent is important. We have to consttier complexity of our problem. We are
trying to find a solution for infinity variationsf gparameters. For example, if we have a nonlinear
dynamic function with chaotic behavior (in speaahditions). We can expect results with many
local minimums.

As stated before, PSO simulates the behaviors eb bilcking. Suppose the following
scenario: a group of bees are randomly searchingefis in an area. There is only one flower in the
area being searched. All the bees do not know wtierdlower is. But they know how far the
flower is in each iteration. So what's the besitstyy to find the flowers? The effective one is to
follow the bee which is nearest to the flower.

After finding the two best values, the partije (pegpdates its velocity and positions with
following equations:

v = v+ c;.rand. (Ppest — Present) + c,.rand. (gpest — present) (26.)

present = present + v (27.)

Vv[] is the patrticle velocity, persent|[] is the cemt particle (solution). pbest[] and gbest[] ar&rd=l
as stated before. rand () is a random number bat@k#). c1, c2 are learning factors. usually cl1 =
c2=2.
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Fig. 40 Description of PSO algorithms

11.5 Results of particle swarm optimization

Finding the parameters for which the system becorhestic, it may seem at first glance a
simple task. But we have to search the entire sfziee. However, we know that the system is very
sensitive to initial conditions. This suppositioregtly complicates the situation. Distribution of
state space into regions is unnecessary, becaesetisitivity of the parameters the solution may
exist with many local extremes.

It is therefore necessary to define a proper fgn&sction. Because we know that the
algorithm searches the minimum function, definertguired function:
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O(x) = 10 Xf-z0A1(@) + [1000 550 22 (B)] + Zy=20 23 (¥) (28.)

The function®(x) looks complicated at first glance, but it is definby sensitivity to the first
expolentd, and greater sensitivity to the second expoignafter which calls for close to zero. We
see that the exponents g, y starting up from number 20. This is because wenditdhave biased
the results. We could say that, we wait until flagetctory of attractor is stabilized.

Ovwerall view of particles
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Fig. 41 Overal distribution of particles

Comparing first and end iteration - PS5O

Fig. 42 Distribution of particles in first step (igf) and last step (red) of iteration

Again we had to, to create an algorithm, be car&fudelect the correct integration features.
Speeding up the calculation could be achieved Miytisp the state space of subspaces and the
launch parallel computing - separated. For therobratlgorithm was used as generators known
Lorenz system of equations (equation 10.) and a system known as the Labyrinth chaos [24]
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(equation 29.).
X =siny — bx
y =sinz — by (29
z=sinx— bz
For the first system, we found many solutions thate exhibiting chaotic behavior. Here are
those that exhibit strong chaos:

p r b Al A2 A3
55,49341|1,217994 | 3,67807|0,631487 | 0,038927 | -6,57041
16,85988 | 1,105048 | 11,34285 | 0,39375 | 0,009977 | -13,8537

Table 4. Solutions for Lorenz system

Lorenz equations - solution for a=55 49 b=1 22 c=368

120 -omnee T - i R
100 —

80 —+

40 -4

204

Fig. 43. Lorenz system for found parameters

Lyapunovy spectrum for Lorenz equations - solution for =55 .49 b=1 22 c=3BE
4 . T

Lyapunav value

o 20 40 50 a0 100
Time f smaples

Fig. 44. Spectrum of exponents for solution

The second system exhibits weak chaos. By ourighgomwe found 368 possible solutions for
a quite short time. All solutions were correlatamout b=0.1. What we know [24], this is a point of
chaotic behavior.
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11.6 Comparisons between Genetic Algorithm and PSO

From the procedure, we can learn that PSO shareyy mammon points with GA. Both
algorithms start with a group of a randomly gerestapopulation, both have fithess values to
evaluate the population. Both update the populatind search for the optimum with random
techniques. Both systems do not guarantee success.

However, PSO does not have genetic operators likesover and mutation. Particles update
themselves with the internal velocity. They alssenenemory, which is important to the algorithm.

Compared with genetic algorithms (GAs), the infotioa sharing mechanism in PSO is
significantly different. In GAs, chromosomes shaméormation with each other. So the whole
population moves like a one group towards an optianea. In PSO, only gBest gives out the
information to others. It is a one -way informatigimaring mechanism. The evolution only looks for
the best solution. Compared with GA, all the p&tidend to converge to the best solution quickly
even in the local version in most cases. Thisesgbneral methocbmparison. But we know that
solution for our problem is not as easy. We knoat the solution in real spageconsists of many
local sharp solutions. We can draw a solution, twwheach of methods suit for a different set of
equations.

In future it would be interesting to combine PSQgaserator for initial population for genetic
algorithm. This can guarantee enough diversityiridgral population. And can reduce time needed
for computation.
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12 SUMMARY

The aim of this work is to find the universal wawpswhich it is possible to investigate the
dynamic system of differential equations. The mdththat were used can be considered successful,
because using them was found new solutions that the&onditions. The proposed program in the
Matlab language is universal. Just enter the gédéfarential equations and their Jaccobi's matrix
and run the calculation. We have also tested atiethods using a fractal dimension. This was
useful, but it was very time consuming. Easiesinplement was box counting method. This
method can be applied to time series without kndgéethe equations. This method also was very
slow. But it can be improved by using parallel catipy. Another method was to use Poincare
maps. Also quite simple method, but the problemmisnalyzing the results. It cannot be easily
decided, whether the results tend to be chaotieertot.

We have created algorithms in Matlab to calcula&ieinine and find chaos in time series. The
best showed up using Lyapunov exponents. How, amiéxing the issue turned out not needs the
calculation of the spectrum, since the calculatibthe greatest exponents is sufficient and simpler
These algorithms, we finally managed to create. hWaee implemented the calculation using the
two best-known calculations.

Wolf's calculation, which appears to be relativelynple to mention, however, tends to be
divergent. And second method is Rosenstein's. T¢@ilhm we seemed much better and more
stable. We tried to do an automated algorithm waaks without prior knowledge of the system or
issue. Unfortunately it was not possible to do. okithm seems to be very sensitive to the
evaluation results. We must also choose the coingetval for the accuracy of the maximum
Lyapunov exponent. The program underwent tests adets created by differential equations. We
compared the results with the empirically calcudatalues. Indeed, we added a noise the signal, we
tested the accuracy of the calculation. This prdedoke very impressive.

Finally, we tested on real data. For testing weduSkua's oscillator and the real ECG signal.
We were faced with the noise in the measured sidg#alhad to be removed before the actual
implementation of the calculation. For Chua's ¢stml exponent we walked around 1.3767, which
already indicates a relatively high degree of ch@esl for ECG, we set its value to 0.74, which
also indicates the presence of chaos.

The last object was to create an algorithm, whidhfiad the system parameters for finding
the chaos. We deal with several ways to find theupaters of dynamic differential equations,
which exhibit chaotic behavior and are displayedtate space attractors. Best results in terms of
delays, had multi-criteria genetic algorithm andrtiele swarm optimization. When there is
sufficiently large parental population and a langenber of generations that should be sufficient for
testing the system. However, it is recalled thas ihot indifferent to the integration of numerical
methods used. If the system integrate in times ipaossible that the solution is divergent. It can
cause problems in the calculation. With great gieni (meaning small numerical error) calculation
may also be divergent and the computer will noable to find a solution. The control in terms of
accuracy and time cost is to use the integratiothooeof Runge-Kutta 4th order. Interesting would
be to use a fully parallel processing. This couletly speed up the calculation (for example, using
four-core processors up to 40%).

-52 -



13 BIBLIOGRAPHY

[1] CaARRoOL, T., PecorA, L. Nonlinear Dynamics in Circuits WORLD SCIENTIFIC
PUBLISHING,1995.

[2] WYK, M. A., STEEB, W. H. Chaos in ElectronicKLUWER ACADEMIC
PUBLISHERS 1997.

[3] SPROTT, J.C. Chaos and Time Series AnalySdxXFORD UNIVERSITY
PrRESS 2003.

[4] A. WOLF, J. B. SWIFT, H. L. SWINNEY, AND J. A/ASTANO, Determining Lyapunov
exponents from a time serjddHYSICA D 16, 1985.

[5] ROSENSTEIN, M. T., COLLINS, J. J., LUCA C. Rkconstruction expansion as a
geometry-based framework for choosing proper ddiayes. PHYSICA D 73:82--98.
PHYSICA D, 1994 .

[6] SRINIVASAN S., PATIL S. A., PRASAD S., LAZAROLWG., PICONE JEstimation of
Lyapunov Spectra From a Time Series. IEE2B06.

[7] FAN J., YAO Q.,Nonlinear Time SerieSPRINGER, 2003.

[8] ZENG X., EYKHOLT R, PIELKE R.A.Estimating the Lyapunov-Exponent Spectrum from
Short Time Series of Low Precisid?HYS. REV. LETT. 25, 1991.

[9] ROSENSTEIN, M. T., COLLINS, J. J., LUCA C. A practical method for calculating
largest Lyapunov exponents from small data. $8ts/ SICA [ 1992.

[10] KAPITANIAK T., BISHOP S.R.,The lllustrated Dictionary of Nonlinear Dynamicsdan
Chaos.JOHN WILEY & SONS, 1993.

[11] SMALL M., Applied Nonlinear Time Series Analysis: Application Physics, Physiology
and FinanceWORLD SCIENTIFIC PUBLISHING COMPANY, 2005.

[12] KANTZ H., SCHRIEBER T., Nonlinear Time Series AnalysiSCAMBRIDGE
UNIVERSITY PRESS, 2004.

[13] THIELER J., Efficient algorithm for estimating the correlatiatimension from a set of
discrete pointsPHYSICAL REVIEW A, 1987.

[14] ATAEI M., KHAKI-SEDIGH A, LOHMANN B., LUCAS C,, Estimating the Lyapunov
exponent sof chaotic time series: A model basedadeBROOK HOUSE LIMITED, 2003.

[15] WILLIAMS G., Chaos Theory TamedOSEPH HENRY PRESS. 1997

[16] KAPITANIAK T. A BISHOP S., The lllustrated Dictionary of Nonlinear Dynamicsadn
chaos JOHN WILEY & SONS LTD., 1999

[17] FALCONER K., FractalGeometry Mathematical Foundations & ApplicationsOHN
WILEY & SONS LTD., 1990

[18] PETRZELA J. Modelovani zvlastnich jévve vybranych nelinearnich dynamickych
systémechDISERTACNI PRACE VUT BRNO, 2006
-53 -



[19]

[20]

[21]
[22]

[23]

[24]

JIANQING F., QIWEI Y.,Nonlinear Time SerieSPRINGER-VERLAG NEW YORK,
INC., 2003

HOME PAGE OF FRANZ-JOSEF ELMER
[Online] http://elmer.unibas.ch/pendulum/chaos.htm
WOLFRAM MATHWORLD[Online] http//mathworld.wolfram.com/

YALAMOVA R., QI L., WANG L., CHEN Y., MATHEWSS., GONG G.Detecting chaos
in financial time seriesUS NATIONAL SCIENCE FOUNDATION, 2008

ZENG X., EYKHOLT R., PIELKE R.A.Estimating the Lyapunov-Exponent Spectrum
from Short Time Series of Low Precisi®tHYSICAL REVIEW LETTERS VOLUME 66 -
NUMBER 25, 1991 .

SPROTT J.C., CHLOUVERAKIS K.E. Labyrinth chaos WORLD SCIENTIFIC
PUBLISHING COMPANY, 2007

54 -



14 ENCLOSURE LIST

CD with source codes in MATLAB:

- Poincare map

- Lyapunov exponents from ODEs

- Rosenstein’s method

- Wolf's method

- Simple variation of parameters

- Optimizing by genetic algorithm

- Multi-objective optimizing by genetic algorithm

- Optimizing by particle swarm algorithm

- Spectrum of time series by FFT and filtering

- Reconstruction of dynamics by time delay method
- Autocorrelation for estimating tau

- Estimating Mutual information and correlation intalg
- Estimating embedded dimension — symplectic geometry
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