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July 30, 2012



Abstract

This work addresses verification of infinite-state systems, more specifically, ver-
ification of programs manipulating complex dynamic linked data structures.
Many different approaches emerged to date, but none of them provides a suffi-
ciently robust solution which would succeed in all possible scenarios appearing
in practice. Therefore, in this work, we propose a new approach which aims
at improving the current state of the art in several dimensions. Our approach
is based on using tree automata, but it is also partially inspired by some ideas
taken from the methods based on separation logic. Apart from that, we also
present multiple advancements within the implementation of various tree au-
tomata operations, crucial for our verification method to succeed in practice.
Namely, we provide an optimised algorithm for computing simulations over la-
belled transition systems which then translates into more efficient computation
of simulations over tree automata. We also give a new algorithm for checking
inclusion over tree automata, and we provide experimental evaluation demon-
strating that the new algorithm outperforms other existing approaches.
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Abstrakt

Tato práce se zabývá verifikaćı nekonečně stavových systémů, konkrétně, ve-
rifikaćı programů využ́ıvaj́ıch složité dynamicky propojované datové struktury.
V minulosti se k řešeńı tohoto problému objevilo mnoho r̊uzných př́ıstup̊u,
avšak žádný z nich doposud nebyl natolik robustńı, aby fungoval ve všech př́ı-
padech, se kterými se lze v praxi setkat. Ve snaze poskytnout vyšš́ı úroveň
automatizace a současně umožnit verifikaci programů se složitěǰśımi datovými
strukturami v této práci navrhujeme nový př́ıstup, který je založen zejména
na použit́ı stromových automat̊u, ale je také částečně inspirován některými
myšlenkami, které jsou převzaty z metod založených na separačńı logice. Mimo
to také představujeme několik vylepšeńı v oblasti implementace operaćı nad
stromovými automaty, které jsou kĺıčové pro praktickou využitelnost navrho-
vané verifikačńı metody. Konkrétně uvád́ıme optimalizovaný algoritmus pro
výpočet simulaćı pro přechodový systém s návěšt́ımi, pomoćı kterého lze efek-
tivněji poč́ıtat simulace pro stromové automaty. Dále uvád́ıme nový algorit-
mus pro testováńı inkluze stromových automat̊u společně s experimenty, které
ukazuj́ı, že tento algoritmus překonává jiné existuj́ıćı př́ıstupy.
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Résumé

Les travaux décrits dans cette thèse portent sur le problème de vérification des
systèmes avec espaces d’états infinis, et, en particulier, avec des structures de
données châınées. Plusieurs approches ont émergé, sans donner des solutions
convenables et robustes, qui pourrait faire face aux situations rencontrées dans
la pratique. Nos travaux proposent une approche nouvelle, qui combine les
avantages de deux approches très prometteuses: la représentation symbolique
a base d’automates d’arbre, et la logique de séparation. On présente également
plusieurs améliorations concernant l’implementation de différentes opérations
sur les automates d’arbre, requises pour le succès pratique de notre méthode.
En particulier, on propose un algorithme optimise pour le calcul des simulations
sur les systèmes de transitions étiquettes, qui se traduit dans un algorithme
efficace pour le calcul des simulations sur les automates d’arbre. En outre, on
présente un nouvel algorithme pour le problème d’inclusion sur les automates
d’arbre. Un nombre important d’expérimentes montre que cet algorithme est
plus efficace que certaines des méthodes existantes.
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1 Introduction

Traditional approaches for ensuring quality of computer systems such as code
review or testing are nowadays reaching their inherent limitations due to the
growing complexity of the current computer systems. That is why, there is an
increasing demand for more capable techniques. One of the ways how to deal
with this situation is to use suitable formal verification approaches.

In case of software, one especially critical area is that of ensuring safe mem-
ory usage in programs using dynamic memory allocation. The development of
such programs is quite complicated, and many programming errors can easily
arise here. Worse yet, the bugs within memory manipulation often cause an
unpredictable behaviour, and they are often very hard to find. Indeed, despite
the use of testing and other traditional means of quality assurance, many of the
memory errors make it into the production versions of programs causing them
to crash unexpectedly by breaking memory protection or to gradually waste
more and more memory (if the error causes memory leaks). Consequently,
using formal verification is highly desirable in this area.

Formal verification of programs with dynamically linked data structures is,
however, very demanding since these programs are infinite-state. One of the
most promising ways of dealing with infinite state verification is to use symbolic
verification in which infinite sets of reachable configurations are represented
finitely using a suitable formalism. In case of programs with dynamically linked
data structures, the use of symbolic verification is complicated by the fact
that their configurations are graphs, and representing infinite sets of graphs is
particularly complicated (compared to objects like words or trees).

Many different verification approaches for programs manipulating dynami-
cally linked data structures have emerged so far. Some of them are based on
logics [MS01, SRW02, Rey02, BCC+07, GVA07, NDQC07, CRN07, ZKR08,
YLB+08, CDOY09, MPQ11, DPV11], others are based on using automata
[BHRV06b, BBH+11, DEG06], upward closed sets [ABC+08, ACV11], as well
as other formalisms. The approaches differ in their generality, efficiency, and
degree of automation. Among the fully automatic ones, the works [BCC+07,
YLB+08] present an approach based on separation logic (see [Rey02]) that is
quite scalable due to using local reasoning. However, their method is limited
to programs manipulating various kinds of lists. There are other works based
on separation logic which also consider trees or even more complex data struc-
tures, but they either expect the input program to be in some special form (e.g.,
[GVA07]) or they require some additional information about the data structures
which are involved (as in [NDQC07, MTLT10]). Similarly, even the other exist-
ing approaches that are not based on separation logic often suffer from the need
of non-trivial user aid in order to successfully finish the verification task (see,
e.g., [MS01, SRW02]). On the other hand, the work [BHRV06b] proposed an
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automata-based method which is able to handle fully automatically quite com-
plex data structures, but it suffers from several drawbacks such as a monolithic
representation of memory configurations which does not allow this approach to
scale well.

Another issue with many existing automata-based approaches for symbolic
verification of infinite-state systems (such as programs with dynamically linked
data structures) is that they are based on using deterministic finite automata
(DFA). This allows them to take advantage of the relatively simple and well-
established algorithms for computing standard operations such as language
union, language inclusion, minimisation, complementation, etc. However, some
of these operations internally produce nondeterministic finite automata which
then need to be immediately determinised. This is not difficult in theory, but
in practice, the size of the automata for which the operation can be computed
is very limited as the size of the corresponding deterministic automata can be
exponential in the size of the original nondeterministic ones. As a result, veri-
fication methods based on using DFA do not perform that well when they are
forced to work with automata of bigger size.

A use of nondeterministic finite automata (NFA) was proposed in [BHH+08]
in an effort to address the issues of scalability of symbolic automata-based
verification methods. Despite the fact that this approach cannot improve the
theoretical worst-case complexity, it turns out that the use of nondeterminis-
tic automata can greatly improve the scalability of automata-based verification
approaches in practice. However, in order to be able to efficiently use NFA in
the given context, one needs to have available suitable algorithms for certain
critical automata operations that will perform these operations without neces-
sarily determinising the automata. This is in particular the case of language
inclusion, minimisation (or, more precisely, size reduction), and complementa-
tion (if needed). Some of these algorithms have already been proposed (e.g.,
[DWDHR06, BHH+08] use antichains to deal with the problem of language
inclusion), but there remained a significant space for improvement. In particu-
lar, within the algorithms for language inclusion presented in [ACH+10, DR10]
(which further optimise the work of [DWDHR06, BHH+08]) and size reduction
presented in [ABH+08], one has to compute the maximal simulation relation
over the set of states of an automaton. It turns out that the computation of
the simulation relation often takes the majority of the time, especially in the
case of size reduction. Hence, efficient techniques for computing simulations
are needed. Moreover, the technique of [ACH+10] for antichain-based inclusion
checking of TA uses upward simulations which are especially costly to com-
pute and often very sparse. Hence, there is also a need of still better inclusion
checking on NTA.

1.1 Goals of the Work

Above, we have argued that development of programs with dynamically linked
data structures is difficult, error-prone, and the errors arising in this kind of
programs are difficult to discover using traditional approaches for quality as-
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surance. Hence, there is a strong need for formal verification approaches in this
area. However, most of the existing formal verification techniques for programs
with dynamically linked data structures are either not fully automatic, or they
can handle only a limited class of data structures. On the other hand, those
techniques that can automatically handle complex data structures are usually
computationally very expensive. Therefore, our first goal is to develop an effi-
cient and fully automatic approach for verification of this kind of programs. The
new approach is intended to be able to verify programs manipulating more com-
plex data structures than those that can be efficiently handled by existing fully
automatic methods. We, in particular, focus on combining automata-based ap-
proaches (which are rather general and which come with flexible and refinable
abstraction) with some principles taken from the quite scalable methods based
on separation logic, which is especially the case of local reasoning.

The second goal is to further improve the available algorithms implementing
the operations that one needs to perform over nondeterministic automata when
using them in some method for symbolic verification of infinite-state systems
such as the one proposed within the first goal. Concretely, our aim is to improve
algorithms for inclusion checking by considering the so-far neglected top-down
approach and to improve automata reduction by providing a better algorithm
for computing simulations.

1.2 An Overview of the Achieved Results

In this section, we summarise the contributions that we have achieved within
the particular areas marked out by the goals of the work.

Verification of Heap Manipulating Programs. We propose a novel method
for symbolic verification of heap manipulating programs. The main idea of our
approach is the following. We represent heap graphs via their canonical tree
decomposition. This can be done thanks to the observation that every heap
graph can be decomposed into a set of tree components when the leaves of the
tree components are allowed to refer back to the roots of these components.
Moreover, given a total ordering on program variables and pointer links (called
selectors), each heap graph may be decomposed into a tuple of tree components
in a canonical way. In particular, one can first identify the so-called cut-points,
i.e., nodes that are either pointed to by a program variable or that have sev-
eral incoming edges. Next, the cut-points can be canonically numbered using
a depth-first traversal of the heap graph starting from nodes pointed to by pro-
gram variables in the order derived from the order of the program variables and
respecting the order of selectors. Subsequently, one can split the heap graph
into tree components rooted at the particular cut-points. These components
should contain all the nodes reachable from their root while not passing through
any cut-point, plus a copy of each reachable cut-point, labelled by its number.
Finally, the tree components can then be canonically ordered according to the
numbers of the cut-points representing their roots.
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We introduce a new formalism of forest automata upon the described de-
composition of heaps into tree components in order to be able to efficiently
represent sets of such decompositions (and hence sets of heaps). In particular,
a forest automaton (FA) is basically a tuple of tree automata. Each of the tree
automata within the tuple accepts trees whose leaves may refer back to the
roots of any of these trees. A forest automaton then represents exactly the set
of heaps that may be obtained by taking a single tree from the language of each
of the component tree automata and by gluing the roots of the trees with the
leaves referring to them.

Further, we show that FA enjoy some nice properties, which are crucial for
our verification approach. In particular, we show that relevant C statements can
be easily symbolically executed over forest automata. Moreover, one can im-
plement efficient abstraction on FA as well as decide language inclusion (which
is needed for fixpoint checking) The latter can in particular be implemented
by an easy reduction to the well-known problem of language inclusion of tree
automata.

Next, in order to extend the class of graphs that can be handled in our
framework, we extend FA to hierarchically nested FA by allowing their alpha-
bet symbols to encode sets of subgraphs instead of plain hyperedges. These
sets of subgraphs are again represented using hierarchically nested FA. For the
hierarchical FA, we do not obtain the same nice theoretical properties, but we
at least show that the needed operations (such as language inclusion checking)
can be sufficiently precisely approximated (building on the results for plain FA).

In our symbolic verification approach, a symbolic state is thus composed of
a finite number of program variable assignments, a forest automaton which is
able to represent infinitely many heaps, and a program counter specifying which
instruction of the verified code is to be executed in the next step. We have
implemented the approach in a tool called Forester in order to experimentally
evaluate our method. The results show that the tool is very competitive when
compared to other existing tools for verification of dynamic data structures
while being quite general and fully automatic.

Simulations over Labelled Transition Systems and Tree Automata. We ad-
dress the problem of computing simulations over a labelled transition sys-
tem (LTS) by designing an optimised version of the algorithm proposed in
[ABH+08, AHKV08] (which is itself based on the algorithms for Kripke struc-
tures from [HHK95, RT07]). Our optimisation is based on the observation that
in practice, we often work with LTSs in which transitions leading from particu-
lar states are labelled by some subset of all alphabet symbols only. By a careful
analysis of the original algorithm, we have identified that one can exploit this
irregular use of alphabet symbols in order to improve the performance of the
computation.

In particular, for two states p and q within an LTS, p can simulate q only if
for any transition leading from q labelled by some symbol a, there is a transition
leading from p labelled by a. Using this fact, we refine the initial estimation
of the simulation relation within the first phase of the algorithm introduced in
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[AHKV08], and we show that, thanks to the initial refinement, certain iterations
of the algorithm can be skipped without affecting its output. Furthermore, we
show that certain parts of the data structures used by the original algorithm are
no longer needed when our optimisation is used. Hence, we obtain a reduction
of the space requirements, too. For our optimised algorithm, we also derive its
worst-case time and space complexity.

As shown in [AHKV08], simulations over tree automata can be efficiently
computed via a translation into LTSs. Therefore, we also derive the complexity
of computing simulations over tree automata when our optimised algorithm
is applied on LTSs produced during the translation. In this case, we achieve
a promising reduction of the asymptotic complexity. Moreover, we validate
the theoretical results by an experimental evaluation demonstrating significant
savings in terms of space as well as time on both LTSs and tree automata.

Language Inclusion Checking for Tree Automata. For the purposes of our
verification technique for programs manipulating dynamically linked data struc-
tures, we also investigate new efficient methods for checking language inclusion
on nondeterministic tree automata. Originally, we intended to build upon the
bottom-up inclusion checking introduced in [ACH+10] which is based on com-
bining antichains with upward simulation. However, during our experiments,
we have realised that the particular combination does not yield the expected
improvements in the efficiency of inclusion checking because the computation
of upward simulation is often too costly. In reaction to this issue, we have de-
signed a new top-down inclusion checking algorithm which is of a similar spirit
as the one in [HVP05], but it is not limited to binary trees, and it is optimised
in several crucial ways as described below.

Unlike the bottom-up approach which starts in the leaves and proceeds to-
wards the roots, the top-down inclusion starts in roots (represented via ac-
cepting states) and continues towards the leaves. The approach is based on
generating pairs in which the first component corresponds to a state of the first
automaton, and the second component contains a set of states of the second
automaton. During the computation, the algorithm maintains a set of those
pairs for which the inclusion has been shown not to hold. A fundamental prob-
lem of this method is the fact that the number of successor pairs one needs to
explore grows exponentially with the level of the (top-down) nondeterminism
of tree automata. Due to this, the construction may blow up and run out of
the available time on certain automata pairs. We, however, show that it is
often possible to work around this issue by using the principle of antichains
[DWDHR06]. Moreover, we further improve the approach by combining it with
a use of downward simulation which greatly reduces the risk of the blow-up.
Finally, we also present a sophisticated modification of the algorithm which
allows us to remember and to exploit the pairs for which the inclusion holds
(apart from those in which it does not).

We have implemented explicit and semi-symbolic variants of the various,
above mentioned language inclusion algorithms. Our experiments with the
bottom-up and the top-down approaches for checking language inclusion of
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tree automata show that the top-down inclusion checking dominates in most of
our benchmarks.

An Efficient Library for Dealing with NTA. The proposed algorithms for inclu-
sion checking and simulation computation have been incorporated into a newly
designed library (called VATA) for dealing with NTA, together with some fur-
ther operations such as simulation-based reduction, union, intersection, etc.
Various lower-level optimisations of the basic algorithms have been proposed
within the implementation of the library to make it as efficient as possible. This,
in particular, includes various improvements of the bottom up inclusion check-
ing of [ACH+10] which make it more efficient in practice. Another significant
improvement introduced in the implementation of VATA is a substantial refine-
ment of the internal representation of the data structures used in the algorithm
for computing simulations which further reduce its memory footprint.

1.3 Plan of the Thesis

Chapter 2 contains preliminaries on labelled transition systems, tree automata,
and simulations. Chapter 3 proposes the notion of forest automata which serves
as a theoretical basis for our verification technique for programs manipulating
dynamically linked data structures. In Chapter 4, we provide a detailed de-
scription of the verification procedure as well as the experimental evaluation of
our prototype tool Forester based on it. Our optimised algorithm for comput-
ing simulations on LTSs is presented in Chapter 5. Chapter 6 describes several
variants of top-down inclusion checking algorithms. Essentials of our tree au-
tomata library based on the proposed algorithms are discussed in Chapter 7,
including various lower-level optimisations of the implementation of the algo-
rithms discussed in Chapter 5 and Chapter 6. Finally, Chapter 8 concludes the
thesis.
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2 Preliminaries

In this chapter, we introduce preliminaries on labelled transition systems, al-
phabets, trees, tree automata, and simulations that we build on in this work.

2.1 Labelled Transition Systems

A labeled transition system (LTS) is a tuple T = (S,Σ, {δa | a ∈ Σ}), where S
is a finite set of states, Σ is a finite set of labels, and for each a ∈ Σ, δa ⊆ S × S
is an a-labeled transition relation. We use δ to denote

⋃
a∈Σ δa.

2.2 Alphabets and Trees

A ranked alphabet Σ is a set of symbols together with a ranking function # :
Σ → N. For a ∈ Σ, the value #a is called the rank of a. For any n ≥ 0, we
denote by Σn the set of all symbols of rank n from Σ. Let ε denote the empty
sequence. A tree t over a ranked alphabet Σ is a partial mapping t : N∗ → Σ
that satisfies the following conditions: (1) dom(t) is a finite prefix-closed subset
of N∗ and (2) for each v ∈ dom(t), if #t(v) = n ≥ 0, then {i | vi ∈ dom(t)} =
{1, . . . , n}. Each sequence v ∈ dom(t) is called a node of t. For a node v, we
define the ith child of v to be the node vi, and the ith subtree of v to be the
tree t′ such that t′(v′) = t(viv′) for all v′ ∈ N∗. A leaf of t is a node v which
does not have any children, i.e., there is no i ∈ N with vi ∈ dom(t). We denote
by TΣ the set of all trees over the alphabet Σ.

2.3 Tree Automata

A (finite, non-deterministic) tree automaton (abbreviated sometimes as TA in
the following) is a quadruple A = (Q,Σ,∆, F) where Q is a finite set of states,
F ⊆ Q is a set of final states, Σ is a ranked alphabet, and ∆ is a set of transi-
tion rules. Each transition rule is a triple of the form ((q1, . . . , qn), a, q) where
q1, . . . , qn, q ∈ Q, a ∈ Σ, and #a = n. We use equivalently (q1, . . . , qn)

a−→ q
and q

a−→ (q1, . . . , qn) to denote that ((q1, . . . , qn), a, q) ∈ ∆. The two notations
correspond to the bottom-up and top-down representation of tree automata,
respectively. (Note that we can afford to work interchangeably with both of
them since we work with non-deterministic tree automata, which are known to
have an equal expressive power in their bottom-up and top-down representa-
tions.) In the special case when n = 0, we speak about the so-called leaf rules,
which we sometimes abbreviate as

a−→ q or q
a−→.

For an automaton A = (Q,Σ,∆, F), we use Q# to denote the set of all
tuples of states from Q with up to the maximum arity that some symbol in
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Σ has, i.e., if r = maxa∈Σ #a, then Q# =
⋃

0≤i≤rQ
i. For p ∈ Q and a ∈

Σ, we use downa(p) to denote the set of tuples accessible from p over a in
the top-down manner; formally, downa(p) = {(p1, . . . , pn) | p a−→ (p1, . . . , pn)}.
For a ∈ Σ and (p1, . . . , pn) ∈ Q#a, we denote by upa((p1, . . . , pn)) the set of
states accessible from (p1, . . . , pn) over the symbol a in the bottom-up manner;
formally, upa((p1, . . . , pn)) = {p | (p1, . . . , pn)

a−→ p}. We also extend these
notions to sets in the usual way, i.e., for a ∈ Σ, P ⊆ Q, and R ⊆ Q#a,
downa(P ) =

⋃
p∈P downa(p) and upa(R) =

⋃
(p1,...,pn)∈R upa((p1, . . . , pn)).

Let A = (Q,Σ,∆, F) be a TA. A run of A over a tree t ∈ TΣ is a mapping
π : dom(t) → Q such that, for each node v ∈ dom(t) of rank #t(v) = n where

q = π(v), if qi = π(vi) for 1 ≤ i ≤ n, then ∆ has a rule (q1, . . . , qn)
t(v)−−→ q.

We write t
π

=⇒ q to denote that π is a run of A over t such that π(ε) = q. We
use t =⇒ q to denote that t

π
=⇒ q for some run π. The language accepted by

a state q is defined by LA(q) = {t | t =⇒ q}, while the language of a set of
states S ⊆ Q is defined as LA(S) =

⋃
q∈S LA(q). When it is clear which TA

A we refer to, we only write L(q) or L(S). The language of A is defined as
L(A) = LA(F ). We also extend the notion of a language to a tuple of states
(q1, . . . , qn) ∈ Qn by letting L((q1, . . . , qn)) = L(q1)×· · ·×L(qn). The language
of a set of n-tuples of sets of states S ⊆ (2Q)

n
is the union of languages of

elements of S, the set L(S) =
⋃
E∈S L(E). We say that X accepts y to express

that y ∈ L(X).

2.4 Simulations over Tree Automata

A downward simulation on TA A = (Q,Σ,∆, F) is a preorder relation �D⊆
Q×Q such that if q �D p and (q1, . . . , qn)

a−→ q, then there are states p1, . . . , pn
such that (p1, . . . , pn)

a−→ p and qi �D pi for each 1 ≤ i ≤ n. Given a TA
A = (Q,Σ,∆, F) and a downward simulation �D, an upward simulation �U⊆
Q×Q induced by �D is a relation such that if q �U p and (q1, . . . , qn)

a−→ q′ with
qi = q, 1 ≤ i ≤ n, then there are states p1, . . . , pn, p

′ such that (p1, . . . , pn)
a−→ p′

where pi = p, q′ �U p′, and qj �D pj for each j such that 1 ≤ j 6= i ≤ n.
Given two sets S, Q such that S ⊆ Q and a preorder �⊆ Q × Q, then S�

denotes the set {q ∈ S : 6 ∃q′ ∈ S.q � q′}.

2.5 Regular Tree Model Checking

(This section is borrowed from [Hol11] with the kind permission of the author.)

Regular tree model checking (RTMC) [Sha01, BT02, ALdR05, BHV04] is
a general and uniform framework for verifying infinite-state systems. In RTMC,
configurations of a system being verified are encoded by trees, sets of the con-
figurations by tree automata, and transitions of the verified system by a term
rewriting system (usually given as a tree transducer or a set of tree trans-
ducers). Then, verification problems based on performing reachability analysis
correspond to computing closures of regular languages under rewriting systems,
i.e., given a term rewriting system τ and a regular tree language I, one needs
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to compute τ∗(I) where τ∗ is the reflexive-transitive closure of τ . This com-
putation is impossible in general. Therefore, the main issue in RTMC is to
find accurate and powerful fixpoint acceleration techniques helping the conver-
gence of computing language closures. One of the most successful acceleration
techniques used in RTMC is abstraction whose use leads to the so-called ab-
stract regular tree model checking (ARTMC) [BHRV06a, BHRV06b], on which
we concentrate in this work.

Abstract Regular Tree Model Checking. We briefly recall the basic principles
of ARTMC in the way they were introduced in [BHRV06b]. Let Σ be a ranked
alphabet and MΣ the set of all tree automata over Σ. Let I ∈ MΣ be a tree
automaton describing a set of initial configurations, τ a term rewriting system
describing the behaviour of a system, and B ∈ MΣ a tree automaton describ-
ing a set of bad configurations. The safety verification problem can now be
formulated as checking whether the following holds:

τ∗(L(I)) ∩ L(B) = ∅ (2.1)

In ARTMC, the precise set of reachable configurations τ∗(L(I)) is not computed
to solve Problem (2.1). Instead, its overapproximation is computed by interleav-
ing the application of τ and the union in L(I)∪ τ(L(I))∪ τ(τ(L(I)))∪ . . . with
an application of an abstraction function α. The abstraction is applied on the
tree automata encoding the so-far computed sets of reachable configurations.

An abstraction function is defined as a mapping α : MΣ → AΣ where AΣ ⊆
MΣ and ∀A ∈ MΣ : L(A) ⊆ L(α(A)). An abstraction α′ is called a refinement
of the abstraction α if ∀A ∈MΣ : L(α′(A)) ⊆ L(α(A)). Given a term rewriting
system τ and an abstraction α, a mapping τα : MΣ → MΣ is defined as ∀A ∈
MΣ : τα(A) = τ̂(α(A)) where τ̂(A) is the minimal deterministic automaton
describing the language τ(L(A)). An abstraction α is finitary, if the set AΣ is
finite.

For a given abstraction function α, one can compute iteratively the sequence
of automata (τ iα(I))i≥0. If the abstraction α is finitary, then there exists k ≥ 0
such that τk+1

α (I) = τkα(I). The definition of the abstraction function α implies
that L(τkα(I)) ⊇ τ∗(L(I)).

If L(τkα(I)) ∩ L(B) = ∅, then Problem (2.1) has a positive answer. If the
intersection is non-empty, one must check whether a real or a spurious coun-
terexample has been encountered. The spurious counterexample may be caused
by the used abstraction (the counterexample is not reachable from the set of
initial configurations). Assume that L(τkα(I)) ∩ L(B) 6= ∅, which means that
there is a symbolic path:

I, τα(I), τ2
α(I), . . . , τn−1

α (I), τnα (I) (2.2)

such that L(τnα (I)) ∩ L(B) 6= ∅.
Let Xn = L(τnα (I)) ∩ L(B). Now, for each l, 0 ≤ l < n, Xl = L(τ lα(I)) ∩

τ−1(Xl+1) is computed. Two possibilities may occur: (a) X0 6= ∅, which means
that Problem (2.1) has a negative answer, and X0 ⊆ L(I) is a set of dangerous
initial configurations. (b) ∃m, 0 ≤ m < n,Xm+1 6= ∅ ∧ Xm = ∅ meaning

9



that the abstraction function is too rough—one needs to refine it and start the
verification process again.

In [BHRV06b], two general-purpose kinds of abstractions are proposed. Both
are based on automata state equivalences. Tree automata states are split into
several equivalence classes, and all states from one class are collapsed into one
state. An abstraction becomes finitary if the number of equivalence classes
is finite. The refinement is done by refining the equivalence classes. Both of
the proposed abstractions allow for an automatic refinement to exclude the
encountered spurious counterexample.

The first proposed abstraction is an abstraction based on languages of trees of
a finite height. It defines two states equivalent if their languages up to the given
height n are equivalent. There is just a finite number of languages of height
n, therefore this abstraction is finitary. A refinement is done by an increase
of the height n. The second proposed abstraction is an abstraction based on
predicate languages. Let P = {P1, P2, . . . , Pn} be a set of predicates. Each
predicate P ∈ P is a tree language represented by a tree automaton. Let A =
(Q,Σ, F, q0, δ) be a tree automaton. Then, two states q1, q2 ∈ Q are equivalent
if the languages L(Aq1) and L(Aq2) have a nonempty intersection with exactly
the same subset of predicates from the set P provided that Aq1 = (Q,Σ, F, q1, δ)
and Aq2 = (Q,Σ, F, q2, δ). Since there is just a finite number of subsets of P,
the abstraction is finitary. A refinement is done by adding new predicates, i.e.
tree automata corresponding to the languages of all the states in the automaton
of Xm+1 from the analysis of spurious counterexample (Xm = ∅).

10



3 Forest Automata

In this chapter, we introduce forest automata which is a new formalism for
representing sets of graphs. Our main motivation for creating this formalism
has been verification of programs manipulating dynamically linked data struc-
tures. For this reason, in Section 3.1, we give an informal presentation of forest
automata in the context of heaps (which may be viewed as a special kind of
graphs) instead of the context of plain graphs. The way heaps are represented
by forests will then be presented in more detail in Section 4.1. In Section 3.2, we
formally define the notion of hypergraphs and their representation using forests.
In Section 3.3, we discuss the representation of sets of forests using forest au-
tomata. Finally, Section 3.4 and Section 3.5 describe a hierarchical extensions
of hypergraphs and forest automata respectively.

3.1 From Heaps to Forests

Now, we outline in an informal way our proposal of hierarchical forest automata
and the way how sets of heaps can be represented by them (the more precise
description of the encoding will be given in Section 4.1). For the purpose of the
explanation, heaps may be viewed as oriented graphs whose nodes correspond
to allocated memory cells and edges to pointer links between these cells. The
nodes may be labelled by non-pointer data stored in them (assumed to be from
a finite data domain) and by program variables pointing to the nodes. Edges
may be labelled by the corresponding selectors.

In what follows, we restrict ourselves to garbage free heaps in which all mem-
ory cells are reachable from pointer variables by following pointer links. How-
ever, this is not a restriction in practice since the emergence of garbage can be
checked for each executed program statement. If some garbage arises, an error
message can be issued and the symbolic computation stopped. Alternatively,
the garbage can be removed and the computation continued.

It is easy to see that each heap graph can be decomposed into a set of tree
components when the leaves of the tree components are allowed to reference
back to the roots of these components. Moreover, given a total ordering on
program variables and selectors, each heap graph may be decomposed into
a tuple of tree components in a canonical way as illustrated in Figure 3.1 (a)
and (b). In particular, one can first identify the so-called cut-points, i.e., nodes
that are either pointed to by a program variable or that have several incoming
edges. Next, the cut-points can be canonically numbered using a depth-first
traversal of the heap graph starting from nodes pointed to by program variables
in the order derived from the order of the program variables and respecting
the order of selectors. Subsequently, one can split the heap graph into tree
components rooted at particular cut-points. These components should contain
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Figure 3.1: (a) A heap graph with cut-points highlighted in red, (b) the canonical
tree decomposition of the heap with x ordered before y

all the nodes reachable from their root while not passing through any cut-point,
plus a copy of each reachable cut-point, labelled by its number. Finally, the
tree components can then be canonically ordered according to the numbers of
the cut-points representing their roots.

Our proposal of forest automata builds upon the described decomposition of
heaps into tree components. In particular, a forest automaton (FA) is basically
a tuple of tree automata (TA). Each of the tree automata accepts trees whose
leaves may refer back to the roots of any of these trees. An FA then represents
exactly the set of heaps that may be obtained by taking a single tree from the
language of each of the component TA and by gluing the roots of the trees with
the leaves referring to them.

Below, we will mostly concentrate on a subclass of FA that we call canonicity
respecting forest automata (CFA). CFA encode sets of heaps decomposed in
a canonical way, i.e., such that if we take any tuple of trees accepted by the
given CFA, construct a heap from them, and then canonically decompose it,
we get the tuple of trees we started with. This means that in the chosen tuple
there is no tree with a root that does not correspond to a cut-point and that
the trees are ordered according to the depth-first traversal as described above.
The canonicity respecting form allows us to test inclusion on the sets of heaps
represented by CFA by testing inclusion component-wise on the languages of
the TA constituting the given CFA.

Note, however, that FA are not closed under union. Even for FA having
the same number of components, uniting the TA component-wise may yield
an FA overapproximating the union of the sets of heaps represented by the
original FA (cf. Section 3.2). Thus, we represent unions of FA explicitly as
sets of FA (SFA), which is similar to dealing with disjunctions of conjunctive
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Figure 3.2: (a) A part of a DLL, (b) a hierarchical encoding of the DLL

separation logic formulae. However, as we will see, inclusion on the sets of heaps
represented by SFA is still easily decidable.

The described encoding allows one to represent sets of heaps with a bounded
number of cut-points. However, to handle many common dynamic data struc-
tures, one needs to represent sets of heaps with an unbounded number of cut-
points. Indeed, for instance, in doubly-linked lists (DLLs), every node is a cut-
point. We solve this problem by representing heaps in a hierarchical way. In
particular, we collect sets of repeated subgraphs (called components) contain-
ing cut-points in the so-called boxes. Every occurrence of such components can
then be replaced by a single edge labelled by the appropriate box. To specify
how a subgraph enclosed within a box is connected to the rest of the graph, the
subgraph is equipped with the so-called input and output ports. The source
vertex of a box then matches the input port of the subgraph, and the target
vertex of the edge matches the output port.1 In this way, a set of heap graphs
with an unbounded number of cut-points can be transformed into a set of hier-
archical heap graphs with a bounded number of cut-points at each level of the
hierarchy. Figures 3.2 (a) and (b) illustrate how this approach can basically
reduce DLLs into singly-linked lists (with a DLL segment used as a kind of
meta-selector).

In general, we allow a box to have more than one output port. Boxes with
multiple output ports, however, reduce heap graphs not to graphs but hyper-
graphs with hyperedges having a single source node, but multiple target nodes.
This situation is illustrated on a simple example shown in Figure 3.3. The tree
with linked brothers from Figure 3.3 (a) is turned into a hypergraph with bi-
nary hyperedges shown in Figure 3.3 (c) using the box B from Figure 3.3 (b).
The subgraph encoded by the box B can be connected to its surroundings via
its input port i and two output ports o1, o2. Therefore, the hypergraph from
Figure 3.3 (c) encodes it by a hyperedge with one source and two target nodes.

1Later on, the term input port will be used to refer to the nodes pointed to by program
variables too since these nodes play a similar role as the inputs of components.
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Figure 3.3: (a) A tree with linked brother nodes, (b) a pattern that repeats in the
structure and that is linked in such a way that all nodes in the structure are cut-points,
(c) the tree with linked brother nodes represented using hyperedges labelled by the box
B.

Sets of heap hypergraphs corresponding either to the top level of the repre-
sentation or to boxes of different levels can then be decomposed into (hyper)tree
components and represented using hierarchical FA whose alphabet can contain
nested FA.2 Intuitively, FA appearing in the alphabet of some superior FA play
a role similar to that of inductive predicates in separation logic.3 We restrict
ourselves to automata that form a finite and strict hierarchy (i.e., there is no
circular use of the automata in their alphabets).

The question of deciding inclusion on sets of heaps represented by hierarchical
FA remains open. However, we propose a canonical decomposition of hierarchi-
cal hypergraphs allowing inclusion to be decided for sets of heap hypergraphs
represented by FA provided that the nested FA labelling hyperedges are taken
as atomic alphabet symbols. Note that this decomposition is by far not the
same as for non-hierarchical heap graphs due to a need to deal with nodes that
are not reachable on the top level, but are reachable through edges hidden in
some boxes. This result allows us to safely approximate inclusion checking on
hierarchically represented heaps, which appears to work quite well in practice.

3.2 Hypergraphs and Their Representation

We now formalise the notion of hypergraphs and their forest representation.

2Since graphs are a special case of hypergraphs, in the following, we will work with hyper-
graphs only. Moreover, to simplify the definitions, we will work with hyperedge-labelled
hypergraphs only. Node labels mentioned above will be put at specially introduced nullary
hyperedges leaving from the nodes whose label is to be represented.

3For instance, we use a nested FA to encode a DLL segment of length 1. In separation logic,
the corresponding induction predicate would represent segments of length 1 or more. In
our approach, the repetition of the segment is encoded in the structure of the top-level FA.
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3.2.1 Hypergraphs

A ranked alphabet is a finite set Γ of symbols associated with a map # : Γ→ N.
The value #(a) is called the rank of a ∈ Γ. We use #(Γ) to denote the maximum
rank of a symbol in Γ. A ranked alphabet Γ is a hypergraph alphabet if it is
associated with a total ordering �Γ on its symbols. For the rest of the section,
we fix a hypergraph alphabet Γ.

An (oriented, Γ-labelled) hypergraph (with designated input/output ports) is
a tuple G = (V,E, P ) where:

• V is a finite set of vertices.

• E is a finite set of hyperedges such that every hyperedge e ∈ E is of the
form (v, a, (v1, . . . , vn)) where v ∈ V is the source of e, a ∈ Γ, n = #(a),
and v1, . . . , vn ∈ V are targets of e and a-successors of v.

• P is the so-called port specification that consists of a set of input ports
IP ⊆ V , a set of output ports OP ⊆ V , and a total ordering �P on IP∪OP .

We use v to denote a sequence v1, . . . , vn and v.i to denote its ith vertex vi. For
symbols a ∈ Γ with #(a) = 0, we write (v, a) ∈ E to denote that (v, a, ()) ∈ E.
Such hyperedges may simulate labels assigned to vertices.

A path in a hypergraph G = (V,E, P ) is a sequence 〈v0, a1, v1, . . . , an, vn〉,
n ≥ 0, where for all 1 ≤ i ≤ n, vi is an ai-successor of vi−1. G is called
deterministic iff ∀(v, a, v), (v, a′, v′) ∈ E: a = a′ =⇒ v = v′. G is called
well-connected iff each node v ∈ V is reachable through some path from some
input port of G.

As we have already mentioned in Section 3.1, in hypergraphs representing
heaps, input ports correspond to nodes pointed to by program variables or to
input nodes of components, and output ports correspond to output nodes of
components. Figure 3.1 (a) shows a hypergraph with two input ports corre-
sponding to the variables x and y. The hyperedges are labelled by selectors
data and next. All the hyperedges are of arity 1. A simple example of a hy-
pergraph with hyperedges of arity 2 is given in Figure 3.3(c).

3.2.2 Forest Representation of Hypergraphs

We will now define the forest representation of hypergraphs. For that, we
will first define a notion of a tree as a basic building block of forests. We will
define trees much like hypergraphs but with a restricted shape and without
input/output ports. The reason for the latter is that the ports of forests will
be defined on the level of the forests themselves, not on the level of the trees
that they are composed of.

Formally, an (unordered, oriented, Γ-labelled) tree T = (V,E) consists of
a set of vertices and hyperedges defined as in the case of hypergraphs with
the following additional requirements: (1) V contains a single node with no
incoming hyperedge (called the root of T and denoted root(T )). (2) All other
nodes of T are reachable from root(T ) via some path. (3) Each node has at
most one incoming hyperedge. (4) Each node appears at most once among the
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target nodes of its incoming hyperedge (if it has one). Given a tree, we call its
nodes with no successors leaves.

Let us assume that Γ∩N = ∅. An (ordered, Γ-labelled) forest (with designated
input/output ports) is a tuple F = (T1, . . . , Tn, R) such that:

• For every i ∈ {1, . . . , n}, Ti = (Vi, Ei) is a tree that is labelled by the
alphabet (Γ ∪ {1, . . . , n}).

• R is a (forest) port specification consisting of a set of input ports IR ⊆
{1, . . . , n}, a set of output ports OR ⊆ {1, . . . , n}, and a total ordering �R
of IR ∪OR.

• For all i, j ∈ {1, . . . , n}, (1) if i 6= j, then Vi ∩ Vj = ∅, (2) #(i) = 0, and
(3) a vertex v with (v, i) ∈ Ej is not a source of any other edge (it is
a leaf). We call such vertices root references and denote by rr(Ti, j) the
set of all root references to Tj in Ti, i.e., rr(Ti, j) = {v ∈ Vi | (v, j) ∈ Ei}.
We also define rr(Ti) =

⋃n
j=1 rr(Ti, j).

A forest F = (T1, . . . , Tn, R) represents the hypergraph ⊗F obtained by unit-
ing the trees T1, . . . , Tn and interconnecting their roots with the corresponding
root references. In particular, for every root reference v ∈ Vi, i ∈ {1, . . . , n},
hyperedges leading to v are redirected to the root of Tj where (v, j) ∈ Ei, and
v is removed. The sets IR and OR then contain indices of the trees whose roots
are to be input/output ports of ⊗F , respectively. Finally, their ordering �P
is defined by the �R-ordering of the indices of the trees whose roots they are.
Formally, ⊗F = (V,E, P ) where:

• V =
⋃n
i=1 Vi \ rr(Ti),

• E =
⋃n
i=1{(v, a, v′) | a ∈ Γ ∧ ∃(v, a, v) ∈ Ei ∀1 ≤ j ≤ #(a) : if ∃(v.j, k) ∈

Ei with k ∈ {1, . . . , n}, then v′.j = root(Tk), else v′.j = v.j},

• IP = {root(Ti) | i ∈ IR},

• OP = {root(Ti) | i ∈ OR},

• ∀u, v ∈ IP ∪OP such that u = root(Ti) and v = root(Tj):

u �P v ⇐⇒ i �R j.

3.2.3 Minimal and Canonical Forests

We now define the canonical form of a forest which will be important later
for deciding language inclusion on forest automata, acceptors of sets of hyper-
graphs.

We call a forest F = (T1, . . . , Tn, R) representing the well-connected hyper-
graph ⊗F minimal iff the roots of the trees T1, . . . , Tn correspond to the cut-
points of ⊗F , i.e., those nodes that are either ports, have more than one incom-
ing hyperedge in ⊗F , or appear more than once as a target of some hyperedge.
A minimal forest representation of a hypergraph is unique up to permutations
of T1, . . . , Tn.
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In order to get a truly unique canonical forest representation of a well-con-
nected deterministic hypergraph G = (V,E, P ), it remains to canonically order
the trees in the minimal forest representation of G. To do this, we use the
total ordering �P on ports P and the total ordering �Γ on hyperedge labels Γ
of G. We then order the trees according to the order in which their roots are
visited in a depth-first traversal (DFT) of G. If all nodes are not reachable from
a single port, a series of DFTs is used. The DFTs are started from the input
ports in IP in the order given by �P . During the DFTs, a priority is given to
the hyperedges that are smaller in �Γ. A canonical representation is obtained
this way since we consider G to be deterministic.

Figure 3.1 (b) shows a forest decomposition of the heap graph depicted in
Figure 3.1 (a). The nodes pointed to by variables are input ports of the heap
graph. Assuming that the ports are ordered such that the port pointed by x

precedes the one pointed by y, then the forest of Figure 3.1 (b) is a canonical
representation of the heap graph of Figure 3.1 (a).

3.2.4 Root Interconnection Graphs

Let F = (T1, . . . , Tn, R) be a forest. A root interconnection graph FF = (V,E)
is a (directed) graph in which the nodes V = {T1, . . . , Tn} represent the roots of
F , and the edges E ⊆ V × (N×{1, 2})×V represent the interconnection of the
components of F . In particular, an edge labelled by (k, 1) appears between Ti
and Tj in FF if and only if the DFT of Ti started in its root visits a reference
to Tj after visiting k − 1 other root references (when not counting multiple
occurrences of the same roots), and a reference to Tj is not visited anymore in
the rest of the DFT. If a reference to Tj is visited after k − 1 other references
(again not counting multiple occurrences of the same root), and it will be visited
at least once more in the rest of the DFT (i.e., the root of Tj can be reached
from the root of Ti via multiple paths, or, equivalently, |rr(Ti, j)| > 1), then,
and only then FF contains an edge connecting Ti and Tj labelled by (k, 2).

Using the root interconnection graph, one can immediately see whether the
corresponding forest is canonical or not. Indeed, a forest F = (T1, . . . , Tn, R)
is minimal if and only if each node in FF is in IP ∪ OP , has more than one
incoming edge, or it has an incoming edge labelled by (k, 2). Moreover, if
a series of DFTs on FF (which start from the nodes corresponding to input
ports in IP in the order given by �P , and in which an edge (k, i) is explored
before (l, j) iff k < l) visits the nodes of FF in the order T1, T2, . . . , Tn, then
F is canonical.

3.2.5 Manipulating the Forest Representation

In practice, it is often the case that one needs to modify the number of trees
within a forest representation of a hypergraph. For instance, we can have an
arbitrary forest representation and want to obtain a canonical one. Apart from
changing the order of the trees, we might also need to eliminate certain roots
(which are not cut-points) by gluing them (together with the trees rooted at
them) with the leaves of other trees. For this reason, we define an additional
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operation over forests which we call a concatenation. If a root of a tree Tj is
referenced exactly once from a different tree Ti inside the forest (i.e., |rr(Ti, j)| =
1 and |rr(Tk, j)| = 0 for k 6= i) and it corresponds to neither an input nor an
output port (i.e., root(Tj) 6∈ IR ∪ OR), then Tj can be concatenated to Ti by
replacing the leaf node referencing Tj in Ti by Tj . The concatenation of Tj to
Ti within F = (T1, . . . , Tn, R) is denoted by concat(F, i, j).

Formally, let v ∈ Vi such that (v, j) ∈ Ei (i.e., v is a leaf of Ti representing the
root reference to Tj). Assuming (w.l.o.g.) that i < j, concat(F, i, j) is defined
as

(T1, . . . , Ti−1, T
′
i , Ti+1, . . . , Tj−1, Tj+1, . . . , Tn, R)

where T ′i = (V ′i , E
′
i) such that

• V ′i = (Vi \ {v}) ∪ Vj

• E′i = (Ei \ {(u, a, v) : u ∈ Vi ∧ a ∈ Γ} \ {(v, j)}) ∪ {(u, a,Root(Tj)) :
(u, a, v) ∈ Ei} ∪ Ej

The operation concat preserves the semantics of the forest, therefore it holds
that ⊗concat(F, i, j) = ⊗F whenever such concatenation is possible.

3.3 Forest Automata

We will now define forest automata as tuples of tree automata extended by
a port specification. Tree automata accept trees that are ordered and node-
labelled. Therefore, in order to be able to use forest automata to encode sets of
forests, we must define a conversion between ordered, node-labelled trees and
our unordered, edge-labelled trees.

We convert a deterministic Γ-labelled unordered tree T into a node-labelled
ordered tree ot(T ) by (1) transferring the information about labels of edges
of a node into the symbol associated with the node and by (2) ordering the
successors of the node. More concretely, we label each node of the ordered tree
ot(T ) by the set of labels of the hyperedges leading from the corresponding
node in the original tree T . Successors of the node in ot(T ) correspond to
the successors of the original node in T , and are ordered w.r.t. the order �Γ

of hyperedge labels through which the corresponding successors are reachable
in T (while always keeping tuples of nodes reachable via the same hyperedge
together, ordered in the same way as they were ordered within the hyperedge).
The rank of the new node label is given by the sum of ranks of the original
hyperedge labels embedded into it. Below, we use ΣΓ to denote the ranked
node alphabet obtained from Γ as described above.

A forest automaton over Γ (with designated input/output ports) is a tuple
F = (A1, . . . ,An, R) where:

• For all 1 ≤ i ≤ n, Ai = (Qi,Σ,∆i, Fi) is a TA with Σ = ΣΓ ∪ {1, . . . , n}
and #(i) = 0.

• R is defined as for forests, i.e., it consists of input and output ports
IR, OR ⊆ {1, . . . , n} and a total ordering �R on IR ∪OR.
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The forest language of F is the set of forests LF (F) = {(T1, . . . , Tn, R) | ∀1 ≤
i ≤ n : ot(Ti) ∈ L(Ai)}, i.e., the forest language is obtained by taking the
Cartesian product of the tree languages, unordering the trees that appear in its
elements, and extending them by the port specification. The forest language of
F in turn defines the hypergraph language of F which is the set of hypergraphs
L(F) = {⊗F | F ∈ LF (F)}.

3.3.1 Uniform and Canonicity Respecting FA

An FA F is called uniform if and only if for each forest F ∈ LF (F), the
hypergraph ⊗F is well-connected, and for any two F, F ′ ∈ LF (F), it holds
that FF = FF ′. Since all forests within a uniform FA are required to have
the same root interconnection graph, the concatenation defined in Section 3.2.2
can also be easily performed on language of uniform FA (note that if some Ti
does not correspond to a cut-point in F and it can be merged to Tj , then from
the definition of uniform FA, any other F ′ is guaranteed to have some T ′i and
T ′j such that T ′i can be merged into T ′j as well). Therefore, we can lift concat
from single forests to an entire language of FA F = (A1, . . . ,An, R) as follows:

concat(L(F), i, j) = {concat(F, i, j) : F ∈ L(F)}.

Moreover, an FA F ′ representing concat(L(F), i, j) can easily be obtained from
F . In particular, assuming the sets of states of components Ai and Aj to be
disjoint, we first replace each leaf transition in Ai labelled by the reference to
j by all accepting transitions of Aj (we create new transitions by using the
right-hand-side states of the leaf transitions of Ai and the symbol and the left-
hand-side tuple of states of the accepting transitions of Aj ; in particullar, for
a transition of 〈j〉 → r of Ai and a transition α(q1, . . . , qn)→ q of Aj , we create
a transition α(q1, . . . , qn)→ r). Then, we add all transitions of Aj into Ai and
remove Aj from the resulting FA.

We say that an FA F respects canonicity4 iff for each forest F ∈ LF (F), the
hypergraph ⊗F is well-connected, and F is its canonical representation. We
abbreviate canonicity respecting FA as CFA. It is easy to see that comparing sets
of hypergraphs represented by CFA can be done component-wise as described
in the below proposition.

Proposition 1 Let F = (A1, . . . ,An, R) and F ′ = (A′1, . . . ,A′m, R′) be two
CFA. Then, L(F) ⊆ L(F ′) iff n = m, R = R′, and ∀1 ≤ i ≤ n : L(Ai) ⊆
L(A′i).

Obviously, any canonicity respecting FA is also uniform. On the other hand,
any uniform FA F can be easily transformed into a canonicity respecting one
by first concatenating each redundant component5 with its parent component

4We intentionally use the term canonicity respecting FA instead of canonical FA to stress
that not all such FA are strictly canonical (this is due to the extensions that we will
describe in Section 3.4 and Section 3.5). However, canonicity respecting FA can be treated
as canonical for many practical purposes.

5As we have already mentioned in Section 3.2.3, a redundant component can be identified
by looking for roots which are referenced only once.
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(i.e., the component that contains the only reference to the given root) such
that the resulting FA contains the minimal number of components. Then, we
reorder the remaining components according to the DFT performed on the root
interconnection graph.

3.3.2 Transforming FA into Canonicity Respecting FA

In order to facilitate inclusion checking, each FA can be algorithmically trans-
formed (split) into a finite set of CFA such that the union of their languages
equals the original language. As we have already mentioned in the Section 3.3,
one can obtain a canonicity respecting FA from a uniform one. It remains to
show how to convert an arbitrary FA into a set of uniform FA. In the following,
we describe the computation which allow us to reconstruct the root intercon-
nection graph of a given FA and which, if it is needed, allows us to split the FA
into a set of uniform FA.

First, we label the states of the component TA of the given FA by special
labels. For each state, these labels capture all possible orders in which root
references appear in the leaves of the trees accepted at this state when the
left-most (i.e., the first) appearance of each root-reference is considered only.
Moreover, the labels capture which of the references appear multiple times.
Intuitively, following the first appearances of the root references in the leaves
of tree components is enough to see how a depth first traversal through the
represented hypergraph orders the roots of the tree components. The knowledge
of multiple references to the same root from a single tree is then useful for
checking which nodes should really be the roots.

The computed labels are subsequently used to possibly split the given FA into
several FA such that the accepting states of the component TA of each of the
obtained FA are labelled in a unique way. This guarantees that the obtained
FA are uniform. After that, some of the TA may get concatenated. Finally, we
order the remaining component TA in a way consistent with the DFT ordering
on the cut-points of the represented hypergraphs (which after the splitting is
the same for all the hypergraphs represented by each obtained FA). To order
the component TA, the labels of the accepting states can be conveniently used.

More precisely, consider a forest automaton F = (A1, . . . ,An, R), n ≥ 1, and
any of its component tree automata Ai = (Qi,Σ,∆i, Fi), 1 ≤ i ≤ n. We label
each state q ∈ Qi by a set of labels (w, Y ), w ∈ {1, . . . , n}∗, Y ⊆ {1, . . . , n}, for
which there is a tree t ∈ L(q) such that

• w is the string that records the order in which root references appear for
the first time in the leaves of t (i.e., w is the concatenation of the labels
of the leaves labelled by root references, restricted to the first occurrence
of each root reference), and

• Y is the set of root references which appear more than once in the leaves
of t.

Such labelling can be obtained by first labelling states w.r.t. the leaf rules
and then propagating the so-far obtained labels bottom-up. An example of the
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∆: a(q, q) → q, a(r, q) → q, a(q, r) → q,
a(s, s) → q, ref.1 → r, b → s

⇓
∆′: a(q(1,{1}), q(1,{1})) → q(1,{1}), a(q(1,∅), q(1,∅)) → q(1,{1}),

a(q(1,{1}), q(1,∅)) → q(1,{1}), a(q(1,∅), q(1,{1})) → q(1,{1}),

a(q(1,{1}), r(1,∅)) → q(1,{1}), a(r(1,∅), q(1,{1})) → q(1,{1}),

a(q(1,{1}), q(ε,∅)) → q(1,{1}), a(q(ε,∅), q(1,{1})) → q(1,{1}),

a(q(1,∅), r(1,∅)) → q(1,{1}), a(r(1,∅), q(1,∅)) → q(1,{1}),

a(q(1,∅), q(ε,∅)) → q(1,∅), a(q(ε,∅), q(1,∅)) → q(1,∅),

a(q(ε,∅), r(1,∅)) → q(1,∅), a(r(1,∅), q(ε,∅)) → q(1,∅),

a(q(ε,∅), q(ε,∅)) → q(ε,∅), a(s(ε,∅), s(ε,∅)) → q(ε,∅),

ref.1 → r(1,∅), b → s(ε,∅)

Figure 3.4: Example of labelling (w, Y ) obtained for a single component A =
(Σ, Q,∆, {qf}) during the transformation into a canonicity respecting FA (in the pic-
ture, labelled states are of the form q(w,Y )). The newly obtained TA contains 3 different
accepting states (q(1,{1}), q(1,∅), and q(ε,∅)) suggesting that the component needs to be
split into 3. The language of q(1,{1}) contains trees with two or more references to root 1.
Similarly q(1,∅) corresponds to trees having exactly one such a reference. Finally, trees
within the language of q(ε,∅) do not contain any reference at all.

labelling is depicted in Figure 3.4. If the final states of Ai get labelled by several
different labels, we make a copy of the automaton for each of these labels, and
in each of them, we preserve only the transitions that allow trees with the
appropriate label of the root to be accepted6. This way, all the component
automata can be processed and then new forest automata can be created by
considering all possible combinations of the transformed TA.

Clearly, each of the FA created above represents a set of hypergraphs that
have the same number of cut-points (corresponding either to ports, nodes ref-
erenced at least twice from a single component tree, or referenced from several
component trees) that get ordered in the same way in the depth first traver-
sal of the hypergraphs. However, it may be the case that some roots of the
FA need not correspond to cut-points. This is easy to detect by looking for
a root reference that does not appear in the set part of any label of some final
state and that does not appear in the labels of two different component tree
automata. A useless root can then be eliminated by adding transition rules of
the appropriate component tree automaton Ai to those of the tree automaton
Aj that refers to that root and by gluing final states of Ai with the states of
Aj accepting the root reference i.

It remains to order the component TA within each of the obtained FA in
a way consistent with the DFT ordering of the cut-points of the represented
hypergraphs (which is now the same for all the hypergraphs represented by

6More technically, given a labelled TA, one can first make a separate copy of each state
for each of its labels, connect the states by transitions such that the obtained singleton
labelling is respected, then make a copy of the TA for each label of accepting states, and
keep the accepting status for a single labelling of accepting states in each of the copies
only.

21



a single FA due to the performed splitting). To order the component TA of any
of the obtained FA, one can use the w-part of the labels of its accepting states.
One can then perform a DFT on the component TA, considering the TA as
atomic objects. One starts with the TA that accept trees whose roots represent
ports and processes them w.r.t. the ordering of ports. When processing a TA
A, one considers as its successors the TA that correspond to the root references
that appear in the w-part of the labels of the accepting states of A. Moreover,
the successor TA are processed in the order in which they are referenced from the
labels. When the DFT is over, the component TA may get reordered according
to the order in which they were visited.

Subsequently, the port specification R and root references in leaves must be
updated to reflect the reordering. If the original sets IR or OR contain a port
i, and the ith tree was moved to the jth position, then i must be substituted by
j in IR, OR, and �R as well as in all root references. This finally leads to a set
of canonicity respecting FA.

Note that, in practice, it is not necessary to tightly follow the above described
process. Instead, one can arrange the symbolic execution of statements in such
a way that when starting with a CFA, one obtains an FA which already meets
some requirements for CFA. Most notably, the splitting of component TA—if
needed—can be efficiently done already during the symbolic execution of the
particular statements. Therefore, transforming an FA obtained this way into
the corresponding CFA involves the elimination of redundant roots and the root
reordering only.

3.3.3 Sets of FA

The class of languages of FA (and even CFA) is not closed under union since
a forest language of a FA corresponds to the Cartesian product of the languages
of all its components, and not every union of Cartesian products may be ex-
pressed as a single Cartesian product. For instance, consider two CFA F =
(A,B, R) and F ′ = (A′,B′, R) such that LF (F) = {(a, b, R)} and LF (F ′) =
{(c, d,R)} where a, b, c, d are distinct trees. The forest language of the FA
(A ∪ A′,B ∪ B′, R) is {(x, y,R) | (x, y) ∈ {a, c} × {b, d}}), and there is no FA
with the hypergraph language equal to L(F) ∪ L(F ′).

Due to the above, we cannot transform a set of CFA obtained by canonising
a given FA into a single CFA. Likewise, when we obtain several CFA when sym-
bolically executing several program paths leading to the same program location,
we cannot merge them into a single CFA without risking a loss of information.
Consequently, we will explicitly work with finite sets of (canonicity-respecting)
forest automata, S(C)FA for short, where the language L(S) of a finite set S
of FA is defined as the union of the languages of its elements. This, however,
means that we need to be able to decide language inclusion on SFA.
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3.3.4 Testing Inclusion on Sets of FA

The problem of checking inclusion on SFA, this is, checking whether L(S) ⊆
L(S ′) where S,S ′ are SFA, can be reduced to a problem of checking inclusion
on tree automata. We may w.l.o.g. assume that S and S ′ are SCFA.

We will transform every FA F in S and S ′ into a TA AF which accepts the
language of trees where:

• The root of each of these trees is labelled by a special fresh symbol (pa-
rameterised by n and the port specification of F).

• The root has n children, one for each tree automaton of F .

• For each 1 ≤ i ≤ n, the ith child of the root is the root of a tree accepted
by the ith tree automaton of F .

Trees accepted by AF are therefore unique encodings of hypergraphs in L(F).
We will then test the inclusion L(S) ⊆ L(S ′) by testing the tree automata
language inclusion between the union of TA obtained from S and the union of
TA obtained from S ′.

Formally, let F = (A1, . . . ,An, R) be an FA where Ai = (Σ, Qi,∆i, Fi) for
each 1 ≤ i ≤ n. Without a loss of generality, assume that Qi ∩Qj = ∅ for each
1 ≤ i < j ≤ n. We define the TA AF = (Σ ∪ {fRn }, Q,∆, {qtop}) where:

• fRn 6∈ Σ is a fresh symbol with #(fRn ) = n,

• qtop 6∈
⋃n
i=1Qi is a fresh accepting state,

• Q =
⋃n
i=1Qi ∪ {qtop}, and

• ∆ =
⋃n
i=1 ∆i ∪∆top where ∆top contains the rule fRn (q1, . . . , qn) → qtop

for each (q1, . . . , qn) ∈ F1 × · · · × Fn.

It is now easy to see that the following proposition holds (in the proposition,
“∪” stands for the usual tree automata union).

Proposition 2 For SCFA S and S ′,

L(S) ⊆ L(S ′) ⇐⇒ L(
⋃
F∈S
AF ) ⊆ L(

⋃
F ′∈S′

AF ′).

3.4 Hierarchical Hypergraphs

As discussed informally in Section 3.1, simple forest automata cannot express
sets of data structures with unbounded numbers of cut-points like, e.g., the set
of all doubly-linked lists or the set of all trees with linked brothers (Figures 3.2
and 3.3). To capture such data structures, we will enrich the expressive power
of forest automata by allowing them to be hierarchically nested. For the rest
of the section, we fix a hypergraph alphabet Γ.
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3.4.1 Hierarchical Hypergraphs, Components, and Boxes

We first introduce hypergraphs with hyperedges labelled by the so-called boxes
which are sets of hypergraphs (defined up to isomorphism7). A hypergraph
G with hyperedges labelled by boxes encodes a set of hypergraphs. The hy-
pergraphs encoded by G can be obtained by replacing every hyperedge of G
labelled by a box by some hypergraph from the box. The hypergraphs within
the boxes may themselves have hyperedges labelled by boxes, which gives rise
to a hierarchical structure (which we require to be of a finite depth).

Let Υ be a hypergraph alphabet. First, we define an Υ-labelled component
as an Υ-labelled hypergraph C = (V,E, P ) which satisfies the requirement that
|IP | = 1 and IP ∩ OP = ∅. Then, an Υ-labelled box is a non-empty set B of
Υ-labelled components such that all of them have the same number of output
ports. This number is called the rank of the box B and denoted by #(B).
Let B[Υ] be the ranked alphabet containing all Υ-labelled boxes such that
B[Υ] ∩Υ = ∅. The operator B gives rise to a hierarchy of alphabets Γ0,Γ1, . . .
where:

• Γ0 = Γ is the set of plain symbols,

• for i ≥ 0, Γi+1 = Γi ∪ B[Γi] is the set of symbols of level i+ 1.

A Γi-labelled hypergraph H is then called a Γ-labelled (hierarchical) hypergraph
of level i, and we refer to the Γi−1-labelled boxes appearing on edges of H
as to nested boxes of H. A Γ-labelled hypergraph is sometimes called a plain
Γ-labelled hypergraph.

3.4.2 Semantics of Hierarchical Hypergraphs

A Γ-labelled hierarchical hypergraph H encodes a set JHK of plain hypergraphs,
called the semantics of H. For a set S of hierarchical hypergraphs, we use JSK
to denote the union of semantics of its elements.

If H is plain, then JHK contains just H itself. If H is of level j > 0, then
hypergraphs from JHK are obtained in such a way that hyperedges labelled by
boxes B ∈ Γj are substituted in all possible ways by plain components from
JBK. The substitution is similar to an ordinary hyperedge replacement used in
graph grammars. When an edge e is substituted by a component C, the input
port of C is identified with the source node of e, and the output ports of C are
identified with the target nodes of e. The correspondence of the output ports
of C and the target nodes of e is defined using the order of the target nodes in
e and the ordering of ports of C. The edge e is finally removed from H.

Formally, given a Γ-labelled hierarchical hypergraph H = (V,E, P ), a hyper-
edge e = (v, a, v) ∈ E, and a component C = (V ′, E′, P ′) where #(a) = |OP ′ | =
k, the substitution of e by C in H results in the hypergraph H[C/e] defined
as follows. Let o1 �P . . . �P ok be the ports of OP ordered by �P . W.l.o.g.,
assume V ∩V ′ = ∅. C will be connected to H by identifying its ports with their

7Dealing with hypergraphs (and later also automata) defined up to isomorphism avoids
a need to deal with classes instead of sets. We will not repeat this fact later on.
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matching vertices of e. We define for every vertex w ∈ V ′ its matching vertex
match(w) such that (1) if w ∈ IP ′ , match(w) = v (the input port of C matches
the source of e), (2) if w = oi, 1 ≤ i ≤ k, match(w) = v.i (the output ports of C
match the corresponding targets of e), and (3) match(w) = w otherwise (an in-
ner node of C is not matched with any node of H). Then H[C/e] = (V ′′, E′′, P )
where V ′′ = V ∪(V ′\(IP ′∪OP ′)) and E′′ = (E\{e})∪{(v′′, a′, v′′) | ∃(v′, a′, v′) ∈
E′ : match(v′) = v′′ ∧ ∀1 ≤ i ≤ k : match(v′.i) = v′′.i}.

We can now give an inductive definition of JHK. Let e1 = (v1, B1, v1), . . . ,
en = (vn, Bn, vn) be all edges of H labelled by Γ-labelled boxes. Then, G ∈ JHK
iff it is obtained from H by successively substituting every ei by a component
Ci ∈ JBiK, i.e.,

JHK = {H[C1/e1] . . . [Cn/en] | C1 ∈ JB1K, . . . , Cn ∈ JBnK}.

Figure 3.2(b) shows a hierarchical hypergraph of level 1 whose semantics is
the (hyper)graph of Figure 3.2(a). Similarly, Figure 3.3(c) shows a hierarchical
hypergraph of level 1 whose semantics is the (hyper)-graph of Figure 3.3(a).

3.5 Hierarchical Forest Automata

We now define hierarchical forest automata that represent sets of hierarchical
hypergraphs. The hierarchical FA are FA whose alphabet can contain symbols
which encode boxes appearing on edges of hierarchical hypergraphs. The boxes
are themselves represented using hierarchical FA.

To define an alphabet of hierarchical FA, we will take an approach similar
to the one used for the definition of hierarchical hypergraphs. First, we define
an operator A which for a hypergraph alphabet Υ returns the ranked alphabet
containing the set of all SFA S over (a finite subset of) Υ such that L(S) is
an Υ-labelled box and such that A[Υ] ∩Υ = ∅. The rank of S in the alphabet
A[Υ] is the rank of the box L(S). The operator A gives rise to a hierarchy of
alphabets Γ0,Γ1, . . . where:

• Γ0 = Γ is the set of plain symbols,

• for i ≥ 0, Γi+1 = Γi ∪ A[Γi] is the set of symbols of level i+ 1.

A hierarchical FA F over Γi is then called a Γ-labelled (hierarchical) FA of
level i, and we refer to the hierarchical SFA over Γi−1 appearing within alphabet
symbols of F as to nested SFA of F .

Let F be a hierarchical FA. We now define an operator ] that translates any
Γi-labelled hypergraph G = (V,E, P ) ∈ L(F) to a Γ-labelled hierarchical hy-
pergraph H of level i (i.e., it translates G by transforming the SFA that appear
on its edges to the boxes they represent). Formally, G] is defined inductively
as the Γ-labelled hierarchical hypergraph H = (V,E′, P ) of level i that is ob-
tained from the hypergraph G by replacing every edge (v,S, v) ∈ E, labelled by
a Γ-labelled hierarchical SFA S, by the edge (v,L(S)], v), labelled by the box
L(S)] where L(S)] denotes the set (box) {X] | X ∈ L(S)}. Then, we define
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the semantics of a hierarchical FA F over Γ as the set of Γ-labelled (plain)
hypergraphs JFK = JL(F)]K.

Notice that a hierarchical SFA of any level has finitely many nested SFA
of a lower level only. Therefore, a hierarchical SFA is a finitely representable
object. Notice also that even though the maximum number of cut-points of
hypergraphs from L(S)] is fixed (SFA always accept hypergraphs with a fixed
maximum number of cut-points), the number of cut-points of hypergraphs in
JSK may be unbounded. The reason is that hypergraphs from L(S)] may contain
an unbounded number of hyperedges labelled by boxes B such that hypergraphs
from JBK contain cut-points too. These cut-points then appear in hypergraphs
from JSK, but they are not visible at the level of hypergraphs from L(S)].

Hierarchical SFA are therefore finite representations of sets of hypergraphs
with possibly unbounded numbers of cut-points.

3.5.1 On Well-Connectedness of Hierarchical FA

In this section, we aim at checking well-connectedness and inclusion of sets of
hypergraphs represented by hierarchical FA. Since considering the full class of
hierarchical hypergraphs would unnecessarily complicate our task, we enforce
a restricted form of hierarchical automata that rules out some rather artificial
scenarios and that allows us to handle the automata hierarchically (i.e., using
some pre-computed information for nested FA rather than having to unfold the
entire hierarchy all the time). In particular, the restricted form guarantees that:

1. For a hierarchical hypergraph H, well-connectedness of hypergraphs in
JHK is equivalent to the so-called box-connectedness of H. Box-connect-
edness is a property introduced below that can be easily checked and that
basically considers paths from input ports to output ports and vice versa,
in the latter case through hyperedges hidden inside nested boxes.

2. Determinism of hypergraphs from JHK implies determinism of H.

The two above properties simplify checking well-connectedness and inclusion
considerably since for a general hierarchical hypergraph H, well-connectedness
of H is neither implied nor it implies well-connectedness of hypergraphs from
JHK. This holds also for determinism. The reason is that a component C in
a nested box of H may interconnect its ports in an arbitrary way. It may contain
paths from output ports to both input and output ports (including paths from
an output port to another output port not passing the input port), but it may
be missing paths from the input port to some of the output ports.

Using the above restriction, we will show below a safe approximation of inclu-
sion checking on hierarchical SFA, and we will also show that this approximation
is precise in some cases. Moreover, it turns out that in practice, an even more
aggressive approximation of inclusion checking in which nested boxes are taken
as atomic symbols is often sufficient.
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3.5.2 Properness and Box-Connectedness

Given a Γ-labelled component C of level 0, we define its backward reachability
set br(C) as the set of indices i for which there is a path from the i-th output
port of C back to the input port of C. Given a box B over Γ, we inductively
define B to be proper iff all its nested boxes are proper, br(C1) = br(C2) for
any C1, C2 ∈ JBK, and the following holds for all components C ∈ JBK:

1. C is well-connected.

2. If there is a path from the i-th to the j-th output port of C, i 6= j, then
i ∈ br(C).8

For a proper box B, we use br(B) to denote br(C) for C ∈ JBK. A hierarchical
hypergraph H is called well-formed iff all its nested boxes are proper. In that
case, the conditions above imply that either all or no hypergraphs from JHK
are well-connected and that well-connectedness of hypergraphs in JHK may be
judged based only on the knowledge of br(B) for each nested box B of H,
without a need to reason about the semantics of B (in particular, Point 2 in
the above definition of proper boxes guarantees that we do not have to take
into account paths that interconnect output ports of B). This is formalised in
the following paragraph.

Let H = (V,E, P ) be a well-formed Γ-labelled hierarchical hypergraph with
a set X of nested boxes. We define the backward reachability graph of H as the
Γ ∪X ∪Xbr -labelled hypergraph Hbr = (V,E ∪ Ebr , P ) where Xbr = {(B, i) |
B ∈ X ∧ i ∈ br(B)} and Ebr = {(vi, (B, i), (v)) | B ∈ X ∧ (v,B, (v1, . . . , vn)) ∈
E ∧ i ∈ br(B)}. We say that H is box-connected iff Hbr is well-connected. The
below proposition clearly holds.

Proposition 3 If H is a well-formed hierarchical hypergraph, then the hyper-
graphs from JHK are well-connected iff H is box-connected. Moreover, if hy-
pergraphs from JHK are deterministic, then both H and Hbr are deterministic
hypergraphs.

We straightforwardly extend the above notions to hypergraphs with hyper-
edges labelled by hierarchical SFA, treating these SFA-labels as if they were the
boxes they represent. Particularly, we call a hierarchical SFA S proper iff it
represents a proper box JSK, we let br(S) = br(JSK), and for a Γ ∪ Y -labelled
hypergraph G where Y is a set of proper SFA, its backward reachability hyper-
graph Gbr is defined based on br in the same way as the backward reachability
hypergraph of a hierarchical hypergraph above (just instead of boxes, we deal
with their SFA representations). We also say that G is box-connected iff Gbr is
well-connected.

3.5.3 Checking Properness and Well-Connectedness

We now outline algorithms for checking properness of nested SFA and well-
connectedness of SFA.

8Notice that this definition is correct since boxes of level 0 have no nested boxes, and the
recursion stops at them.
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Properness of nested SFA can be checked relatively easily since we can take
advantage of the fact that nested SFA of a proper SFA must be proper as well.
We start with nested SFA of level 0 which contain no nested SFA, we check
their properness and compute the values of the backward reachability function
br for them. To do this we can label TA states similarly to Section 3.3.2.
A unique label of each root in the SFA representing the box guarantees that
the br function will be equal for all hypergraphs hidden in the box. Then, we
iteratively increase the level j and for each j, we check properness of the nested
SFA of level j and compute the values of the function br . For this, we use the
values of br that we have computed for the nested SFA of level j − 1, and we
can also take advantage of the fact that the nested SFA of level j−1 have been
shown to be proper. We can again use the labels attached to all tree automata
states. The difference from level 0 is that we have to extend the labels in order
to capture also the backward reachability of the edges labelled by nested SFA.

Now, given an FA F over Γ with proper nested SFA, we can check well-
connectedness of hypergraphs from JFK as follows: (1) for each nested SFA
S of F , we compute like above (and cache for further use) the value br(S),
and (2) using this value, we check box-connectedness of hypergraphs in L(F)
without a need of reasoning about the inner structure of the nested SFA.

Let us have a canonicity respecting SFA S of some level such that its nested
SFA are proper and we know the value of the function br for all of them.9 We
assume that S contains at least one FA, and that the languages of all F ∈ S
are nonempty.

Moreover, to make the algorithms of checking properness and box-connect-
edness faster and simpler, we exploit the fact that the algorithm we describe in
Section 3.5.7 in fact produces automata respecting canonicity in a somewhat
stronger sense than described in Section 3.5.1. We define the stronger notion
of respecting canonicity below.

Given F = (A1, . . . ,An, R) ∈ S, a path in a tree t ∈ L(Ai) from v to w,
v, w ∈ dom(t), is a sequence v = v0, (a1, k1), v1 . . . , (am, km), vm = w, 0 ≤ m,
where for each 1 ≤ i ≤ m, vi is the ki-th son of vi−1 and t(vi) = ai. The path
is backward passable iff for each 1 ≤ i ≤ m, the label ai is backward passable at
the ki-th position, which means that there is a proper nested SFA Si ∈ ai and
j ∈ br(Si) such that j +

∑
{b∈ai|b�ΓSi,b 6=Si}#(b) = ki.

For each 1 ≤ i ≤ n and each t ∈ L(Ai), we define the reachability relation10

ρti ⊆ {1, . . . , n} × {1, . . . , n} on the roots of F that contains a pair (j, k) iff one
of the following three conditions holds:

9Notice that even though respecting canonicity assumes properness of nested SFA and we
require here proper SFA to be canonicity respecting, this is not a circular dependency. For
an SFA to respect canonicity, we only require its nested SFA to be proper. So, for an SFA
of level j to respect canonicity, we require properness of SFA of level j−1 only. Respecting
canonicity in an SFA of level 0 does not depend on the notion of properness since SFA of
level 0 have no nested SFA. Properness on level j then depends on respecting canonicity
on level j.

10Notice, that the reachability relation is related to the root interconnection graph which is
defined in Section 3.2.4. Unlike reachability relation, the root interconnection graph does
not record backward passable paths. On the other hand, it also contains some information
about the number of paths between nodes.
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1. i = j and there is a leaf v of t with t(v) = k, or

2. i = k, there is a leaf v of t with t(v) = j, and the path from the root of t
to v is backward passable, or

3. there are nodes u, v, w of t such that both v and w are leaves of the subtree
rooted by u, t(v) = j, t(w) = k, and the path from u to v is backward
passable.

We say that F is an FA with uniform reachability iff for each 1 ≤ i ≤ n, ρti
is the same for all t ∈ L(Ai). If it is the case, then we denote the reachability
relation as ρi. We further say that an SFA S strongly respects canonicity iff it
respects canonicity as defined in Section 3.5.1 and all its elements are FA with
uniform reachability. In Section 3.5.7, we show the transformation of FA into
SFA that strongly respect canonicity and we also show how to compute the
relation ρi.

If F is an FA with uniform reachability, we define the global reachability
relation ρ = (

⋃
1≤i≤n ρi)

∗ on roots of F .11 Notice that (i, j) ∈ ρ iff for all
H ∈ JLH(F)K there are two nodes u and v that correspond to the i-th and j-th
root of F , respectively, and such that there is a path from u to v in H.

Properness of an SFA representing some box and computing br on it is then
done as follows. First, a singleton SFA {F} with ι being the only input port
of F is proper iff (1) for all 1 ≤ i ≤ n, (ι, i) ∈ ρ and (2) for all o, o′ ∈ OR,
(o, o′) ∈ ρ =⇒ (o′, ι) ∈ ρ. If {F} is proper, then br({F}) equals the set
{o ∈ OR | (o, ι) ∈ ρ}. Finally, assuming that an SFA S strongly respects
canonicity, S is proper iff all its elements agree on the values of IR and OR, and
all the singleton SFA {F}, F ∈ S, are proper and agree on the value of br(F).
This value then equals br(S).

Box-connectedness of an SFA S that strongly respects canonicity and that has
proper nested SFA for which we know the values of br can be checked similarly
as properness, i.e., using the relation ρ. Particularly, S is box-connected if and
only if for all F = (A1, . . . ,An, R) ∈ S and for all 1 ≤ k ≤ n there is some
ι ∈ IR such that (ι, k) ∈ ρ.

3.5.4 On Inclusion of Hierarchical FA

Checking inclusion on hierarchical automata over Γ with nested boxes from
X, i.e., given two hierarchical FA F and F ′, checking whether JFK ⊆ JF ′K,
is a hard problem, even under the assumption that nested SFA of F and F ′
are proper. Its decidability is not known. In order to be able to use our in
practice (see Chapter 4), we choose a pragmatic approach and give only a semi-
algorithm that is efficient and works well in practical cases. The idea is simple.
Since the implications L(F) ⊆ L(F ′) =⇒ L(F)] ⊆ L(F ′)] =⇒ JFK ⊆ JF ′K
obviously hold, we may safely approximate the solution of the inclusion problem
by deciding whether L(F) ⊆ L(F ′) (i.e., we abstract away the semantics of
nested SFA of F and F ′ and treat them as ordinary labels).

11Here, the ∗ stands for the reflexive and transitive closure.
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From now on, assume that our hierarchical FA represent only deterministic
well-connected hypergraphs, i.e., that JFK and JF ′K contain only well-connected
deterministic hypergraphs. Note that this assumption is in particular fulfilled
for hierarchical FA representing garbage-free heaps.

We cannot directly use the results on inclusion checking of Section 3.3, based
on a canonical forest representation and canonicity respecting FA, since they
rely on well-connectedness of hypergraphs from L(F) and L(F ′), which is now
not necessarily the case. The reason is that hypergraphs represented by a not
well-connected hierarchical hypergraphH can themselves still be well-connected
via backward links hidden in boxes. However, by Proposition 3, every hyper-
graph G from L(F) or L(F ′) is box-connected, and both G and Gbr are de-
terministic. As we show below, these properties are still sufficient to define
a canonical forest representation of G, which in turn yields a canonicity re-
specting form of hierarchical FA.

3.5.5 Canonicity Respecting Hierarchical FA

Let Y be a set of proper SFA over Γ. We aim at a canonical forest representation
F = (T1, . . . , Tn, R) of a Γ ∪ Y -labelled hypergraph G = ⊗F which is box-
connected and such that both G and Gbr are deterministic. By extending the
approach used in Section 3.3, this will be achieved via an unambiguous definition
of the root-points of G, i.e., the nodes of G that correspond to the roots of the
trees T1, . . . , Tn, and their ordering.

The root-points of G are defined as follows. First, every cut-point (port or
a node with more than one incoming edge) is a root-point of Type 1. Then,
every node with no incoming edge is a root-point of Type 2. Root-points of
Type 2 are entry points of parts of G such that they are not reachable from
root-points of Type 1 (they are only backward reachable). However, not every
such part of G has a unique entry point which is a root-point of Type 2. Instead,
there might be a simple loop such that there are no edges leading into the loop
from outside. To cover a part of G that is reachable from such a loop, we
have to choose exactly one node of the loop to be a root-point. To choose
one of them unambiguously, we define a total ordering �G on nodes of G and
choose the smallest node w.r.t. this ordering to be a root-point of Type 3. After
unambiguously determining all root-points of G, we may order them according
to �G, and we are done.

A suitable total ordering �G on V can be defined taking advantage of the fact
that Gbr is well-connected and deterministic. Therefore, it is obviously possible
to define �G as the order in which the nodes are visited by a deterministic
depth-first traversal that starts at input ports. The details on how this may
be algorithmically done on the structure of forest automata may be found in
Section 3.5.7.

A hierarchical FA F over Γ with proper nested SFA and such that hyper-
graphs from JFK are deterministic and well-connected respects canonicity iff
each forest F ∈ LF (F) is a canonical representation of the hypergraph ⊗F . We
abbreviate canonicity respecting hierarchical FA as hierarchical CFA. Analogi-
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cally as for ordinary CFA, respecting canonicity allows us to compare languages
of hierarchical CFA component-wise as described in the below proposition.

Proposition 4 Let F = (A1, . . . ,An, R) and F ′ = (A′1, . . . ,A′m, R′) be hierar-
chical CFA. Then, L(F) ⊆ L(F ′) iff n = m, R = R′, and ∀1 ≤ i ≤ n : L(Ai) ⊆
L(A′i).

Proposition 4 allows us to safely approximate inclusion of the sets of hy-
pergraphs encoded by hierarchical FA (i.e., to safely approximate the test
JFK ⊆ JF ′K for hierarchical FA F , F ′). This turns out to be sufficient for all our
case studies (cf. Section 4.6 in Chapter 4). Moreover, the described inclusion
checking is precise at least in some cases as discussed below. A generalisation
of the result to sets of hierarchical CFA can be obtained as for ordinary SFA.
Hierarchical FA that do not respect canonicity may be algorithmically split
into several hierarchical CFA, similarly as ordinary CFA, as described in the
Section 3.5.7.

3.5.6 Precise Inclusion on Hierarchical FA

In many practical cases, approximating the inclusion JFK ⊆ JF ′K by deciding
L(F) ⊆ L(F ′) is actually precise. A condition that guarantees this is the
following:

Condition 1. ∀H ∈ L(F)] ∀H ′ ∈ L(F ′)] : H 6= H ′ =⇒ JHK∩JH ′K = ∅. Intu-
itively, this means that one cannot have two distinct hierarchical hypergraphs
representing the same plain hypergraph.

Clearly, Condition 1 holds if the following two more concrete conditions hold:

Condition 2. Nested SFA of F and F ′ represent a set of boxes X that do not
overlap.

Condition 3. Every H ∈ L(F)] ∪ L(F ′)] is maximally boxed by boxes from
X.

The notions of maximally boxed hypergraphs and non-overlapping boxes are
defined as follows. A hierarchical hypergraph H is maximally boxed by boxes
from a set X iff all its nested boxes are from X, and no part of H can be
“hidden” in a box from X, this is, there is no hypergraph G and no component
C ∈ B,B ∈ X such that G[C/e] = H for some edge e of G. Boxes from a set of
boxes X over Γ do not overlap iff for every hypergraph G over Γ, there is only
one hierarchical hypergraph H over Γ which is maximally boxed by boxes from
X and such that G ∈ JHK.

We note that the boxes represented by the nested SFA that appear in the
case studies presented in the Chapter 4 satisfy Conditions 2 and 3, and so
Condition 1 is satisfied too. Hence, inclusion tests performed within our case
studies are precise.
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3.5.7 Transforming Hierarchical FA into Canonicity Respecting
Hierarchical FA

The labelling considered in Section 3.3.2 when transforming (non-hierarchical)
FA into sets of canonicity respecting FA does not cover the cases when the
nodes which are the roots of some tree components are reachable from nodes
pointed by program variables only when considering backward reachability
through boxes. We solve this problem by extending the labelling from Sec-
tion 3.3.2 as described below. Consider a hierarchical forest automaton F =
(A1, . . . ,An, R), n ≥ 1, with a set X of nested SFA that are proper and its com-
ponent tree automaton Ai = (Qi,Σ,∆i, Fi), 1 ≤ i ≤ n. We label each q ∈ Qi
by a set of extended labels (w, Y, Z1, Z2), w ∈ {1, . . . , n}∗, Y ⊆ {1, . . . , n},
Z1 ⊆ {1, . . . , n} ×X ×N, and Z2 ⊆ {1, . . . , n} ×X ×N× {1, . . . , n}∗ for which
there is a tree t ∈ L(q) such that

• w and Y are as in the non-hierarchical case.

• (r, S, i) ∈ Z1 iff there is a backward passable12 path from a leaf labelled by
the root reference r to the root of the tree t, and this leaf is an Si-successor
of some node in the unordered tree t′ where ot(t′) = t.

• (r, S, i, w′) ∈ Z2 records the fact that in the tree t, there is a subtree t′

with the root labelled by (w′, Y ′, Z ′1, Z
′
2) such that (r, S, i) ∈ Z ′1. This

labelling is used to resolve cases where there is a backward passable path
from a root reference into some intermediate node in the tree, but not to
the root of the tree t.

Such labelling can be obtained in a similar way as in the case of non-hierarchical
automata—i.e., by first labelling states w.r.t. the leaf rules and then propagat-
ing the so far obtained labels bottom-up. Elements of the Z1 sets are not
propagated when a transition rule reads an edge without backward reachability
at the concerned position. If the final states of Ai get labelled by several dif-
ferent labels, we make a copy of the automaton for each of these labels, and in
each of them, we preserve only the transitions that allow accepting trees with
the appropriate label of the root (in a similar way as in Section 3.3.2).

The extended labels guarantee that each FA F obtained above is an FA with
uniform reachability (see Section 3.5.2). The relation ρi can be derived directly
from the label of the final states of Ai. Particularly, if the label is (w, Y, Z1, Z2),
then (j, k) ∈ ρi iff:

1. i = j and k appears in w, or

2. i = k and (j, S, l) ∈ Z1 for some S and l, or

3. (j, S, l, w′) ∈ Z2 for some S and l such that k appears in w′.

Clearly, each of the FA created above represents a set of hierarchical hy-
pergraphs that have the same number of roots. However, as in the case of
non-hierarchical hypergraphs, some roots need not correspond to cut-points.
This problem is solved in the same way as in non-hierarchical case.

12See Section 3.5.3 for the definition of a backward passable path.
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Forward Traversal. In order to transform each FA F obtained above into the
(strongly) canonicity respecting form, its component TA are subsequently or-
dered according to the depth-first traversal on the root interconnection graph
extended for hierarchical FA (see Section 3.2.4) such that nodes again corre-
spond to the roots of the forest representation of the hypergraphs encoded by
F , and edges represent the reachability relation

⋃
1≤i≤n ρi. The edges of the

extended root interconnection graph are labelled by natural numbers using the
extended labels as described below. Successors of nodes in the root interconnec-
tion graph graph are then explored according to these numbers in the depth-first
traversal on the graph.

Let us denote by xA the node of the root interconnection graph corresponding
to a component TA A (i.e., to the roots of the trees accepted by A). For each
component TA A, assuming that its final states are labelled by (w, Y, Z1, Z2),
we label the edges leading from xA to the nodes corresponding to TA referenced
from w by natural numbers assigned in the order given by w. Then, for each
component TA A of F whose labelling of final states contains a Z1 triple (r, S, i)
where r references a TA A′, we label the edge leading from xA′ to xA by
a number assigned to the pair (S, i) in the lexicographic ordering on all such
pairs that appear in the Z1 triples of the labels of the component TA of F .
(We use numbers greater than those used in the previous phase of numbering).
Finally, for each label (r, S, i, w′) of the final states of some component TA A,
the TA A′ referenced by r, and each TA A′′ referenced from w′, we label the
edge leading from xA′ to xA′′ by a number obtained from the lexicographic
ordering of the triples (S, i, r′) where r′ ranges over references that appear in
the w′ parts of the Z2 labels. (We again use numbers greater than those used in
the previous phases of numbering.) If multiple numbers are assigned to a single
edge, the smallest is chosen.

Backward Traversal. The just described ordering of the component TA of
a given FA based on the root interconnection graph orders the component TA
in a way consistent with the order �H that is induced on the root-points of
the represented hypergraphs by the further described deterministic depth-first
traversal on the corresponding backward reachability hypergraphs Hbr. In par-
ticular, the corresponding DFT on the backward reachability hypergraphs starts
from the input ports and it is driven by the fixed ordering on the input ports
and the labels of hyperedges. The ordering of the inverted hyperedges (labelled
by symbols from Xbr) is inherited from the ordering of the hyperedges on which
they are based and from the number of the output port used. Moreover, the
DFT normally explores first original hyperedges and only then the inverted
hyperedges. However, the inverted hyperedges are prioritised whenever the
traversal comes to a node x using an inverted hyperedge and x is not a root
of some tree. In such a case, the DFT continues the search first by inverted
hyperedges and only then by the regular hyperedges.

The above described handling of the inverted hyperedges forces the DFT
on backward reachability hypergraphs to reach a root of a tree component
before alternating the direction of the DFT inside the tree component. We
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Figure 3.5: Two tree components problematic for handling the order of roots

explain the reason behind this on an example. Suppose that we have a TA
accepting tree components t1 and t2 rooted at the root-point 2 as depicted in
Figure 3.5. Suppose that all the edges in these trees are backward passable
and that the accepting state of this automaton is labelled by the following la-
bel (“13”, {1, 3}, {(1, S, 1), (3, S, 2)}, {(1, S, 1, “13”), (3, S, 2, “13”)}). Further,
assume that the root-point r1

13 is the only input port of the represented hy-
pergraphs. Hence, the DFT on the described trees will start from the reference
to r1 (represented by the node labelled by 1 in Figure 3.5). In the backward
reachability hypergraph based on t1, a DFT without the described priority of
inverted hyperedges would go from r1 to the internal node of t1 using the in-
verted hyperedge (S, 1) and then it would continue back to r1, backtrack, and
then go to r3 via the different output ports of S. So, the induced ordering of the
root-points would be 1 �H 3 �H 2. On the other hand, in the backward reach-
ability hypergraph based on t2, such a DFT would go from r1 to r2 and then to
r3, giving a different induced ordering of the root-points, namely 1 �H 2 �H 3.
The described DFT forces the search in the backward reachability hypergraph
based on t1 to continue from the internal node of t1 by an inverted hyperedge
to r2 and only after that to continue to r3. So, the induced ordering is the same
in both the cases. Note that the same ordering is obtained by the DFT on the
root interconnection graph where the edge from r1 to r2 has a bigger priority
than the edge from r1 to r3.

Forward-Unreachable Components. The FA obtained after splitting based
on the extended labels described above, removing the redundant roots, and
re-arranging the particular TA according to the root interconnection graph
are still not necessarily canonicity respecting. Respecting of canonicity is not
guaranteed in cases when there exist root-points of Type 3 in the represented
hypergraphs—i.e., when there exist loops without any incoming edge in these
hypergraphs. This situation can easily be detected by looking for a component
TA accepting a tree representation of such loops. In particular, this amounts
to looking for a component TA accepting trees such that (1) their roots are
not ports in the forest representation, (2) they are not referred from the trees
accepted by any other TA—this can easily be checked by inspecting the label
w of the final states of the other TA, and (3) they contain a single leaf with

13Let us denote the i-th root point as ri.
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a root reference to itself—this can be checked by inspecting the labels w and
Y of the accepting states of the concerned TA. The canonisation procedure
then rearranges the concerned TA such that the root of each accepted tree is
the smallest node according to the above described depth-first traversal on Hbr

(i.e., the node that should be the canonically chosen root-point of Type 3). In-
tuitively, this amounts to a rotation of the concerned backward reachable loops
represented by tree automata rules so that the nodes that are identified as the
root-points become the roots of the tree representation.

More formally, let Ar be the TA that we need to rotate, r being the number
of Ar in the concerned FA, and let (wAr , Y Ar , ZAr

1 , ZAr
2 ) be the label associated

with the accepting states of Ar. The states of Ar that accept the nodes that
should become the new roots are identified as follows. Let k be the number
of the root-point from where the DFT on the represented hypergraphs comes
(without passing through any other root-points) to the nodes corresponding to
the roots of the tree components represented by Ar. Identifying k is easy since
xAk

is the predecessor of xAr in the DFT performed on the root interconnection
graph. The edge from xAk

to xAr exists in the root reference reachability
graph due to existence of a backward passable path from the root of each tree
represented by Ar to a root reference to k. Existence of this path is captured
by the label ZAr

1 , concretely by an element (x, S, i) ∈ ZAr
1 .14

Now, the TA Ar = (Qr,Σ,∆r, Fr) can be rotated as described in the fol-
lowing. Let R = (. . . , qi1 , . . . , qi2 , . . .)

a→ q ∈ ∆ be a rule such that the w
label of qi1 contains r, and the Z1 label of qi2 contains (k, S, i).15 Such a rule
appears exactly once in each run of A since a reference to r may appear only
once at the leaf level (otherwise we would not be dealing with a root-point
of Type 3), and also Si can link with a single leaf only (otherwise we would
obtain a nondeterministic hypergraph). If there are more rules like R in Ar,
then we may split Ar to several automata containing a single rule of the de-
scribed kind, and process each of the automata separately (which we assume
to be the case in the following). When we transform Ar to A′r that accepts
trees in which the concerned loops are represented in the appropriately rotated
way, the rule R is redirected to a newly introduced accepting state, the rules
that used to originally lead to accepting states are redirected to states origi-
nally reading a reference to r, and reading a reference to r while going to q is
allowed. Formally, for some qfin 6∈ Qr, A′r = (Qr ∪ {qfin},Σ,∆′r, {qfin}) where

∆′ = (∆r \ ({R}∪{ r→ q}))∪∆′′. The set of the newly added rules is defined as

∆′′ = {(. . . , qi1 , . . . , qi2 , . . .)
a→ qfin} ∪ {(q1, . . . , qk)

b→ qr | (q1, . . . , qk)
b→ qf ∈

∆r, qf ∈ Fr,
r→ qr ∈ ∆r} ∪ {

r→ q}.
As a consequence of the rotation, the final state of the rotated TA may have

a different label (w, Y, Z1, Z2) than the original one.16 This may cause that
the FA with the new TA inside has a different root interconnection graph and

14If there are more backward passable paths from the roots of the trees represented by Ar to
a root reference to k, then each such path has a different record in ZAr

1 . In such a case,
we choose the one with the smallest (S, i).

15Note that qi1 and qi2 can appear swapped on the left-hand side of the rule too.
16The order of root references in the string w can be different, and in each (k, S, i, w′) ∈ Z2,

w′ can be ordered differently as well. Y and Z1 stay unchanged.

35



hence different ordering of the roots. Therefore after each TA rotation, we
recompute the root reachability graph and reorder the forest. Note that the
order of the roots that are originally ordered before the root of the rotated
TA is not affected. Therefore, even if there are more root-points of Type 3, the
rotations on each of them will be done at most once, and hence the canonisation
procedure terminates.

As we have already mentioned before, the described procedure yields FA that
strongly respect canonicity which allows us to check properness and box-con-
nectedness by computing the reachability relation on the roots of the FA.

3.6 Conclusions and Future Work

With the aim of obtaining a formalism suitable for representing sets of heaps, we
have introduced forest automata as a formalism for representing sets of graphs,
decomposed into tree components. We have discussed various properties of this
formalism. First of all, we have shown how one can obtain a canonical represen-
tation of a given set of graphs. Furthermore, we have shown that the language
inclusion of canonical forest automata can be efficiently decided by translating
them into tree automata. In addition, we have proposed a hierarchical extension
of forest automata, which on one hand greatly increases the expressive power
of our formalism, but on the other hand, certain operations—such as language
inclusion checking—become more complicated. For this reason, we have also
demonstrated that these operations can be safely approximated. Experiments
with the verification approach based on FA that we present in the next chapter
show that the proposed notion of FA can be quite useful in practice. These
results also indicate that the approximate inclusion checking is sufficient in
practice.

An interesting area for the future work which has not been investigated so
far is a characterisation of the class of graphs (heaps) which can be described
by hierarchical forest automata. Moreover, even though our experiments show
that the approximate inclusion checking on hierarchical FA that we have pro-
posed is quite successful in practice, it would be interesting to know whether
(precise) inclusion checking on FA is decidable (and efficiently implementable).
A somewhat related problem, which we will come across in the next chapter, is
then the problem of computing intersections of FA (which we will also approxi-
mate in Section 4.5). Finally, one can also consider extending FA by recursively
nested boxes. They would greatly increase the expressive power of the formal-
ism, however, it is so far unclear how to implement the required algorithms over
such an extension.
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4 Forest Automata-based Verification

In this chapter, we build on the notion of forest automata, and we propose
a forest-automata-based verification procedure for sequential programs manip-
ulating complex dynamically linked data structures. We concentrate on pro-
grams manipulating various forms of singly- and doubly-linked lists (SLL/DLL),
possibly cyclic, shared, hierarchical, and/or having various additional selectors
(e.g., head pointers, tail pointers, data, etc.), as well as various forms of trees.
We, in particular, consider C pointer manipulation, but our approach can be
easily applied to any other similar language. We focus on safety properties of
the considered programs, which includes generic properties like absence of null
dereferences, double free operations, dealing with dangling pointers, or memory
leakage. Furthermore, to check various shape properties of the involved data
structures, one can use testers, i.e., parts of code which, in case some desired
property is broken, lead the control flow to a designated error location.

As we have sketched already at the beginning of Chapter 3, in our forest-
automata-based representation, a heap is split in a canonical way into several
tree components such that roots of the trees correspond to cut-points. The tree
components can refer to the roots of each other. Using this decomposition, sets
of heaps with a bounded number of cut-points are then represented by forest
automata. Moreover, we allow alphabets of FA to contain nested FA, allowing
us to also represent sets of heaps with an unbounded number of cut-points,
which is necessary in many practical cases (e.g., when one deals with sets of
DLLs). Finally, since FA are not closed under union, we work with sets of forest
automata.

A fundamental property of our newly proposed formalism of forest automata
is that C program statements manipulating pointers can be easily encoded as
operations modifying FA. Due to this and due to the fact that FA are based
on tree automata, we can build on the concept of abstract regular tree model
checking (see [BHRV06b] or Section 2.5) to obtain a new symbolic verification
procedure for the considered class of programs. The procedure then works as
follows: The algorithm maintains a set of visited program configurations and
a set of program configurations which need to be processed. At the begin-
ning, the set of visited program configurations is empty, and the set of program
configurations waiting to be processed contains the initial configuration of the
program to be analysed which consists of the initial assignment of program
variables, the empty heap, and the program counter pointing to the first in-
struction of the program. Then, the algorithm iteratively picks one waiting
program configuration and performs a symbolic execution of the appropriate
program statement. This essentially means that one takes a forest automaton
representing a set of heaps and transforms it into a new forest automaton. The
set of heaps represented by the newly obtained forest automaton reflects the
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change within the heap caused by the execution of the given program state-
ment. In addition to that, one can also apply abstraction in order to be able
to obtain sets of all reachable configurations, which are typically infinite, in
a finite number of steps. In the next step, the algorithm checks whether the
newly created program configuration is covered by the set of already visited
program configurations by means of testing inclusion of languages represented
by forest automata. If the newly obtained symbolic configuration is not covered
by the set of visited program configurations, it is inserted into the set of waiting
program configurations. The process then continues by picking another waiting
configuration. During the symbolic execution, the algorithm checks whether the
verified code behaves properly, i.e., it does not dereference invalid pointers, it
does not produce memory leaks, etc. If the program does not operate properly,
the procedure is immediately terminated, and an error is reported. If the set of
waiting configurations becomes empty, the procedure terminates and outputs
that the program is safe.

When an error is encountered, it remains to find out whether it is reachable
within the original program, or it was encountered due to an excessive abstrac-
tion. In order to check, whether the error is indeed reachable, one can execute
the corresponding trace without the abstraction. If such trace cannot be exe-
cuted, then the set of reachable program configurations is over-approximated
too much, and the abstraction needs to be refined. The refinement can be done
globally which is, however, not very efficient. A better solution is to use the
counterexample-guided abstraction refinement as introduced in the framework
of abstract regular tree model checking (see again [BHRV06b] or Section 2.5).
For that to work, one needs to be able to execute the error trace backwards
which is discussed later on.

Our approach has been implemented in a prototype tool called Forester as
a gcc plug-in. This allows us to demonstrate that the proposed approach is
very promising as the tool can successfully handle multiple highly non-trivial
case studies (for some of which we are not aware of any other tool that could
handle them fully automatically).

Plan of the Chapter. The rest of this chapter is organised as follows. In Sec-
tion 4.1, we describe how we perform symbolic execution of C program state-
ments over FA. Section 4.2 provides the main loop of our verification procedure.
In Section 4.3, we present an algorithm for automatic discovery of nested FA.
The problem of abstraction is described in Section 4.4. Section 4.5 discusses
how an error trace suspected to lead to an error can be executed backwards in
order to obtain an abstraction refinement if the error is spurious. In Section 4.6,
we experimentally evaluate the performance of our prototype tool based on FA.
Section 4.7 contains information about related work. Finally, Section 4.8 con-
cludes the chapter.
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4.1 Symbolic Execution

In this section, we make more precise the way we encode heaps using FA (refin-
ing the main idea sketched in Section 3.1 when motivating the notion of FA),
and we describe the symbolic execution of C programs over sets of hierarchical
FA, which is at the heart of our verification procedure. We consider sequential,
non-recursive C programs manipulating dynamically linked data structures via
the following program statements:

• x = y,

• x = y->s,

• x = null,

• x->s = y,

• x->s = d where d is a constant of data domain,

• malloc(x), and

• free(x)

together with pointer and data equality tests and common control flow state-
ments as discussed in more details below1. Each allocated cell may have several
next pointer selectors and also selectors containing data from some finite do-
main2. We use Sel to denote the set of all selectors and Data to denote the data
domain. The cells may be pointed by program variables whose set is denoted
as Var below.

4.1.1 Executing C Statements on Hypergraphs

A single heap configuration can be viewed as a deterministic (Sel∪Data∪Var)-
labelled hypergraph with the ranking function being such that #e(x) = 1⇔ x ∈
Sel and #e(x) = 0⇔ x ∈ Data ∪ Var . In the hypergraph, the nodes represent
allocated memory cells. Selectors are represented by the unary hyperedges
labelled by elements of Sel . The nullary hyperedges labelled by elements of
Data ∪ Var represent data values and program variables3. Input ports of the
hypergraphs are nodes pointed to by program variables. Null and undefined
values are modelled as two special nodes null and undef.

The symbolic computation of reachable heap configurations is done over the
control flow graph (CFG) obtained from the program under verification. A con-
trol flow action a, corresponding to one of the supported statements, applied
to a hypergraph G (i.e., to a single configuration) returns a hypergraph a(G)
that is obtained from G as follows:

1Most C statements for pointer manipulation can be translated the listed statements, in-
cluding most type casts. The problem of restricted pointer arithmetic is discussed in
Section 4.1.4.

2No abstraction for such data is considered.
3Below, to simplify the informal description, we say that a node is labelled by a variable

instead of saying that the variable labels a nullary hyperedge leaving from that node.
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• Non-destructive actions x = y, x = y->s, or x = null remove the x-label
from its current position and label with it the node pointed by y, the
s-successor of that node, or the null node, respectively.

• The destructive action x->s = y replaces the edge (vx, s, v) by the edge
(vx, s, vy) where vx and vy are the nodes pointed to by x and y, respec-
tively. Further, malloc(x) moves the x-label to a newly created node,
free(x) removes the node pointed to by x (and links x and all variables
aliased to x with undef), and x->s = dnew replaces the edge (vx, dold ) by
the edge (vx, dnew ).

• Evaluating a guard g applied on G amounts to a simple test of equality
of nodes or equality of data fields of nodes.

Dereferences of null and undef are of course detected (as an attempt to follow
a non-existing hyperedge), and an error is announced. Emergence of garbage is
detected iff a(G) is not well-connected.

4.1.2 Executing C Statements on FA

We, however, compute not on single hypergraphs representing particular heaps
but on sets of them represented by sets of canonicity respecting hierarchical FA
(SCFA). Below, we first refine the description of the way we represent sets of
heaps via FA (sketched in Section 3.1). Then, we present the different steps
in which we symbolically execute C statements over FA. Next, we explain how
pointer updates can be applied to it. Finally, we provide an example of the
symbolic execution.

Heap Encoding Details. As described in Chapter 3, in order to represent
sets of heaps using SCFA, we first decompose a (Sel ∪ Data ∪ Var)-labelled
hypergraph into a forest of unordered, (Sel ∪Data ∪Var)-labelled trees. Then,
the forest of unordered, (Sel ∪ Data ∪ Var)-labelled trees is transformed into
a forest of ordered, (Sel ∪ Data ∪ Var)∗-labelled trees in which the alphabet
(Sel ∪ Data ∪ Var)∗ is ranked using the ranking function #v which is defined
recursively as follows:

#v(ε) = 0
#v(xα) = #e(x) + #v(α)

In addition to that, we also decouple the selectors and their values (i.e., the val-
ues are stored within dedicated nodes) in order to handle ordinary and pointer
data in a uniform way (selectors are always represented by a graph edge, no
matter what type of data they contain). As a result, we obtain a forest of trees
in which a node can be labelled by:

• (Sel ∪Var)∗ if it is a root,

• Sel∗ if it is an internal node, or

• Data if it is a leaf (we consider that the set Data also contains all possible
root references).
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Phases of Symbolic Execution. In order to be able to implement the sym-
bolic execution on SCFA along the edges of a given CFG, we need to be able
to compute the following. For a given control flow action (or guard) x and
a hierarchical SCFA S, we need to symbolically compute an SCFA x(S) s.t.
Jx(S)K equals {x(G) | G ∈ JSK} if x is an action and {G ∈ JSK | x(G)} if x is
a guard.

We derive the SCFA x(S) from S in several steps in which we process each
CFA F ∈ S separately. The first phase is materialisation where we unfold
nested SFA representing boxes that hide data values or pointers referred to by
x. We note that we are unfolding only SFA in the closest neighbourhood of
the involved pointer variables; thus, on the level of TA, we touch only nested
SFA adjacent to roots. In the next phase, we introduce auxiliary roots for every
node referred to by x (as discussed in Section 4.1.3) to the forest representation.
Third, we perform the actual update, which due to the previous step amounts
to manipulation with roots only. Last, we repeatedly fold (apply) boxes and
normalise (transform the obtained SFA into a canonicity respecting form) until
no further box can be applied, so that we end up with an SCFA. We note
that like the operation of unfolding, folding is also done only in the closest
neighbourhood of roots.

Unfolding is, loosely speaking, done by replacing a TA rule labelled by
a nested SFA by the nested SFA itself (plus the appropriate binding of states
of the top-level SFA to ports of the nested SFA). Conversely to unfolding, the
folding is done by replacing the part of the top-level SFA by a single rule la-
belled by the nested SFA. More details on how we actually perform the folding
are provided in Section 4.3.

Pointer Updates. Before performing the actual update, we check whether the
operation tries to access the successors of null or undef nodes in which case
we have encountered a null or undefined pointer dereference. Otherwise, we
continue by performing one of the following actions, depending on the particular
statement:

• x = y, x = null: x is removed from all labels in which it appears. Then
we label by x each transition that is labelled by y (or by null, respec-
tively).

• malloc(x): x is removed from all labels in which it appears. Then a new
tree automaton accepting exactly a single tree encoding a single heap
node pointed by x and having undefined successors is added.

• x = y->s: x is removed from all labels in which it appears. Then the TA
which accepts nodes pointed by y is split (as described in Section 4.1.3
below) at the selector s, and the transitions of the newly created TA
leading to its accepting state, at which y->s is accepted, are labelled
by x.

• x->s = y: The TA that accepts nodes pointed by variable x is split at the
selector s. Provided that qf is an accepting state and qs accepts a reference

41
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Figure 4.1: A concrete (on the left) and symbolic execution (on the right) of state-
ments y = x->next, x->next = z, and z = x. For the sake of simplicity, the presented
FA are not strictly in their canonical form.

to the newly created TA accepting the s-subtrees of the trees accepted by
the original TA, the transition a(. . . , qs, . . .) → qf is substituted by the
transitions a(. . . , qr, . . .) → qf and r → qr where r is a reference to the
TA accepting trees whose root is labelled by y.

• x->s = d: Each transition a(. . . , qd′ , . . . ) → qf of the TA accepting the
nodes pointed by x where qf is the accepting state and qd′ corresponds to
a node representing the current value of x->data (d′ → qd′) is replaced
by a(. . . , qd, . . . )→ qf such that d→ qd.
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• free(x): In the first phase, we split the TA that accepts nodes pointed
by x to more TA such that all successors of the original root become roots
as well (i.e., the modified TA represents a set of single memory nodes).
Then, the TA accepting nodes pointed by x is removed from the given
FA, and x is added to the label associated with the special undef node.

• Tests over pointer variables and data stored in cells pointed to by variables
are evaluated by examining labels of the rules leading to the accepting
states of the TA that accept trees whose roots represent nodes pointed
by the concerned pointer variables. These rules contain all the needed
information (e.g., testing equality of pointer variables means that these
variables should be associated with the same root node). After each test,
the original SFA is split into two SFA—one of them accepts the trees that
satisfy the tested condition, and the other one accepts the trees which do
not satisfy it.

The execution of the particular program statement is followed by checking
whether all TA components within a newly obtained CFA are reachable from
program variables. If an unreachable component is found we have encountered
a memory leak.

Example of Symbolic Execution. A simplified example of a symbolic execu-
tion is provided in Figure 4.1. In the left part of the figure, we provide concrete
heaps (the dashed edges represent sequences of one or more edges linked into
a linked-list), and in the right part, we provide their forest automata repre-
sentation (top-down tree automata are used within the example in order to
improve the readability). The initial configuration is depicted in Figure 4.1
(a), and Figures 4.1 (b), (c), and (d) represent the sets of heaps obtained after
successively applying the statements x = y->next, x->next = z, and z = x.

4.1.3 Introduction of Auxiliary Roots

In certain cases, one cannot execute the effect of a program statement directly
on the FA at hand. For example, consider an FA F and the statement y :=

x->s. Here, for any hypergraph represented by F , x points to a cut-point
that corresponds to the roots of the trees accepted by some component TA of
F . We want y to point to the node which is reachable from the node pointed
to by x via the selector s. After executing the statement, y will point to
a cut-point. However, it may be the case that the node x->s (i.e., the node
that is the successor of the node pointed to by x via the selector s) is currently
not a cut-point, and it is accepted at an ordinary automaton state (not an
accepting state as in the case of the root). Therefore, the TA accepting trees
whose roots are pointed to by x has to be split into a new pair of TA such that
the first automaton accepts trees that have a reference to the second automaton
as the s-successors of their roots nodes, and the second automaton describes
the part of the heap starting at the x->s nodes in the trees accepted by the
original automaton (see Figures 4.1 (a) and (b)).
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Note that it may happen that in some trees accepted by the given TA, a split
is needed whereas in the others not. This can happen when in the trees accepted
by the TA there is a tree where x->s is a root reference and another one where
x->s is an intermediate node (accepted at an ordinary state). As an example,
there may be sequences of s-selectors below the node pointed by x of length
one or more. This can be represented by a TA with a single accepting state q,
and the transition function

∆ = {s(q)→ q, s(r)→ q, null→ r}.

For length one, one does not need to introduce a new root since some root (null
in this case) is already reached via s, which is, however, not the case for the
other lengths. In such a scenario, the TA has to be first divided into two TA
such that the first one accepts trees which need to be split whereas the other
accepts trees which do not need such a split (this can be done by inspecting the
transitions in the immediate neighbourhood of the accepting states), and then
the split is done only in the latter case. In particular case of our example, we
divide ∆ into

∆1 = {s(r)→ q′, null→ r}
∆2 = {s(q)→ q′, s(q)→ q, s(r)→ q, null→ r}

where q′ is the newly created accepting state.
We now formalise the problem of adding auxiliary roots under the assump-

tion that the TA to be split contains a single transition leading to an accepting
state only and that the accepting state does not appear inside any left hand
side of a rule of the TA. A general TA can easily be transformed into a set of
several TA such that they all satisfy these restrictions. Let A = (Q,Σ,∆, {qf})
be the TA that we want to split, let a(. . . , qs, . . .)→ qf ∈ ∆ be the only transi-
tion that leads to qf , and let qs ∈ Q be the state at which the nodes accessible
via the selector s from the roots of the trees accepted by A are accepted. We
replace A by TA A1 and A2 such that A1 references A2 via s. Formally,
A1 = (Q,Σ,∆′, {qf}), ∆′ = ∆ \ {a(. . . , qs, . . .) → qf} ∪ {a(. . . , qr, . . .) →
qf , r → qr} where r is a root reference to the newly created TA A2, and
A2 = (Q,Σ,∆, {qs}). Since this transformation may cause that many states
of A1 and A2 become useless, the automata are subsequently reduced (by first
removing useless states and subsequently by using, for instance, techniques for
simulation-based reduction of nondeterministic automata).

4.1.4 Restricted Pointer Arithmetic

In addition to the statements listed at the beginning of Section 4.1, we also
handle a restricted pointer arithmetic arising from the use of the & C operator
(an operator taking the address of an object in memory) and the operators +/-
defined over pointers. Note that a support of this feature is crucial, e.g., for
dealing with linked data structures in the form used in system software such
as the Linux kernel. There, one can, for instance, encounter data structures
which are linked via embedded headers located at certain non-zero offset from
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Figure 4.2: Nodes within a doubly-linked list linked via embedded headers

the beginning of allocated nodes (see Figure 4.2). When such a list is traversed,
the cursor pointer going through the list follows the embedded headers, and
pointer arithmetic is used to get to the actual list nodes.

Our support of basic pointer arithmetic is implemented as follows. First, we
create a mapping offset : Sel → N0 which translates each selector to a number
representing the offset (in bytes) of that selector from the beginning of a struc-
ture allocated in memory. Furthermore, we associate selectors from Sel that
label transitions of TA components of FA with integer offset values. Such an
offset says that the pointer given by the concerned selector is not pointing to
the node from which the concerned TA transition is executed but some number
of bytes before or behind the beginning of that node in memory. Likewise, we
associate integer offset values with pointer variables referring to the roots of
FA. The execution of the statement x = &y->s is then performed by setting
the content of the variable x to the content of the variable y and adjusting the
offset associated with x to offset(s).

The handling of x = &y is a bit more complicated as &y cannot be evaluated
to a valid pointer within the proposed representation (as y is stored in the stack
not the heap). In order to solve this problem, we have slightly extended our
original model. In addition to representing the heap itself, the extended model
also contains a special purpose singly-linked list representing the call stack. In
this list, each active function call is represented by a single element holding all
local variables of the corresponding function.

As a side-effect of this extension, one can even consider verification of sim-
ple recursive functions. This is achieved by applying abstraction to the list
representing the call stack which allows one to obtain a configuration which
represents an unbounded call chain. Note that since the function calls can be
nested in an arbitrary way and each function declares different local variables,
the nodes within the call stack do not share the same layout. However, in case
of recursion, a single function is eventually called for the second time. This
can be exploited by our abstraction that may widen the list representing the
call stack from containing one occurrence of a loop in the recursive calls to
any number of occurrences of the loop. Unfortunately, this approach is rather
limited because the resulting data structure (including the stack) tends to be
very complicated (often outside of the class which we can currently handle).
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Algorithm 1: The Main Verification Loop

Input: a CFG P representing the program to be verified
Output: safe if P is safe, unsafe if P might contain an error

1 V isited := ∅;
2 Next := {(pinit,Fempty)};
3 while Next 6= ∅ do
4 pick (p,F) ∈ Next;
5 Next := Next \ {(p,F)};
6 V isited := V isited ∪ {(p,F)};
7 foreach (a, q) ∈ successors(P, p) do
8 S ′ := unfold({F}, a);
9 S ′ := add-auxiliary-roots(S ′, a);

10 if violates-safety(S ′, a) then
11 return unsafe;
12 S ′ := execute(S ′, a);
13 if contains-garbage(S ′) then
14 return unsafe;
15 foreach F ′ ∈ S ′ do
16 F ′ := fold-normalise-abstract(F ′);
17 if L({F ′}) 6⊆ L({F ′′ : (q,F ′′) ∈ V isited}) then
18 Next := Next ∪ {(q,F ′)}
19 return safe;

4.2 The Main Verification Loop

As we have briefly described in the introduction of this chapter and also in Sec-
tion 4.1.2, our verification procedure performs a classical (forward) control-flow
fixpoint computation over the CFG of the analysed program. The pseudo-code
of this procedure is given as Algorithm 1 which we are now going to describe.
In particular, Algorithm 1 represents the program configuration as a pair con-
taining a location of the CFG and an FA representing a heap configuration
together with values of program variables. Two sets of such configurations are
maintained. V isited contains all program configurations which have already
been analysed. Next contains those program configurations which still need to
be processed.

The algorithm starts by populating Next with a pair (pinit,Fempty) consisting
of the initial CFG location (denoted by pinit) and an FA representing the empty
heap (denoted by Fempty). The main loop iteratively picks program configura-
tions (p,F) from Next as long as it is nonempty. The chosen configuration is
then removed from Next, and it is added to V isited. In the next step, the algo-
rithm enumerates all successors (a, q) of p (i.e., all pairs (a, p) for which there is
an edge from p to q labelled by a) within the given CFG. For each (a, q), the al-
gorithm proceeds as follows. First, if need be, the part of F that is accessed by a
is unfolded on line 8 as briefly discussed in Section 4.1.2 and also in Section 4.3.
This operation can in general yield an SCFA. Then, auxiliary roots needed for
the execution of a are introduced on line 9 as described in Section 4.1.3 (which
can again produce an SCFA even from a single FA on input). Next, the algo-
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Algorithm 2: fold-normalize-abstract

Input: an FA F
Output: an FA representing an abstraction of F

1 repeat
2 F ′ := F ;
3 F := fold(F);
4 F := normalise(F);
5 F := abstract(F);

6 until F = F ′;
7 return F ;

rithm checks whether it is safe to execute a in the configurations represented by
S ′ (i.e., there is no risk of causing null/undefined dereferences, etc.). In case it
is not safe to execute a, the procedure immediately returns unsafe. Otherwise,
a is symbolically executed on line 12 which can again transform a single FA
into an SCFA. After the execution of a, the algorithm checks whether some of
the generated FA contains components unreachable from program variables in
which case the procedure again returns unsafe (a memory leak is detected).
Next, the algorithm processes element-wise the SCFA S, which represents the
set of program configurations obtained from F by executing a. Each F ′ ∈ S ′ is
first iteratively folded, normalised, and abstracted on line 16 (see Algorithm 2
which will be described later). Then, the algorithm tests whether the newly
obtained FA F is already covered by the program configurations reached at the
given line previously (see Section 3.3.4). If it is not, the pair (q,F ′) is added to
Next on line 18.

If Next becomes empty, the algorithm reports that the program is safe. The
answer unsafe indicates that one needs to analyse the error trace (which is not
covered by Algorithm 1). In order to detect spurious counterexamples and to
refine the abstraction, one can use a backward symbolic execution similarly as
in [BHRV06b] (see Section 2.5 for a brief description). Although we have not
yet implemented the backward symbolic execution in our framework, we discuss
the theoretical issues of executing a program backwards in Section 4.5.

We now get back to the process of folding, abstraction, and normalisation
described in Algorithm 2 and discuss it in more detail. In the algorithm, the
operation fold may heuristically select some parts of its input FA and fold them
into nested FA (thus introducing a hierarchical encoding of the original FA) as
discussed in Section 4.3. The operation normalise performs normalisation as
described in Section 3.3.2 and Section 3.5.7, respectively. Finally, the operation
abstract performs the actual abstraction by applying—to the individual TA in-
side the input FA—a specialisation of the general-purpose techniques described
in the framework of abstract regular tree model checking [BHRV06b]. To recall,
the abstraction collapses automata states with similar languages (based on their
languages up-to some tree depth or using predicate languages). More details
on the abstraction can be found in Section 4.4. The described operations are
then repeated due to a need to handle the possibly hierarchically nested FA
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Figure 4.3: An example of folding, normalisation, and abstraction

(intuitively, these are iteratively folded and abstracted from their more nested
levels to the top level).

To demonstrate how Algorithm 2 works, one can consider the FA representing
two elements of a cyclic doubly-linked list depicted in Figure 4.3. First, the pairs
of next and prev links become encoded hierarchically after the execution of
line 3 of the algorithm. Then, the components are concatenated and reordered
on line 4. This way, we obtain a single TA which represents both elements of
the list. Finally, on line 5, the abstraction can transform the TA representing 2
elements of a cyclic doubly-linked list into a set of an arbitrary cyclic doubly-
linked lists containing at least one element. If the cyclic doubly-linked list is
a part of some more complicated structure (e.g., DLLs of cyclic DLLs), it might
be necessary to repeat the whole process again. For this reason, we repeat the
loop as long as something changes.

4.3 Folding of Nested Forest Automata

Originally, our verification approach as published in [HHR+11a] relied on the
fact that:

1. the user is able to provide a set of nested SFA which is sufficient for the
verification of the given program, and

2. it is enough to look for instances of the provided nested SFA (boxes) to
be folded at roots existing in the FA in which the folding should occur.

However, in our experiments, it turned out that constructing a set of boxes
suitable for verification of a given program may be quite complicated even for
an experienced user. Moreover, in our implementation, it was not possible to
reuse boxes constructed even for quite common sub-heap patterns—such as
doubly-linked list segments—in cases where the structures were connected via
different selectors. Finally, in certain cases, the algorithm could either eliminate
an existing root by concatenating two components together, or it could also
perform a folding of some box at this root. If the concatenation was performed
first (during normalisation), it could happen that the box (whose folding was
crucial for eliminating other cut-points which cannot be eliminated in any other
way) could not be folded anymore because the required root disappeared, and
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as a consequence, the tool did not terminate. Therefore, we have developed
a fully automatic approach which is able to automatically find a suitable set of
boxes and it also does not rely on the folding at existing roots only.

Recall that boxes have been introduced to bring a possibility of hiding certain
cut-points which appear repeatedly within the heap. The way boxes suitable
for dealing with different structures look like heavily dependents on the shape
of the data structures being handled. However, it is usually the case that it is
suitable to hide some infinitely occurring (possibly hierarchical) heap patterns.
Looking for such patterns is what we concentrate on in the following.

The repeated sub-heap patterns to be used as boxes are to be sought in
the CFA generated by the symbolic execution. A problem is that it is easy
to encounter sub-heap patterns which are created during the execution of the
program, they repeat a few times, but exist only temporarily. Unfortunately,
folding these patterns into boxes can cause that the verification does not termi-
nate (more precisely, folding a wrong pattern often triggers subsequent folding
of other wrong patterns, and, as a result, such misfolding then often continues
forever).

To overcome this issue, we tackle the problem from a different point of view.
Instead of trying to discover repeating sub-heap patterns whose folding into
boxes is suitable for dealing with the data structures generated by the pro-
gram being verified (whose shape is unknown to us), we concentrate directly
on dealing with the growing number of cut-points. This means that instead of
the question “What repeated patterns does one need to fold?”, we ask “Which
cut-points need to be eliminated?”. In what follows, we show how we can
automatically eliminate certain kinds of cut-points using box folding.

4.3.1 Cut-point Types

We are now going to describe four types of cut-points (illustrated in Figure 4.4),
which we distinguish for the purpose of cut-point elimination. These four types
of cut-points follow from the way cut-points may arise. Namely, a cut-point
arises when there is a loop in the heap on some node, or when some node is
referenced multiple times. Moreover, both of these scenarios can happen either
within a single component or across several different components, thus giving
four ways how a cut-point may arise. Note, however, that the ways cut-points
arise can be combined, meaning that a single cut-point may fall under several
of the types at the same time.

In particular, Type 1 cut-points arise, for instance, when one works with
cyclic lists. In such a case, a single TA component encodes a set of cyclic
lists with the cycle encoded using a leaf which refers back to the root of the
component. Type 2 cut-points are those cut-points which are referred multiple
times from within a single component. These typically arise when one deals
with trees whose all leaves refer to some designated node (e.g., the root). Next,
a set of two or more cut-points is said to consist of cut-points of Type 3 if
the components rooted at them are linked into a cycle. A typical scenario
where such cut-points appear is working with doubly-linked lists where the
cycle appears between a pair of successive list nodes. Observe, that each inner
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Figure 4.4: Four possible types of cut-points. (a) A Type 1 cut-point appearing as
a reference in the same component whose root it is. (b) A single component containing
multiple references to a Type 2 cut-point. (c) Two components mutually linked via
Type 3 cut-points. (d) A Type 4 cut-point being referred from two other components
simultaneously.

element of the lists is pointed from its predecessor and from its successor at the
same time, and so (without using a hierarchical encoding) every element has
to reside in its own component (and the present loops cannot be reduced to
loops within a single component with a cut-point of Type 1). Finally, Type 4
cut-points are the cut-points referred from two or more components at the same
time.

In the following section, we will show how to eliminate cut-points of Type 1
and 2 as well as some cut-points of Type 3. In the latter case, we restrict to
dealing with pairs of cut-points of Type 3 that are the roots of neighbouring
components linked in a cyclic way. We have not tried to go for the more general
case yet since we have not encountered loops going through more than 2 cut-
points in any of the considered case studies. On the other hand, cut-points
of Type 4, for which we do not have any direct elimination procedure either,
are quite ubiquitous. However, in all the case studies that we have considered,
cut-points of Type 4 were cut-points of other types too. Moreover, it turned
out to be sufficient to eliminate the parts of the heap causing these cut-points
to be of Type 1, 2, or 3, and they stopped being cut-points of Type 4 too. For
instance, in the case of doubly-linked lists, each node in fact corresponds to
a cut-point of Type 3 and Type 4 at the same time. Nevertheless, when we
fold the parts of the heap that make the concerned nodes to be cut-points of
Type 3, there will not remain any cut-points of Type 4 either (see Figure 4.5
for an illustration).
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4.3.2 Component Slicing

Before we explain, how to deal with the particular types of cut-points, we first
introduce the so-called component slicing. To perform folding on a single hyper-
graph, we first choose a sub-graph (sub-hypergraph) of this hypegraph which
should be replaced by a hyperedge. Then, we remove the selected sub-graph
and we add the hyperedge which then represents the removed substructure.
We, however, perform folding not on a single hypergraph, but on a set of hy-
pergraphs represented by some FA F = (A1, . . . ,An, R). Therefore, whenever
we want to perform folding of some part of a component Ai (or, in general,
several components) into a box B, we need to proceed as follows. First, we
identify a transition t of Ai at which we want to perform the folding (or, we
identify a transition in each component in which the folding should occur at
the same time), and we decide which part of t will be hidden inside the (not
yet known) box B. This way, we choose which sub-graphs will be hidden—in
particular, we will hide the selected part of the transition and everything what
is (top-down) reachable from that part of the transition in Ai.

In order to obtain B, we split t into two new transitions tk and tr such that
tk is the part of t to be put into B and tr contains the part of t not contained in
tk. Further, we create two new components (automata) called the kernel and
the residue. The kernel contains tk as an accepting transition (i.e., a transition
with an accepting state on its right-hand-side) together with all other transitions
(top-down) reachable from tk within Ai. As a result, the kernel defines what
B is. The residue is obtained by replacing t by tr in Ai. If we now directly
replaced Ai by the residue in F , we would obtain a set of hypergraphs in which
the selected sub-graphs are entirely removed. To simulate the replacement of
the part of the hypergraph by the hyperedge, we append B to tr inside the
residue. The process of splitting a selected component into kernel and residue
is called component slicing (see Figure 4.6 for an illustration of this concept).

To describe component slicing more precisely, we now recall the automata
representation described in Section 4.1.2. Essentially, we work with transitions
labelled by structured alphabet symbols eac of which encodes a sequence of se-
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tomaton which is to be sliced at the state q according to the edge labelled by “left” (i.e.,
we perform (〈left , right〉(q1, q2) → q) � {left}). The right part shows the result after
slicing in which the kernel contains the structure reachable via “left”, and the residue
contains the rest of the original automaton (in this case, the structure reachable via
“right”).

lectors (or, in general, a sequence of selectors or boxes) such that there is a fixed
correspondence between the selectors (boxes) that appear within an alphabet
symbol and the (ordered) tuple of predecessor states of the transition labelled
by that symbol. For instance, we can consider a transition a1a2(q1, q2) → q
such that #e(a1) = #e(a2) = 1 where a1 leads to the first predecessor state
(q1), and a2 leads to the second predecessor state (q2). For transition splitting,
we introduce an operator called transition cut operator (�) which when given
a transition t = α(q1, . . . , qn) → q and a set of selectors (boxes) E produces
a new transition t′ such that t′ contains only the parts of the symbol α included
in E together with the predecessor states corresponding to these parts.

In order to give a formal description of the operator �, we need to in-
troduce several auxiliary operations. In particular, let t1 = (q1, . . . , qn) and
t2 = (r1, . . . , rm) be two tuples (of states). We define the concatenation of t1
and t2 denoted by t1 ◦ t2 as the (n+m) tuple (q1, . . . , qn, r1, . . . , rm). We also
define a tuple selection operation denoted by t1[i, k] which produces the k-tuple
(qi, . . . , qi+k−1) provided that 1 ≤ i ≤ n and i+ k − 1 ≤ n. To summarise:

(q1, . . . , qn) ◦ (r1, . . . , rm) = (q1, . . . , qn, r1, . . . , rm)
(q1, . . . , qn)[i, k] = (qi, . . . , qi+k−1).

We aim at breaking a transition t = a1 . . . an(q1, . . . , qm)→ q into pieces com-
posed of ai and the predecessors connected to ai. Therefore, we further define
a function called pick(a1 . . . an(q1, . . . , qm)→ q, i) which selects the tuple of pre-
decessor states corresponding to ai from the transition a1 . . . an(q1, . . . , qm)→ q
(provided 1 ≤ i ≤ n and #v(a1 . . . an) = m):

pick(a1 . . . an(q1, . . . , qm)→ q, i) = (q1, . . . , qm)[#v(a1 . . . ai−1) + 1,#e(ai)].

Using the previous definition, we define a function called split which splits
a transition into a tuple of pairs containing parts of the original symbol and
the connected tuples of predecessor states:

split(t = a1 . . . an(q1, . . . , qm)→ q) = ((a1, pick(t, 1)), . . . , (an, pick(t, n))).
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In order to transform a tuple containing separated parts of the symbol and
corresponding tuples of states into a transition, we define a complementary
function to split called join which, given a tuple of pairs of the above form and
a state, creates a new transition as follows ((s1 . . . sn) denotes the concatenation
of tuples s1 ◦ s2 ◦ · · · ◦ sn):

join(((a1, s1), . . . , (an, sn)), q) = a1 . . . an(s1 . . . sn)→ q

At this point, we are able to split a transition into pieces and then join these
pieces back together. We, however, do not intend to join all of the original pieces
but only some subset of them. Therefore, we also define a filtering function Φf ,
which (depending on a Boolean function f) removes certain elements of the
tuple it receives as the input:

Φf () = ()

Φf (x1, . . . , xn) =

{
(x1) · Φf (x2, . . . , xn) if f(x1)

Φf (x2, . . . , xn) otherwise

Finally, we are ready to give the definition of the operator t�E which first splits
the given transition t, then it keeps only those pairs containing elements of the
set E, and, in the last step, it joins the remaining pairs into a new transition:

(t = α(q1, . . . , qn)→ q) � E = join(Φf (split(t)), q)

where f((a, s))⇐⇒ a ∈ E.
Now, for a given state q, a fixed symbol α = a1 . . . an, and a given set of

selectors (boxes) E ⊆ {a1, . . . , an}, slicing of a component TA works as follows.
We first create a kernel and a residue as two separate copies of the component
to be sliced. Then, in the kernel, we replace each transition t of the form
α(q1, . . . , qm) → q by the transition t � E. Contrary to that, we replace each
transition t of the form α(q1, . . . , qm)→ q by the transition t�({a1, . . . , an}\E)
in the residue.

Note that all steps within our symbolic execution produce automata in which
all transitions of the form α(. . . ) → q are labelled by the same symbol α (i.e.,
{α(. . . ) → q, α′(. . . ) → q} ⊆ ∆ ⇒ α = α′). Moreover, the abstraction never
collapses states q1 and q2 if there exist transitions α(. . . )→ q1 and α′(. . . )→ q2

such that α 6= α′ (see Section 4.4). Hence, we assume that the symbol is
always specified implicitly by the state q, and we in the following parametrise
component slicing by a state and a set of selectors (boxes) only.

4.3.3 Cut-point Elimination

In this section, we discuss the automatic elimination of cut-points of type 1,
2, and 3. As we have already mentioned, it might happen that some cut-point
is of more than one type which is solved by several applications of the folding
algorithm. The heuristic, which currently seems to give the best results in our
experiments, eliminates cut-points in the order 3, 2, and 1.
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Type 1. A Type 1 cut-point (c.f. Figure 4.4 (a)) corresponds to a component
which contains references to its own root (these are called self-references in the
following). To eliminate such cut-point, we want to “hide” all the self-references
into a box. Therefore, we identify a set E of all selectors (or boxes) within the
accepting transitions which lie on some path going to some self-reference (for
this, we conveniently use labels introduced in Section 3.3.2). Then, we perform
slicing of the component parametrised by the appropriate accepting state and
the set E from the previous step to obtain a kernel containing all self-references
and a residue containing the rest. Next, we perform a DFT on the kernel and
we rename all references R ⊆ {1, . . . , n} that appear in the kernel according
to the order in which they are visited (such that the self-references are always
relabelled to 0) to obtain a mapping f : R → {0, . . . , |R| − 1}. The relabelled
kernel is transformed into a new box B such that #e(B) = |R|−1. All accepting
transitions α(q1, . . . , qn)→ q of the residue are modified to

αB(q1, . . . , qn, r1, . . . , r#e(B))→ q

where rj is a state representing a reference to a root u such that f(u) = j (i.e.,
the additional predecessor states encode the mapping f and, as a result also
the correspondence between the root references appearing inside the box and
the root references appearing on the level on which the box is used)4. As the
last step, we replace the original component by the modified residue.

Note that the process of folding can easily be reversed whenever needed.
First, we extract the mapping f . Then, we relabel the root references inside
the box using f−1, and we replace the given box in some transition t by the
relabelled component.

Type 2. A Type 2 cut-point arises when the reference to that cut-point appears
multiple times within a single component (c.f. Figure 4.4 (b)). In this case, we
are therefore interested in folding the smallest part of the component containing
all the references inside a box which will then allow us to reduce the number of
references to the given cut-point to one whenever used. In order to perform the
folding as efficiently as possible, we first identify a state q whose subtrees contain
all the root references to the given cut-point and none of its predecessor states
has this property (see Figure 4.4 (b)). If there are more such states, the folding
is performed separately for each of them. In the next step, we identify the set of
selectors (boxes) E lying on some path to the given cut-point reference starting
at a node corresponding to q. Then, we perform slicing of the component
parametrised by q and E. The kernel of the slicing is transformed into a box
B which is then appended to the residue in the same manner as in the case of
cut-points of Type 1.

Type 3. To eliminate a pair of Type 3 cut-points i,j (i.e., the cut-points mutu-
ally referring to each other—see Figure 4.4 (c)), we need to use a box encoding

4Here, for the sake of simplicity, we ignore the fact that the selectors and the boxes are
ordered, hence B should not be put simply behind α. However, the procedure can easily
be extended to respect the ordering.
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Figure 4.7: An illustration of an elimination of Type 3 cut-points. The two com-
ponents are first sliced at their accepting states. The kernels of the result containing
references to i and j are transformed into a new box which is added to the remaining
part of the component i. At the end, the modified component j contains no references
to i.

a cycle starting at cut-point i going through cut-point j and finally back to i
(this corresponds, e.g., to a pair of forward and backward links in a doubly-
linked list). Intuitively, we create a box containing two components (unlike
cut-points of Type 1 and 2 which contain only a single component). The first
component of the box will contain the part of the component corresponding to
i and containing all references to j. Analogically, the second component of the
box will contain the part of the component corresponding to j and containing
all references to i. As a result, the box will represent a structure containing the
loop i-j-i.

Let us describe the elimination of Type 3 cut-point in greater detail. First,
we perform slicing of components i and j which mutually refer to each other
such that the kernels contain all paths from i to j (or from j to i, respectively).
The two kernels are transformed into a box B. The box B is then appended
to the accepting transitions of the residue of the component i in the same way
as in the previous cases. As the last step, we replace the component i within
the original FA by the modified residue and the component j by the residue of
component j. As a result, the new component i contains a single reference to
j, and new component j contains no reference to i—see Figure 4.7.

Note that one could also perform the symmetrical transformation in which the
newly created box is added into the component j. This would yield a different
structure with the same semantics. In order to decide which variant to choose
in practice, we use an ordering on the set of components of the original FA,
that is if i < j we append the newly created box to the residue of i.
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4.3.4 From Nested FA to Alphabet Symbols

When performing certain automata operations such as language inclusion, we
treat all symbols as not having any underlying structure at all. However, to
make this work, we have to ensure that the nested FA (boxes) with same se-
mantics are represented via the same alphabet symbol. This is achieved by
maintaining a database which maps boxes to alphabet symbols. Every time
a new box is created, it is first compared to existing boxes having the same
root interconnection graph (which also implies the same number of compo-
nents). The comparison of two boxes is done via checking language equality
of FA using which they are represented56. If the same box already exists, the
symbol obtained from the database is used for its representation. If it does not,
then a new alphabet symbol is created and it is stored within the database.

Furthermore, we can also consider only language inclusion to relax the re-
quirement of equality when testing whether the two boxes match. This means
that during the folding the given box can be potentially replaced by a “bigger”
one which already exists in the database. As discussed later, this can in some
cases drastically decrease the number of boxes which are required and thus
substantially increase the performance.

4.4 Abstraction

Due to the fact that we are dealing with heaps, the set of all reachable config-
urations at a given program location is usually infinite. These infinite sets can
often be described finitely using a finite set of FA. However, a näıve iterative
way of computing a set of FA describing the set of all reachable configura-
tions will typically not terminate, producing an infinite sequence of different
FA under-approximating the set of all reachable configurations. To make the
computation terminate as often as possible, we apply abstraction as is usual
in the framework of abstract regular tree model checking. We, in particular,
build on the general-purpose finite height abstraction introduced in [BHRV06b]
which we, however, significantly modify to cope well with the various special
features of our automata. Namely, it has to work over tuples of TA and cope
with the interconnection of the TA via root references, with the requirement of
canonicity, with the hierarchical structuring, as well as with the fact that we
generate sets of FA at each line of the program, not just individual FA.

In particular, first of all, we apply the TA abstraction to each component
of FA separately. Further, we slightly modify the finite height abstraction by
ignoring the accepting status of automata states. Next, we restrict the abstrac-
tion such that if it is applied on a CFA, then the result is also a CFA (i.e.,

5Here, we are not dealing with sets of FA, hence the comparison of two FA can be done
component-wise.

6The language equality check is performed as two inclusion queries. The inclusion test
itself is again only a safe approximation as we ignore the structure of nested boxes which
can appear within the box we have just created. Therefore, it can be the case that two
boxes with the same semantics are represented via different alphabet symbols. However,
according to our experiments, such approximation works very well in practice.
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the abstraction preserves the canonicity respecting status). Subsequently, we
propose a further refinement of the abstraction based on more precise tracking
of the paths between roots and root references even in cases when some of these
paths are hidden in nested FA. Finally, we show how the abstract symbolic com-
putation may be accelerated by enriching CFA that are generated at a certain
line by the languages of the other CFA generated at the same line as a part of
a single SCFA.

The rest of the section is organised as follows. We first introduce the prin-
ciple of quotienting automata w.r.t. an equivalence relation as a basis for our
abstraction. Next, we recall the equivalence based on languages of trees up
to some height introduced as a general-purpose equivalence for abstracting au-
tomata in the framework of abstract regular tree model checking (which we
slightly modify by ignoring the accepting status of states). Subsequently, we
introduce our specialised abstraction which preserves canonicity, followed by
combining it with the basic finite height abstraction. Afterwards, we propose
a further refinement of the abstraction which allows one to distinguish (to some
extent) trees having different sets of paths (possibly hidden in nested FA) be-
tween their roots and the particular root references. Finally, we show how one
can abstract SCFA in a better way than by separately abstracting each of their
CFA.

4.4.1 Automata Quotienting

We now formalise the notion of equivalence-based automata quotienting. Let
A = (Q,Σ,∆, F ) be a tree automaton and ≈ be an equivalence on Q. The
quotient automaton A/≈ is obtained from A by collapsing its states according
to ≈ (i.e., the set of states of A/≈ is obtained by taking the partition of Q
induced by ≈). Let [q] = {q′ ∈ Q : q′ ≈ q}. Then,

A/≈ = ({[q] : q ∈ Q},Σ,∆′, {[q] : q ∈ F})

where ∆′ = {a([q1], . . . , [qn]) → [q] : a(q1, . . . , qn) → q ∈ ∆}. We extend the
previous notion to a forest automaton F = (A1, . . . ,An, R) by creating quotient
(tree) automata for each component separately:

F/≈ = (A1/≈, . . . ,An/≈, R).

Next, we need to clarify what relation ≈ we use in order to obtain the ab-
straction. In fact, we use two relations over the set of states. Our abstraction
is based on the equivalence of languages of bounded height (see [BHRV06b] or
Section 2.5), but we also want to preserve the overall shape of the heap, and
therefore we also use a structure-preserving equivalence based on the reacha-
bility of root references. We discuss both of the equivalences in the following
subsections.

4.4.2 Equivalence of Languages of Bounded Height

Our equivalence of languages of bounded height is based on the idea of finite
height abstraction from [BHRV06b], but instead of considering languages of
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Figure 4.8: An example of abstraction. (a) An automaton representing a list contain-
ing 2 elements. (b) An abstracted automaton representing a set of lists containing at
least 1 element obtained using ≈1. For the sake of simplicity, we use word automata
notation here.

trees of some restricted height, it considers sets of all trees of height at most k
that can be read by the automata while getting to some state. This approach
is, in fact, a generalisation of trace languages considered in [BHV04] for words
to trees.

Formally, let A = (Q,Σ,∆, F ) be a tree automaton and t be a tree over Σ.
The tree stub of t of height k (denoted by t|k) is the restriction of t defined as

t|k = t|⋃k
i=0 Ni = {(p, a) : p ∈ dom(t) ∩

k⋃
i=0

Ni ∧ t(p) = a}.

Then, for a state q, the language of height k denoted by L|k(q) is the set of all
tree stubs of height n of trees which can be accepted by q:

L|k(q) = {t|k : t ∈ L(q)}.

Finally, we say that the states q1 and q2 are equivalent up to height k iff they
have the same languages of height k:

q1 ≈k q2 ⇐⇒ L|k(q1) = L|k(q2).

In practice, we have obtained the best results with using the simplest ≈1

equivalence (refined by the below described specialised equivalences). The ef-
fect of the abstraction based on the ≈1 equivalence is depicted in Figure 4.8.
Using the ≈1 equivalence means that we allow the abstraction to treat memory
nodes with the same layout of selectors (or, roughly speaking, memory nodes of
the same type in the typing system of the C language) as equal no matter what
data they contain7. Using this information together with the below introduced
specialised refinements turned out to be sufficient in all the considered case
studies. On the other hand, attempts to replace some of the specialised refine-
ments by increasing the abstraction height were unsuccessful due to either not
being precise enough or due to preventing too many states from being collapsed
and thus causing an explosion in the size of the automata being handled.

7Indeed, the values of data are represented by separate child nodes. In order to make the
abstraction data-aware, one needs to use at least ≈2.
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4.4.3 Canonicity Preserving Equivalence

Given an FA F , the abstraction based on the equivalence of languages of
bounded height can in general produce some FA F/≈k which is not consistent,
i.e., it might happen that one could pick a forest F from the corresponding
components of F/≈k such that ⊗F is not defined (one can, for example, ob-
tain a forest in which one attempts to define the same selector multiple times
for a single node). Moreover, we also want the abstraction to keep the basic
shape of the heap unchanged, meaning that the abstraction should not touch
the interconnection among the components. In other words, if a certain root is
referenced only once before the abstraction, it should be referenced only once
after the abstraction as well, no cut-point reference should suddenly appear or
disappear, etc. In order to better understand why this is important, one can
imagine having a tree which contains a single root reference to some particular
node (represented as a root of a different component). Now, an unrestricted
abstraction could create a new tree containing many references to that par-
ticular node which would essentially transform the tree into a directed acyclic
graph. This behaviour is, however, not desired in a large majority of cases as it
almost always causes that the analysis immediately fails by reaching a spurious
counterexample. Additionally, we also require that the abstraction applied on
a canonical FA always produces an FA which is also canonical. To be precise,
we want to ensure the following:

1. The order of roots visited during the depth first traversal of FA remains
unchanged.

2. If a given component contains exactly one reference to a certain root
before the abstraction, it also contains exactly one reference to that root
after the abstraction.

3. The backward reachability relation remains unchanged.

To satisfy these requirements, we will take advantage of the labelling in-
troduced in Section 3.5.7. Therefore, we first compute the labelling function
label(q) = (w, Y, Z1, Z2) introduced in Section 3.5.7 for each state q which can
easily be done assuming that we are working with canonicity respecting FA.
Then, we define the so-called canonicity preserving equivalence ≈C using the
labelling function label:

q1 ≈C q2 ⇐⇒ label(q1) = label(q2).

It is not difficult to see that conditions (1), (2), and (3) from above are satisfied
under≈C due to the fact that the equivalent states are required to have the same
labelling. Indeed, respecting the string w guarantees that the collapsed states
accept trees with identical order of root references on the frontier. Moreover, w
and Y together guarantee that the second condition is satisfied as well. Finally,
respecting Z1 and Z2 preserves the backward reachability relation.

In practice, as already indicated, we combine the two above introduced equiv-
alences, using finite height abstraction ≈1 based on the ≈1 equivalence. This
means that we use the ≈1 ∩≈C equivalence for collapsing states of the encoun-
tered automata (apart from some exceptions discussed in the following section).
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Figure 4.9: (a) A segment of a skip list in which the two links highlighted in grey will
eventually become represented using a nested FA. (b) An incorrect over-approximation
in which the top level list becomes disconnected.

4.4.4 Refined Canonicity Preserving Equivalence

During the experimental evaluation of our framework, we have found that the
above abstraction fails for some of the more advanced examples (namely pro-
grams manipulating skip lists—see Section 4.6.4). An analysis of the spurious
counterexamples revealed that in these cases, our abstraction is not able to
properly distinguish two automata states if two trees from the languages of
these states contain a different number of unique paths to some root reference,
but some of these paths are hidden inside nested FA.

For instance, one can consider a skip list segment (see Section 4.6.4 for more
details) depicted in Figure 4.9 (a). In this segment, the two links highlighted
in grey will eventually become represented using a nested FA (before that, the
first two nodes must reside in separate components). As soon as this happens,
the abstraction based on ≈1 ∩ ≈C is not able to distinguish the first and the
second node since it only considers that both have more than one path leading
to the third node. As a result, FA encoding skip lists of some length may
get abstracted such that the abstraction will include the structure depicted
in Figure 4.9 (b), which is not a valid skip list because the top level layer is
disconnected. Note that increasing the height of the abstraction, i.e., using ≈k
for k > 1, will only defer the problem to longer skip list segments.

In order to prevent the above mentioned problem, one could think of ex-
tending the labelling introduced in Section 3.5.7 by an additional component
recording the set (or at least the number) of distinct paths leading from nodes
of trees to each root reference appearing in the trees. Unfortunately, this is
not possible since the number of such paths is not bounded in general and, as
a result, it is not guaranteed that the number of such labels would be finite.

However, it turns out that to avoid all spurious counterexamples arising dur-
ing the verification of all the programs we considered it suffices to approximate
the sets of paths leading from nodes of the trees to the different root references
by recording the numbers of selectors through which one can (eventually) get
to the particular root reference. This, for instance, helps to distinguish the
first and the second node depicted in Figure 4.9 (the first node has 3 selectors
through which one can get to the right-most node while the second node has
only 2 such selectors).

Formally, let F = (A1, . . . ,An, R) be a hierarchical FA in which Ai =
(Qi,Σ,∆i, Fi) for 1 ≤ i ≤ n. We label each q ∈ Qi by a set of labels
(w, Y1, Y2, Z1, Z2) for which there is a tree t ∈ L(q) such that:
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• w,Z1, Z2 are as in Section 3.5.7.

• Y1 is the same as Y in Section 3.5.7.

• Y2 ⊆ {1, . . . , n}×N is a set such that (r, k) ∈ Y2 iff the root reference r can
be reached from the root of t via paths starting by k different selectors.

In order to compute the labelling, we again start by first labelling states w.r.t.
the leaf rules, and then we propagate the so-far obtained labels bottom-up.
The values of w, Y1, Z1, Z2 are computed as before, and Y2 is obtained as
follows. For a fixed reference r and a transition a1 . . . an(q1, . . . , qm) → q such
that #v(a1, . . . an) = m, we compute

k =
n∑
i=1

#e(ai)∑
j=1

leadsto(#v(a1 . . . ai−1) + j) ∗ selectors(ai, j)

where leadsto(i) = 1 iff there exists k′ > 0 such that (r, k′) ∈ Y2(qi) or
leadsto(i) = 0 otherwise, and selectors(ai, j) = l iff the output port j of ai
can be reached from the input port of ai via paths starting by l different se-
lectors (or selectors(ai, j) = 1 iff ai corresponds to a plain selector). Then, we
add (r, k) to Y2(q). To obtain the number of different selectors that can appear
at the beginning of the paths leading between the input and the output port of
some nested FA, we use the Y2 labelling computed for the nested FA itself.

Next, we compute the labelling function label(q) = (w, Y1, Y2, Z1, Z2) for
each state q in a way mentioned above, and we define the refined canonicity
preserving equivalence ≈C↑ using the labelling function label:

q1 ≈C↑ q2 ⇐⇒ label(q1) = label(q2).

It immediately follows that two states can be collapsed using ≈C↑ iff they can
be collapsed using ≈C and, moreover, the corresponding trees have the same
number of selectors that can appear at the beginning of the paths leading from
the root to each of the different root references.

According to our experiments, the abstraction based on ≈1∩≈C↑ is sufficient
for the verification of all of the considered examples. However, if the abstrac-
tion generates some counterexample in the future (which is for sure going to
happen, e.g., when one tries to enrich the technique for dealing with data-
dependent data structures, such as red-black trees, or data dependent proper-
ties, such as sortedness), it is possible to either adjust (increase) the height of
the abstraction or to further refine the abstraction using predicate languages
(see again [BHRV06a] or Section 2.5). Moreover, it would be also interesting to
see whether the predicate language abstraction could find the proposed refine-
ment of the canonicity preserving equivalence automatically (even if this would
cause some performance hit).

A proper implementation of a fully automatic abstraction refinement based
on the predicate language abstraction remains an interesting subject for future
research. In Section 4.5, we will, however, make the first step towards this
goal by proposing a way how the verified program can be executed backwards
along a suspected counterexample trace, which is a necessary precondition for
predicate language abstraction.
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struct Tree* buildTree() {
1: struct Tree* root = NULL;

2: while (<cond>) {
3: struct Tree** n = &root;

4: while (*n != NULL)

5: n = &(<cond>?(*n)->left:(*n)->right);

6: *n = newNode();

7: }
8: return root;

}

Figure 4.10: A simple C function which constructs arbitrary binary trees. We assume
that Tree is a C structure containing left and right pointer fields (selectors). <cond>
represents a condition which is abstracted away. newNode is a function which creates
a new node and returns its address.

4.4.5 Abstraction for Sets of FA

According to our experiments, the approach presented above works quite well
for many list-like data structures. One can observe that it is often sufficient to
build a linked list containing 2 elements (assuming that one uses the height-1
language abstraction) which is then abstracted to the set of lists containing one
or more cells. This usually amounts to symbolically executing 2 iterations of
each loop within the program, which can be computed quite quickly. However,
when one starts to deal with trees, the number of nodes, which has to be
constructed before the abstraction collapses enough states, grows considerably,
especially for trees of higher arities.

For instance, one can consider the function depicted in Figure 4.10. Here,
the statements on lines 2–7 are iteratively executed during the verification.

Whenever the symbolic execution reaches a conditional statement or a loop
statement (as, e.g., on lines 2 and 5), and the involved condition does not evalu-
ate to either true or false in the given symbolic configuration, the configuration
is split into two configurations in which the condition either holds or does not
hold (as described in Section 4.1.2). The symbolic execution then continues into
both of the branches with one of the symbolic configurations arising from the
split processed right away and the other one postponed. Now assume that the
verification algorithm always first explores the left branch on line 5. Therefore,
configurations representing trees consisting solely of a left branch of an increas-
ing height are first generated. The generation of such trees of an increasing
height continues until the abstraction applies on line 4, producing a set of trees
consisting of an arbitrarily long left branch. At this point, the execution branch
is not explored any further as it does not produce new configurations. Then,
the algorithm switches back to some of the postponed branches, in which one
right successor is generated. After that, one starts to explore the left-most
branch again, which eventually yields a set of trees in which the root has the
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left successor or both successors, but those have left successors only. Eventu-
ally, the algorithm inspects a branch which at the end yields the fixpoint of the
while-loop in the form of a set of arbitrary binary trees (see Figure 4.11 for an
illustration of the possible evolution of the set of reachable configurations in
the considered program). However, it is not difficult to see that this approach
is far from optimal. Indeed, one would like to first explore the branch yield-
ing the desired fixpoint. Then, while switching back the postponed branches,
the verification procedure could quickly detect that no new configurations can
be generated. Unfortunately, it is not possible to efficiently decide beforehand
which branch to take in order to reach the fixpoint sooner.

In order to avoid the above problem, it would help to have a single CFA
representing all configurations reached at the given program location through
all explored execution branches. A symbolic execution from such a CFA would
then correspond to executing all the branches at the same time. Such a CFA,
however, cannot be obtained since CFA are not closed under union even if they
have the same number of components and the same root interconnection graph
(see Section 3.3.3).

Nevertheless, despite the fact that we are forced to work with SCFA, we will
now show that it is possible to use the information contained at least in all the
CFA that have the same number of components and the same interconnection
graph to improve the performance of the abstraction, especially in cases with
many execution branches (as above). This can be done as follows. Let S
be an SCFA for the given program location. To compute an abstraction of
F = (A1, . . . ,An, R) ∈ S, we first select the subset S ′ of all the CFA of S
that have n components and the specification R. Then, we unite the sets of
states and transitions of the corresponding components of CFA in S ′ (assuming
w.l.o.g. that these sets are disjoint) to obtain F ′ which itself inherits the set
of final states from F . As a result, the languages of F and F ′ are equal, but
F ′ can also contain states and transitions from the CFA in S ′ which may have
been created in other execution branches than F . These additional states and
transitions do not lead to any any final state, but when F ′ is abstracted, it can
happen that some transitions which are unreachable in F ′ can become reachable
in F ′/≈. This in turn means that the resulting language will be enriched by
some information from the other CFA. In particular, in our example, instead of
first generating trees with left branches only until the partial fixpoint is found,
the extended abstraction will immediately take into account also the trees with
nodes having some right successors, and hence the final fixpoint will be reached
in much fewer steps.

Formally, we first define auxiliary sets Qk and ∆k for a fixed SCFA S, a fixed
number of components n, a fixed port specification R, and 1 ≤ k ≤ n:

Qk = {q ∈ Q′k : (A′1, . . . ,A′n, R) ∈ S,A′i = (Σ, Q′i,∆
′
i, F
′
i )} and

∆k = {t ∈ ∆′k : (A′1, . . . ,A′n, R) ∈ S,A′i = (Σ, Q′i,∆
′
i, F
′
i )}.

Intuitively, Qk contains union of states of all components with index k which
appear within FA having n components and specification R. Similarly ∆k

contains union of transitions of all such components. In the next step, for the
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Figure 4.11: A possible evolution of the set of reachable states when the basic ab-
straction is applied. The dashed lines represent the fact that the structure can be
extended by repeating the pattern arbitrary many times.

given CFA F = (A1, . . . ,An, R) ∈ S where Ai = (Σ, Qi,∆i, Fi) for 1 ≤ i ≤ n,
we compute the enriched CFA F ′ using the following formula:

F ′ = ((Σ,Q1,∆1, F1), . . . , (Σ,Qn,∆n, Fn), R).

We finish the process by applying the abstraction described in Section 4.4.1 on
F ′ to obtain F ′/≈.

An experimental comparison of the basic and the extended abstraction is
provided in Section 4.6.3. The results show that the extended abstraction can
indeed significantly improve the speed of the analysis.

4.5 Towards Abstraction Refinement

Whenever our verification procedure reaches a counterexample suggesting that
the program being verified contains an error, it should be checked whether the
counterexample is not caused by an excessive over-approximation of the reach-
able state space. In order to do this, one can try to execute the program along
the suspected trace without abstraction, and if the error line is still reachable,
the program indeed contains an error. If the entire error trace cannot be ex-
ecuted, the counterexample is spurious, in which case we can globally refine
the bounded height abstraction by increasing the abstraction height by one
and restart the verification process. This kind of refinement, however, does not
work very well in practice as it often only leads to obtaining a different (bigger)
spurious counterexample. Moreover, the efficiency of the abstraction rapidly
falls as the height increases.

A better refinement can be obtained by using the framework of counterex-
ample-guided abstraction refinement together with predicate language abstrac-
tion (see [BHV04, BHRV06b] or Section 2.5). For that to work, one needs
to be able to execute the program backwards along the suspected trace and
see where the forward abstract execution and the backward concrete execution
stop having anything in common (meaning that at this point the languages of
the automata obtained forward and the languages of the automata obtained
backward start having the empty intersection). One can then get back to the
last point where the intersection was nonempty, and use languages of the states
of the automata appearing at this point as new predicate languages (for more
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details, see again [BHV04, BHRV06b])8. In what follows, we discuss how a pro-
gram path suspected to lead to an error may be executed backwards in order to
check whether it really leads to an error or whether it corresponds to a spurious
counterexample (implying a need to refine the abstraction used).

4.5.1 Symbolic Execution Revisited

First, let us briefly recall some essentials of the (forward) symbolic execution
of a program over FA as a basis for backward symbolic execution. The state-
ments of the program are processed sequentially. The symbolic execution of
a statement over a set of configurations represented by a CFA can cause the
computation to branch. This happens either due to several possible outcomes
of the statement when it is executed over the given set of configurations and/or
due to the procedure of transforming an FA obtained as a result of the state-
ment into an SCFA (which is then further processed element-wise, hence the
branching). The branching creates an execution tree whose nodes are labelled
by CFA and the appropriate control line. The nodes of the tree where the
computation can still continue are kept in memory together with some addi-
tional information about the statements that generated the particular CFA.
This additional information, which we will describe in more detail in the fol-
lowing, allows us to reverse the effect of the corresponding statement during
the backward symbolic execution. Once the forward symbolic execution hits an
erroneous configuration, the program trace suspected to lead to an error can
be extracted by traversing the execution tree from the leaf node in which the
(possible) error was detected towards the root.

More precisely, assume that we have a suspected error trace—a branch of the
execution tree having the form F0, . . . ,Fn where for each 0 ≤ i ≤ n, Fi is a CFA
encoding a set of possible configurations of the heap. Here, F0 represents the
set of initial configurations (in our case, the empty heap), and Fn encodes a set
of configurations that include some bad configurations. This means that there
is a nonempty set Bad ⊆ JFnK of hypergraphs that are erroneous meaning that
they, e.g., represent heaps with garbage, heaps where a value of a variable to be
dereferenced is null or undef, heap configurations reached at a designated error
location, etc. Assume that we have a CFA FBad such that JFBadK ∩ Bad 6= ∅.
Such a CFA is obtained either as the result of symbolically executing a state-
ment leading to a designated error line, or, in the case of generic pointer manip-
ulation errors (such as null/undefined dereference, presence ofgarbage), as the
result of simply firing some pointer manipulating statement. In the latter case,
the way, in which we symbolically execute pointer manipulating statements,
guarantees that a CFA encoding all the configurations over which it is unsafe
to execute the given statement gets generated. If an SCFA for the bad configu-
rations is obtained, it can be processed element-wise. Further, we know that for

8Let us briefly recall that in case of predicate language abstraction, one has a set of predicate
languages (represented using automata). A state is said to satisfy some predicate language
if the intersection of the language of this state and the the given predicate language is
nonempty. Then, the abstraction allows one to collapse the states that satisfy the same
predicate languages.
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every 1 ≤ i ≤ n, the CFA Fi was obtained from Fi−1 by symbolically executing
some program statement in the following four steps described in Section 4.1
and also in Section 4.2:

1. materialisation (unfolding boxes represented by SCFA at the relevant FA
transitions),

2. introduction of auxiliary roots into the represented heaps (and hence com-
ponent TA on the level of FA),

3. performing the actual update,

4. iterative folding, normalisation, and abstraction yielding an SCFA.

4.5.2 Backward Symbolic Execution

As usual in counterexample guided abstraction refinement, a backward execu-
tion of a program trace computes a chain FBad = F ′n,F ′n−1, . . . ,F ′j of CFA
representing sets of configurations where j < n and either j ≥ 0 is the greatest
index such that JFjK ∩ JF ′jK = ∅ or j = 0 if there is no such index. For each
j < i ≤ n, F ′i−1 is derived from F ′i by applying backwards the steps by which Fi
was obtained from Fi−1, but without abstraction. If j = 0 and JF ′0K∩ JF0K 6= ∅,
then the backward execution reached the initial configurations which means
that the error trace is feasible in the verified program. If JF ′jK ∩ JFjK = ∅ for
some j > 0, then the counterexample is spurious, and F ′j+1 represents some
configurations introduced by abstraction that caused the discovery of the spu-
rious counterexample. In that case, we may use the pair F ′j+1,Fj+1 to derive
new predicate languages to refine the abstraction to prevent this spurious error
trace from appearing in further verification as described in [BHV04, BHRV06a]
and also briefly sketched in Section 2.5.

To be able to revert Steps 1 to 4 of the symbolic execution of a program
statement in order to obtain F ′i from F ′i+1, additional information is stored
along the computation path. More precisely, we remember where we performed
folding and unfolding (to revert Step 1 and Step 4). We also remember infor-
mation needed to revert the actual update (Step 3) as described later on and
the actions which were taken in order to transform the obtained FA into CFA
(Step 4). In particular, the following information is recorded for the different
supported statements:

• x = y, x = null, x = y->s: We record the previous value of variable x

such that we can later restore its contents in the configuration obtained
during the backward symbolic execution.

• x->s = y, x->s = d: We again keep the original value of the correspond-
ing field x->s such that it can be restored if necessary.

• malloc(x): We remember the previous value of variable x. In addition,
we record which component was created by malloc(x) such that it could
be removed when computing backwards.

66



• free(x): In this case, we need to record the content of the whole node
which has been deleted by the statement. The reversal of this statement is
then similar to executing malloc(x), but the newly created node already
contains initialised fields.

Now, assume that we have computed F ′i+1 in the backward execution and we
want to revert the effect of the i-th statement. First of all, we have to revert
folding and normalisation performed as the last step of the forward execution.
The folding is reverted by simply unfolding the corresponding box. The nor-
malisation is reverted by splitting certain component TA (if it was recorded
that some component TA were removed during the forward execution) and by
an inverse reordering of the component TA (the reordering is also recorded
during the forward execution). Next, we revert the effect of the actual update
as described above. Step 2 only introduces auxiliary roots which are redun-
dant w.r.t. the canonical representation. Therefore, they can be removed by
performing the standard normalisation procedure which converts the given FA
into a CFA. Finally, the effect of unfolding performed in Step 1 is reverted by
folding if needed.

Checking Intersection of FA. Checking emptiness of the intersection JFiK ∩
JF ′iK is an issue by itself. For two general hierarchical FA F = (A1, . . . ,An, R)
and F ′ = (B1, . . . ,Bn, R), we do not know yet whether the intersection empti-
ness problem is decidable. However, we can solve the problem of intersection
analogically as in the case of checking language inclusion by using a safe approx-
imation. For two FA F and F ′ having the same root interconnection graph,
we can compute the automaton F ∩ F ′ = (A1 ∩ B1, . . . ,A2 ∩ B2, R) where
Ai ∩ Bi is the usual intersection of two tree automata. It obviously holds that
JF ∩ F ′K ⊆ JFK ∩ JF ′K.

Notice that by having a method that under-approximates the intersection,
the only thing that can happen is that emptiness of the intersection JFiK∩ JF ′iK
is detected sooner during the backward execution (for a larger i) than it should
be, or it is detected in cases where it should not be detected at all. The only
possible consequence of this is that we attempt to refine the abstraction instead
of signalling a real counterexample or that we refine the abstraction in a wrong
way. Both of the cases can cause the computation not to terminate, but they
cannot lead to introducing false positives nor false negatives.

4.6 Experimental Evaluation

We have implemented the proposed approach (up to a backward symbolic execu-
tion and automatic abstraction refinement) in a prototype tool called Forester,
having the form of a gcc plug-in. The core of the tool is our own library of
TA that uses the recent technology for handling nondeterministic automata
(particularly, methods for reducing the size of TA and for testing language in-
clusion on them [ABH+08, ACH+10], a part of that is also described later on
in Chapter 5, Chapter 6, and Chapter 7).
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Table 4.1: A comparison of Forester (using predefined boxes) with other existing tools

example Forester Invader Predator ARTMC

SLL (delete) 0.01 < 0.10 0.01 < 0.50
SLL (reverse) < 0.01 0.03 < 0.01
SLL (bubblesort) 0.02 Err 0.02
SLL (insertsort) 0.02 0.10 0.01
SLL (mergesort) 0.07 Err 0.13
SLL of CSLLs 0.07 T 0.12
SLL+head 0.01 0.06 0.01
SLL of 0/1 SLLs 0.02 T 0.03
SLLLinux < 0.01 T < 0.01
DLL (insert) 0.02 0.08 0.03 0.40
DLL (reverse) 0.01 0.09 0.01 1.40
DLL (insertsort1) 0.20 0.18 0.15 1.40
DLL (insertsort2) 0.06 Err 0.03
CDLL < 0.01 0.09 < 0.01
DLL of CDLLs 0.18 T 0.13
SLL of 2CDDLsLinux 0.03 T 0.19

tree 0.06 3.00
tree+stack 0.02
tree+parents 0.10
tree (DSW) 0.16 o.o.m

Although our implementation is a prototype, the results are very encouraging
with regard to the generality of structures the tool can handle, precision of the
generated invariants as well as the running times. We tested the tool on sam-
ple programs with various types of lists (singly-linked, doubly-linked, cyclic,
nested), trees, and their combinations. Basic memory safety properties—in
particular, absence of null and undefined pointer dereferences, double free op-
erations, and absence of garbage—were checked. We have run our tests on
a machine with an Intel T9600 (2.8GHz) CPU and 4GiB of RAM.

If not stated otherwise, we used ≈1 ∩ ≈C for abstraction together with our
abstraction scheme for SCFA.

4.6.1 Comparison to Existing Tools

We have experimentally compared the performance of our tool with that of
Space Invader [BCC+07], the first fully automated tool based on separation
logic, Predator [DPV11], a new fully automated tool based in principle on sep-
aration logic (although it represents sets of heaps using graphs), and also with
the ARTMC tool [BHRV06b] based on abstract regular tree model checking9.
The comparison with Space Invader and Predator was done on examples with
lists only since Invader and Predator do not handle trees. The higher flexibil-
ity of our automata abstraction shows up, for example, in the test case with
a list of sublists of lengths 0 or 1 for which Space Invader does not terminate.
Our technique handles this example smoothly (without any need to add any

9Since it is quite difficult to encode the input for ARTMC, we have tried it on some interesting
cases only.
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special inductive predicates that could decrease the performance or generate
false alarms). Predator can also handle this test case, but to achieve that, the
algorithms implemented in it must have been manually extended to use a new
kind of list segment of length 0 or 1, together with an appropriate modification
of the implementation of Predator’s join and abstraction operations10. On the
other hand, the ARTMC tool can, in principle, handle more general structures
than we can currently handle such as trees with linked leaves. However, the
representation of heap configurations used in ARTMC is much heavier which
causes ARTMC not to scale that well.

Table 4.1 summarises running times (in seconds) of the four tools on our case
studies. The value T means that the running time exceeded 30 minutes, o.o.m.
means that the tool ran out of memory, and the value Err stands for a failure of
symbolic execution. The names of experiments in the table contain the name
of the data structure handled by the program. In particular, “SLL” stands for
singly-linked lists, “DLL” for doubly linked lists (the prefix “C” means cyclic),
“tree” for binary trees, “tree+parents” for trees with parent pointers. Nested
variants of SLL are named as “SLL of” and the type of the nested list. In
particular, “SLL of 0/1 SLLs” stands for SLL of nested SLL of length 0 or 1.
“SLL+head” stands for a list where each element points to the head of the
list, “SLL of 2CDLLs” stands for SLL whose implementation of lists used in
the Linux kernel with restricted pointer arithmetic [DPV11] which we can also
handle. All experiments start with a random creation and end with a disposal
of the specified structure. If some further operation is performed in between
the creation phase and the disposal phase, it is indicated in brackets. In the
experiment “tree+stack”, a randomly created tree is disposed using a stack in
a top-down manner such that we always dispose a root of a subtree and save
its subtrees into the stack. “DSW” stands for the Deutsch-Schorr-Waite tree
traversal (the Lindstrom variant). Forester has been provided a set of suitable
boxes for each of the test cases for the comparison in Table 4.1.

4.6.2 Folding of Nested FA

In addition to the comparison of Forester and some of its competitors, we have
also compared the performance of two variants of Forester. In the first case, the
user has to provide the boxes which are required for the successful verification of
the given program (this variant was used when comparing with other tools and
originally published in [HHR+11a]). In the second case, the boxes are learnt
fully automatically using the approach presented in Section 4.3. Table 4.2 shows
the running times (in seconds) of the two variants as well as the number of boxes
which were supplied (learnt).

We can see that the overhead caused by the box discovery algorithm is quite
reasonable in most cases. Whenever no nested structures are required for suc-
cessful verification, the slowdown is usually either not noticeable at all, or it
amounts to a small fraction of the original running time. When simple nested
structures such as those involved in DLLs are required then the slowdown is

10The operations were carefully tuned not to easily generate false alarms, but the risk of
generating them has anyway been increased.
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Table 4.2: An evaluation of the performance of automatic box discovery

predef. boxes automatic
example time boxes time boxes

SLL (delete) 0.01 - 0.01 -
SLL (reverse) < 0.01 - < 0.01 -
SLL (bubblesort) 0.02 - 0.02 -
SLL (insertsort) 0.02 - 0.02 -
SLL (mergesort) 0.07 - 0.07 -
SLL of CSLLs 0.07 3 0.64 4
SLL+head 0.01 - 0.02 -
SLL of 0/1 SLLs 0.02 - 0.02 -
SLLLinux < 0.01 - < 0.01 -
DLL (insert) 0.02 1 0.03 1
DLL (reverse) 0.01 1 0.02 1
DLL (insertsort1) 0.20 1 0.23 1
DLL (insertsort2) 0.06 1 0.08 1
CDLL < 0.01 1 0.01 1
DLL of CDLLs 0.18 8 0.96 7
SLL of 2CDDLsLinux 0.03 13 0.09 5

tree 0.06 - 0.10 -
tree+stack 0.02 - 0.04 -
tree+parents 0.10 2 0.16 2
tree (DSW) 0.16 - 0.30 -

also relatively low. The only cases in which we obtained a significant slowdown
are some of those which required us to learn hierarchically nested structures.
However, according to our analysis, the slowdown in these cases is not caused
by some fundamental limitation of the automatic discovery approach, but it
is rather due to the heuristics which control when and what nested structures
are allowed to be folded. A further improvement of these heuristics is thus an
interesting subject of the future work.

Table 4.2 also shows how many boxes (if any) were used for successful ver-
ification. We can see that in more complex settings, the automatic approach
tends to use different (usually smaller) set of nested structures than what the
user typically provides manually. The main reason of this phenomenon is the
fact that the user provides the nested structures in the light of what data struc-
tures the program is supposed to work with. On the other hand, the discovery
heuristics work with the actual configurations appearing during the verification
run, and these configurations are not always in a “nice” form as the user would
expect them to be.

4.6.3 Abstraction

We have also benchmarked the performance of our tool when different types of
abstraction are used. More precisely, we have compared the basic abstraction
which processes each CFA within SCFA separately to the more advanced ab-
straction for SCFA described in Section 4.4.5. The verification times obtained
within this comparison are shown in Table 4.3. One can immediately see that
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Table 4.3: A comparison of the basic and the SCFA abstraction (time in seconds)

abstraction
example basic SCFA

SLL (delete) 0.01 0.01
DLL (reverse) 0.01 0.02
SLL of CSLLs 1.75 0.64
DLL of CDLLs 4.31 0.96
tree (DSW) 1.11 0.30

the SCFA abstraction indeed substantially helps in more complicated cases. On
the other hand, for simple data structures—such as plain singly/doubly-linked
lists—the verification times remain unchanged, or the SCFA abstraction is a bit
slower as its application incurs some overhead. The overhead is, however, so
small that we by default use the SCFA abstraction in all further experiments.

In addition, we have also tested the behaviour of our tool when ≈1 ∩ ≈C↑ is
used for abstraction (instead of ≈1 ∩ ≈C) even in benchmarks for which it is
not needed, however, the running times for the considered cases were identical.

4.6.4 Additional Experiments

On top of the programs considered in the paper [HHR+11a] on which this chap-
ter is mostly based, we have later tried some additional challenging programs.
In particular, we will now briefly discuss our experiments with skip lists to fur-
ther highlight capabilities of our box discovery procedure. On this example,
we also illustrate an improvement in scalability which can be achieved by using
language inclusion instead of language equality when one matches a newly dis-
covered box against the set of already existing boxes. We will also discuss our
initial attempts on the verification of recursive programs.

Verification of Skip Lists. A skip list (see [Pug90]) is usually a randomised
data structure which allows efficient insertion and retrieval of data such that
it provides an alternative to various balanced trees. A skip list can be seen
as a multi-layered singly-linked list such that each element of the list contains
multiple next pointers. Each layer of the list forms a traditional singly-linked
list such that elements present in the list of level i + 1 are also present in the
list of level i. The list of level 0 always contains all elements of the list. To find
a key k in such a data structure, one proceeds as follows. First, one starts by
traversing the top-level list until one finds an element whose successor contains
a key which is bigger than k. Then, one descends by one level and continues
the traversal until one finds an element which is bigger than k. Then, one
descends again and repeats the whole process until level 0 is reached. At that
point, one has either found an element corresponding to k or such element is
not present within the skip list. During insertion of a new element, the skip
list is traversed in the same manner as in the case of a look-up. When the
algorithm finds a position at level 0 where the new element should be inserted,
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Table 4.4: A comparison of the two box matching approaches

equivalence inclusion
example time boxes time boxes

skip list (2 levels) 0.65 s 3 0.30 s 2
skip list (3 levels) 17.65 h 278 10.00 s 5

SLL of CSLLs 0.64 s 4 0.55 s 3
DLL of CDLLs 0.96 s 7 0.92 s 7
SLL of 2CDDLsLinux 0.09 s 5 0.09 s 5

it non-deterministically chooses up to what level i the element should be linked
and then links it into all levels 0, . . . , i.

Formal verification of programs manipulating general skip lists is quite diffi-
cult. In our framework, a set of skip lists, in which the number of layers is not
limited, contains an unbounded number of cut-points which cannot be elimi-
nated by our cut-point elimination procedure. To the best of our knowledge,
however, no sufficiently automatic method for unbounded skip lists has been
developed so far. One can mention [MTLT10] and [CRN07], in which the au-
thors consider a verification of skip lists with one layer of skipping (i.e., with
2 levels altogether), and they both require that the user provides additional
information alongside the verified code.

In order to verify a program working with skip lists (in particular, a program
performing repeated random insertion), we have also done certain modifications
to the original algorithm. First, we have fixed the number of levels to 2 and
3 (in 2 different experiments), hence consisting of 1 or 2 layers of skipping,
repectively. Moreover, we have slightly modified the original code such that the
memory safety is no longer requiring the data stored in the skip lists be sorted
which we currently do not handle11.

Table 4.4 shows the running times and the number of boxes which were
required in order to successfully verify the considered program performing re-
peated insertion of elements into skip lists with 2 or 3 levels (as we have already
mentioned, 3 level skip lists required ≈1 ∩ ≈C↑). In addition, we also provide
some selected benchmarks from Table 4.2. The column labelled by “equiva-
lence” contains data for verification runs in which we only allowed a box to be
folded when the set of substructures appearing within the given configuration
matches exactly the content of the box in the database. On the other hand, the
column labelled by “inclusion” lists data for the verification runs in which we
allowed a box to be folded even if only a subset of the substructures represented
by the box appears within the given configuration.

First, we can see that we can verify 2 level skip lists quite efficiently no mat-
ter of what kind of matching we use. However, this is not the case when one
proceeds to skip lists with 3 levels. The variant with exact matching is substan-

11The skip list insertion/lookup algorithms rely on that the elements in the lowest level are
ordered. Due to that, a search/insertion on level i − 1 can never leave from within the
selected segment of level i (delimited by two elements linked at level i one of which is smaller
and the other one bigger than the element being sought/inserted). As a workaround, we
have modified the algorithm to explicitly check that the search on level i− 1 never leaves
the selected segment at level i.
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struct Item* find(struct Item* head, int key) {
if (head == NULL)

return NULL;

if (head->key == key)

return head;

return find(head->next, key);

}

Figure 4.12: A simple recursive C function for finding an element within a singly-
linked list

tially slower. In this case, Forester needs to first fold segments of (sub-)skip
lists appearing at level 0 and 1 into boxes. These boxes are later hierarchically
folded into boxes representing segments of skip lists with all 3 layers. As we
can see from Table 4.4, 3 boxes are needed already for 2 levels which causes
that the number of boxes for representing 3 levels blows up. Fortunately, when
one switches to box inclusion, the situation improves substantially. The first
reason is that we only need 2 boxes for verification of 2 level skip lists, therefore
the blowup in the number of boxes is reduced. Second, by using inclusion in-
stead of equivalence, we in fact allow another form of abstraction, which helps
Forester to converge faster. More precisely, imagine that Forester performs an
abstraction of some state at some moment. Then, it can happen that a part of
the abstracted automaton is used to form a box. When this box is later folded
(instead of a smaller one), the folded part of the automaton gets automatically
abstracted even in the case in which the ordinary abstraction would not collapse
any states. Finally, by keeping only the boxes which are maximal w.r.t. the
language inclusion, we further reduce the total number of boxes required for
successful verification.

Verification of Recursive Programs. As we have already mentioned in Sec-
tion 4.1.2, we encode the call stack using a special singly-linked list stored
directly inside the heap. This opens a possibility to verify simple recursive pro-
grams. Consider, for instance, the recursive function find in Figure 4.12 which
searches for a given element inside a singly-linked list.

We can immediately see that each call of find creates two variables stored on
the stack (here declared as formal parameters) out of which the first one points
to an element of the list. After a brief analysis, one can observe that in our
encoding, find in fact creates a certain kind of grid as depicted in Figure 4.13.

Unfortunately, the corresponding class of graphs is beyond what we can cur-
rently handle. However, we can observe that the complexity of the data struc-
ture is caused by the precise representation of the content of the stack. Indeed,
the content of the variable head is actually never used after the recursive call
to find and can be discarded. This fact, which can be detected by a simple
static live variable analysis, can be used to allow Forester to handle recursive
functions such as find. In particular, in case of find, the content of variable
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headheadheadhead

Figure 4.13: Heap configurations arising during the verification of find. The first
row of nodes represents a singly-linked list which is to be traversed. The content of the
call stack is represented by the second row in which each node corresponds to a single
call. The picture also demonstrates that each instantiation of the local variable head

points to a different element of the list.

head gets erased immediately after the value is passed into the recursive call
(see the dashed links highlighted in red in Figure 4.13).

Forester implements a traditional live variable analysis (see [NNH99]) which
is used to remove the content of dead variables as soon as possible. When using
this extension, the verification of find takes about 0.02 s.

In addition, removing the content of dead variables typically allows Forester
to reduce the number of generated FA (differing just in the values of dead
variables). Hence, the efficiency of Forester is improved even in cases in which
there is no recursion at all.

4.7 Related Work

The area of verifying programs with dynamically linked data structures has
been a subject of intense research for quite some time. Many different ap-
proaches based on the various kinds of logics, e.g., [MS01, SRW02, Rey02,
BCC+07, GVA07, NDQC07, CRN07, ZKR08, YLB+08, CDOY09, MTLT10,
MPQ11, DPV11], automata [BHRV06b, BBH+11, DEG06], upward closed sets
[ABC+08, ACV11], and other formalisms have been proposed. These ap-
proaches differ in their generality, efficiency, and degree of automation. We
concentrate on a comparison with the two closest lines of work, namely, the use
of automata as described in [BHRV06b] and the use of separation logic in the
works [BCC+07, YLB+08] linked with Space Invader and later Slayer and to
some extent Predator. In fact, as we have already noted earlier, the approach
we propose combines some features from these two lines of research.

Compared to [BCC+07, YLB+08], our approach is more general in that it
allows one to deal with tree-like structures, too. We note that there are other
works on separation logic, e.g., [NDQC07], that consider tree manipulation,
but these are usually semi-automated only. An exception is [GVA07] which
automatically handles even tree structures, but its mechanism of synthesising
inductive predicates seems quite dependent on the fact that the dynamic linked
data structures are built in a “nice” way conforming to the structure of the
predicate to be learned (meaning, e.g., that lists are built by adding elements
at the end only12). An approach presented in [MTLT10] can also handle tree

12We did not find an available implementation of [GVA07], and so we could not try it out
ourselves.
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structures, but their method requires substantial user aid in the form of recur-
sive predicates in separation logic which are linked to the structure of the code
to be verified (in fact this is very close to providing inductive invariants of the
program). Therefore, unlike in our case, the method is not fully automatic.

Further, compared to [BCC+07, YLB+08], our approach comes with a more
flexible abstraction. We are not building on just using some inductive predi-
cates, but we combine a use of our nested FA with an automatically refinable
abstraction on the TA that appear in our representation. Thus our analysis
can more easily adjust to various cases arising in the programs being verified.
An example is dealing with lists of lists where the sublists are of length 0 or 1,
which is a quite practical situation [YLC+07]. In such cases, the abstraction
used in [BCC+07, YLB+08] can fail, leading to an infinite computation (e.g.,
when, by chance, a list of regularly interleaved lists of length 0 or 1 appears) or
generate false alarms (when modified to abstract even pointer links of length 1
to a list segment). For us, such a situation is easy to handle without any need
to fine-tune the abstraction manually.

Finally, compared with [BHRV06b], our newly proposed approach is a bit
less general. We cannot handle structures such as, e.g., trees with linked leaves.
To handle these structures, we would have to introduce into our approach FA
nested not just strictly hierarchically but in an arbitrary, possibly cyclic way,
which is an interesting subject for future research. On the other hand, our new
approach is more scalable than that of [BHRV06b]. This is due to the fact
that the heap representation in [BHRV06b] is monolithic, i.e., the whole heap
is represented by a single tree skeleton over which additional pointer links are
expressed using the so-called routing expressions. The new encoding is much
more structured, and so the different operations on the heap, corresponding
to a symbolic execution of the verified program, typically influence only small
parts of the encoding and not all (or most) of it. The monolithic encoding of
[BHRV06b] has also problems with deletion of elements inside data structures
since the routing expressions are built over a tree backbone that is assumed not
to change (and hence deleted elements inside data structures are always kept,
just marked as deleted). Moreover, the encoding of [BHRV06b] has troubles
with detection of memory leakage, which is in theory possible, but it is so
complex that it has never been implemented.

4.8 Conclusions and Future Work

In this chapter, we have proposed a new method for verification of heap manip-
ulating programs. In particular, we use forest automata proposed in Chapter 3
to encode sets of heaps and exploit the fact that the set of C statements that
we need to support can be easily symbolically executed over FA. Moreover, the
fact that FA are built over tree automata allows us to build a verification proce-
dure based on the framework of abstract regular tree model checking. For use in
our setting, we have proposed specialisations of the general-purpose abstraction
schemas, which have been introduced in ARTMC. Further, we have described
how more complex data structures—such as doubly-linked lists—can be veri-
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fied using hierarchically nested forest automata whose hierarchical structuring
can be discovered fully automatically. Finally, we have implemented the above
mentioned approach in a prototype tool called Forester. We have performed
an experimental evaluation on a set of benchmarks consisting of C programs
manipulating various dynamically allocated data structures in order to com-
pare Forester to other similar tools. The obtained results confirmed that our
approach is quite competitive in practice.

As of what concerns the future work, one of the most interesting areas is an
implementation of the proposed but not yet implemented abstraction refinement
which relies on the ability to perform a backward execution along the trace that
seems to lead to an error state. A part of this work should be an evaluation
of whether the proposed under-approximation of intersection is sufficient in
practice, or whether some more precise approach is needed.

Furthermore, it would also be interesting to extend our approach such that it
could track some information about the data stored within dynamically linked
data structures. This would allow one to verify algorithms in which the memory
safety depends, for instance, on the fact that a certain sequence is sorted. As an
example, we can mention the algorithm for skip lists which we had to manually
modify in order to remove the dependency on the data. Another example is that
of dealing with red-black trees in which case one needs to distinguish red and
black trees. Apart from that, tracking of the data stored inside the dynamically
linked data structure would allow Forester to also check properties concerning
that data.

Another line of research is a generalisation of our approach to concurrent
programs. Here, an especially interesting case is that of lockless concurrent
data structures, which are extremely difficult to understand and validate.

Finally, some programs manipulating complex data structures—such as trees
with linked leaves—could be verified if one was able to work with recursively
nested boxes. Therefore, a generalisation of the algorithms proposed in this
thesis for such boxes is also an interesting topic for future work.
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5 Simulations over LTSs and Tree
Automata

The approach of abstract regular (tree) model checking, which we use in a novel
way also in our verification technique for programs with dynamic linked data
structures proposed in the previous chapter, crucially depends on the efficiency
of dealing with automata. AR(T)MC ([BHV04, BHRV06a]) was originally built
over deterministic finite tree automata. The need to determinise the automata
in every step of the computation has, however, turned out to be a significant
obstacle to practical applicability of the approach. That is why, in [BHH+08],
it has been proposed to replace their use by nodeterministic tree automata
(NTA). This, however, brings some problems to be solved. In particular, one
needs to be able to perform inclusion checking (in order to see when a fixpoint
is reached) and to reduce the of the automata obtained in the computation.
Unfortunately, both standard minimisation and inclusion checking algorithms
are based on first making the appropriate automata deterministic. Using de-
terminisation as an intermediate step would, however, destroy the advantage of
working with usually much smaller NTA. Hence, both of the operations are to
be done without determinisation. For checking inclusion, one can use methods
based on antichains, possibly combined with simulation as discussed in Chap-
ter 6 and in Chapter 7. For reducing the size of the automata, one can use
quotienting w.r.t. a suitable, typically simulation-based equivalence relation
(see [ABH+08]). For both of these problems, it is thus crucial to be able to
efficiently compute simulations on NTA. One of the most efficient ways to ob-
tain these equivalence simulation relations on NTA is via translating an NTA
into a labelled transition system (LTS) as described in [AHKV08] and then
computing the simulation relation on this LTS.

Apart form that, many other automated verification techniques—such as LTL
model checking—are also directly or indirectly dealing with LTSs and as such
they are often limited by their size. One of the well-established approaches
to cope with this problem is the reduction of an LTS using a suitable equiva-
lence relation according to which the states of the LTS are collapsed. A good
candidate for such a relation is again simulation equivalence. It strongly pre-
serves logics like ACTL∗, ECTL∗, and LTL [DGG93, GL94, HHK95], and with
respect to its reduction power and computation cost, it offers a desirable com-
promise among the other common candidates, such as bisimulation equivalence
[PT87, SJ05] and language equivalence.

The currently fastest LTS-simulation algorithm (below denoted as LRT—
i.e., labelled RT) has been published in [ABH+08]. It is a straightforward
modification of the fastest algorithm (in the following denoted as RT, standing
for Ranzato-Tapparo) for computing simulations over Kripke structures [RT07],
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which itself improves the algorithm from [HHK95]. The time complexity of RT
amounts to O(|PSim ||δ|), the space complexity amounts to O(|PSim ||S|). In the
case of LRT, the time complexity is O(|PSim ||δ| + |Σ||PSim ||S|) and the space
complexity is O(|Σ||PSim ||S|). Here, S is the set of states of an LTS, δ is its
transition relation, Σ is its alphabet, and PSim is the partition of S according
to the simulation equivalence. The space complexity blow-up of LRT is caused
by indexing the data structures of RT by the symbols of the alphabet.

In this chapter, we propose an optimised version of LRT (denoted OLRT)
that lowers the above described blow-up. We exploit the fact that not all states
of an LTS have incoming and outgoing transitions labelled by all symbols of the
alphabet, which allows us to reduce the memory footprint of the data structures
used during the computation. Our experiments show that the optimisations we
propose lead to significant savings of space as well as of time in many practical
cases. Moreover, we have achieved a promising reduction of the asymptotic com-
plexity of algorithms for computing tree-automata simulations from [ABH+08]
using OLRT, too.

Plan of the Chapter. The text is organised as follows. In Section 5.1, we
introduce additional preliminaries used throughout the rest of this chapter.
Section 5.2 presents the original algorithm upon which our optimisations are
built, In Section 5.3, we describe the proposed optimisations and we derive the
complexity of our optimised algorithm. Section 5.4 discusses the complexity of
computing simulations over tree automata when our optimised algorithm is used
as a part of the procedure. The experimental evaluation of our optimisations
is provided in Section 5.5. Finally, Section 5.6 concludes the chapter.

5.1 Preliminaries

Given a binary relation ρ over a set X, we use ρ(x) to denote the set {y |
(x, y) ∈ ρ}. Then, for a set Y ⊆ X, ρ(Y ) =

⋃
{ρ(y) | y ∈ Y }. A partition-

relation pair over X is a pair 〈P,Rel〉 where P ⊆ 2X is a partition of X (we
call elements of P blocks) and Rel ⊆ P × P . A partition-relation pair 〈P,Rel〉
induces the relation ρ =

⋃
(B,C)∈RelB × C. We say that 〈P,Rel〉 is the coarsest

partition-relation pair inducing ρ if any two x, y ∈ X are in the same block of
P if and only if ρ(x) = ρ(y) and ρ−1(x) = ρ−1(y). Note that in the case when
ρ is a preorder and 〈P,Rel〉 is coarsest, then P is the set of equivalence classes
of ρ ∩ ρ−1 and Rel is a partial order.

For an LTS T = (S,Σ, {δa | a ∈ Σ}), a simulation over T is a binary relation
ρ on S such that if (u, v) ∈ ρ, then for all a ∈ Σ and u′ ∈ δa(u), there exists
v′ ∈ δa(v) such that (u′, v′) ∈ ρ. It can be shown that for a given LTS T and
an initial preorder I ⊆ S × S, there is a unique maximal simulation SimI on T
that is a subset of I , and that SimI is a preorder (see [ABH+08]).
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5.2 The Original LRT Algorithm

In this section, we describe the original version of the algorithm presented in
[ABH+08], i.e., the algorithm that we denote as LRT (see Algorithm 3).

The algorithm gradually refines a partition-relation pair 〈P,Rel〉, which is
initialised as the coarsest partition-relation pair inducing an initial preorder I .
After its termination, 〈P,Rel〉 is the coarsest partition-relation pair inducing
SimI . The basic invariant of the algorithm is that the relation induced by
〈P,Rel〉 is always a superset of SimI .

The while-loop refines the partition P and then prunes the relation Rel in
each iteration of the while-loop. The role of the Remove sets can be explained
as follows: During the initialisation, every Removea(B) is filled by states v
such that δa(v)∩

⋃
Rel(B) = ∅ (there is no a-transition leading from v “above”

B w.r.t. Rel). During the computation phase, v is added into Removea(B)
after δa(v) ∩

⋃
Rel(B) becomes empty (because of pruning Rel on line 19).

Emptiness of δa(v) ∩ Rel(B) is tested on line 22 using counters Counta(v,B),
which record the cardinality of δa(v)∩Rel(B). From the definition of simulation,
and because the relation induced by 〈P,Rel〉 is always a superset of SimI ,
δa(v) ∩

⋃
Rel(B) = ∅ implies that for all u ∈ δ−1

a (B), (u, v) 6∈ SimI (v cannot
simulate any u ∈ δ−1

a (B)). To reflect this, the relation Rel is pruned each
time Removea(B) is processed. The code on lines 9–15 prepares the partition-
relation pair and all the data structures. First, Split(P,Removea(B)) divides
every block B′ into B′∩Removea(B) (which cannot simulate states from δ−1

a (B)
as they have empty intersection with δ−1

a (Rel(B))), and B′\Removea(B). More
specifically, for a set Remove ⊆ S, Split(P,Remove) returns a finer partition
P ′ = {B \ Remove | B ∈ P} ∪ {B ∩ Remove | B ∈ P}. After refining P by
the Split operation, the newly created blocks of P inherit the data structures
(counters Count and Remove sets) from their “parents” (for a block B ∈ P ,
its parent is the block Bprev ∈ Pprev such that B ⊆ Bprev). Rel is then updated
on line 19 by removing the pairs (C,D) such that C ∩ δ−1

a (B) 6= ∅ and D ⊆
Removea(B). The change of Rel causes that for some states u ∈ S and symbols
b ∈ Σ, δa(u) ∩

⋃
Rel(C) becomes empty. To propagate the change of the

relation along the transition relation, u will be moved into Removeb(C) on line
23, which will cause new changes of the relation in the following iterations
of the while-loop. If there is no nonempty Remove set, then 〈P,Rel〉 is the
coarsest partition-relation pair inducing SimI and the algorithm terminates.
Correctness of LRT is stated by Theorem 1.

Theorem 1 ([ABH+08]) With an LTS T = (S,Σ, {δa | a ∈ Σ}) and the
coarsest partition-relation pair 〈PI ,Rel I 〉 inducing a preorder I ⊆ S ×S on the
input, LRT terminates with the coarsest partition-relation pair 〈P,Rel〉 inducing
SimI .

5.3 Optimisations of LRT

The optimisation that we are now going to propose reduces the number of
counters and the number and the size of Remove sets. The changes required
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Algorithm 3: (O)LRT Algorithm

Input: an LTS T = (S,Σ, {δa | a ∈ Σ}), partition-relation pair 〈PI ,Rel I 〉
Output: partition-relation pair 〈P,Rel〉
/* initialization */

1 〈P,Rel〉 ← 〈PI ,RelI〉 /* ← 〈PI∩Out ,Rel I∩Out〉 */

2 foreach B ∈ P and a ∈ Σ do /* a ∈ in(B) */

3 foreach v ∈ S do /* v ∈ δ−1a (S) */

4 Counta(v,B) = |δa(v) ∩
⋃

Rel(B)|;
5 Removea(B)← S \ δ−1a (

⋃
Rel(B)) /* ← δ−1a (S)\δ−1a (

⋃
Rel(B)) */

/* computation */

6 while exists B ∈ P and a ∈ Σ such that Removea(B) 6= ∅ do
7 Remove ← Removea(B);
8 Removea(B)← ∅;
9 〈Pprev,Relprev〉 ← 〈P,Rel〉;

10 P ← Split(P,Remove);
11 Rel ← {(C,D) ∈ P × P | (Cprev, Dprev) ∈ Relprev};
12 foreach C ∈ P and b ∈ Σ do /* b ∈ in(C) */

13 Removeb(C)← Removeb(Cprev);

14 foreach v ∈ S do /* v ∈ δ−1b (S) */

15 Countb(v, C)← Countb(v, Cprev);

16 foreach C ∈ P such that C ∩ δ−1a (B) 6= ∅ do
17 foreach D ∈ P such that D ⊆ Remove do
18 if (C,D) ∈ Rel then
19 Rel ← Rel \ {(C,D)};
20 foreach b ∈ Σ and v ∈ δ−1b (D) do /* b ∈ in(D) ∩ in(C) */

21 Countb(v, C)← Countb(v, C)− 1;
22 if Countb(v, C) = 0 then
23 Removeb(C)← Removeb(C) ∪ {v};

by our optimised algorithm (OLRT) are indicated in Algorithm 3 on the right
hand sides of the concerned lines.

We will need the following notation. For a state v ∈ S, in(v) = {a ∈ Σ |
δ−1
a (v) 6= ∅} is the set of input symbols and out(v) = {a ∈ Σ | δa(v) 6= ∅}

is the set of output symbols of v. The output preorder is the relation Out =⋂
a∈Σ δ

−1
a (S)× δ−1

a (S) (this is, (u, v) ∈ Out if and only if out(u) ⊆ out(v)).
To make our optimisation possible, we have to initialise 〈P,Rel〉 by the finer

partition-relation pair 〈PI∩Out ,Rel I∩Out〉 (instead of 〈PI ,Rel I 〉), which is the
coarsest partition-relation pair inducing the relation I ∩ Out . As both I and
Out are preorders, I ∩ Out is a preorder too. As SimI ⊆ I and SimI ⊆ Out
(any simulation on T is a subset of Out), SimI equals the maximal simulation
included in I ∩Out . Thus, this step itself does not influence the output of the
algorithm.

Assuming that 〈P,Rel〉 is initialised to 〈PI∩Out ,Rel I∩Out〉, we can observe
that for any B ∈ P and a ∈ Σ chosen on line 6, the following two claims hold:

Claim 1 If a 6∈ in(B), then skipping this iteration of the while-loop does not
affect the output of the algorithm.
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Proof. In an iteration of the while-loop processing Removea(B) with a 6∈ in(B),
as there is no C ∈ P with δa(C) ∩ Rel(B) 6= ∅, the for-loop on line 18 stops
immediately. No pair (C,D) will be removed from Rel on line 19, no counter
will be decremented, and no state will be added into a Remove set. The only
thing that can happen is that Split(P,Remove) refines P . However, in this
case, this refinement of P would be done anyway in other iterations of the
while-loop when processing sets Removeb(C) with b ∈ in(C). To see this,
note that correctness of the algorithm does not depend on the order in which
nonempty Remove sets are processed. Therefore, we can postpone processing all
the nonempty Removea(B) sets with a 6∈ in(B) to the end of the computation.
Recall that processing no of these Remove sets can cause that an empty Remove
set becomes nonempty. Thus, the algorithm terminates after processing the last
of the postponed Removea(B) sets. If processing some of these Removea(B)
with a 6∈ in(B) refines P , P will contain blocks C,D such that both (C,D) and
(D,C) are in Rel (recall that when processing Removea(B), no pair of blocks
can be removed from Rel on line 19). This means that the final 〈P,Rel〉 will
not be coarsest, which is a contradiction with Theorem 1. Thus, processing
the postponed Removea(B) sets can influence nor Rel neither P , and therefore
they do not have to be processed at all. �

Claim 2 It does not matter whether we assign Removea(B) or Removea(B) \
(S \ δ−1

a (S)) to Remove on line 6.

Proof. Observe that v with a 6∈ out(v) (i.e., v ∈ S \ δ−1
a (S)) cannot be added

into Removea(B) on line 23, as this would mean that v has an a-transition
leading to D. Therefore, v can get into Removea(B) only during initialisation
on line 5 together with all states from S\δ−1

a (S). After Removea(B) is processed
(and emptied) for the first time, no state from S\δ−1

a (S) can appear there again.
Thus, Removea(B) contains states from S \ δ−1

a (S) only when it is processed
for the first time and then it contains all of them. It can be shown that for
any partition Q of a set X and any Y ⊆ X, if Split(Q,Y ) = Q, then also
for any Z ⊆ X with Y ⊆ Z, Split(Q,Z) = Split(Q,Z \ Y ). As P refines
PI∩Out , Split(P, S \ δ−1

a (S)) = P . Therefore, as S \ δ−1
a (S) ⊆ Removea(B),

Split(P,Removea(B)) = Split(P,Removea(B) \ (S \ δ−1
a (S))). We have shown

that removing S \ δ−1
a (S) from Remove does not influence the result of the

Split operation in this iteration of the while-loop (note that this implies that
all blocks from the new partition are included in or have empty intersection
with S \ δ−1

a (S)). It remains to show that the change also does not influence
updating Rel on line 19. Removing S \ δ−1

a (S) from Remove could only cause
that the blocks D such that D ⊆ S \ δ−1

a (S) that were chosen on line 17 with
the original value of Remove will not be chosen with the restricted Remove.
Thus, some of the pairs (C,D) removed from Rel with the original version of
Remove could stay in Rel with the restricted version of Remove. However, such
a pair (C,D) cannot exist because with the original value of Remove, if (C,D)
is removed from Rel , then a ∈ out(C) (as δ(C) ∩ B 6= ∅) and therefore also
a ∈ out(D) (as Rel was initialised to Rel I∩Out on line 1 and (C,D) ∈ Rel).
Thus, D∩ (S \ δ−1

a (S)) = ∅, which means that (C,D) is removed from Rel even
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with the restricted Remove. Therefore, it is not important whether S \ δ−1
a (S)

is a subset of or it has an empty intersection with Remove. �

As justified above, we can optimise LRT as follows. Sets Removea(B) are
computed only if a ∈ in(B) and in that case we only add states q ∈ δ−1

a (S) to
Removea(B). As a result, we can reduce the number of required counters by
maintaining Counta(v,B) if and only if a ∈ in(B) and a ∈ out(v).

5.3.1 Data Structures

We now describe the essential data structures which are required by OLRT.
The input LTS is represented as a list of records about its states. The record
about each state v ∈ S contains a list of nonempty δ−1

a (v) sets1, each of them
encoded as a list of its members. The partition P is encoded as a doubly-linked
list (DLL) of blocks. Each block is represented as a DLL of (pointers to) states
of the block. Each block B contains for each a ∈ Σ a list of (pointers on) states
from Removea(B). Each time when any set Removea(B) becomes nonempty,
block B is moved to the beginning of the list of blocks. Choosing the block B
on line 6 then means just scanning the head of the list of blocks.

Each block B ∈ P and each state v ∈ S contains an Σ-indexed array contain-
ing a record B.a and v.a, respectively. The record B.a stores the information
whether a ∈ in(B) (we need the test on a ∈ in(B) to take a constant time),
If a ∈ in(B), then B.a also contains a reference to the set Removea(B), rep-
resented as a list of states (with a constant time addition), and a reference to
an array of counters B.a.Count containing the counter Counta(v,B) for each
v ∈ δ−1

a (S). Note that for two different symbols a, b ∈ Σ and some v ∈ S,
the counter Counta(v,B) has different index in the array B.a.Count than the
counter Countb(v,B) in B.b.Count (as the sets δ−1

a (S) and δ−1
b (S) are differ-

ent). Therefore, for each v ∈ S and a ∈ Σ, v.a contains an index va under which
for each B ∈ P , the counter Counta(v,B) can be found in the array B.a.Count .
Using the Σ-indexed arrays attached to symbols and blocks, every counter can
be found/updated in a constant time. For every v ∈ S, a ∈ Σ, v.a also stores
a pointer to the list containing δ−1

a (v) or null if δ−1
a (v) is empty. This allows

the constant time testing whether a ∈ in(v) and the constant time searching
for the δ−1

a (v) list.

5.3.2 Complexity of Optimised LRT

Here, we provide a complexity analysis of our optimised algorithm. In order to
improve the readability, we fix IO = I ∩ Out for the rest of this section. The
Split(P,X) operation can be implemented as follows: Iterate through all v ∈ X.
If v ∈ B ∈ P , add v into a block Bchild (if Bchild does not exist yet, create it
and add it into P ) and remove v from B. If B becomes empty, discard it. This
can be done in O(|X|) time.

1We use a list rather than an array having an entry for each a ∈ Σ in order to avoid a need
to iterate over alphabet symbols for which there is no transition.
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Complexity of Initialization Phase (lines 1–5). Computation of 〈PIO,Rel IO〉
on line 1 can be done in time at most |Σ||PIO|2 (starting with 〈PI ,Rel I 〉, and
for each a ∈ Σ, splitting P according to δ−1

a (S) and removing the relation
between blocks containing states from δ−1

a (S) and those containing states from
S \ δ−1

a (S)). The initialisation of the Σ-indexed arrays attached to states and
blocks can be done in O(|Σ||S|+ |δ|) time.

The Count counters are initialised by (1) allocating above described arrays
of counters (attached to blocks), setting all the counters to 0, and then (2) for
all B ∈ P , for all u ∈ IO(B), and for all a ∈ in(u), and for all v ∈ δ−1

a (u),
incrementing Counta(v,B). This takes

O

 ∑
B∈PIO

∑
a∈in(B)

|δ−1
a (S)|+

∑
B∈PIO

∑
v∈IO(B)

|δ−1(v)|


time. The Remove sets are initialised by iterating through all the counters and if
Counta(v,B) = 0, then adding (appending) v to Removea(B). This takes time
proportional to the number of counters, which is O(

∑
B∈PIO

∑
a∈in(B) |δ−1

a (S)|).
Thus, the overall time complexity of the initialisation is

O

|Σ||PIO|2 + |Σ||S|+ |
∑

B∈PIO

∑
a∈in(B)

|δ−1
a (S)|+

∑
B∈PIO

∑
v∈IO(B)

|δ−1(v)|

 .

Complexity of Splitting (lines 10–15). The complexity analysis of lines 12–
15 is based on the fact that it can happen at most |PIO| − |PSimI

| times that
a block B is split on line 10. Moreover, the presented code can be optimised by
not having the lines 12–15 as a separate loop (this was chosen just for clarity of
the presentation), but the inheritance of Rel , Remove, and the counters can be
done within the Split function, and only for those blocks that were really split
(not for all the blocks every time). Whenever a block B is split into B1 and
B2, we have to do the following: (1) allocate the Σ-indexed arrays containing
the record B1.a, B2.a for each a ∈ Σ, (the arrays of B can be reused for one of
the new blocks); (2) for each a ∈ in(B), compute the sets in(B)1 and in(B)2

and update the records B1.a and B2.a (saying whether a ∈ in(B1, B,2 )). This
takes time O(

∑
v∈B |δ−1(v)|) for one block B, which gives time

O

 ∑
B∈PSimI

∑
v∈(IO∩IO−1)(B)

|δ−1(v)|+ |Σ|


overall; (3) for each Bi, i ∈ {1, 2} and each a ∈ in(Bi), copy the Removea(B)
and the array of the counters B.a.Count and save them to the Bi.a record. The
overall time needed for this copying is equal to the overall space taken by all
Remove sets and all counters, which is O(

∑
B∈PSimI

∑
a∈in(B) |δ−1

a (S)|); (4) add

a row and a column to the Rel matrix and copy the entries from those of the
parent B. This operation takes O(|PSimI

|) time for one added block as the size
of the rows and columns of the Rel -matrix is bounded by |PSimI

|. Thus, for all
newly generated blocks, we achieve the overall time complexity of O(|PSimI

|2).
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The key observation, which the time complexity analysis of line 10 and lines
16–18 is based on, is the following: For any two states u, v ∈ S and any symbol
a ∈ Σ, it can happen at most once that v is present in Removea(B) for some
block B with u ∈ B when Removea(B) is processed in the main while-loop (B
and a is chosen on line 5). This also means that for every B ∈ PSimI

and a ∈ Σ,
the sum of cardinalities of all Removea(B

′) sets with B ⊆ B′ (in the moment
when a and B′ were chosen on line 5) is below |δ−1

a (S)|. Indeed, notice that
when v is being added into Removea(B) (either on line 5 or on line 23), then
δa(v) ∩ Rel(B) is empty. If v is added into Removea(B) in some iteration of
the while-loop, then δa(v) ∩ Rel(B) was nonempty until (B,D) was removed
from Rel on line 19 (in the same iteration). Once δa(v) ∩ Rel(B) is empty,
δa(v) ∩ Rel(B′) can never get nonempty for any block B′ ⊆ B as Rel never
grows, and thus v can never be added into some Removea(B

′) for B′ ⊆ B on
line 23.

The above observation also implies that for a fixed block B ∈ PSimI
and

a ∈ Σ, the sum of all cardinalities of the Removea(B
′) sets, where B ⊆ B′

according to which a Split is being done, is below |δ−1
a (S)|. Therefore, the

overall time taken by splitting on line 10 is in

O

 ∑
B∈PSimI

∑
a∈in(B)

|δ−1
a (S)|

 .

Complexity of Refinement (lines 16–23). Lines 18 and 19 are O(1)-time (Rel
is a boolean matrix). Before we enter the for-loop on line 16, we compute a list
RemoveLista(B) = {D ∈ P | D ⊆ Remove}. This is an O(|Remove|) operation
and by almost the same argument as in the case of the overall time complexity
of Split on line 10, we get also exactly the same overall time complexity for
computing all the RemoveLista(B) lists. On line 16, the blocks C are listed
by traversing all δ−1(v), v ∈ B. From the above it follows that for any two
B′, D′ ∈ PSimI

and any a ∈ Σ, it can happen at most once that a and some
B with B′ ⊆ B are chosen on line 5 and at the same time D′ ⊆ Removea(B).
Moreover, it holds that a ∈ in(B) and Removea(B) ⊆ δ−1

a (S). Thus, for a fixed
a, the a-transition leading to a block B′ ∈ PSimI

can be traversed on line 16
only |{D′ ∈ PSimI

| a ∈ out(D′)}| times and thus the time complexity of lines
16–18 amounts to O(

∑
D∈PSimI

∑
a∈out(D) |δa|).

The analysis of lines 19–23 is based on the fact that if some (C,D) appears
once on line 19, then no (C ′, D′) with C ′ ⊆ C,D′ ⊆ D can appear there again
(as (C,D) is removed from Rel and Rel never grows). Moreover, (C,D) can
appear on line 19 only if C × D ⊆ IO. For a fixed (C,D), the time spent in
lines 19–23 is in O(

∑
v∈B |δ−1(v)|) and therefore the overall complexity of lines

19–23 amounts to

O

 ∑
B∈PSimI

∑
v∈IO(B)

|δ−1(v)|

 .
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Overall Time Complexity. From the above it follows that the time complexity
of OLRT is covered by the following six factors:

1. O(|Σ||PIO|2),

2. O(|Σ||S|),

3. O(|PSimI
|2),

4. O(
∑

B∈PSimI

∑
a∈in(B) |δ−1

a (S)|),

5. O(
∑

B∈PSimI

∑
a∈out(B) |δa|), and

6. O(
∑

B∈PSimI

∑
v∈IO(B) |δ−1(v)|)).

In total, this gives:

O


|Σ||PIO|2 + |Σ||S|+ |PSimI

|2+∑
B∈PSimI

 ∑
a∈in(B)

|δ−1
a (S)|+

∑
a∈out(B)

|δa|+
∑

v∈IO(B)

|δ−1(v)|


 .

Space Comlexity. The space complexity of OLRT is determined by the number
of counters, the contents of the Remove sets, the size of the matrix encoding of
Rel , and the Σ-indexed arrays attached to blocks and states. This is covered
by the above Factors 2,3 and 4, which gives:

O

|PSimI
|2 + |Σ||S|+

∑
B∈PSimI

∑
a∈in(B)

|δ−1
a (S)|

 .

Observe that the improvement of both time and space complexity of LRT is
most significant for systems with large alphabets and a‘high diversity of sets
of input and output symbols of states. Certain regular diversity of sets of
input and output symbols is an inherent property of LTSs that arise when we
compute simulations over tree automata. We address the impact of employing
OLRT within the procedures for computing tree automata simulation in the
next section.

5.4 Tree Automata Simulations

In [ABH+08], the authors propose methods for computing tree automata simu-
lations via translating problems of computing simulations over tree-automata
to problems of computing simulations over certain LTSs. In this section, we
show how replacing LRT by OLRT within these translation-based procedures
decreases the overall complexity of computing tree-automata simulations. For
the rest of this section, we fix a TA A = (Q,Σ,∆, F ). From now on, let D
denote the maximal downward simulation on A and U the maximal upward
simulation on A induced by D .
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To define the translations from downward and upward simulation problems,
we need the following notions. Given a transition t = ((q1, . . . , qn), f, q) ∈ ∆,
(q1, . . . , qn) is its left-hand side and t(i) ∈ (Q∪{�})∗×Σ×Q is an environment—
the tuple which arises from t by replacing state qi, 1 ≤ i ≤ n, at the ith position
of the left-hand side of t by the so called hole� 6∈ Q. We use Lhs of to denote the
set of all left-hand sides of A and Env to denote the set of all environments of A.

We translate the downward simulation problem on A to the simulation prob-
lem on the LTS A• = (Q•,Σ•, {δ•a | a ∈ Σ•}) where Q• = {q• | q ∈ Q}∪{l• | l ∈
Lhs}, Σ• = Σ∪{1, . . . , rm}}, and for each ((q1, . . . , qn), f, q) ∈ ∆, (q•, q1 . . . q

•
n) ∈

δ•f and (q1 . . . q
•
n, q
•
i ) ∈ δ•i for each i : 1 ≤ i ≤ n. The initial relation is simply

I • = Q• × Q•. The upward simulation problem is then translated into a sim-
ulation problem on LTS A� = (Q�,Σ�, {δ�a | a ∈ Σ�}), where Q� = {q� |
q ∈ Q} ∪ {e� | e ∈ Env}, Σ� = Σ•, and for each t = ((q1, . . . , qn), f, q) ∈ ∆,
for each 1 ≤ i ≤ n, (q�i , t(i)

�) ∈ δ�i and (t(i)�, q�) ∈ δ�a . The initial rela-
tion I� ⊆ Q� × Q� contains all the pairs (q�, r�) such that q, r ∈ Q and
r ∈ F =⇒ q ∈ F , and ((q1 . . . qn, f, q)(i)

�, (r1 . . . rn, f, r)(i)
�) such that

(qj , rj) ∈ D for all j : 1 ≤ i 6= j ≤ n. Let Sim• be the maximal simulation on
A• included in I • and let Sim� be the maximal simulation on A� included in
I�. The following theorem shows correctness of the translations.

Theorem 2 ([ABH+08]) For all q, r ∈ Q, we have (q•, r•) ∈ Sim• if and
only if (q, r) ∈ D and (q�, r�) ∈ Sim� if and only if (q, r) ∈ U .

The states of the LTSs (A• as well as A�) can be classified into several
classes according to the sets of input/output symbols. Particularly, Q• can
be classified into the classes {q• | q ∈ Q} and for each n : 1 ≤ n ≤ rm,
{q1 . . . q

•
n | q1 . . . qn ∈ Lhs}, and Q� can be classified into {q� | q ∈ Q} and for

each a ∈ Σ and i : 1 ≤ i ≤ r(a), {t(i)� | t = ((q1, . . . , qn), a, q) ∈ ∆}. This turns
to a significant advantage when computing simulations on A• or on A� using
OLRT instead of LRT. Moreover, we now propose another small optimisation,
which is a specialised procedure for computing 〈PI∩OutRel I∩Out〉 for the both
of A�, A•. It is based on the simple observation that we need only a constant
time (not a time proportional to the size of the alphabet) to determine whether
two left-hand sides or two environments are related by the particular Out (more
specifically, (e�1 , e

�
2 ) ∈ Out if and only if the inner symbols of e1 and e2 are the

same, and (q1 . . . q
•
n, r1 . . . r

•
m) ∈ Out if and only if n ≤ m).

5.4.1 Complexity of Computing Simulations over TA

In this section, we only point out the main differences between application
of LRT [ABH+08] and OLRT on the LTSs that arise from the translations
described above. For implementation details and full complexity analysis of the
OLRT versions, see the Section 5.3.2.

To be able to express the complexity of running OLRT on A• and A�, we
extend D to the set Lhs such that ((q1 . . . qn), (r1 . . . rn)) ∈ D if and only if

86



(qi, ri) ∈ D for each i : 1 ≤ i ≤ n, and we extend U to the set Env such that

((q1 . . . qn, f, q)(i), (r1 . . . rn, f, r)(i)) ∈ U
⇐⇒

m = n ∧ i = j ∧ (q, r) ∈ U ∧ (∀k ∈ {1, ..., n}. k 6= i =⇒ (qk, rk) ∈ D).

For a preorder ρ over a set X, we use X/ρ to denote the partition of X according
to the equivalence ρ ∩ ρ−1.

The procedures for computing Sim• and Sim� consist of (i) translating A
to the particular LTS (A• or A�) and computing the partition-relation pair
inducing the initial preorder (I • or I�), and (ii) running a simulation algorithm
(LRT or OLRT) on it. Below, we analyse the impact of replacing LRT by OLRT
on the complexity of step (ii), which is the step with dominating complexity
(as shown in [ABH+08] and also by our experiments; step (ii) is much more
computationally demanding than step (i)).

We will instantiate the six OLRT time complexity factors for A• and A�.
The first time complexity factor comes out from computing 〈PI∩Out ,Rel I∩Out〉.
For A• and A�, this factor can be decreased exploiting special properties of the
transition systems. Bellow, we assume that |Q| ≤ |∆| and |Q| ≤ |Env|.

In the case of A•, 〈PI∩Out ,Rel I∩Out〉 can be computed separately for the
states Q•1 = {q• | q ∈ Q} and Q•2 = {l• | l ∈ Lhs}. For the first set, for
each a ∈ Σ, we perform Split(P, δ−1

a (Q•2)) and remove from the relation all the
pairs of blocks included in Q•1 \ δ−1

a (Q•2)× δ−1
a (Q•2). Then, we partition Q•2 into

blocks Bn = {l• | l = q1 . . . qn ∈ Lhs} for each n ≤ rm and remove all relation
on these blocks Bn, 1 ≤ n ≤ rm apart from the diagonal. Finally, we remove
all relations between blocks included in Q•1 and those in Q•2. Note that Q•2 is
initially partitioned into rm blocks (one block for left-hand sides of each possible
length up to rm). Overall, the procedure takes time in O(|Σ||Q/D |2 + r2

m).
In the case of A�, 〈PI∩Out ,Rel I∩Out〉 is computed separately for the states

Q�1 = {q� | q ∈ Q} and Q�2 = {e� | e ∈ Env}. For the first set, for each i : 1 ≤
i ≤ rm, we perform Split(P, δ−1

i (Q�2 )) and remove from the relation all pairs of
blocks included in Q�1 \ δ

−1
i (Q�2 )× δ−1

i (Q�2 ). Then, for each a ∈ Σ, we perform
Split(Q�2 , δ

−1
a (Q�1 )) and remove from the relation all pairs of blocks included in

Q�2 \ δ−1
a (Q�1 ) × δ−1

a (Q�1 ). Finally, we remove all the relations between blocks
from Q�1 and Q�2 . Overall, the procedure takes time O(|Σ||Q/U |2 + |Env/U |2).

We now derive the complexity of computing simulation on A• by OLRT. The
above time complexity factors of OLRT are covered by the following factors
(the first factor is the complexity of the specialised procedure for computing
〈PI∩Out ,Rel I∩Out〉):

1. O(|Σ||Q/D |2 + r2
m),

2. O((rm + |Σ|)|Lhs ∪Q|),

3. O(|Lhs ∪Q/D |2),

4. O(|Σ||Lhs/D ||Q|+ rm|Q/D ||Lhs|),

5. O(rm|Lhs/D ||Lhs|+ |Q/D ||∆|), and
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6. O(|Lhs/D ||∆|+ rm|Q/D ||Lhs|).

The space complexity is the sum of the factors 2–4. This gives O(SpaceD),
where SpaceD amounts to

(rm + |Σ|)|Lhs ∪Q|+ |Lhs ∪Q/D |2 + |Σ||Lhs/D ||Q|+ rm|Q/D ||Lhs|.

The time complexity can then be simplified to

O
(
SpaceD + |Σ||Q/D |2 + rm|Lhs/D ||Lhs|+ |Q/D ||∆|+ |Lhs/D ||∆|

)
.

In the case of A�, the space complexity of running OLRT on Sim� and
〈PI� ,Rel I�〉 is O(SpaceU ), where SpaceU = (rm + |Σ|)|Env| + |Env/U |2 +
|Env/U ||Q|+|Q/U ||Env|. The space complexity is again the sum of the Factors
2–4 of the six time complexity factors that we instantiate bellow. The first factor
is the complexity of the specialised procedure for computing 〈PI∩Out ,Rel I∩Out〉.
We assume that Q ≤ Env, and thus also that Q/U ≤ Env/U :

1. O(|Σ||Q/U |2 + |Env/U |2),

2. O((rm + |Σ|)|Env|),

3. O(|Env/U |2),

4. O(|Env/U ||Q|+ |Q/U ||Env|),

5. O(|Env/U ||Env|+ |Q/U ||Env|), and

6. O(|Env/U ||δ|+ |Q/U ||Env|).

Finally, the time complexity of OLRT can be written as

O(SpaceU + |Σ||Q/U |2 + |Env/U ||Env|+ |Env/U ||δ|).

Now, let us compare the above complexities with the results obtained in
[ABH+08], where LRT is used. In the case of A• and I •, LRT takes O(SpaceoldD )
space where SpaceoldD = (|Σ| + rm)|Q ∪ Lhs||Q ∪ Lhs/D |, and O(SpaceoldD +
|∆||Q ∪ Lhs/D |) time. When A� and I� are considered, we obtain space com-
plexity O(SpaceoldU ) where SpaceoldU = |Σ||Env||Env/U | and time complexity
O(SpaceoldU + rm|∆||Env/U |).

The biggest difference is in the space complexity (decreasing the factors
SpaceoldD and SpaceoldU ). However, the time complexity is better too, and our
experiments show a significant improvement in space as well as in time.

5.5 Experimental Results

We implemented the original and the improved version of the algorithm in
a uniform way in OCaml and experimentally compared their performance.

The simulation algorithms were benchmarked using LTSs obtained from the
runs of the abstract regular model checking (ARMC) (see [BHMV05, BHV04])
on several classic examples—producer-consumer (pc), readers-writers (rw), and
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Table 5.1: LTS simulation results

LTS LRT OLRT
source |S| |Σ| |δ| time space time space

random 256 16 416 0.12 9.6 0.02 1.9
random 4096 16 3280 13.82 714.2 2.02 78.2
random 16384 16 26208 o.o.m. 268.85 4514.9

random 4096 32 6560 62.09 1844.2 4.36 121.4
random 4096 64 13120 158.38 3763.2 6.59 211.2

pc 1251 43 49076 7.52 418.1 2.63 119.0
rw 4694 11 20452 81.28 3471.8 19.25 989.3
lr 6160 35 90808 390.91 12640.8 45.69 1533.6

Table 5.2: Downward simulation results

TA LTS LRT OLRT
source |Q| |Σ| rm |∆| |S| |Σ| |δ| time space time space

random 16 16 2 245 184 18 570 0.06 6.2 0.02 1.4
random 32 16 2 935 655 18 2165 0.87 74.4 0.21 14.4
random 64 16 2 3725 2502 18 8568 26.63 1417.9 3.50 195.4

random 32 32 2 1164 719 34 2511 2.67 166.6 0.23 16.8
random 32 64 2 2026 925 66 3780 12.17 623.5 0.56 25.4

ARTMC1 47 132 2 837 241 134 1223 0.84 70.6 0.05 6.2

ARTMC variable2 517.98 116.2 80.84 22.1

list reversal (lr)—and using a set of tree automata obtained from the run of
the abstract regular tree model checking (ARTMC) (see [BHH+08]) on several
operations, such as list reversal, red-black tree balancing, etc. We also used
several randomly generated LTSs and tree automata.

We performed the experiments on AMD Opteron 8389 2.90 GHz PC with 128
GiB of memory (however we set the memory limit to approximately 20 GiB for
each process). The system was running Linux and OCaml 3.10.2.

The performance of the algorithms is compared in Table 5.1 (general LTSs),
Table 5.2 (LTSs generated while computing the downward simulation), and Ta-
ble 5.3 (LTSs generated while computing the upward simulation), which contain
the running times ([s]) and the amount of memory ([MiB]) required to finish
the computation.

As seen from the results of our experiments, our optimised implementation
performs substantially better than the original. On average, it improves the
running time and space requirements by about one order of magnitude. As
expected, we can see the biggest improvements especially in the cases, where
we tested the impact of the growing size of the alphabet.

1One of the automata selected from the ARTMC set.
2A set containing 10 305 tree automata of variable size (up to 50 states and up to 1000

transitions per automaton). The results show the total amount of time required for the
computation and the peak size of allocated memory.

89



Table 5.3: Upward simulation results

TA LTS LRT OLRT
source |Q| |Σ| rm |∆| |S| |Σ| |δ| time space time space

random 16 16 2 245 472 17 952 1.03 96.5 0.09 4.8
random 32 16 2 935 1791 17 3700 18.73 1253.8 1.37 54.7
random 64 16 2 3725 7126 17 14824 405.89 14173.9 22.83 752.6

random 32 32 2 1164 2204 33 4548 64.10 3786.7 2.36 193.4
random 32 64 2 2026 3787 65 7874 o.o.m. 6.72 245.8

ARTMC1 47 132 2 837 1095 133 3344 66.46 4183.2 0.69 68.2

ARTMC variable2 12669.94 4412.6 400.62 106.6

5.6 Conclusions and Future Work

We have proposed an optimised algorithm for computing simulations over LTSs,
which improves the asymptotic complexity in both space and time of the best
algorithm (LRT) known to date (see [ABH+08]) and which also performs sig-
nificantly better in practice. We have also shown how employing OLRT instead
of LRT reduces the complexity of the procedures for computing tree automata
simulations from [AHKV08]. This is especially important in connection with
our algorithms for size reduction and language inclusion presented in Chapter 6
and Chapter 7 and used in the verification procedure proposed in Chapter 4.

As for future work, one can consider further optimisations of the proposed
algorithm. Here, an interesting question is whether the impact of the alphabet
size to the complexity can further be reduced. One of the possibilities is to
represent internal data structures of the OLRT in a more efficient way, for
instance, using BDDs.

90



6 Efficient Inclusion over Tree
Automata

As we have already mentioned, finite tree automata play a crucial role in sev-
eral formal verification techniques, such as (abstract) regular tree model check-
ing [AJMd02, BHRV06a], verification of programs with complex dynamic data
structures [BHRV06b], analysis of network firewalls [Bou11], and implementa-
tion of decision procedures of logics such as WS2S or MSO [KMS01], which
themselves have numerous applications. In the context of verification of pro-
grams manipulating dynamically linked data structures, let us also mention
(apart from our verification technique presented in Chapter 4, and many oth-
ers) the work in [MPQ11] which deals with the verification of programs manip-
ulating heap structures with data.

In Chapter 5, we argued that in order to successfully use nondeterministic
finite automata, one needs efficient algorithms for handling them. This is no-
tably the case of size reduction and language inclusion that are traditionally
done via determinisation. We have already said that determinisation-based size
reduction can be replaced by simulation quotienting and we have proposed the
algorithm for computing simulations to be used for this purpose. In this chapter,
we concentrate on the other problem, i.e., the problem of inclusion checking.
For that purpose, algorithms based on using antichains and antichains com-
bined with simulations have been proposed in [BHH+08, ACH+10]. We further
improve the state of the art by proposing a new algorithm for inclusion checking
that turns out to significantly outperform the existing algorithms in most of our
experiments which we performed on two different automata representations. In
the first case, the transition function of automata are encoded explicitly, in the
second case, the transition function is encoded in a semi-symbolic way using
multi-terminal binary decision diagrams (MTBDDs) such that the states stay
explicit.

The classic textbook algorithm for checking inclusion L(AS) ⊆ L(AB) be-
tween two TA AS (Small) and AB (Big) first determinises AB, computes the
complement automaton AB of AB, and then checks language emptiness of the
product automaton accepting L(AS) ∩ L(AB). This approach has been opti-
mised in [TH03, BHH+08, ACH+10] which describe variants of this algorithm
that try to avoid the construction of the whole product automaton (which can
be exponentially larger than AB and which is indeed extremely large in many
practical cases) by constructing some of its states and checking language empti-
ness on the fly.

By employing the antichain principle within the construction of the product
automaton which allows for the given set of states to discard all its supersets,
the algorithm is often able to prove or refute inclusion by constructing a small
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part of the product automaton only. The work of [TH03] does, in fact, not
use the terminology of antichains despite implementing them in a symbolic,
BDD-based way. It specialises to binary tree automata only. A more gen-
eral introduction of antichains within a lattice-theoretic framework appeared
in the context of word automata in [DWDHR06]. Subsequently, [BHH+08]
has generalised [DWDHR06] for explicit upward inclusion checking on TA and
experimentally advocated its use within abstract regular tree model checking.

Additionally, the antichain algorithms can also be combined with using up-
ward simulation relations such as in [ACH+10] (see also [DR10] for other com-
binations of antichains and simulations for word automata).

Upward Inclusion Checking. In general, we denote the above algorithms for
TA as upward algorithms to reflect the direction in which they traverse au-
tomata AS and AB (i.e., they start with leave transitions and continue upwards
towards the accepting states).

The upward algorithms are sufficiently efficient in many practical cases. How-
ever, they have two drawbacks: (i) When generating the bottom-up post-image
of a set S of sets of states, all possible n-tuples of states from all possible prod-
ucts S1×. . .×Sn, Si ∈ S need to be enumerated. (ii) Moreover, these algorithms
are known to be compatible with only upward simulations as a means of their
possible optimisation, which is a disadvantage since downward simulations are
often much richer and also cheaper to compute.

Downward Inclusion Checking. The alternative downward approach to check-
ing TA language inclusion was first proposed in [HVP05] in the context of
subtyping of XML types. This algorithm is not derivable from the textbook
approach and has a more complex structure with its own weak points; neverthe-
less, it does not suffer from the two issues of the upward algorithm mentioned
above. We generalise the algorithm of [HVP05] for automata over alphabets
with an arbitrary rank ([HVP05] considers rank at most two), and, most impor-
tantly, we improve it significantly by using the antichain principle, empowered
by a use of the cheap and usually large downward simulation. In this way, we ob-
tain an algorithm which is complementary to and highly competitive with the
upward algorithm as shown by our experimental results (in which the newly
proposed algorithm significantly dominates in most of the considered cases).

Dealing with Semi-Symbolic Encoding. Certain important applications of TA
such as formal verification of programs with complex dynamic data structures
or decision procedures of logics such as WS2S or MSO require handling very
large alphabets. Here, the common choice is to use the MONA tree automata
library [KMS01] which is based on representing transitions of TA symbolically
using MTBDDs. However, the encoding used by MONA is restricted to deter-
ministic automata only. This implies a necessity of immediate determinisation
after each operation over TA that introduces nondeterminism, which very eas-
ily leads to a state space explosion. Despite the extensive engineering effort
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spent to optimise the implementation of MONA, this fact significantly limits
its applicability.

As a way to overcome this difficulty, we have participated on a proposal of
a semi-symbolic representation of nondeterministic TA which generalises the
one used by MONA, and we have developed algorithms implementing the basic
operations on TA (such as union, intersection, etc.) as well as more involved
algorithms for computing simulations and for checking inclusion (using simula-
tions and antichains to optimise it) over the proposed representation. We have
also conducted experiments with a prototype implementation of our algorithms
showing again a dominance of downward inclusion checking and justifying use-
fulness of our symbolic encoding for TA with large alphabets. However, the
symbolic encoding is beyond the scope of this work. More details can be found
in [HLŠV11a] or in [HLŠV11b]. Here, we only present experimental evaluation
in order to compare the inclusion algorithms.

Plan of the Chapter. The rest of this chapter is organised as follows. Sec-
tion 6.1 describes the newly proposed downward inclusion checking algorithm
and several extensions of its basic version which can greatly improve its perfor-
mance. Section 6.2 provides an experimental evaluation of downward inclusion
checking in the explicit and the semi-symbolic setting. Section 6.3 then con-
cludes the chapter.

6.1 Downward Inclusion Checking

Let us fix two tree automata AS = (QS ,Σ,∆S , FS) and AB = (QB,Σ,∆B, FB)
for which we want to check whether L(AS) ⊆ L(AB) holds. If we try to answer
this query top-down and we proceed in a näıve way, we immediately realize that
the fact that the top-down successors of particular states are tuples of states
leads us to checking inclusion of the languages of tuples of states. Subsequently,
the need to compare the languages of each corresponding pair of states in these
tuples will again lead to comparing the languages of tuples of states, and hence,
we end up comparing the languages of tuples of tuples of states, and the need
to deal with more and more nested tuples of states never stops.

For instance, given a transition q
a−→ (p1, p2) in AS , transitions r

a−→ (s1, s2)
and r

a−→ (t1, t2) in AB, and assuming that there are no further top-down
transitions from q and r, it holds that L(q) ⊆ L(r) if and only if L((p1, p2)) ⊆
L((s1, s2)) ∪ L((t1, t2)). Note that the union L((s1, s2)) ∪ L((t1, t2)) cannot be
computed component-wise, this is, L((s1, s2)) ∪ L((t1, t2)) 6= (L(s1) ∪ L(t1)) ×
(L(s2) ∪ L(t2)). For instance, provided L(s1) = L(s2) = {b} and L(t1) =
L(t2) = {c}, it holds that L((s1, s2)) ∪ L((t1, t2)) = {(b, b), (c, c)}, but the
component-wise union is

(L(s1) ∪ L(t1))× (L(s2) ∪ L(t2)) = {(b, b), (b, c), (c, b), (c, c)}.

Hence, we cannot simply check whether L(p1) ⊆ L(s1) ∪ L(t1) and L(p2) ⊆
L(s2)∪L(t2) to answer the original query, and we have to proceed by checking
inclusion on the obtained tuples of states. However, exploring the top-down
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transitions that lead from the states that appear in these tuples will lead us to
dealing with tuples of tuples of states, etc.

Fortunately, there is a way out of the above trap. In particular, as first
observed in [HVP05] in the context of XML type checking, we can exploit the
following property of the Cartesian product of sets G,H ⊆ U :

G×H = (G× U) ∩ (U ×H). (6.1)

Continuing in our example, we can rewrite

L(p1)× L(p2) ⊆ (L((s1, s2)) ∪ L((t1, t2))) =

(L(s1)× L(s2)) ∪ (L(t1)× L(t2))
(6.2)

as

L(p1)× L(p2) ⊆ ((L(s1)× TΣ) ∩ (TΣ × L(s2)))∪
((L(t1)× TΣ) ∩ (TΣ × L(t2))) ,

(6.3)

This can further be rewritten, using the distributive laws in the (2TΣ×TΣ ,⊆)
lattice, as

L(p1)× L(p2) ⊆ ((L(s1)× TΣ) ∪ (L(t1)× TΣ))∩
((L(s1)× TΣ) ∪ (TΣ × L(t2)))∩
((TΣ × L(s2)) ∪ (L(t1)× TΣ))∩
((TΣ × L(s2)) ∪ (TΣ × L(t2))) .

(6.4)

It is easy to see that the inclusion holds exactly if it holds for all components
of the intersection, i.e., if and only if

L(p1)× L(p2) ⊆ ((L(s1)× TΣ) ∪ (L(t1)× TΣ))∧
L(p1)× L(p2) ⊆ ((L(s1)× TΣ) ∪ (TΣ × L(t2)))∧
L(p1)× L(p2) ⊆ ((TΣ × L(s2)) ∪ (L(t1)× TΣ))∧
L(p1)× L(p2) ⊆ ((TΣ × L(s2)) ∪ (TΣ × L(t2))) .

(6.5)

Two things should be noted in the previous equation.

1. If we are computing the union of languages of two tuples such that they
have TΣ at all indices other than some index i, we can compute it com-
ponent-wise, i.e.,

L(p1)× L(p2) ⊆ ((L(s1)× TΣ) ∪ (L(t1)× TΣ)) =

(L(s1) ∪ L(t1))× TΣ.
(6.6)

The above clearly holds iff L(p1) ⊆ L(s1) ∪ L(t1).

2. If TΣ does not appear at the same positions as in the inclusion

L(p1)× L(p2) ⊆ ((L(s1)× TΣ) ∪ (TΣ × L(t2))) , (6.7)

it must hold that either

L(p1) ⊆ L(s1) or L(p2) ⊆ L(t2). (6.8)
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Using the above observations, we can finally rewrite the equation L(p1) ×
L(p2) ⊆ L((s1, s2))∪L((t1, t2)) into the following formula that does not contain
languages of tuples but of single states only:

L(p1) ⊆ L(s1) ∪ L(t1) ∧
(L(p1) ⊆ L(s1) ∨ L(p2) ⊆ L(t2)) ∧
(L(p1) ⊆ L(t1) ∨ L(p2) ⊆ L(s2)) ∧

L(p2) ⊆ L(s2) ∪ L(t2).

(6.9)

The above reasoning can be generalised to dealing with transitions of any
arity as shown in Theorem 3. In the theorem, we conveniently exploit the
notion of choice functions. Given PB ⊆ QB and a ∈ Σ, #a = n ≥ 1, we
denote by cf (PB, a) the set of all choice functions f that assign an index i,
1 ≤ i ≤ n, to all n-tuples (q1, . . . , qn) ∈ QnB such that there exists a state in
PB that can make a transition over a to (q1, . . . , qn); formally, cf (PB, a) = {f :
downa(PB)→ {1, . . . ,#a}}.

Theorem 3 Let AS = (QS ,Σ,∆S , FS) and AB = (QB,Σ,∆B, FB) be tree
automata. For sets PS ⊆ QS and PB ⊆ QB it holds that L(PS) ⊆ L(PB)
if and only if ∀pS ∈ PS ∀a ∈ Σ : if pS

a−→ (r1, . . . , r#a), then it holds that
downa(PB) = {()} when #a = 0 and

∀f ∈ cf (PB, a) ∃1 ≤ i ≤ #a : L(ri) ⊆
⋃

(u1,...,u#a)∈downa(PB)

f((u1,...,u#a))=i

L(ui)

when #a > 0.

Proof. For two sets PS ⊆ QS , PB ⊆ QB, it clearly holds that L(PS) ⊆ L(PB)
if and only if ∀pS ∈ PS ∀a ∈ Σ :

pS
a−→ (r1, . . . , rn) =⇒ L((r1, . . . , rn)) ⊆

⋃
u∈downa(PB)

L((u1, . . . , un)) (6.10)

where u = (u1, . . . , un). For the case when #a = 0, the above formula collapses
to pS

a−→ () =⇒ L(()) ⊆ ∪()∈downa(PB)L(()). Since downa(PB) ⊆ {()} for
#a = 0, the first part of the theorem is proven. We prove the second part
(when #a > 0) in the following steps. Let us fix n = #a, u = u1, . . . , un:

L((r1, . . . , rn)) ⊆
⋃

u∈downa(PB)

L((u1, . . . , un)) ⇐⇒

n∏
i=1

L(ri) ⊆
⋃

u∈downa(PB)

n∏
i=1

L(ui),

(6.11)

where
∏n
i=1 Si denotes the Cartesian product of a family of sets {S1, . . . , Sn}.

We can further observe that for a set U and a family of sets {S1, . . . , Sn} : ∀1 ≤
i ≤ n : Si ⊆ U it holds that

n∏
i=1

Si =

n⋂
i=1

U i−1 × Si × Un−i. (6.12)
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Given the family of sets {L(u1), . . . ,L(un)} and the decomposition from Equa-
tion 6.12 we can modify the formula from Equation 6.11 in the following way:

n∏
i=1

L(ri) ⊆
⋃

u∈downa(PB)

n∏
i=1

L(ui) ⇐⇒

n∏
i=1

L(ri) ⊆
⋃

u∈downa(PB)

n⋂
i=1

T i−1
Σ × L(ui)× Tn−iΣ .

(6.13)

Since the power set lattice (2QB ,⊆) is a completely distributive lattice, we can
exploit the fact that for any doubly indexed family {xj,k ∈ 2QB | j ∈ J, k ∈ Kj}
it holds that ⋃

j∈J

⋂
k∈Kj

xj,k =
⋂
f∈F

⋃
j∈J

xj,f(j) (6.14)

where F is the set of choice functions f choosing for each index j ∈ J some
index f(j) ∈ Kj . For our purpose, we introduce the set of choice functions:

F = {f : downa(PB)→ {1, . . . , n}}. (6.15)

Therefore,
n∏
i=1

L(ri) ⊆
⋃

u∈downa(PB)

n⋂
i=1

T i−1
Σ × L(ui)× Tn−iΣ ⇐⇒

n∏
i=1

L(ri) ⊆
⋂
f∈F

⋃
u∈downa(PB)

T
f(u)−1
Σ × L(uf(u))× T

n−f(u)
Σ .

(6.16)

Due to the fact that for a set S, its subset T ⊆ S and a family of its subsets
R ⊆ 2S it holds that

T ⊆
⋂
U∈R

U ⇐⇒ ∀U ∈ R : T ⊆ U, (6.17)

we can simplify our case in the following way:
n∏
i=1

L(ri) ⊆
⋂
f∈F

⋃
u∈downa(PB)

T
f(u)−1
Σ × L(uf(u))× T

n−f(u)
Σ

⇐⇒

∀f ∈ F :

n∏
i=1

L(ri) ⊆
⋃

u∈downa(PB)

T
f(u)−1
Σ × L(uf(u))× T

n−f(u)
Σ

(6.18)

For some fixed f , we can further rewrite the right-hand side of the inclusion
query to the following:⋃

u∈downa(PB)

T
f(u)−1
Σ × L(uf(u))× T

n−f(u)
Σ =

n⋃
i=1

⋃
u∈downa(PB)

f(u)=i

T i−1
Σ × L(ui)× Tn−iΣ =

n⋃
i=1

T i−1
Σ ×

 ⋃
u∈downa(PB)

f(u)=i

L(ui)

× Tn−iΣ


(6.19)
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It can be observed that for a set U and two families of sets {S1, . . . , Sn} and
{S′1, . . . , S′n} such that ∀1 ≤ i ≤ n : Si, S

′
i ⊆ U it holds that

n∏
i=1

Si ⊆
n⋃
i=1

U i−1 × S′i × Un−i ⇐⇒ ∃1 ≤ i ≤ n : Si ⊆ S′i. (6.20)

Hence, we can now finally deduce that

∀f ∈ F :
n∏
i=1

L(ri) ⊆
n⋃
i=1

T i−1
Σ ×

 ⋃
u∈downa(PB)

f(u)=i

L(ui)

× Tn−iΣ


⇐⇒

∀f ∈ F ∃1 ≤ i ≤ n : L(ri) ⊆
⋃

u∈downa(PB)

f(u)=i

L(ui),

(6.21)

which concludes the proof. �

6.1.1 Basic Algorithm

We now construct a basic algorithm for downward inclusion checking on tree
automata AS = (QS ,Σ,∆S , FS) and AB = (QB,Σ,∆B, FB). The algorithm
is shown as Algorithm 4. Its main idea relies on a recursive application of
Theorem 3 in function expand1. The function is given a pair (pS , PB) ∈ QS ×
2QB for which we want to prove that L(pS) ⊆ L(PB)—initially, the function
is called for every pair (qS , FB) where qS ∈ FS . The function enumerates all
possible top-down transitions that AS can do from pS (lines 3–8). For each
such transition, the function either checks whether there is some transition
pB

a−→ for pB ∈ PB if #a = 0 (line 5), or it starts enumerating and recursively
checking queries L(p′S) ⊆ L(P ′B) on which the result of L(pS) ⊆ L(PB) depends
according to Theorem 3 (lines 9–16).

The expand1 function keeps track of which inclusion queries are currently
being evaluated in the set workset (line 2). Encountering a query L(p′S) ⊆
L(P ′B) with (p′S , P

′
B) ∈ workset means that the result of L(p′S) ⊆ L(P ′B) depends

on the result of L(p′S) ⊆ L(P ′B) itself. In this case, the function immediately
successfully returns because the result of the query then depends only on the
other branches of the call tree.

Using Theorem 3 and noting that Algorithm 4 necessarily terminates because
all its loops are bounded, and the recursion in function expand1 is also bounded
due to the use of workset , it is not difficult to see that the following theorem
holds.

Theorem 4 Let AS = (QS ,Σ,∆S , FS) and AB = (QB,Σ,∆B, FB) be two TA.
Algorithm 4 terminates and returns true if and only if L(AS) ⊆ L(AB).
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Algorithm 4: Downward inclusion

Input: Tree automata AS = (QS ,Σ,∆S , FS),AB = (QB ,Σ,∆B , FB)
Output: true if L(AS) ⊆ L(AB), false otherwise

1 foreach qS ∈ FS do
2 if ¬expand1(qS , FB , ∅) then return false;
3 return true;

Function expand1(pS , PB, workset)

/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS × 2QB */

1 if (pS , PB) ∈ workset then return true;
2 workset := workset ∪ {(pS , PB)};
3 foreach a ∈ Σ do
4 if #a = 0 then
5 if downa(pS) 6= ∅ ∧ downa(PB) = ∅ then return false;
6 else
7 W := downa(PB);

8 foreach (r1, . . . , r#a) ∈ downa(pS) do /* pS
a−→ (r1, . . . , r#a) */

9 foreach f ∈ {W → {1, . . . ,#a}} do
10 found := false;
11 foreach 1 ≤ i ≤ #a do
12 S := {qi | (q1, . . . , q#a) ∈W, f((q1, . . . , q#a)) = i};
13 if expand1(ri, S,workset) then
14 found := true;
15 break;

16 if ¬found then return false;

17 return true;

6.1.2 Antichains and Simulation

In this section, we propose several optimisations of the basic algorithm pre-
sented above that, according to our experiments, often have a huge impact on
the efficiency of the algorithm—making it in many cases the most efficient al-
gorithm for checking inclusion on tree automata that we are currently aware of.
In general, the optimisations are based on an original use of simulations and
antichains in a way suitable for the context of downward inclusion checking.

In what follows, we assume that there is available a preorder �⊆ (QS ∪QB)2

compatible with language inclusion, i.e., such that p � q =⇒ L(p) ⊆ L(q), and
we use P �∀∃ R where P,R ⊆ (QS ∪ QB)2 to denote that ∀p ∈ P ∃r ∈ R :
p � r. An example of such a preorder, which can be efficiently computed, is
the (maximal) downward simulation �D. We propose the following concrete
optimisations of the downward checking of L(pS) ⊆ L(PB):

1. If there exists a state pB ∈ PB such that pS � pB, then the inclusion
clearly holds (from the assumption made about �), and no further check-
ing is needed.

2. Next, it can be seen without any further computation that the inclusion
does not hold if there exists some (p′S , P

′
B) such that p′S � pS and PB �∀∃
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Algorithm 5: Downward inclusion (antichains + preorder)

Input: TA AS = (QS ,Σ,∆S , FS),AB = (QB ,Σ,∆B , FB),�⊆ (QS ∪QB)2

Output: true if L(AS) ⊆ L(AB), false otherwise
Data: NN := ∅

1 foreach qS ∈ FS do
2 if ¬expand2(qS , FB , ∅) then return false;
3 return true;

Function expand2(pS , PB, workset)

/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS × 2QB */

1 if ∃(p′S , P ′B) ∈ workset : pS � p′S ∧ P ′B �∀∃ PB then return true;

2 if ∃(p′S , P ′B) ∈ NN : p′S � pS ∧ PB �∀∃ P ′B then return false ;
3 if ∃p ∈ PB : pS � p then return true;
4 workset := workset ∪ {(pS , PB)};
5 foreach a ∈ Σ do
6 if #a = 0 then
7 if downa(pS) 6= ∅ ∧ downa(PB) = ∅ then return false;
8 else
9 W := downa(PB);

10 foreach (r1, . . . , r#a) ∈ downa(pS) do /* pS
a−→ (r1, . . . , r#a) */

11 foreach f ∈ {W → {1, . . . ,#a}} do
12 found := false;
13 foreach 1 ≤ i ≤ #a do

14 S := {qi | (q1, . . . , q#a) ∈W, f((q1, . . . , q#a)) = i}� ;
15 if expand2(ri, S,workset) then
16 found := true;
17 break;

18 if 6 ∃(r′, H) ∈ NN : r′ � ri ∧ S �∀∃ H then
19 NN := (NN \ {(r′, H) | H �∀∃ S, ri � r′}) ∪ {(ri, S)};
20 if ¬found then return false;

21 return true;

P ′B, and we have already established that L(p′S) 6⊆ L(P ′B). Indeed, we
have L(PB) ⊆ L(P ′B) 6⊇ L(p′S) ⊆ L(pS), and therefore L(pS) 6⊆ L(PB).

3. Finally, we can stop evaluating the given inclusion query if there is some
(p′S , P

′
B) ∈ workset such that pS � p′S and P ′B �∀∃ PB. Indeed, this

means that the result of L(p′S) ⊆ L(P ′B) depends on the result of L(pS) ⊆
L(PB). However, if L(p′S) ⊆ L(P ′B) holds, then also L(pS) ⊆ L(PB) holds
because we have L(pS) ⊆ L(p′S) ⊆ L(P ′B) ⊆ L(PB). On the other hand,
if L(p′S) ⊆ L(P ′B) does not hold, the path between (p′S , P

′
B) and (pS , PB)

cannot be the only reason for that since a counterexample has not been
found on that path yet, and the chance of finding a counterexample is
only smaller from (pS , PB).

The version of Algorithm 4 including all the above proposed optimisations is
shown as Algorithm 5. The optimisations can be found in the function expand2

that replaces the function expand1. In particular, line 3 implements the first
optimisation, line 2 the second one, and line 1 the third one. In order to
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implement the second optimisation, the algorithm maintains a new set NN .
This set stores pairs (pS , PB) for which it has already been shown that the
inclusion L(pS) ⊆ L(PB) does not hold.

As a further optimisation, the set NN is maintained as an antichain w.r.t.
the preorder that compares the pairs stored in NN such that the states from
QS on the left are compared w.r.t. �, and the sets from 2QB on the right are
compared w.r.t. �∃∀ (line 19). Clearly, there is no need to store a pair (pS , PB)
that is bigger in the described sense than some other pair (p′S , P

′
B) since every

time (pS , PB) can be used to prune the search, (p′S , P
′
B) can also be used.

Taking into account Theorem 4 and the above presented facts, it is not diffi-
cult to see that the following holds.

Theorem 5 Let AS = (QS ,Σ,∆S , FS) and AB = (QB,Σ,∆B, FB) be two TA.
Algorithm 5 terminates and returns true if and only if L(AS) ⊆ L(AB).

6.1.3 Caching Positive Pairs

The inclusion checking presented in the previous section can be optimised even
more. Recall that the algorithm caches pairs for which the inclusion does not
hold, i.e., pairs (pS , PB) such that L(pS) 6⊆ L(PB), in the set NN (which is
maintained as an antichain). A natural question that arises is whether there is
a similar option for pairs for which the inclusion does hold, i.e., pairs (pS , PB)
such that L(pS) ⊆ L(PB). Such an option indeed exists and is presented in the
rest of this subsection.

Let us denote the set of the above-mentioned pairs for which the inclusion
holds as IN . When checking the inclusion L(pS) ⊆ L(PB), we first try to
find a pair (p′S , P

′
B) ∈ IN such that pS � p′S and P ′B �∀∃ PB. If such pair

exists, then we immediately know that the checked inclusion holds because
L(pS) ⊆ L(p′S) ⊆ L(P ′B) ⊆ L(PB).

The set IN can again be optimised as an antichain but with the opposite
ordering than NN . This means that there are no two pairs (pS , PB), (p′S , P

′
B)

such that pS � p′S and P ′B �∀∃ PB in IN . It is easy to understand that a pair
(pS , PB) does not have to be stored since whenever (pS , PB) can be used to
prune the search, (p′S , P

′
B) can also be used.

However, adding new pairs to IN is not as straightforward as for NN .
Assume that we add a pair (pS , PB) to IN immediately when the function
call expand2(pS , PB,workset) at line 15 of Algorithm 5 returns true for some
workset . This is not correct as shown in the following example.

Suppose that when checking inclusion L(p′S) ⊆ L(P ′B), a test for inclusion
L(pS) ⊆ L(PB) where pS � p′S and P ′B �∀∃ PB is encountered somewhere
deep in the recursive calls of expand2. As stated previously, the inclusion
L(pS) ⊆ L(PB) does not need to be tested since if L(p′S) ⊆ L(P ′B), then L(pS) ⊆
L(PB), and if L(p′S) 6⊆ L(P ′B), then this cannot be caused solely by L(pS) 6⊆
L(PB). Hence, expand2(pS , PB,workset) returns true, and the result of the
query L(p′S) ⊆ L(P ′B) will be given by other branches of the call tree generated
for the L(p′S) ⊆ L(P ′B) query. However, if we put the pair (pS , PB) into IN
and later proved that L(p′S) 6⊆ L(P ′B), then the set IN would become invalid.
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Algorithm 6: Downward inclusion (antichains + preorder + IN)

Input: TA AS = (QS ,Σ,∆S , FS),AB = (QB ,Σ,∆B , FB),�⊆ (QS ∪QB)2

Output: true if L(AS) ⊆ L(AB), false otherwise
Data: IN := NN := ∅

1 foreach qS ∈ FS do
2 if expand2e(qS , FB , ∅) = (false, , ) then return false;
3 return true;

Function expand2e(pS , PB, workset)

/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS × 2QB */

1 if ∃(p′S , P ′B) ∈ IN : pS � p′S ∧ P ′B �∀∃ PB then return (true, ∅, ∅);
2 if ∃(p′S , P ′B) ∈ NN : p′S � pS ∧ PB �∀∃ P ′B then return (false, ∅, ∅);
3 if ∃p ∈ PB : pS � p then return (true, ∅, ∅);
4 if ∃(p′S , P ′B) ∈ workset : pS � p′S ∧ P ′B �∀∃ PB then return

(true, {(p′S , P ′B)}, ∅);
5 workset := workset ∪ {(pS , PB)};
6 Ant := Con := ∅;
7 foreach a ∈ Σ do
8 if #a = 0 then
9 if downa(pS) 6= ∅ ∧ downa(PB) = ∅ then return (false, ∅, ∅);

10 else
11 W := downa(PB);

12 foreach (r1, . . . , r#a) ∈ downa(pS) do /* pS
a−→ (r1, . . . , r#a) */

13 foreach f ∈ {W → {1, . . . ,#a}} do
14 found := false;
15 foreach 1 ≤ i ≤ #a do

16 S := {qi | (q1, . . . , q#a) ∈W, f((q1, . . . , q#a)) = i}� ;
17 (x,Ant ′,Con ′) := expand2e(ri, S,workset);
18 if x then
19 found := true; Ant := Ant ∪Ant ′; Con := Con ∪ Con ′;
20 break;

21 if 6 ∃(r′, H) ∈ NN : r′ � ri ∧ S �∀∃ H then
22 NN := (NN \ {(r′, H) | H �∀∃ S, ri � r′}) ∪ {(ri, S)};
23 if ¬found then return (false, ∅, ∅);
24 Ant := Ant \ {(pS , PB)}; Con := Con ∪ {(pS , PB)};
25 if Ant = ∅ then
26 foreach (x, Y ) ∈ Con do
27 if 6 ∃(p′S , P ′B) ∈ IN : x � p′S ∧ P ′B �∀∃ Y then
28 IN := (IN \ {(r′, H) | Y �∀∃ H, r′ � x}) ∪ {(x, Y )};
29 Con := ∅;
30 return (true,Ant ,Con);

A solution to this issue is given in Algorithm 6. The expand2e function is
a modified version of expand2 that additionally returns a formula of the form∧

Ant →
∧

Con where Con (consequents) is a set of inclusion queries that can
be answered positively provided that the inclusion queries in Ant (antecedents)
are all answered positively.

When the recursive call of expand2e(pS , PB,workset) is at the bottom of the
call tree and there is (p′S , P

′
B) ∈ workset such that pS � p′S and P ′B �∀∃ PB
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(line 4), then according to the above, the formula returned from expand2e along
with true could be

∧
{L(p′S) ⊆ L(P ′B)} →

∧
{L(pS) ⊆ L(PB)} because L(pS) ⊆

L(PB) cannot be considered guaranteed before L(p′S) ⊆ L(P ′B) is positively
answered. This formula is, however, simplified to

∧
{L(p′S) ⊆ L(P ′B)} → ∅

since L(pS) ⊆ L(PB) can be forgotten as it is weaker than L(p′S) ⊆ L(P ′B).
A situation similar to what we have just discussed arises when the recursive

call of expand2e(pS , PB,workset) is at the bottom of the call tree and there is
(p′S , P

′
B) ∈ IN such that pS � p′S and P ′B �∀∃ PB (line 1). In this case,

∧
∅ →∧

∅ is returned (along with true) since the validity of L(p′S) ⊆ L(P ′B) has already
been established. Next, if the recursive call of expand2e(pS , PB,workset) is at
the bottom of the call tree and there is p ∈ PB such that pS � p (line 3),∧
∅ →

∧
∅ is again returned since for any inclusion query L(p′S) ⊆ L(P ′B) such

that p′S � pS and PB �∀∃ P ′B, it will be the case that there is p′ ∈ P ′B such
that p′S � p′ (and hence the computation will be immediately stopped without
a need to use IN for this purpose). Finally, when expand2e returns false (line
2), it is accompanied by the formula

∧
∅ →

∧
∅, which, however, is not taken

into account in this case and is returned just to make the result of expand2e

to have the same structure.
For inner nodes of the call tree, this is, nodes that correspond to function

calls expand2e(pS , PB) that themselves call expand2e, all antecedents and con-
sequents returned from successful nested calls are collected into sets Ant and
Con. Then, the condition L(pS) ⊆ L(PB) is removed from Ant (if it is there)
and added to Con since it has just been proved that L(pS) ⊆ L(PB) holds pro-
vided that the elements from Ant \ {L(pS) ⊆ L(PB)} are later proved to also
hold. When the set Ant becomes empty, yielding the formula

∧
∅ →

∧
Con, all

elements of Con can be added to IN (while respecting the antichain property
of IN) and the set Con cleared.

Taking into account Theorem 5 and the above presented facts, it can be seen
that the following holds.

Theorem 6 Let AS = (QS ,Σ,∆S , FS) and AB = (QB,Σ,∆B, FB) be two TA.
Algorithm 6 terminates and returns true if and only if L(AS) ⊆ L(AB).

6.2 Experimental Results

We have experimented with two tree automata encodings. The first one rep-
resents the automata explicitly, i.e., the transition function is stored as a plain
list. The second encoding stores the automata in a semi-symbolic way using
MTBDDs allowing for a convenient representation of automata with large al-
phabets.

6.2.1 Explicit Encoding

We have implemented three versions of downward inclusion for exlicitly en-
coded tree automata. Algorithm 5 using an identity as an input preorder is
denoted by down, Algorithm 5 using the maximum downward simulation as the
input preorder is marked as down+s. Algorithm 6 is denoted by down+opt when
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Table 6.1: A comparison of inclusion checking methods on explicit encoding

small TA (timeout 20 s) big TA (timeout 60 s)

winner
winner

(wo sim) timeout winner
winner

(wo sim) timeout

up 25.52 % - 0.00 % 3.13 % - 48.44 %
up+s 0.00 % 81.82 % 0.00 % 0.00 % 20.31% 48.44 %
down 16.21 % - 25.08 % 39.06 % - 60.94 %
down+s 3.45 % 18.18 % 0.93 % 14.06 % 79.69% 9.38 %
down+opt 42.07 % - 25.08 % 0.00 % - 60.94 %
down+opt+s 16.76 % 0.00 % 0.62 % 56.25 % 0.00% 1.56 %

parametrised by identity. down+opt+s denotes the combination with maximum
downward simulation. We have also implemented the algorithm of upward in-
clusion checking using antichains from [BHH+08] and its modification using
upward simulation proposed in [ACH+10] (these algorithms are marked as up

and up+s below). We tested our approach on 387 tree automata pairs of differ-
ent sizes generated from the intermediate steps of abstract regular tree model
checking of the algorithm for rebalancing red-black trees after insertion or dele-
tion of a leaf node [BHH+08]. The automata have been divided into two sets
depending on their size. The first set (denoted by “small TA”) contains 323
automata of size ranging between 50 and 250 states. The second set (denoted
by “big TA”) contains 64 automata of size ranging between 400 and 600 states.

The results of the experiments with explicitly encoded automata are pre-
sented in Table 6.1 which compares the methods according to the percentage
of the cases in which they were the fastest when checking inclusion on the same
automata pair. The results are grouped into two sets according to the size of
the automata measured in the number of states. Columns “winner (wo sim)”
contain the percentage of the cases in which the method was the fastest with-
out counting the time for computing simulation (in such cases they were always
faster than the methods not using simulations). This comparison is motivated
by the observation that inclusion checking may be used as a part of a bigger
computation that anyway computes the simulation relations (which happens,
e.g., in abstract regular model checking where the simulations are used for re-
ducing the size of the encountered automata). Finally, the columns labelled
by “timeout” summarise how often the particular methods exceeded the time
available for the computation of a single inclusion query.

The results show that the overhead of computing upward simulation is too
high in all the cases that we have considered, causing upward inclusion checking
using simulation to be the slowest when the time for computing the simulation
used by the algorithm is included1. Next, it can be seen that for each of the
remaining approaches there are cases in which they win in a significant way.
However, the downward approaches are clearly dominating in significantly more
of our test cases (with the only exception being the case of small automata when
the time of computing simulations is not included). Moreover, the dominance

1Note that up+s was winning over up in the experiments of [ACH+10] even with the time
for computing simulation included, which seems to be caused by a much less efficient
implementation of the antichains in the original algorithm.
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Table 6.2: A comparison of inclusion checking methods on semi-symbolic encoding

winner timeout

symup 6.67 % 22.68 %
symdown 90.67 % 22.68 %
symdown+s 2.67 % 73.92 %

of the downward checking increases with the size of the automata that we
considered in our test cases. Finally, one can observe that the down+opt+s can
solve almost all queries within the given timeout on both sets of automata even
though it does not dominate on the set of smaller automata performance wise.

6.2.2 Semi-symbolic Encoding

In addition to experiments with explicitly encoded automata, we have also
benchmarked our algorithms on automata represented in a semi-symbolic way
using MTBDDs for storing transition functions. We have implemented some of
the above mentioned algorithms on top of the MTBDD implementation found
in the CUDD library [Som11]. A detailed description of the algorithms modified
for the semi-symbolic setting can be found in [HLŠV11b].

We have compared the upward inclusion checking algorithm from [BHH+08]
adapted for semi-symbolically represented tree automata, which is given in
[HLŠV11b] (and marked as symup in the following), with the downward inclu-
sion checking algorithm presented above. In the latter case, we let the algorithm
use either the identity relation, which corresponds to downward inclusion check-
ing without using any simulation (this case is marked as symdown below), or the
maximum downward simulation (which is marked as symdown+s in the results).
We have not considered upward inclusion checking with upward simulation due
to its negative results in our experiments with explicitly encoded automata2.
The implementation of downward inclusion checking with caching of positive
pairs on top of the MTBDD package found in CUDD is also not available (see
Chapter 7 for the version built on top of our own MTBDD library). For the
comparison, we used 97 pairs of tree automata with a large alphabet which
we encoded into 12 bits. The size of the automata was between 50 and 150
states and the timeout was set to 300 s. The automata were obtained by tak-
ing the automata considered in Section 6.2.1 and labelling their transitions by
randomly generated sets of symbols from the considered large alphabet.

The results that we have obtained are presented in Table 6.2. The first column
compares the methods according to the percentage of the cases in which they
were the fastest when checking inclusion on the same automata pair. The second
column summarises how often each of the methods exceeded the time available
for computation.

When we compare the above experimental results with the results obtained on
the explicitly represented automata presented in Section 6.2.1, we may note that

2We, however, note that possibilities of implementing upward inclusion checking combined
with upward simulations over semi-symbolically encoded TA and a further evaluation of
this algorithm are still interesting subjects for the future.
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(1) downward inclusion checking is again significantly dominating, but (2) the
advantage of exploiting downward simulation has decreased. According to the
information we gathered from code profiling of our implementation, this is due
to the overhead of the CUDD library which is used as the underlying layer for
storage of shared MTBDDs of several data structures. This has indicated a need
of a different MTBDD library to be used or perhaps of a specialised MTBDD
library to be developed. The issue is further briefly discussed in Chapter 7.

Finally, we also evaluated performance of the implementation of the described
algorithms using a semi-symbolic encoding of TA with performance of the al-
gorithms using an explicit encoding of TA considered in Section 6.1 on the
automata with the large alphabet. As we have expected, the symbolic version
was on average about 8000 times faster than the explicit one in this case.

6.3 Conclusions and Future Work

We have proposed a new algorithm for checking language inclusion over nonde-
terministic TA (based on the one from [HVP05]) that traverses automata in
a downward manner and uses both antichains and simulations to optimise its
computation. This algorithm is, according to our experimental results, mostly
superior to the known upward algorithms. We have further briefly presented
a semi symbolic MTBDD-based representation of nondeterministic TA gener-
alising the one used by MONA. We have experimentally justified usefulness of
the semi-symbolic encoding for nondeterministic TA with large alphabets.

Furthermore, our experiments with downward inclusion show that the per-
formance of the algorithm is heavily dependent on the sequence in which one
evaluates successors of pairs of states. In the future, it would be interesting to
explore whether a more efficient order of exploring these successors exists.
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7 A Tree Automata Library

This chapter describes the general-purpose tree automata library that was de-
signed within our research. The library contains an efficient implementation of
many important algorithms for use of TA in symbolic verification such as the
algorithm for computing simulations over TA presented in Chapter 5 or various
inclusion checking methods described in [ACH+10] or in Chapter 6.

The main motivation behind the development of the library is to achieve
a better performance of the Forester verification tool presented in Chapter 4.
Apart from this tool, as we have already discussedthere are other formal verifi-
cation techniques relying on finite tree automata which often strongly depends
on the performance of the underlying implementation of TA.

Currently, there exist several available tree automata libraries, which are
mostly written in OCaml (e.g., Timbuk/Taml [Gen03]) or Java (e.g., LETHAL
[CJH+09]), and they do not always use the most advanced algorithms known
to date. Therefore, they are not suitable for tasks which require that the
available processing power is utilised as efficiently as possible. An exception
from these libraries is MONA [KMS01] implementing decision procedures over
WS1S/WS2S, which contains a highly optimised TA package written in C, but,
alas, it supports only binary deterministic tree automata. As we have already
mentioned, the determinisation is often a very significant bottleneck, and a lot
of effort has therefore been invested into developing efficient algorithms for
handling nondeterministic tree automata without a need to ever determinise
them.

In order to allow researchers focus on developing verification techniques rather
than reimplementing and optimising a TA package, we provide VATA1, an
easy-to-use open-source library for efficient manipulation of nondeterministic
TA. VATA supports many of the operations commonly used in automata-based
formal verification techniques over two complementary encodings: explicit and
semi-symbolic. The explicit encoding is suitable for most applications that do
not need to use alphabets with a large number of symbols. However, some
formal verification approaches make use of such alphabets, e.g., the approach
for verification of programs with complex dynamic data structures [BHRV06a]
or decision procedures of the MSO or WSkS logics [KMS01]. Therefore, in
order to address this issue, we also provide a semi-symbolic encoding of TA,
which uses multi-terminal binary decision diagrams [CMZ+97] (MTBDDs), an
extension of reduced ordered binary decision diagrams [Bry86] (BDDs), to store
the transition function of TA. In order to enable the widest possible range of
applications of the library even for the semi-symbolic encoding, we provide both
bottom-up and top-down semi-symbolic representations.

1http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
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Figure 7.1: The architecture of the VATA library

At the present time, the main application of the structures and algorithms
implemented in VATA for handling explicitly encoded TA is the Forester tool
for verification of programs with complex dynamic data structures which is
described in Chapter 4. The semi-symbolic encoding of TA has so far been used
mainly for experiments with various newly proposed algorithms for handling
TA.

This chapter does not present all exact details of the algorithms implemented
in the library as they can be found in the referenced literature. Rather, we give
an overview of the algorithms available, and most importantly, we concentrate
on the various interesting optimisations that we used when implementing them.
Based on experimental evidence, we argue that these optimisations are crucial
for the performance of the library.

Plan of the Chapter. In Section 7.1, we present an overview of the library
design. Section 7.2 introduces supported operations and also describes further
optimisations, especially within the algorithms for checking language inclusion
and the algorithm for computing simulation over LTSs/TA. In Section 7.3, we
provide experimental evaluation of inclusion checking algorithms for both the
explicit and the semi-symbolic encodings. Section 7.4 summarises the chapter
and draws possible future directions.

7.1 Design of the Library

The library is designed in a modular way (see Fig. 7.1). The user can choose
a module encapsulating the preferred automata encoding and its corresponding
operations. Various encodings share the same general interface so it is easy to
swap one encoding for another, unless encoding-specific functions or operations
are taken advantage of.

Thanks to the modular design of the library, it is easy to provide an own
encoding of tree (or word) automata and effectively exploit the remaining parts
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of the infrastructure, such as parsers and serializers from/to different formats,
the unit testing framework, performance tests, etc.

The VATA library is implemented in C++ using the Boost C++ libraries.
In order to avoid expensive look-ups of entry points of virtual methods in the
virtual-method table of an object and to fully exploit compiler’s capabilities of
code inlining and optimisation of code according to static analysis, the library
heavily exploits polymorphism using C++ function templates instead of using
virtual methods for core functions. We are convinced that this is the main
reason why the performance of the optimised code (the -O3 flag of gcc) is up
to 10 times better than the performance of the non-optimised code (the -O0

flag of gcc).

7.1.1 Explicit Encoding

In the explicit representation of TA used in VATA, top-down transitions having
the form q

a−→ (q1, . . . , qn) are stored in a hierarchical data structure similar
to a hash table. More precisely, the top-level lookup table maps states to tran-
sition clusters. Each such cluster is itself a lookup table that maps alphabet
symbols to a set of pointers to tuples of states. The set of pointers to tuples of
states is represented using a red-black tree. The tuples of states are stored in
a designated hash table to further reduce the required amount of space (by not
storing the same tuples of states multiple times). An example of the encoding
is depicted in Fig. 7.2.

Hence, in order to insert the transition q
a−→ (q1, . . . , qn) into the transition

table, one proceeds using the following algorithm:

1. Find a transition cluster which corresponds to the state q in the top-level
lookup table. If such a cluster does not exist, create one.

2. In the given cluster, find a set of pointers to tuples of states reachable
from q over a. If the set does not exist, create one.

3. Obtain the pointer to the tuple (q1, . . . , qn) from the tuple lookup table
and insert it into the set of pointers.

If one ignores the worst-case time complexity of the underlying data struc-
tures (which, according to our experience, has usually a negligible real im-
pact only), then inserting a single transition into the transition table requires
a constant number of steps only. Yet the representation provides a more effi-
cient encoding than a plain list of transitions because some transitions share
the space required to store the parent states (e.g., state q in the transition
q

a−→ (q1, . . . , qn)). Moreover, some transitions also share the alphabet symbol
and each tuple of states appearing in the set of transitions is stored only once.
Additionally, the encoding allows us to easily perform certain critical opera-
tions, such as finding a set of transitions q

a−→ (q1, . . . , qn) for a given state q.
This is useful, e.g., during the elimination of (top-down) unreachable states or
during the top-down inclusion checking.

In some situations, one needs to manipulate many tree automata at the
same time. As an example, we can mention our method for verifying programs
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AutomataA B C

Top-level
Lookup Tables

q1 q2 q3 q1 q2

Transition Clusters
a b c e b c e

Sets of
Pointers to Tuples

Tuples of States(q1, q1) (q1, q2) (q2, q2) (q3, q2)()

Figure 7.2: An example of the VATA’s explicit encoding of transition functions of
three automata A, B, C. In particular, one can see that A contains a transition
q1

c−→ (q1, q2): it suffices to follow the corresponding arrows. Moreover, B also contains
the same transition (and the corresponding part of the transition table is shared with
A). Finally, C has the same transitions as B.

with dynamic linked data structures introduced in Chapter4 where (in theory)
one needs to store one automaton representing a content of the heap for each
reachable state of the program. To improve the performance of our library in
such scenarios, we adapt the copy-on-write principle. Every time one needs to
create a copy of an automaton A to be subsequently modified, it is enough to
create a new automaton A′ which obtains a pointer to the transition table of A
(which requires constant time). Subsequently, as more transitions are inserted
into A′ (or A), only the part of the shared transition table which gets modified
is copied (Fig. 7.2 provides an illustration of this feature).

7.1.2 Semi-Symbolic Encoding

The semi-symbolic encoding within our library uses multi-terminal binary de-
cision diagrams (MTBDDs) to encode transition functions of tree automata.
MTBDDs are an extension of binary decision diagrams (BDDs), a popular data
structure for compact encoding and manipulation with Boolean formulae. In
contrast to BDDs that are used to represent a function b : Bn → B for some
n ∈ N and B = {0, 1}, MTBDDs extend the co-domain to an arbitrary set S,
i.e., they represent a function m : Bn → S.

We support two representations of semi-symbolic automata: top-down and
bottom-up. The top-down representation (see Fig. 7.3a) maintains for each
state q of a tree automaton an MTBDD that maps the binary representation of
each symbol f concatenated with the binary representation of its arity n onto
a set of tuples of states T = {(q1, . . . , qn), . . . } such that for all (q1, . . . , qn) ∈ T
there exist the transition q

f−→ (q1, . . . , qn) in the automaton. The arity is
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q

{(r, s), (r, t)}
{(s), (t), (u)}

∅ {(u, u, u)}

a) top-down

(q1, . . . , qn)

{r, s} {s, t, u} ∅ {u}

b) bottom-up

Figure 7.3: The (a) top-down and (b) bottom-up semi-symbolic encodings of transi-
tion functions. Paths in the MTBDD correspond to symbols.

encoded in the MTBDD as a part of the symbol in order to be able to distinguish
between several instances of the same symbol with different arity. The library
thus supports a slight extension of tree automata in which a symbol does not
have a fixed arity.

The bottom-up representation (see Fig. 7.3b), on the other hand, maintains
for each tuple (q1, . . . , qn) ∈ Q∗ an MTBDD that maps the binary representation
of each symbol f onto a set of states S = {q, . . . } such that, for all q ∈ S, it

holds that the transition (q1, . . . , qn)
f−→ q is in the automaton. Note that the

bottom-up representation does not need to encode the arity of the symbol f
into the MTBDD as it is given by the arity of the tuple for which the MTBDD
is maintained. It is easy to see that the two presented encodings are mutually
convertible (see [HLŠV11b] for the algorithm).

Our previous implementation of semi-symbolically represented tree automata
(benchmarked in Chapter 6) used a customisation of the CUDD [Som11] library
for manipulating MTBDDs. The experiments in Chapter 6 and profiling of the
code showed that the overhead of the customised library is too large. More-
over, the customisation of CUDD did not provide an easy and transparent way
of manipulating MTBDDs. These two facts showed that VATA would greatly
benefit from a major redesign of the MTBDD back-end. Therefore, we created
our own generic implementation of MTBDDs with a clean and simple-to-use in-
terface which, according to our experiments, greatly improved the performance
of many TA operations. Some of these gains were, for instance, achieved by
introducing a special version of Apply which does not build a new MTBDD but
it has a side-effect only (thus its use reduces an overhead when the result is
not needed). The more elaborate description of this MTBDD package is again
beyond the scope of this work, and the interested reader can find the details in
[LŠV12].
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7.2 Supported Operations

As we have described in the previous section, the VATA library allows a user
to choose one of three available encodings: the explicit top-down, the semi-
symbolic top-down, and the semi-symbolic bottom-up. Depending on the choice
of the encoding, certain TA operations may or may not be available. The fol-
lowing operations are supported by at least one of the representations: union,
intersection, elimination of (bottom-up, top-down) unreachable states, inclu-
sion checking (bottom-up, top-down), computation of (maximum) simulation
relations (downward, upward), and language preserving size reduction based
on simulation equivalence. In some cases, multiple implementations of an op-
eration are available, which is especially the case for language inclusion. This
is because the different implementations are based on different heuristics that
may work better for different applications as witnessed also by our experiments
described in Section 7.3.

Below, we do not discuss the relatively straightforward implementation of the
most basic operations on TA and we comment on the more advanced operations
only.

7.2.1 Downward and Upward Simulation

Downward simulation relations can be computed over two tree automata rep-
resentations in VATA: the explicit top-down and the semi-symbolic top-down
encoding. The explicit variant first translates a tree automaton into a labelled
transition system (LTS) as described in [ABH+08]. Then the simulation rela-
tion for this system is computed using an implementation of the state-of-the-art
algorithms for computing simulations on LTSs presented in [RT07] and also in
Chapter 5 with some further optimisations mentioned in Section 7.2.5. Finally,
the result is projected back to the set of states of the original automaton.

The semi-symbolic variant uses a simpler simulation algorithm based on
a generalisation of [INY04] to trees.

Upward simulation can currently be computed over the explicit representation
only. The computation is again performed via a translation to an LTS (the
details are in [ABH+08]), and the relation is computed using the engine for
computing simulation relations on LTSs as above.

7.2.2 Simulation-based Size Reduction

In a typical setting, one often wants to use a representation of tree automata
that is as small as possible in order to reduce the memory consumption and/or
speed up operations on the automata (especially the potentially costly ones,
such as inclusion testing). To achieve that, the classical approach is to use
determinisation and minimisation. However, the minimal deterministic tree
automata can still be much bigger than the original nondeterministic ones.
Therefore, VATA offers a possibility to reduce the size of tree automata without
determinisation by their quotienting w.r.t. an equivalence relation—currently,
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the library uses downward simulation simulation equivalence, but the user can
easily provide an arbitrary relation suitable for collapsing states.

The procedure works as follows: first, the downward simulation relation �D
is computed for the automaton. Then, the symmetric fragment of �D (which
is an equivalence) is extracted, and each state appearing within the transi-
tion function is replaced by a representative of the corresponding equivalence
class. A further reduction is then based on the following observation: if an
automaton contains a transition q

a−→ (q1, . . . , qn), any additional transition
q

a−→ (r1, . . . , rn) where ri �D qi can be omitted since it does not contribute
to the language of the result (recall that, for the downward simulation preorder
�D, it holds that q �D r =⇒ L(q) ⊆ L(r)).

7.2.3 Bottom-up Inclusion

Bottom-up inclusion testing is implemented for the explicit top-down and the
semi-symbolic bottom-up representation in VATA. As its name suggests, the
algorithm naturally proceeds in the bottom-up way, therefore the top-down
encoding is not very suitable here. In the case of the explicit representation,
however, one can afford to build a temporary bottom-up encoding since the
overhead of such a translation is negligible compared to the complexity of fol-
lowing operations.

Both the explicit and semi-symbolic version of the bottom-up inclusion al-
gorithm are based on the approach introduced in [BHH+08]. Here, the main
principle used for checking whether L(A) ⊆ L(B) is to search for a tree which
is accepted by A and not by B (thus being a witness for L(A) 6⊆ L(B)). This
is done by simultaneously traversing both A and B from their leaf rules while
generating pairs (pA, PB) ∈ QA × 2QB where pA represents a state into which
A can get on some input tree and PB is the set of all states into which B can
get over the same tree. The inclusion then does clearly not hold iff it is possi-
ble to generate a pair consisting of an accepting state of A and of exclusively
non-accepting states of B.

The algorithm collects the so far generated pairs (pA, PB) in a set called
V isited. Another set called Next is used to store the generated pairs whose
successors are still to be explored. One can then observe that whenever one can
reach a counterexample to inclusion from (pA, PB), one can also reach a coun-
terexample from any (pA, P

′
B ⊆ PB) as P ′B allows less runs than PB. Using

this observation, both mentioned sets can be represented using antichains. In
particular, one does not need to store and further explore any two elements
comparable w.r.t. (=,⊆), i.e., by equality on the first component and inclusion
on the other component.

In the following we describe several modifications of the existing bottom-up
inclusion algorithm (proposed in [BHH+08]) which according to experiments
substantialy improve the performance of inclusion queries—see Algorithm 7.

Clearly, the running time of the above algorithm strongly depends on the total
number of pairs (pA, PB) taken from Next for further processing. Indeed, this
is one of the reasons why the antichain-based optimisations helps. According
to our experience, the number of pairs which needs to be processed can further
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Algorithm 7: Bottom-up Inclusion Algorithm

Input: TA AS = (QS ,Σ,∆S , FS), AB = (QB ,Σ,∆B , FB), �⊆ (QS ∪QB)2

Output: true if L(AS) ⊆ L(AB), false otherwise
1 V isited := {(pS , PB) : a→ pS ∈ ∆S ∧ PB = upa({()})�};
2 if ∃(pS , PB) ∈ V isited.pS ∈ FS ∧ PB ∩ FB = ∅ then
3 return false;
4 Next := V isited;
5 while Next 6= ∅ do
6 pick (pS , PB) ∈ Next such that ∀(p′S , P ′B) ∈ Next.|PB | ≤ |P ′B |;
7 Next := Next \ {(pS , PB)};
8 foreach a(q1, . . . , qn)→ p′S ∈ ∆S such that ∃k.qk = pS do
9 foreach Q1, . . . , Qn such that (qi, Qi) ∈ V isited ∧Qk = PB do

10 P ′B := upa(Q1 × · · · ×Qn)� ;
11 if p′S ∈ FS ∧ P ′B ∩ FB = ∅ then
12 return false;
13 if ∃p′B ∈ P ′B .p′S � p′B then
14 continue;

15 if ∃(p′′S , P ′′B) ∈ V isited such that p′′S � p′S ∧ P ′B �∀∃ P ′′B then
16 continue;

17 V isited := (V isited\{(p′′S , P ′′B) : p′S � p′′S ∧P ′′B �∀∃ P ′B})∪{(p′S , P ′B)};
18 Next := (Next \ {(p′′S , P ′′B) : p′S � p′′S ∧ P ′′B �∀∃ P ′B}) ∪ {(p′S , P ′B)};
19 return true;

be reduced when processing the pairs stored in Next in a suitable order. Our
experimental results have shown that we can achieve a very good improvement
by preferring those pairs (pA, PB) which have smaller (w.r.t. the size of the set)
second component (line 6).

Yet another way that we found useful when improving the above algorithm
is to optimise the way the algorithm computes the successors of a pair from
Next. The original algorithm picks a pair (pA, PB) from Next and puts it into
V isited. Then, it finds all transitions of the form (pA,1, . . . , pA,n)

a−→ p in A
such that (pA,i, PB,i) ∈ V isited for all 1 ≤ i ≤ n and (pA,j , PB,j) = (pA, PB) for
some 1 ≤ j ≤ n. For each such transition, it finds all transitions of the form
(q1, . . . , qn)

a−→ q in B such that qi ∈ PB,i for all 1 ≤ i ≤ n. Here, the process
of finding the needed B transitions is especially costly (lines 8 and 9). In order
to speed it up, we cache for each alphabet symbol a, each position i, and each
set PB,i, the set of transitions {(q1, . . . , qn)

a−→ q ∈ ∆B : qi ∈ PB,i} at the first
time it is used in the computation of successors. Then, whenever we need to
find all transitions of the form (q1, . . . , qn)

a−→ q in B such that qi ∈ PB,i for all
1 ≤ i ≤ n, we find them simply by intersecting the sets of transitions cached
for each (PB,i, i, a).

Next, we propose another modification of the algorithm which aims to im-
prove the performance especially in those cases where finding a counterexample
to inclusion requires us to build representatives of trees with higher depths
or in the cases where the inclusion holds. Unlike the original approach which
moves only one pair (pA, PB) from Next to V isited at the beginning of each
iteration of the main loop, we add the newly created pairs (pA, PB) into Next
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and V isited at the same time (immediately after they are generated). This,
according to our experiments, allows V isited to converge faster towards the
fixpoint (lines 17 and 18).

Finally, another optimisation of the algorithm presented in [BHH+08] ap-
peared in [ACH+10]. This optimisation maintains the sets V isited and Next
as antichains w.r.t. (�U ,�∃∀U )2. Hence, more pairs can be discarded from these
sets. Moreover, for pairs that cannot be discarded, one can at least reduce
the sets on their right-hand side by removing states that are simulated by
some other state in these sets (this is based on the observation that any tree
accepted from an upward-simulation-smaller state is accepted from an upward-
simulation-bigger state too). Finally, one can also use upward simulations be-
tween states of the two automata being compared. Then, one can discard any
pair (pA, PB) such that there is some pB ∈ PB that upward-simulates pA be-
cause it is then clear that no tree can be accepted from pA that could not be
accepted from pB. All these optimisations are also available in VATA and can
optionally be used—they are not used by default since the computation of the
upward simulation can be quite costly.

7.2.4 Top-down Inclusion

Top-down inclusion checking is supported by the explicit top-down and semi-
symbolic top-down representations in VATA. As we have already discussed
in Chapter 6, when one tries to solve inclusion of TA languages top-down in
a näıve way, using a plain subset-construction-like approach, one immediately
hits a problem due to the top-down successors of particular states are tuples of
states. Hence, after one step of the construction, one needs to check inclusion
on tuples of states, then tuples of tuples of states, etc. However, there is a way
how to get out of this trap as shown in [HVP05] and also in Chapter 6. To recall
from Chapter 6, the main idea of the approach resembles a conversion from the
disjunctive normal form (DNF) to the conjunctive normal form (CNF) taking
into account that top-down transitions of tree automata form a kind of and-
or graphs (the disjunctions are between top-down transitions and conjunctions
among the successors within particular transitions).

VATA contains an implementation of the top-down inclusion checking algo-
rithm as presented in Chapter 6. This algorithm uses several optimisations,
e.g., caching of results of auxiliary language inclusion queries between states
of the automata whose languages are being compared. More precisely, when
checking whether L(A) ⊆ L(B) holds for two tree automata A and B, the
algorithm stores a set of pairs (pA, PB) ∈ QA × 2QB for which the language
inclusion L(pA) ⊆ L(PB) has been shown not to hold. As a further optimisa-
tion, the set is stored as an antichain based on comparing the states w.r.t. the
downward simulation preorder. The use of the downward simulation is one of
the main advantages of this approach compared with the bottom-up inclusion
checking since this preorder is cheaper to compute and usually richer than the

2One says that P �∃∀U Q holds iff ∀p ∈ P ∃q ∈ Q : p �U q. Note also that the upward
simulation must be parameterised by the identity in this case [ACH+10].
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upward simulation. Indeed, as we have shown in Chapter 6, the top-down in-
clusion checking is often—though not always—superior to bottom-up inclusion
checking.

Moreover, VATA also imlements an optimized version of the top-down inclu-
sion checking algorithm that extends the previous version by caching even the
pairs (pA, PB) ∈ QA × 2QB for which the language inclusion L(pA) ⊆ L(PB)
has been shown to hold. This extension is far from trivial since the caching
must be done very carefully in order to avoid a sort of circular reasoning when
answering the various auxiliary language inclusion queries. A precise descrip-
tion of this rather involved algorithm is again described in Chapter 6. As our
experiments show, the caching positive pairs comes with some overhead, which
does not allow it to always win over the previous algorithm, but there are still
many cases in which it performs significantly better.

7.2.5 Computing Simulation over LTS

The explicit part of VATA uses a highly optimised LTS simulation algorithm
proposed in [RT07] together with the improvements presented in 5. The main
idea of the algorithm is to start with an overapproximation of the simulation
preorder (a possible initial approximation is the relation Q×Q) which is then
iteratively pruned whenever it is discovered that the simulation relation cannot
hold for certain pairs of states. For a better efficiency, the algorithm represents
the current approximation R of the simulation being computed using a so-called
partition-relation pair. The partition splits the set of states into subsets (called
blocks) whose elements are equivalent w.r.t. R, and a relation obtained by lifting
R to blocks.

In order to be able to deal with the partition-relation pair efficiently, the
algorithm needs to record for each block a matrix of counters of size |Q||Σ|
where, for the given LTS, Q is the set of states and Σ is the set of labels. The
counters are used to count how many transitions going from the given state
via a given symbol a lead to states in the given block (or blocks currently
considered to be bigger w.r.t. the simulation). This information is then used to
optimise re-computation of the partition-relation pair when pruning the current
approximation of the simulation relation being computed (for details see, e.g.,
[RT07]). Since the number of blocks can (and often does) reach the number of
states, the näıve solution requires |Q|2|Σ| counters in the worst case. It turns
out that this is one of the main barriers which prevents the algorithm from
scaling to systems with large alphabets and/or large sets of states.

Working towards a remedy for the above problem, one can observe that the
mentioned algorithm actually works in several phases. At the beginning, it cre-
ates an initial estimation of the partition-relation pair which typically contains
large equivalence classes. Then it initialises the counters for each element of
the partition. Finally, it starts the iterative partition splitting. During this
last phase, the counters are only decremented or copied to the newly created
blocks. Moreover, the splitting of some block is itself triggered by decrementing
some set of counters to 0. In practice, late phases of the iteration often witness
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a lot of small equivalence classes having very sparsely populated counters with
0 being the most abundant value.

This suggests that one could use sparse matrices containing only the non-
zero elements. Unfortunately, according to our experience, this turns out to
be the worst possible solution which strongly degrades the performance. The
reason is that the algorithm accesses the counters very frequently (the values
of the counters are initialised at the beginning and then the algorithm keeps
decrementing them by one), hence any data structure with non-constant time
access causes the computation to stall. A somewhat better solution is to record
the non-zero counters using a hash table, but the memory requirements of such
representation are not yet reasonable.

Instead, we are currently experimenting with storing the counters in blocks,
using a copy-on-write approach and a zeroed-block deallocation. In short, we
divide the matrix of counters into a list of blocks of some fixed size. Each
block contains an additional counter (a block-level counter) which sums up all
the elements within the block. As soon as a block contains a single non-zero
counter only, it can safely be deallocated—the content of the non-zero counter
is then recorded in the block-level counter.

Our initial experiments show that, using the above approach, one can easily
reduce the memory consumption by the factor of 5 for very large instances of
the problem compared to the array-based representation which was used for
experiments presented in Chapter 5. The best value to be used as the size of
blocks of counters is still to be studied—after some initial experiments, we are
currently using blocks of size

√
|Q|.

7.3 Experimental Evaluation

In order to illustrate the level of optimisation that has been achieved in VATA
and that can be exploited in its applications (like the Forester tool [HHR+11a]),
we compared its performance against Timbuk and the prototype library con-
sidered in Chapter 6, which—despite its prototype status—already contained
a quite efficient TA implementation.

The comparison of performance of VATA (using the explicit encoding) and
Timbuk was done for union and intersection of more than 3,000 pairs of TA. On
average, VATA was over 20,000 times faster on union and over 100,000 times
faster on intersection.

When comparing VATA with the implementation used in Chapter 6, we con-
centrated on language inclusion testing which is one of the most costly opera-
tions on nondeterministic TA. In particular, we conducted a set of experiments
evaluating the performance of the VATA’s optimised TA language inclusion al-
gorithms on pairs of TA obtained from abstract regular tree model checking of
the algorithm for rebalancing red-black trees after insertion or deletion of a leaf
node (which is the same test set that was used in Chapter 6).
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Table 7.1: Experiments with inclusion for the explicit encoding

inclusion
mixed does not hold holds

winner timeouts winner timeouts winner timeouts

explup 24.14 % 0.00 % 24.84 % 0.00 % 16.85 % 0.00 %

explup+s 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

expldown 36.35 % 32.51 % 39.85 % 26.01 % 0.00 % 90.80 %

expldown+s 4.15 % 18.27 % 0.00 % 20.31 % 47.28 % 0.00 %

expldown-opt 32.20 % 32.51 % 35.30 % 26.01 % 0.00 % 90.80 %

expldown-opt+s 3.15 % 18.27 % 0.00 % 20.31 % 35.87 % 0.00 %

7.3.1 Explicit Encoding

For the explicit encoding, we measured for each inclusion method the fraction
of cases in which the method was the fastest among the evaluated methods
on the set of almost 2000 tree automata pairs. The results of this experiment
are given in Table 7.1. The rows are labelled as follows: row expldown is
for pure downward inclusion checking, row expldown+s is for downward inclu-
sion using downward simulation, expldown-opt is a row for pure downward
inclusion checking with the optimisation proposed in Section 7.2.4, and row
expldown-opt+s is downward inclusion checking with simulation using the same
optimisation. Rows explup and explup+s give the results for pure upward in-
clusion checking and upward inclusion checking with simulation respectively.
The timeout was set to 30 s.

We also checked the performance of the algorithms for cases when inclusion
either does or does not hold in order to explore the ability of the algorithms
to either find a counterexample in the case when inclusion does not hold, or
prove the inclusion in case it does. These results are given in separate columns
of Table 7.1.

When compared to our previous implementation benchmarked in the Chap-
ter 6, VATA performed almost always better. The average speed-up was even
as high as 200 times for pure downward inclusion checking. The old imple-
mentation was faster in about 2.5 % of the cases, and the difference was not
significant. We can observe that unlike the results presented in Chapter 6 the
computation of explup no longer exceeds the available time thanks to our im-
provements. The table is still dominated by downward inclusion which however
does not finish the computation in some cases. The combination of downward
inclusion with downward simulation allows to reduce the number of timeouts
especially when one considers the cases in which the inclusion holds.

7.3.2 Semi-Symbolic Encoding

We have performed a set of similar experiments for the semi-symbolic encoding,
the results of which are given in Table 7.2. The rows are labelled as follows:
row symdown is for pure downward inclusion checking, row symdown+s is for
downward inclusion using downward simulation, symdown-opt is a row for pure
downward inclusion checking with the optimisation proposed in Section 7.2.4
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Table 7.2: Experiments with inclusion for the semi-symbolic encoding

inclusion
mixed does not hold holds

winner timeouts winner timeouts winner timeouts

symup 24.25 % 22.26 % 21.91 % 23.39 % 80.26 % 0.00 %

symdown 44.02 % 5.87 % 45.03 % 2.48 % 19.74 % 72.37 %

symdown+s 0.00 % 77.93 % 0.00 % 80.03 % 0.00 % 36.84 %

symdown-opt 31.73 % 5.87 % 33.06 % 2.48 % 0.00 % 72.37 %

symdown-opt+s 0.00 % 78.00 % 0.00 % 80.09 % 0.00 % 36.84 %

and row symdown-opt+s is downward inclusion checking with simulation using
the same optimisation. Row symup gives the results for pure upward inclusion
checking. The column “winner” shows the percentage of cases in which the
corresponding method was the fastest. The column “timeout” shows how often
the method failed to compute the result within the given timeout which was
again set to 30 s.

As in the experiments for the explicit encoding, we also checked the perfor-
mance of the algorithms for cases when inclusion either does or does not hold.
These results are given in the separate columns of Table 7.2.

When compared to our previous implementation benchmarked in Chapter 6,
VATA again performs significantly better, with the pure upward inclusion being
on average over 300 times faster and the pure downward inclusion being even
over 3000 times faster.

7.4 Conclusions and Future Work

In this chapter, we have introduced and described a new efficient and open-
source nondeterministic tree automata library that supports both explicit and
semi-symbolic encoding of the tree automata transition function. The semi-
symbolic encoding makes use of our own MTBDD package instead of the pre-
viously used customisation of the CUDD library.

In the future, it would be interesting to try to implement a simulation-aware
symbolic encoding of antichains using BDDs. Further, an implementation of
other TA operations, such as determinisation (which, however, is generally de-
sired to be avoided), or complementation (without a need of determinisation)
could also be important for certain applications such as the decision procedures
of WSkS or MSO.

Finally, we hope that a public release of our library will attract more people
to use it and even better contribute to the code base. Indeed, we believe that
the library is written in a clean and understandable way that should make such
contributions possible.

118



8 Conclusions and Future Directions

Detailed conclusions of each specific topic discussed in the thesis have been given
at the end of the corresponding chapters. Here, we summarise once more the
main points and discuss possible future directions of the research from a broader
perspective.

8.1 A Summary of the Contributions

This thesis focuses on formal verification of programs manipulating complex
dynamic data structures. Inspired by the existing techniques based on using tree
automata ([BHRV06b]) and also techniques based on separation logic ([Rey02]),
we have developed a novel approach which tries to combine ideas from these
lines of research.

In particular, we have proposed an encoding of sets of heaps using an original
notion of forest automata. Essentially, a heap is split into a tuple of trees such
that non-tree links can be represented via explicit references to the roots of
the created trees. A forest automaton is then basically a tuple of ordinary tree
automata representing a set of heaps decomposed in this way. To obtain some
concrete heap out of this representation, one can pick a tuple of trees from
the languages of the tree automata which an FA consists of and replace the
non-local references by gluing the corresponding nodes.

Plain forest automata can represent sets of heaps which can be decomposed
into a finite number of tree components. In order to extend the expressive power
of the formalism, the original concept has been further extended by allowing
hierarchically nested forest automata to appear within the alphabet. We have
shown that hierarchical forest automata can indeed represent some sets of heaps
which would normally require an unbounded number of tree components and
that are important in practice (e.g., DLLs).

As the next step, we have developed a new symbolic verification method in
which we finitely represent infinite sets of heap configurations using forest au-
tomata. During a verification run, program statements are interpreted directly
over forest automata such that we compute the effect of a particular program
statement on infinitely many configurations in one step.

Our verification technique is based on the use of non-deterministic finite
tree automata, and the performance of the approach strongly depends on the
efficiency of the tree automata operations used. Among them, size reduction
and language inclusion are especially critical since they used to be traditionally
implemented via determinisation and only recently started to be implemented
directly on NTA (to avoid the exponential cost of determinisation as much as
possible). Therefore, we have also invested into improving the state-of-the-art
algorithms for these operations.
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The size reduction algorithm that we use is based upon collapsing states of an
automaton according to a suitable preorder. We, in particular, use downward
simulation which can be computed via a translation of a TA into a labelled
transition system. The original algorithm for computing simulation over LTSs
presented in [ABH+08, AHKV08] is a straightforward extension of the algorithm
for Kripke structures presented in [HHK95, RT07]. We show that the increase
in its complexity caused by the introduction of transition labels can be to a large
degree eliminated, which is supported by our experimental results.

Furthermore, we have also intensively investigated methods for checking lan-
guage inclusion of tree automata which is indirectly used for checking inclusion
of forest automata. The approach of [ACH+10] shows how one can combine
simulations and antichains for checking language inclusion of finite word and
also tree automata. This allows to achieve great computation speedups, es-
pecially when finite word automata are considered. In the case of finite tree
automata, bottom-up inclusion is considered in [ACH+10]. This can only be
combined with upward simulation which is quite expensive to compute and
usually does not yield bigger gains in speed. In order to solve this problem, we
have generalised the top-down approach of [TH03] to tree automata of arbitrary
arity. Moreover, we have extended the algorithm by using antichains combined
with downward simulation which is cheaper to compute and allows for a better
speedup.

Finally, we have created a freely available tree automata library containing
an efficient implementation of many important general purpose algorithms for
explicitly and semi-symbolically represented tree automata. For this purpose,
the basic versions of the data structures and algorithms described in the above
works have been carefully optimised, which we have also described in Chapter 7.

8.2 Further Directions

There are numerous directions of further work in the areas covered by the
thesis. From the theoretical perspective, the expressive power of hierarchical
forest automata is an interesting question which has not yet been systematically
discussed. In connection to that, there arises a question of allowing recursively
nested FA which would extend the expressive power to other interesting sets
of graphs. It is, however, not yet clear how such an extension should look like
such that it allows for the needed automata operations to be implemented over
it. Further, the proposed algorithm for backward symbolic execution should be
implemented and experimentally evaluated within the framework of predicate
language abstraction. One problem that could arise here is that of the precision
of the intersection under-approximation. If it appears problematic in some
practical cases, some more precise solution will have to be sought. Likewise,
if the precision of the currently used algorithm for inclusion checking of FA
appears insufficient on some examples (which has not yet happened), it may
turn out useful to increase its precision by taking into account the hierarchical
structuring of FA. A related theoretical question is whether or not the inclusion
is decidable (even if neglecting the cost of such a check).
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A very broad area for further research is that of extending the proposed
techniques to be able to cope with data stored inside the dynamically linked
data structures (which is crucial for verification of programs over red-black trees,
unmodified skip lists, or various user-specific scenarios exploiting dynamically
linked data structures) as well as for dealing with concurrency and/or recursion
(without the restrictions imposed in Chapter 4).

Next, concerning the problem of computing simulations for LTSs, it would be
interesting to study whether the memory requirements of the algorithm can be
further reduced by using some sophisticated data structure—such as BDDs—
for storing internal data of the algorithm. Such an approach could perhaps
reduce the impact of the alphabet size of the LTS even more. Moreover, an
interesting subject for further work is to go beyond reduction of automata based
on collapsing simulation equivalent states. Indeed, sometimes, it is useful to
split some states allowing a subsequent collapsing to be much more productive.

The problem of language inclusion of TA is also a possible subject of fur-
ther research focus. The bottom-up approach does not seem to benefit from
the combination with upward simulation. Therefore, it would be interesting
to see whether there exists a different (and possibly cheaper to compute) rela-
tion which could improve the performance of upward inclusion checking. On
the other hand, despite the optimisations that we proposed, the top-down ap-
proach can suffer from an explosion of the number of downward successors of
a given macro state. Moreover, in many cases, not all the successors need to
be examined if one is able to explore them in a suitable order. Possibilities of
optimising the sequence of successors are therefore also an interesting subject
of future work.

The further development of our general purpose TA library involves imple-
mentation of so far missing operations such as determinisation, complementa-
tion, general-purpose transduction, etc. Here, complementation is special in
that we are not aware of any existing efficient way how to implement it without
determinisation (although some initial ideas have appeared, e.g., in [Hos10]).
At the same time, complementation is crucial for some automata-based algo-
rithms such as the decision procedures of WSkS or MSO. For that reason, it
would be nice to either find some efficient way how to complement automata
without determinising them or to find ways how to avoid explicit complemen-
tation as much as possible. Apart from that, specialized versions of algorithms
working specifically with finite word automata (which are themselves a special
kind of TA) could be introduced in order to handle them more efficiently.

8.3 Publications and Tools Related to this Work

The verification technique for programs manipulating complex dynamic data
structures and the underlying formalism of forest automata presented in Chap-
ter 3 and Chapter 4 were first introduced in [HHR+11a]. An extended version
of the original description appeared in [HHR+12]. The proposed improvements
of the in algorithm for computing simulations over labelled transition systems
were published in [HŠ09a]. An extended version then appeared in [HŠ10]. The
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proposed top-down inclusion checking algorithm combined with antichains and
downward simulation was described in [HLŠV11a]. Finally, our work on the
general purpose tree automata library (and the optimised data structures and
algorithms that it is based on) was presented in [LŠV12].

Apart from that, the full versions of some of the above mentioned papers
were published as technical reports [HHR+11b, HŠ09b, HLŠV11b]. A detailed
description of the algorithms for computing abstraction (Section 4.4) as well as
the automatic discovery of nested FA (Section 4.3) have not yet been published
(and are planned to be published later on). The proposed techniques were
implemented in the Forester tool and the VATA library publicly available over
the internet12.

1http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/
2http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
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Pierre Moro, and Tomáš Vojnar. Programs with Lists are Counter
Automata. Formal Methods in System Design, 38(2):158–192,
April 2011.

[BCC+07] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’hearn,
and H. Yang. Shape analysis for composite data structures. In

123



Proc. of CAV, pages 178–192, Berlin, Heidelberg, 2007. Springer
Verlag.

[BHH+08] A. Bouajjani, P. Habermehl, L. Hoĺık, T. Touili, and T. Vojnar.
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[SJ05] Z. Sawa and P. Jančar. Behavioural Equivalences on Finite-
State Systems are PTIME-hard. Computing and Informatics,
24(5):513–528, 2005.

[Som11] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.4.2.
http://vlsi.colorado.edu/~fabio/CUDD/, 2011.

[SRW02] S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis
via 3-valued Logic. TOPLAS, 24(3), 2002.

[TH03] A. Tozawa and M. Hagiya. XML Schema Containment Checking
Based on Semi-implicit Techniques. In Proc. of CIAA, volume
2759 of LNCS, pages 51–61, Berlin, Heidelberg, 2003. Springer
Verlag.

127



[YLB+08] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano,
and P.W. O’Hearn. Scalable Shape Analysis for Systems Code.
In Proc. of CAV, volume 5123 of LNCS, pages 385–398, Berlin,
Heidelberg, 2008. Springer-Verlag.

[YLC+07] H. Yang, O. Lee, C. Calcagno, D. Distefano, and P.W. O’Hearn.
On Scalable Shape Analysis. Technical Report RR-07-10, Queen
Mary, University of London, 2007.

[ZKR08] K. Zee, V. Kuncak, and M. Rinard. Full Functional Verification
of Linked Data Structures. In Proc. of PLDI, volume 43 of ACM
SIGPLAN Notices, pages 349–361, New York, NY, USA, 2008.
ACM Press.

128


