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Abstract In this paper we propose an efficient approach to design fractional-
order elements’ (FOEs) series, while using a very limited set of “seed” FOEs.
The proposed approach follows the idea of general immittance inverter/converter,
whereas a suitable circuit solution employing operational transconductance
amplifiers is also presented and can be used for the design of grounded fractional-
order elements with the fractional order α being in the range [−2, 2]. The pro-
posed circuit may simply be extended to design fractional-order elements from
wider range of α to follow designers’ requirements. To show the efficiency of
the described technique, the use of only up to two “seed” FOEs with properly
selected fractional order αseed as passive elements results in the design of a se-
ries of 17 FOEs with different α being in the range [−2, 2]. Cadence post-layout
simulation results are presented that prove operability and robustness of our
design concept. Basic fractional 1.75-order low-pass filter is also presented to
show the utilization of a FOE being implemented by the proposed GIC.

Keywords Fractional-order element · Transformation · Immittance in-
verter/converter · OTA

1 Introduction

During the last few decades, fractional-order calculus gained significant atten-
tion in various engineering areas, as e.g. in control or modelling it provides
beneficial properties compared to classic integer-order systems [6], [22]. The
efficient utilization of fractional-order calculus and systems may also be ob-
served in agriculture [27], biology [9], electrical engineering [4] or cryptography
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[28]. Dealing signal processing, controller, or generally analogue function block
design, the fractional-order element (FOE) as discrete element (together with
other passive and active elements) becomes essential for the implementation
of the required circuit solution. However, the presence of FOE as readily avail-
able discrete element is not common yet. In [20] a comprehensive survey of
recent progress and possible design techniques and approaches to implement
FOEs of capacitive type are described, but all of them are still at the stage of
laboratory experiments and samples used by the individual research groups.
Therefore, to design and mainly evaluate the performance of fractional-order
systems, the required FOEs (capacitive-type) are nowadays suitably emulated
by RC networks, like Foster, Cauer or Valsa topologies, [5], [16], [26], [12], [18].

In [25], a systematic procedure for designing Foster-I, Foster-II, Cauer-
I and Cauer-II RC networks, which approximate the capacitive FOE with
generally any values of its parameters (i.e. the pseudo-capacitance Cα and
the fractional-order α) in a required frequency range is presented. However,
the values of individual resistors and capacitors of the RC network must be
precise to obtain the required accuracy of the approximation [25]. Requiring
new values of Cα and/or α also requires to determine new values of individual
resistors and capacitors of the RC network. Additionally as also shown in [11],
values of α being close to zero (0) or unity (1) results in very high ratio in values
of resistors and capacitors in the RC network. As consequence, individual
research groups dealing with fractional-order circuits design mostly use their
“tuned” RC network with fix Cα and α for all their designs, which does not
much contribute to the spread of the beneficial features of fractional-order
approach among the research community.

Although variety of systems and their parameters may be broad, similarly
as in classic circuit design defined series in values of resistors and capacitors
are used, we propose a concept of designing a series in fractional order α
of fractional-order elements. The advantage is that using only a very limited
number of “seed” (“tuned”) fractional-order elements, a high number of fi-
nal FOEs with different fractional order α can be obtained thanks to suitable
transformation of the initial discrete elements. Employing transconductance
operational amplifiers (OTAs), a general immittance inverter/converter is pro-
posed that together with a selected “seed” FOE is further analysed to prove
the operability of the presented concept. Our preliminary results were already
presented in [13], whereas here the ideas and reached results are more elab-
orated and extended. Having the active elements designed in CMOS TSMC
0.18 µm technology, post-layout simulations of the final structure are also pre-
sented and discussed to further support the theoretical assumptions. Using
single “seed” FOE with it fractional order 0.25 we show the potential of the
proposed concept in obtaining a series of 17 new FOEs, primarily different in
their fractional order being in the range of [−2, 2]. Additionally, a frequency
filter is designed as an example of possible utilization of the synthesized FOE.
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2 General description of fractional-order elements

The fractional-order elements (FOE) (also referred to as Constant-Phase Ele-
ments (CPEs) [10], Elements with Fractional Impedance (EFI) [14], or Fractors
[2]), are either of capacitive or inductive type and hence, the fractional-order
(also simply denoted as fractional) capacitor Cα and fractional inductor Lβ
with their impedance are defined as follows [25]:

ZCα(ω) =
1

ωαCα
exp

(
−jαπ

2

)
, (1)

and
ZLβ(ω) = ωβLβ exp

(
jβ
π

2

)
, (2)

where 0 < α < 1 and 0 < β < 1 are the fractional orders, and Cα and Lβ
are the pseudo-capacitance and pseudo-inductance specified with their units
[F/s1−α] and [H/s1−β ], respectively. The phase of the impedance is for both
types of fractional elements constant in whole frequency range, whereas ac-
cording to (1) it equals to −απ/2 for fractional capacitor and according to (2)
it equals to βπ/2 for fractional inductor.

As presented in [25], the fractional capacitor and its pseudo-capacitance
Cα may be at specific frequency ω0 represented as capacitor with capacitance
C that features the same impedance at ω0:

C =
Cα

ω1−α
0

, (3)

whereas an equivalent inductor with its inductance L featuring the same
impedance at frequency ω0 as the fractional inductor with its pseudo-inductance
Lβ may be specified as:

L =
Lβ

ω1−β
0

. (4)

From the above definitions and nomenclature of capacitive and inductive
type FOEs it may be evident that their description can be simplified. Assuming
β = −α then for positive and negative values of α the fractional capacitors
and inductors are assumed, respectively. Such simplification in nomenclature
is further assumed in this paper and hence only α is used.

3 Concept of designing FOEs’ series

The idea of designing a series in fractional order α of FOEs stems in efficient
utilization of immittance inverter/converter to which a “seed” fractional-order
element is connected. The utilization of general immittance inverter/converter
in designing fractional-order elements was already discussed e.g. in [8], [24],
[23], or [1], where operational amplifier based Antoniou’s general immittance
converter (GIC) is used. The approach discussed e.g. in [23] generally enables
to obtain at the input of the GIC new FOE with fractional order being in the
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range [−2, 2], however always assumes unique and different fractional-order
element with specific value of α (in the paper values 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 were assumed). The papers [8], [24], and [1] utilize GIC for the design
fractional inductors only. Hence, here we further develop the idea of using GIC
to design a series of FOEs using a very limited count of initial “seed” FOEs.

Assume a general function block as shown in Fig. 1 that is represented by
suitable interconnection of four general admittances Y1, Y2, Y3 and Y4 to an
active/passive network, whereas the active elements may be of arbitrary type.
Let the input impedance of such general function block be defined as:

ZIN =
Y1Y3
Y2Y4

1

g
, (5)

where g is a transconductance specific for the active/passive network. The
external general admittances Y1, Y2, Y3 and Y4 may be represented by any
type of passive element, such as conductor (G), inductor (L), capacitor (C),
or fractional-order element (FOE). Assuming only the phase of the input
impedance ZIN represented by the fractional order α, it can be written:

α = −α1 − α3 + α2 + α4, (6)

whereas αi represents the order of the specific admittance Yi based on its
type, i.e. for conductor αi = 0, for inductor αi = −1, for capacitor αi = 1 and
for fractional-order element αi = αFOE (−1 < αFOE < 1).

Replacing the general admittances Y1, Y2, Y3 and Y4 by selected types
of passive elements, one of the following types of passive (synthetic) element
specified with its fractional order α can generally be obtained at the input of
the immittance inverter/converter:

– frequency dependent negative resistor - type I (FDNR-I) with α = 2,
– fractional FDNR-I, i.e. 1 < α < 2,
– capacitor C, i.e. α = 1,
– capacitive FOE, i.e. 0 < α < 1,
– conductor G, i.e. α = 0,
– inductive FOE, i.e. −1 < α < 0,
– inductor L, i.e. α = −1,
– fractional frequency dependent negative resistor - type II (FDNR-II), i.e.
−2 < α < −1, or

– FDNR-II, i.e. α = −2.

The frequency dependent negative resistor - type I (FDNR-I), in the literature
also referred to as the D element [3], exhibits purely real negative resistance
that decreases in magnitude with increasing frequency, and is commonly used
for frequency filter design, e.g. [17], whereas FDNR-II also exhibits purely real
negative resistance but its magnitude increases with increasing frequency.

As mentioned in section 1, there are techniques to approximate the re-
quired FOE with specific parameters directly using a suitable RC network.
However, for each different circuit implementation another FOE with different
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Y1

Active/passive 

network

g

ZIN

Y2

Y3

Y4

Fig. 1 General view on immittance inverter/converter.

parameters is required. This fact results in limited performance analysis of
fractional-order circuits as the research groups use their “tuned” FOE with
trimmed values of resistors and capacitors in the specific RC network ap-
proximating the FOE. Such “tuned” FOEs may be advantageously used as
“seed” FOEs in immittance inverter/converter and based on (6) result in a
series of fractional-order elements primarily with different fractional order α.

Such utilisation of “seed” FOE is very efficient as shown below. Assume
a “seed” FOE with fractional order αseed = 0.25 that together with classic
conductor and capacitor is used to replace the external admittances Y1, Y2,
Y3 and Y4 from Fig. 1. Various combinations of these three types of pas-
sive elements (always assuming to employ up to two capacitors and/or two
“seed” FOEs) result in one of the 17 different values of fractional order α of
the input impedance ZIN from the range [−2, 2] as listed in Table 1. Note
that also other combinations of passive elements than listed in Table 1 may
be described, however the final value of α will be still one of the 17 already
present.

Next to obtaining a series in fractional-order α specifying the value of
constant phase of the input impedance ZIN, through appropriate setting of
the conductance Gi, capacitance Ci and/or of the transconductance g of the
active/passive network the magnitude of the input impedance may also be
set arbitrary although the pseudo-capacitance Cαseed of the “seed” FOE is
fix. It also may be evident that it is not a must to use the same “seed”FOEs
while replacing selected general admittances Y1, Y2, Y3 and Y4. For example,
assuming “seed” FOEs with αseed1 = 0.25 and αseed2 = 0.0625 results even in
51 different values of fractional order α of input impedance ZIN again from
the range [−2, 2]. These features make the concept of using “seed” FOEs in an
immittance inverter/converter much more robust as this approach very easily
results in the possibility to obtain new FOEs featuring required parameters.

4 Proving the concept

The theoretical concept of obtaining a series in fractional order α of fractional-
order elements is further verified by proposing an immittance inverter/converter
and analysing its performance. As active elements, the operational transcon-
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Table 1 Variant combinations of admittances Yi and their αi vs. final fractional order α
of ZIN for αseed = 0.25.

α1 α2 α3 α4 α ZIN type

0 1 0 1 2.00 FDNR-I

0.25 1 0 1 1.75
fractional FDNR-I0.25 1 0.25 1 1.50

0 1 0 0.25 1.25

0 1 0 0 1.00 capacitor C

0.25 1 0 0 0.75
capacitive FOE0 0.25 0 0.25 0.50

0 0.25 0 0 0.25

0 0 0 0 0.00 conductor G

0.25 0 0 0 −0.25
inductive FOE0.25 0 0.25 0 −0.50

1 0.25 0 0 −0.75

1 0 0 0 −1.00 inductor L

1 0 0.25 0 −1.25
fractional FDNR-II1 0.25 1 0.25 −1.50

1 0.25 1 0 −1.75

1 0 1 0 −2.00 FDNR-II

gm

+

_

OTA ISET/VSET

iOUT
v+

v  

Fig. 2 Schematic symbol of OTA.

ductance amplifiers (OTAs) are used. Generally OTA (Fig. 2) is a voltage-
controlled current source and is defined by the following expression [19]:

iOUT = gm(v+ − v−), (7)

where gm is the transconductance of the active element and most commonly is
also understood to be adjusted by an external dc current ISET (or dc voltage
VSET).

The proposed solution of the immittance inverter/converter employing
seven OTAs is shown in Fig. 3. Basically, it can be divided into upper and
lower section, composed of OTAs (and corresponding admittances) indexed
by odd and even numbers, respectively. Both sections result in an impedance,
whereas admittances Y2 and Y4 are converted and admittances Y1 and Y3 are
inverter to the input of the GIC. Based on mathematical algebra and using



Designing Series of Fractional-Order Elements 7

gm1

+

_

OTA1

gm3

+

_

OTA3

gm5

+

_

OTA5

gm7

+

_

OTA7

gm2

+

_

OTA2

gm4

+

_

OTA4

gm6

+

_

OTA6

Y1

Y2

Y3

Y4

ZIN

Fig. 3 Proposed immittance inverter/converter.

(7), the input impedance of the proposed circuit solution can be then derived
as:

ZIN =
Y1Y3
Y2Y4

gm2gm4gm6

gm1gm3gm5gm7
. (8)

Comparing (5) and (8), it is evident that the input impedance of the pro-
posed immittance inverter/converter (8) fully corresponds with the theoreti-
cally required input impedance defined by (5) to follow the proposed concept
since:

1

g
=

gm2gm4gm6

gm1gm3gm5gm7
, (9)

and hence it is proved that the above described concept of designing a series in
values of fractional order α in the range of [−2, 2] of fractional-order elements
is feasible. Additionally, assuming OTAs as active elements, from (8) or (9)
it can be seen that the also the module of the input impedance can be set
for individual values of α and hence the obtainable series new FOEs further
increases.

The circuit from Fig. 3 may simply be extended to provide wider range
of achievable values of α by expanding the upper and lower (i.e. with odd
and even indexes) cascade of admittances and OTAs. The extra added passive
and active elements cause continuation of products of admittances Y and
transconductances gm in (8). The range of α of such extended immittance
inverter/converter is then [−m,n], where m is the number of admittances
with odd index (i.e. in the upper cascade) and n is the number of admittances
with even index (i.e. in the lower cascade).

5 Simulation results

To verify the behaviour of the proposed immittance inverter/converter, post-
layout simulations were performed. Below, the employed OTA designed in
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TSMC 0.18nm CMOS technology is described and followed with the post-
layout simulation results and performance evaluation of the whole circuit.

5.1 Employed OTA cell

The OTA cell employed in the immittance inverter/converter was adopted
from the work [21] and its behavioural structure is shown in Fig. 4. It has
two pairs of differential voltage inputs, which are fed into two differential
summation blocks. The outputs of these blocks are multiplied first mutually
and then with a constant k resulting into two differential output currents with
the same magnitude and different direction. The external connection of the
terminals of this cell as OTA is apparent from Fig. 4.

VSET
k 2

v+

v‒ 

iOUT2

iOUT1

Fig. 4 Behavioral structure of the used OTA cell.

The following relation holds for the output currents

iOUT1 = iOUT2 = kVSET(v+ − v−), (10)

where the constant k = 2 mA/V2. Following (7), the relation between gm and
VSET is given by:

gm = kVSET. (11)

The simulated dependence of the value of transconductance gm on control
voltage VSET is depicted in Fig. 5 proving the relation (11) and the possibility
of electronic setting of gm. It can be observed that the characteristic is linear
for VSET ranging from 0 to 0.5 V.

5.2 Performance analysis of the immittance inverter/converter

To show the design of a series of FOEs, the “seed” FOE with fractional
order αseed = 0.25 and at central frequency f0 = 1 kHz featuring equiva-
lent capacitance 159.2 nF, i.e. based on (3) having the pseudo-capacitance
Cαseed = 112.3 µF/s0.75, is used. Also here we face the issue that a suitable
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g
m
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VSET [V]
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 1

 0.8
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 0.4

     0

 0.2

Fig. 5 The dependence of the parameter gm on VSET of the OTA cell.

“seed” FOE is not commercially available. Therefore, we approximate the re-
quired “seed” FOE using 5th-order Foster-II topology as shown in Fig. 6,
whereas the values of resistors and capacitors were determined using the ap-
proach as described in [25] and are summarized in Table 2.

R1

C1

R2

C2

R3

C3

R4

C4

R5

C5

R0

Fig. 6 5th-order Foster-II RC network used to approximate “seed” FOE

Table 2 Values of resistors and capacitors in Foster-II topology according to Fig. 6;
Cαseed = 112.3 µF/s0.75, αseed = 0.25.

R0 [kΩ] 3.16 C1 [nF] 4.00
R1 [kΩ] 0.79 C2 [nF] 14.2
R2 [kΩ] 1.41 C3 [nF] 55.6
R3 [kΩ] 2.28 C4 [nF] 219
R4 [kΩ] 3.65 C5 [nF] 814
R5 [kΩ] 6.19

The properties of the approximated “seed” FOE can be determined from
Fig. 7 showing the magnitude |ZFOEseed| and the phase shift arg(ZFOEseed) by
red color, whereas the theoretical values (based on (1)) are shown by black
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dashed lines. The absolute errors of the impedance magnitude and phase of the
approximated “seed” FOE from the theoretical values are depicted in Fig. 8.
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Fig. 7 (a) magnitude and (b) phase shift of the “seed” FOE from Fig. 6

The resulting magnitude and phase frequency characteristics of the in-
put impedance of the immittance inverter/converter (Fig. 3) are presented in
Fig. 9. The individual curves correspond to the resulting FOE variants summa-
rized in Table 1. The approximated “seed” FOE with αseed = 0.25 described
above along with the resistors (α = 0, R = 1 kΩ) and capacitors (α = 1,
C = 159.2 nF, i.e. |ZC| = 1 kΩ at frequency 1 kHz) are used to substitute the
admittances Y1 to Y4 in the default circuit from Fig. 3 in accordance with
Table 1. The transconductances gm1 to gm7 were set to be 1 mS.

The ideal results (black dashed curves) in Fig. 9 were obtained using ideal
elements in Fig. 3 and “seed” FOEs emulated with the Foster-II structure in
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Fig. 8 Absolute error in magnitude (red line) and phase (blue line) of the approximated
“seed” FOE

Fig. 6. The deviations of the simulated characteristics (color curves) in Fig. 9
from the ideal results are most apparent outside the frequency range 100 Hz
10 kHz. These errors in phase are shown in Fig. 10. It can be observed that
the error is higher for the cases with higher absolute values of the resulting α.
The impedance deviations are caused by non-ideal behavior of OTA elements
whereas the internal output impedance of OTAs most significantly effects the
overall performance of the immittance inverter/converter. The utilized OTA
element adopted from [21] exhibits real part of the output impedance approxi-
mately 360 kΩ which also limits the maximum value of the impedance magni-
tude of the nodes at the OTA outputs. Consequently also the dynamic range
of the overall input impedance magnitude is limited as apparent in Fig. 9 (a).

Additionally, the resonance in Fig. 9 being observed for the FDNR-I and
FDNR-II cases with higher absolute value of α is caused by non-zero para-
sitic conductances of OTA terminals in the GIC structure (note that an ideal
OTA shows zero input and output admittance). The resonances of FDNR-I
at low frequency and of FDNR-II at high frequency arise due to the parasitic
conductance of the overall input of the GIC where the main contribution has
the internal conductance of OTA7 output. On the other hand, the resonance
of FDNR-I at high frequency is caused by the parasitic conductance of the
GIC internal node where the outputs of OTA1 and OTA6 are connected and
their parasitic conductances are present. All these resonances are damped by
the inherent parasitic capacitances of the respective nodes which prevent the
GIC from unstable behavior. To ensure higher damping, the node capacitances
can be intentionally increased which results also in soft GIC input impedance
phase transition around the resonant frequency and reduction of frequency
range.

In Fig. 10 the absolute error in phase is shown. It is evident that the
final accuracy of the FOE at the input of the GIC is primarily determined by
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Fig. 9 (a) magnitude and (b) phase shift of the proposed immittance inverter/converter
from Fig. 3

the accuracy of the “seed” FOE and count of “seed” FOEs to implement the
required α. The error increases primary for solutions, where two “seed” FOEs
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Fig. 10 Absolute error in phase of the proposed immittance inverter/converter with
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are used to replace the general admittances Y1, Y2, Y3, and/or Y4. Hence, if
higher accuracy is required, the accuracy of the “seed” FOE must be increased,
primarily increasing the order of the RC network (Fig. 6).

5.3 Utilization of synthesized FOEs in filter design

Here, as an example we show the practical utilization of a new FOE obtained at
the input of the proposed GIC on fractional-order low-pass filter from Fig. 11.

C

FFDNR-I

R

VIN VOUT

Fig. 11 Passive low-pass filter using fractional FDNR-I (FFDNR-I).

Assuming that for fractional FDNR-I (FFDNR-I) the fractional order α is
in the range of [1, 2], the transfer function of the filter from Fig. 11 can be
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determined as:
VOUT

VIN
=

a

sα + sα−1b+ a
, (12)

where a = 1/(RF ) and b = C/F , whereas F is the fractance of the fractional
FDNR-I.

Selecting the FFDNR-I with its fractional order α = 1.75 as it was obtained
in sec. 5.2, its fractance is F = 225.5 pFs0.75. From Fig. 9, proper operation
frequency band is approx. 100 Hz to 10 kHz. Hence, following the fractional
frequency filter design recommendations as they were presented in [15], the
cut-off frequency of the filter is set to 100 Hz to maintain the fractional slope
in the stop-band of the filter in wider frequency range.

Coefficients a and b of the transfer function (12) are found for Butter-
worth response by the method as decribed in [7] for fractional order 1.75 and
frequency-scaled to obtain the filter cut-off frequency ω0:

a = ωα0
[
−0.0992(α− 1)2 + 0.0989(α− 1) + 1.004

]
, (13)

b = ωα−1
0

[
−0.4838(α− 1)2 + 2.023(α− 1) + 0.0104

]
. (14)

Assuming f0 = 100 Hz, according to (13) and (14) the transfer function
coefficients are a = 80616.7 and b = 157.564, and the transfer function (12)
turns to:

VOUT

VIN
=

80616.7

s1.75 + 157.564s0.75 + 80616.7
, (15)

whereas, the values of the resistor and capacitor from Fig. 11 are then deter-
mined to be R = 55 kΩ and C = 35.5 nF, respectively.

The magnitude and phase frequency responses of the low-pass filter reached
by simulations are presented in Fig. 12. Here, both the pre- and post-layout
simulations of the designed filter are shown by dashed red and solid blue
curves, and compared to ideal magnitude and phase response determined by
(15), shown as dashed black. Both from magnitude and phase response of the
filter only a slight difference between the pre- and post-layout simulations is
observed, which basically proves proper design not only of the proposed GIC,
but also of the initial OTA cell as it was described in [21]. From the simulations
results follow the ideal plot up to frequency approx. 12 kHz, where a parasitic
zero is present and is caused by the parasitics of the GIC as deviation at
the same frequency could already be observed in simulation results in Fig. 9
showing the magnitude and phase shift of the input impedance of the GIC.

6 Conclusion

In this paper, we proposed a concept of efficient design of a series in frac-
tional order α of fractional-order elements (FOEs) utilizing a limited number
of initial FOEs, here referred to as “seed” FOEs. The proposed concept is
further verified by designing an immittance inverter/converter suitable for ob-
taining a series of α spanning the range [−2, 2]. It was shown that using a
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Fig. 12 Simulation results of fractional low-pass filter from Fig. 11: (a) magnitude and (b)
phase response.

tuned “seed” capacitive FOE with the fractional order αseed = 0.25, a series
of 17 FOEs that differ in their final fractional order α can be obtained. Next
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to obtaining different values of fractional orders, another advantage of using
immittance inverter/converter is the possibility to adjust the absolute value of
the impedance at specific frequency, that is the pseudo-capacitance Cα once
speaking about capacitive FOE. The presented post-layout simulations further
prove the operability of the proposed concept in efficient design of fractional-
order elements. Additionally, as practical example, selecting the implemented
fractional FDNR-I it was used to design a fractional low-pass filter.
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