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Abstrakt

Tato prace resi problém chybéjici podpory pro spravné zpracovani Unicode vstupu v pro-
gramech projektu coreutils. Podpora byla implementovana pro programy cut, expand, fmt,
fold, paste a unexpand. Implementace byla provedena s vyuzitim knihoven libunistring a
gnulib. Programy byly radné otestovany a vykonnostni testy potvrdily zZe vykon programu
je porovnatelny nebo i lepsi nez u ptvodni implementace.

Abstract

This thesis solves the problem of missing support for proper handling of Unicode input in
the utilities of the coreutils project. Support was implemented for utilities cut, expand, fmt,
fold, paste and unexpand. The implementation was done using the libunistring and gnulib
libraries. Programs were properly tested and performance tests proved that performance is
comparable or superior to the original implementation.
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Chapter 1

Introduction

In the contemporary era, where the computer industry is experiencing a rapid growth,
computers are no longer just a room-sized university apparatus for a chosen few, but can
be found almost anywhere. Be it schools, medicine, government processes, home appliances
or indeed any aspect of life in general, computers are present in all our daily lives, either
directly or indirectly.

Commonly, the first personal computers were only able to accept English characters as
input, limiting their applicability to only some regions of the world, regarding real-life,
non-scientific usage. With the advent of Internet connectivity in common households,
computers have since also been queried with more personal tasks than scientific or business
computing. E-mails, social networks, forums, and generally any kind of text processing
could now be done by computers, although, initially with severe limitations. With all these
concepts reinforcing inter-personal communication and information sharing, the need to
properly represent other alphabets and characters has arisen. E-mail and chat clients, web
browsers, text editors and document viewers were all expected to be able to process, store
and often modify such content in a consistent manner.

Out of this need, several standards to represent special characters appeared. Most ex-
tended the standard US encoding with other suitable symbols. Many only addressed a
certain subset of characters, making them incompatible with other such standards. Even-
tually, the number of encoding standards in existence made it more and more difficult for
application writers to keep up and support them all. In 1987, Joe Becker of Xerox [1]
pondered the idea of uniting these standards into one, uniting all of the world’s symbols
into a single character set. Thus, the Unicode standard was created, successfully phasing
out most other encodings and being implemented in programs world-wide. The standard is
continually under development until this day and consistently getting used more and more.
Nowadays, proper access to information in the users’ native language is not considered to
be anything out of the ordinary. Yet, core applications and utilities created in the era of
first personal computers are still often unable to cope with non-US letters and characters.

As a citizen of a non-English speaking country, I’ve also encountered problems with the
processing of my native language. This fact, combined with my experience with low-level
GNU/Linux tools made this thesis an ideal choice for me. As the package of utilities chosen
is present on almost all GNU/Linux and UNIX systems, I think it’s important it provides
consistent support for the Unicode standard. My goal in this thesis is to analyze the current
status of the coreutils’ package ability to handle text containing international characters.
Furthermore, I am to provide an implementation of the standard for at least 5 utilities,
using an existing library approved by the current project maintainers. I’ll then test and



benchmark the utilities against the existing support, if any. The last step is sending these
patches to the current upstream maintainers.

In Chapter 2, I’ll talk more about the evolution of Unicode, but also other encodings,
Unicode’s history, its overall goals, described some important details of the standard and as-
sociated issues. Chapter 3 summarizes the existing implementation, mentions its drawbacks
and offers an alternative agreed upon by the coreutils maintainers. Chapter 4 describes my
implementation efforts in detail, as well as the required configuration of the package. Fur-
ther, it describes testing, picks out interesting or diverse test cases from the testsuite and
shows the results of benchmarking, where appropriate.



Chapter 2

Character encodings

This chapter contains a brief history and evolution of text encoding used in personal com-
puters, and most importantly outlines the Unicode standard’s history [1], rationale and
development [14]. It also covers encodings defined by the standard [7], as well as depre-
cated encodings, their usage, differences, advantages, and disadvantages [9], [10]. Separate
subsections are also dedicated to sorting and ordering, combining characters, surrogate pairs
and also planes and blocks. Some basic terms are also explained within the chapter, where
deemed appropriate. However, this chapter is not meant to be an exhaustive description
of Unicode, its applications or usage. I have used also used information from the book [22]
for this chapter.

2.1 History of character encoding

This section summarizes, in chronological order of their first appearance, the most common
standards for representation of characters on computers. It also briefly introduces Unicode’s
development over time.

2.1.1 ASCII

The abbreviation ASCII stands for American Standard Code for Information Interchange.
The standard defined a table of 128 characters and their codepoints to be used as their
standard representation in computers [2] and it’s been a de facto standard of computer
communication for decades. It has practically been a standard character encoding since
teletype machines were in use [8]. However, it became widely-used in personal computers
only after 1981, when IBM decided to migrate from their own EBCDIC encoding to ASCII.

2.1.2 ISO-8859

The ISO-8859 family of standards of 8-bit encodings, extending the ASCII character set,
often called extended ASCII. This led to a widespread notion that there is a single extended
ASCII table, whereas the term actually refers to all ASCII-based 8-bit character sets.
The standard comprises of 15 different parts, describing different encodings and associated
character sets. The ISO-8859 scheme itself was actually an attempt to consolidate more
cluttered industry standards at the time [9]. Similar to ASCII, the encodings contain a
mixture of characters for historical reasons, but each one to serve a different Latin language.
As mentioned before, Unicode was designed to begin with the ISO-8859-1 as its subset [10].



Although its share is constantly dropping in favor of UTF-8 (see 2.2.2), ISO-8859-1 is
still the second most common encoding of web pages. As of late 2014, its share dropped
under 10% for the first time. See figure 2.1 for details.

2.1.3 Unicode

By definition, Unicode is the universal character encoding, maintained by the Unicode Con-
sortium. This encoding standard provides the basis for processing, storage and interchange
of text data in any language in all modern software and information technology protocols.
The "Uni” part of the name stands for "universal”, "uniform” and "unique” [7] [1].

The initial idea behind Unicode was to consolidate all contemporary languages and their
associated alphabets into a single encoding. The initial design was concieved by Joe Becker
of Xerox [1] expected that each character would have a static 16-bit codepoint and dismissed
the idea of variable length encoding. The Unicode88 document assumed that 16-bits (65536
values) were more than enough to represent all the world’s modern characters, including
Japanese, Chinese and Korean. Originally, ancient scripts and symbols weren’t considered
for inclusion [1] and were instead considered "better candidates for private-use registration
than congesting the public list of generally useful Unicodes.”

The first 256 characters of the Unicode table are identical to the ISO-8859-1 (see 2.1.2)
standard, also known as latin-1. However, the extended ASCII part is encoded in two
bytes, thus a latin-1 string isn’t automatically a valid UTF-8 string. ASCII being a subset
of the ISO-8859 family of standards, they are both subsets of the Unicode character table.
Additionally, apart from the proper ASCII subset, all other characters are encoded as
a collection of 2 to 4 bytes in the range of hexadecimal values 0x80 to Oxfd, so ASCII
characters (in the range 0x00 to 0x7f) can never appear in the "middle” of other characters.
This is also the main reason why UTF-encoded ASCII strings are almost as fast to process
as if they were in their original ASCII encoding.

For Unicode 2.0, it became apparent that 16-bits would not be enough, and the standard
introduced surrogate characters (see 2.2.9) to represent characters outside of the range of
the 16-bits. Unicode is currently at version 7.0.0. The latest version added over 2834
characters, including support for lesser-used languages, currency symbols, historic scripts
and pictographic symbols such as emoji [7]. The next version of the Unicode standard will
be version 8.0. The new version should bring color modifiers for the recently added emoji
characters. The enhancement request was delivered to the Unicode standard committee by
the Google and Apple companies, claiming that the current Unicode character set is not
multicultural enough [14].

2.2 Unicode architecture

The Unicode Standard’s ultimate goal is to provide a universal encoding that encompasses
every known character, be it a current or ancient one. However, it is not just one big table
of characters. It provides different encodings for different use-cases and provides ways to
combine characters together to create new ones.

In this section, I’ll summarize current Unicode encodings, their differences, how they
represent characters, their shortcomings and common usage. I'll also describe some issues
not related only to Unicode encodings. Further subsections cover how the Unicode table is
divided and some basic terms regarding sorting, combining characters and surrogate pairs



are defined. The section ends with a short summary of deprecated encodings and reasons
for their deprecation.

2.2.1 Basic terms

This section explains some basic terms the reader can come across throughout the thesis,
as they are defined in the Unicode standard.

Codepoint is a numerical representation for a character. It uniquely references a charac-
ter.

Character is a single abstract independent entity in the Unicode table. A character may
be a letter, a punctuation mark or a an entity with no visual representation by itself.

Glyph is the graphical representation of a character. The rendering of a glyph is not
handled by the Unicode standard.

Script is a set of letters that are used together in writing languages.

Font is a repertoire of glyphs, similarly as a script is a repertoire of letters.

Internationalization and localization

Internationalization and localization are two terms often used interchangeably, although
their meaning is slightly different.

Internationalization is the process of designing software so that it can be localized for
various user communities without having to change or recompile the executable code [9].

Localization is the process of converting an application for use by a new user community.
Localization involves not just translating any user-visible text, but also altering things like
pictures, color schemes, window layouts, and number, date, and time formats according to
the cultural conventions of the new user community [9].

Very often, Internationalization is abbreviated to 118n and localization to L10n, the
numbers 18 and 10 denoting the length of characters between the first and the last letter
of the respective word.

2.2.2 UTF-8

The UTF-8 encoding was not in the initial proposal, which only had a fixed 16-bit encoding
in mind and actually dismissed the variable-length encoding as too cumbersome. UTF-8
was designed to be used in places where a person would usually use an 8-bit encoding. This
is the main reason it’s used on most GNU/Linux and UNIX systems, since other locales
are traditionally 8-bit. A character may be represented by 1 to 4 bytes and the actual
character byte-length is determined algorithmically. This has an important implication
when searching for a character. The maximum length implies, that the algorithm always
has to search at most 3 bytes before or after the examined character [9].

Some characters may have several representations in the Unicode table as they can be
composed of several characters (for example accented letters, see 2.2.8 for more details).
The standard also specifies that the shortest existing representation of a character must be
used. The non-shortest representations of a symbol are called overlong encodings and are
no longer legal.



UTF-8 is being aggressively adopted on the web and in text transmission over the net-
work. Figure 2.1 shows this continuous trend. Its other significant usage is on GNU /Linux
systems, where it has become a de facto standard for locale encodings.

UTF-8 adoption trend
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Figure 2.1: UTF-8 adoption trend

Overlong UTF-8 sequences

Initial Unicode standards permitted 5 and 6 byte UTF-8 sequences. These were possible by
using the non-shortest character representation from the supplemental planes (see 2.2.7),
which were also legal at the time. The use of five and six byte UTF-8 characters is now
illegal, and a reasonable up-to-date parser should reject them.

An often implemented exception to the overlong rule is the representation of the NUL
character (0x00) as 0xC0O 0x80. Programmers sometimes embed this sequence in strings in-
stead of the shorter version, since languages such as C and C++ have trouble incorporating
a NUL character in a string without considering it a delimiter [25]. Table 2.1 practically
summarizes legal UTF-8 sequences.

2.2.3 UTF-16

UTEF-16 is a variable length encoding. Is uses either one or two 16-bit words to represent
a symbol from the Unicode codeset. The symbols outside of the Basic Multilingual Plane
(BMP) are addressed with the use of surrogate pairs (see 2.2.9).

Please note that this is not the encoding initially specified by the Unicode88 paper,
although very similar. The initial encoding was called UCS-2 and was only able to address



Table 2.1: Legal UTF-8 sequences

’ UCS Code (Hex) ‘ Legal UTF-8 Values (Hex) ‘
00-7F 00-7F
80-7FF C2-DF 80-BF
800-FFF EO0 A0-BF 80-BF
1000-FFFF E1-EF 80-BF 80-BF
10000-3FFFF FO0 90-BF 80-BF 80-BF
40000-FFFFFF F1-F3 80-BF 80-BF 80-BF
100000-10FFFFF F4 80-8F 80-BF 80-BF
200000-3FFFFFF too large
04000000-7FFFFFFF | too large

the Basic Multilingual Plane (see 2.2.7), the first 16 bits. UCS-2 was most commonly used
on Windows NT systems, before Microsoft’s decision to switch to UTF-16.

Since UTF-16 is word-oriented, it requires a way to specify the byte order. One way to
achieve unambiguity is to use the BOM (see 2.2.11) mark. The other approach is explicitly
specifying the endianness in the form specified by the Unicode standard. In the case of
UTEF-16, this is called the UTF-16LE or UTF-16BE, LE and BE standing for Little Endian
and Big Endian, respectively (for more on endianness, see 2.2.11).

UTF-16’s most prominent usage is in the Java and .NET family of languages, exclusively
in Python2.0’s unicode class and on modern Windows systems in general (see 2.3.1).

2.24 UTF-32

UTF-32 is a fixed-length encoding representing each Unicode symbol with a 32-bit value.
UTF-32’s biggest problem is its size wastefulness. Since the vast majority of symbols found
in common text is from the Basic Multilingual Plane and even the largest symbols have
codepoints representable by 21-bits, a 4-byte codepoint is rarely needed. The codepoint
value in UTF-32 is simply zero-padded to 32 bits [9].

UTF-32 suffers similar memory waste problems as wchar_t does, with the exception
that its length is explicitly defined, and thus a data type representing an UTF-32 encoded
character should always be able to encompass a 32-bit value range [7].

Similar to UTF-16, UTF-32 should either employ BOM, or one of its sub-encodings,
UTF-32LE or UTF-32BE, to specify endianness (see 2.2.11).

Its less obvious advantage is that a UTF-32 codepoint can be used to retrieve a symbol
from a Unicode table in constant time, whereas with UTF-8, an algorithm may need to
look at up to 3 codepoints before and after the currently parsed codepoint to determine
a symbol. UTF-16 also has to determine the symbol algorithmically since surrogate pairs
may be used.

2.2.5 Universal Character Set

The Universal Character Set is an international standard and defines, among other, the
UCS codespace — the character table. The UCS is applicable to the representation, trans-
mission, interchange, processing, storage, input, and presentation of the written form of the
languages of the world as well as of additional symbols [16].



UCS-2

UCS-2 is a big-endian two-octet fixed-length encoding able to represent the BMP. It was the
encoding originally specified in the Unicode88 paper and known to be used by Windows
versions older than Windows 2000. This encoding is now deprecated [16] in favor of its
successor — UTF-16.

UCS-4

UCS-4 is another name for UTF-32, and the two terms can be used interchangeably [16].

2.2.6 Fullwidth and halfwidth characters

Some characters in the Unicode table are called fullwidth. In a nutshell, most latin char-
acters occupy one character cell and are called halfwidth. However, they, as well as many
characters from mostly Asian scripts have a so-called full-width representation, which oc-
cupies two character cells Distinguishing them is significant for correct output of many
utilities. Figure 2.2 demonstrates the difference.

ooprala@localhost: ~ X &) &
File Edit View Search Terminal Help

printf '81234567\nSayonara\nd & 7& 5\n' -
B1234567 :
Sayonara
T LB 8

Figure 2.2: Halfwidth and Fullwidth characters

2.2.7 Planes and codepoints

A Unicode plane is a table of 256 rows and 256 columns. The current Unicode standard
adopted the UCS — the Universal Character Set (see 2.2.5) and its division into planes.
A plane is a table of characters consisting of 65536 symbols. There are 17 planes in total.
The first of these planes is called the Basic Multilingual Plane, or BMP for short.

The remaining 16 planes are called supplementary planes, or sometimes astral planes,
and their usage is very sparse [9]. They contain mostly ancient scripts, various symbols and
special ideographs, used most often in names.

Basic Multilingual Plane

The BMP contains the most common modern characters, symbols, Japanese, Chinese and
Korean ideographs. Apart from them, it also contains surrogate codes used in UTF-16
to represent characters outside of the BMP [7]. The surrogate mechanism is described in
section 2.2.9. Figure 2.3 gives a concise idea of BMP’s division.
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Figure 2.3: Division of the Basic Multilingual Plane’

2.2.8 Combining, decomposition and normalization of characters

This subsection briefly mentions character combining, explains the terms canonical decom-
position, composite and normalization.

Combining

Many characters in the Unicode table can be represented in more than one way. This is often
the case with the latin-1 characters. For example the letter ’é¢’ has its own codepoint, and
in this representation is called a composite. However, it can also appear decomposed as two
separate Unicode characters: the character ’e’ and the combining character ’*’. This form
is called a canonical decomposition of a character. By definition, every composite character
has a canonical decomposition in Unicode. However, not every possible composition exists
as a separate composite character in the table [9].

Sorting and equivalence

Decomposition imposes complexity especially on sorting. As an example, as far as Unicode
is concerned, both ”é” and ”e’” are identical strings. In other words, both these repre-
sentations are equivalent, and should have equal sorting weight. This imposes additional
complexity on sorting, since sorting algorithms need to look ahead and backward to get
complete characters. Since non-combining characters may have more combining characters

attached to them, all characters have a numeric property called the combining class, ranging

"https:/ /upload.wikimedia.org/wikipedia/commons/8/8e/Roadmap_to_ Unicode_ BMP.svg
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from 0 to 255. All ”"standalone” characters have a combining class of 0. Combining charac-
ters have a combining class from 1 to 255. A decomposed composite’s combining characters
are then sorted numerically using their combining classes, which is the only valid canonical
decomposition of that character [9]. The basic rule is that a combining character sequence
goes from one character with a combining class of 0 to the next character with a combining
class of 0.

2.2.9 Surrogates

Surrogate pairs are a technique for UTF-16 encodings, used to represent characters outside
of the BMP by using two UTF-16 words. They are the main difference between UTF-16 and
UCS-2. A surrogate pair consists of a high surrogate (sometimes called a leading surrogate)
and a low surrogate (sometimes called a trailing surrogate). Both of their legal values are
ranges from the BMP and both have 1024 possible values. Surrogates should always appear
in pairs, in other words, A leading surrogate can be followed only by a trailing surrogate and
not by another leading surrogate, a non-surrogate, or the end of text [7], and an occurrence
of one without the other implies that the string is ill-formed. Surrogates are rarely needed
and an instance of their flawed implementation has been a source of a security vulnerability
in the Python language parser in the past [23]. Figure 2.3 nicely shows the region reserved
for surrogate codepoints in gray.

2.2.10 Compression schemes

Compression schemes appeared out of the most commonly voiced argument against the
original Unicode proposal. That is, for US and Latin scripts in general, the size of all text
data would double, which, at the time was a big problem for both storage and transmission.
Later, with the standardization of UTF-8, many adopted it as a form of "compression”.

SCSU

SCSU stands for Standard Compression Scheme for Unicode and was developed by Reuters.
It is a file encoding scheme, not a compression algorithm. However, it uses compression
algorithms itself, often yielding better results than if these algorithms were applied to
non-SCSU Unicode-encoded text. SCSU is a stateful encoding, meaning a character may
be represented differently in each occurrence, depending on the preceding characters. This
implies, that SCSU-encoded text is not seekable and has to be interpreted sequentially from
start to finish. It operates in two modes: single-byte mode and Unicode mode.

Single-byte mode In this mode, most ASCII characters, save several control ones, are
representable as themselves. This implies, that a reasonable ASCII text is also a valid
SCSU text. Latin-1 characters are also interpretable as themselves, so an ISO-8859-1
encoded text should be a valid SCSU text as well. Some ASCII control characters
used for SCSU’s special purposes are used to switch the interpretation of characters
with codepoints 0x80 to OxFF. The values always represent a contiguous block of
codepoints from the UCS.

Unicode mode For scripts, where constant window switching would yield significant over-
head, such as the Chinese Han script, there’s the Unicode mode. SCSU’s parser should
switch to Unicode mode upon encountering a certain control character. All characters
in this mode are considered as UTF-16BE encoded [9].
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BOCU

BOCU stands for Binary Ordered Compression for Unicode. BOCU is a compression scheme
developed by IBM and supersedes SCSU in matters of simplicity and compression [6]. Its
greatest benefit is that BOCU-encoded text sorts in the same order as an uncompressed
text would [9]. BOCU’s downside is its per-request license. According to a letter from IBM,
”IBM would like to offer a royalty free license to this patent upon request to implementers
of a fully compliant version of BOCU-1" [5].

2.2.11 Endianness and Byte Order Mark

UTF-16 and UTF-32 are both byte-oriented and have their own ways of specifying the
correct order of bytes after a transmission on a network.

Endianness Endianness refers to the computer architecture’s approach to storing and
reading memory. The smallest addressable unit being a byte, when manipulating a word,
which is the CPU’s address size (usually 32 or 64 bits), there’s a choice to store the data
from highest order byte to the lowest order byte or vice versa. This is a non-issue while
on one machine, but becomes an issue once inter-computer communication is involved.
The most common way for a Unicode text stream to denote its byte orientation is with the
usage of a Byte Order Mark (see 2.2.11) at the beginning of text. Another way is specifying
a Low-Endian (LE) or Big-Endian (BE) orientation in the encoding name (see 2.2.3 and
2.2.4).

Byte Order Mark A Byte Order Mark, often abbreviated as BOM, is an initial byte
of a text stream, specifying unambiguously the endianness of the rest of the stream. It
only makes sense for UTF-16 and UTF-32 text. A missing BOM implies Big Endian byte
ordering. Using BOM is not necessary and actually discouraged in UTF-8. However, it
often appears in UTF-8 encoded text anyway as a result of conversion from other encodings
(UTF-16/UTF-32). Some developers use it to distinguish UTF-8 encoded text from other
8-bit encodings. One may come across the term UCS-4 [7], which is treated as a synonym
to UTF-32, although it’s defined in a different standard (see [16]).

Special meaning

The BOM was also used as ”zero-width non-breaking space” until Unicode3.2. Having
no visual representation itself, it was embedded between character codepoints that it was
meant to glue together and inhibit breaking them into multiple lines. It has since been
replaced with "WORD JOINER”, a character dedicated to have the same functionality.
An example of its usage would be to insert it between ’c¢’ and ’h’ in the Slovak language,
where ’ch’ is a separate character, thus ensuring the two letters are always shown together.

2.3 Unicode support in programming languages

The support for handling Unicode strings varies from language to language. For languages
older than the standard, it’s usually handled by either a third party library, an extension
of the language standard (Python), sometimes both. Newer languages, such as Ruby, Perl,
Go or Java, come with Unicode support from the very beginning. Some languages, such as
PHP, have no standardized native Unicode support [22].
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2.3.1 Java and .NET languages

Although both different technologies from different vendors, their internal representation
of Unicode strings is almost identical. Both use UTF-16 internally and thus use UTF-16
surrogate pairs to represent characters outside the BMP [18] [17]. Both also have rich
libraries supporting transparent character-oriented operations.

2.3.2 C and C++

As these languages are older than the Unicode standard, they did not initially have native
support for multibyte characters [9]. Strings are instead represented as arrays of type char,
which by the most recent standards, equals to one byte. One attempt at the solution to
this issue were the wide characters (see 2.3.3). One can denote strings with wide characters
with a leading 'L’ before the string, making the compiler produce an array of type const
wchar_t, instead of an array of const char.

char *string0 = "this is a string represented as an array of const chars";
wchar_t *stringl = L"this is a string rep. as an array of const wchar_t-s";
char *string2 = L"this will result in a compiler warning";

Another approach is that taken by the GNU libunistring library (see 2.3.5), where the
array of chars is used to store UTF-8 strings, and the amount of bytes that constitute a
character is determined algorithmically.

As of the C4++11 standard, provides a way to natively represent Unicode strings [15],
[4]. C+4+1z should further expand on these features and adds a similar way to represent
UTF-8 character literals in the code [21]. The definition of byte in the C++ memory model
was changed, so that ”A byte is at least large enough to contain any member of the basic
execution character set and the eight-bit code units of the Unicode UTF-8 encoding form
and is composed of a contiguous sequence of bits, the number of which is implementation-
defined” [15]. The standard also added literals u8, u, and U to denote UTF-8, UTF-16 and
UTF-32 encoded strings, respectively. A typical example would be:

u8"I am an UTF-8 encoded string literal"
u"Il am an UTF-16 encoded string literal"
U"I am an UTF-32 encoded string literal"

2.3.3 The Wide character type

The issue of not being able to properly represent and operate on strings with multibyte
characters required mitigation even for lower-level languages such as C. Standardization
attempts by the ISO C and POSIX committees resulted in a draft describing the wide
character type and its respective API. The standard, however, is vague in certain points
and several sections could be implemented solely based on the implementer’s discretion.
Firstly, the wchar_t byte size was unspecified and is left up to the compiler writers’
discretion. On Microsoft Windows and IBM AIX platforms, wchar t is always 16 bits in
length, which is insufficient to represent the entire Unicode table. On GNU /Linux systems,
wchar_t is guaranteed to be 4 bytes in length. On BSD and Solaris, however, the wchar_t
bytesize is not documented and depends on the locale chosen. On an architecture, where the
ABI is defined in a way, where wchar_t is 4 bytes, storing a string consisting of ASCII-only
characters would result in quadruple memory footprint of the string, almost making it
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suitable for UTF-32. This is unfeasible not only for network communications, but for most
applications in general.

Apart from that, the wchar-API does not have a 1-to-1 relation with the old C-string
API. This was amended in a later POSIX iteration and an GNU glibc as an unofficial
extension. The wide character standard is a failed effort, but often a necessary evil in many
C/C++ applications up to this day. For performance reasons, among others, the current
multibyte support for coreutils was never accepted by the upstream maintainers and only
remains as a set of original 1i18nux movement patches kept in distribution packages (namely
Fedora, RHEL and OpenSUSE).

2.3.4 International Components for Unicode

The International Components for Unicode, or ICU, is a set of mature, portable localization
libraries for the C, C4++ and Java languages developed by IBM. Apart from these languages,
there exists 3rd party support for many more (Python and Ruby being only a few of the
many) via wrappers. It is based on a set of Java internationalized libraries, and was
originally written for Sun Microsystems. It contains conversion interface for both SCSU
and BOCU compression schemes and is used by many open-source projects such as the
Firefox and Chrome browsers, the Qt and boost libraries or the LibreOffice office suite, to
name a few. It is licensed under its own ICU license compatible with GNU GPL [9].

2.3.5 Libunistring

Libunistring is a library of functions for manipulating text according to the Unicode stan-
dard. It is very well-tested, as many of its modules originally come from gnulib. In the past
two years, the libunistring mailing list consisted mainly of conversations about build failures
on exotic architectures or enhancing support for the new standard, bug reports were very
rare. Originally written by Bruno Haible, the author of the clisp interpreter (among other),
the library has been accepted by the GNU project as the main tool for GNU applications
that work with strings [3]. It is often distributed as a stand-alone library. However, it’s
also a part of the GNU gnulib portability library? and shares its design goals, making it
an extremely portable solution to this problem. It provides full support for the Unicode
7.0.0 Standard.

Libunistring is currently not very wide-spread, and is used mostly by lesser-known
open-source projects such as Tracker(database), Hop (Web 2.0 programming language),
Rygel (multimedia sharing) or Guile (GNU implementation of Scheme). However, it’s also
a dependency of GNU gettext, a utility aimed at providing multilingual documentation and
messages in programs. Updated information on libunistring’s usage can usually be found
by querying the package system on most Linux distributions.

Libunistring was written mainly as a smaller, more flexible Unicode handling library,
that would implement only the necessary parts of ICU. Another motivation was also that
it would be a GNU project, making it easier to push through bugfixes and changes, than it
would be for a robust library from a different vendor.

2.3.6 Python — a Case Study

As a demonstration of how difficult it can be to assess the drawbacks and benefits of using
any of the standard encodings during design, one can look at the Python language’s Unicode

Zhttps:/ /www.gnu.org/software/gnulib/MODULES.html#module=libunistring

14



type internal representation evolution over time [19]. This also demonstrates how difficult
the problem of reliably representing text is.

The first implementation of the unicode class in Python2.0 used UTF-16 internally,
and without the use of surrogates, thus only supporting the Basic Multilingual Plane. The
proposal hinted a possible 32-bit extension of the language in the future [11]. The extension
came with a Python Enhancement Proposition a year later in PEP261 [20]. It extended the
Python internals to support internal string representation using UTF-16 with the support
of surrogate pairs or UTF-32 switchable at compile time. With Python3.0, Unicode type
became the default string type of the language [19]. The official internationalization of the
Python3 language brought forward several issues for POSIX systems, converting certain
data to Unicode and creating surrogates where there were none [12]. With Python3.3, the
internal representation changed, so the encoding was set by the character with the highest
ordinal. For example, UTF-8 for ASCII-only text, UTF-16 for text containing common
Kanji script and UTF-32 for strings containing ancient scripts such as Gothic [13].

2.4 The Linux Internationalization Movement

The Linux Internationalization Movement, often abbreviated Lil8nux and later renamed
to Openll18N, stands for the Linux Internationalization Initiative. The ”il8n” stands for
internationalization, the number 18 signifying that there are 18 letters between ’i’ and 'n’.
It is a specification for the internationalization capabilities that should be included in a
Linux implementation. Among others, it mandates the use of ICU (see 2.3.4). It is now a
module of the much larger Linux Standard Base Specification (LSB [24]), which was created
to lower the overall costs of supporting the Linux platform.
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Chapter 3

Design of the multi-byte support

The GNU Core Utilities! are the basic file, shell and text manipulation utilities for the
GNU/Linux distributions and many flavors of Unix. These are the core utilities which are
expected to exist on every operating system . This chapter briefly describes the process of
adding multi-byte support to the coreutils package, first attempts as well as the currently
accepted solution, it mentions the Lil8nux movement efforts regarding coreutils and the
movement’s pitfalls and also showcases the upstream-proposed solution that is already
under construction. This is the effort this thesis is attempting to contribute to.

3.1 Initial status

Coreutils, dating back to as far as 1992, was formed by three previously stand-alone pack-
ages — fileutils, shellutils and textutils, neither of which had any locale-awareness. Origi-
nally, the coreutils package utilities were completely unaware of the locale they were running
in, mostly only considering ASCII-encoded input and working with the assumption that
one byte equals one character. As the UTF-8 adoption trend graph 2.1, this is not an ideal
approach for several years already. The original multi-byte patches, which are still used by
a few distributions at the time of writing, originate from the year 2000 and the Lil8nux
movement. The patches were never accepted by the upstream project maintainers due to its
mechanical approach, code duplication, several security issues and a negative performance
impact [3]. The coreutils project maintainers have assessed the pros and cons of current
solutions and deemed the original Lil8nux movement patches unsuitable for upstream in-
clusion. However, several distributions still maintain these patches and include them in
their coreutils packages.

3.2 Proposed solution

Several years after the Lil8nux movement, Bruno Haible released the Libunistring library
(see 2.3.5), which, for coreutils, is to be used as a final solution to the multi-byte issue.
Péadraig Brady, the current upstream maintainer put together a plan to add multi-byte
support to the coreutils set of utilities, specifying several goals. The main goal is the
re-implementation of multi-byte support for the utilities covered by the original Lil8nux
patches, so that they may be dropped from distributions [3]. Furthermore, the utilities’ op-

"https://www.gnu.org/software/coreutils/
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eration in C locales should not be adversely affected by the multi-byte extensions, regarding
both performance and correctness.

I’ve chosen six utilities to convert — expand, unexpand, cut, fold, fmt and paste. Their
algorithms and usage are very different and are further described in the following pages. The
choice was made based on several factors. Firstly, the aforementioned coreutilsil8nplan
has its own preferred order or internationalizing utilities, which I mostly adhered to. Also,
several of these utilities had work already done on them by other contributors. Their
patches either wait for review or they expressed their commitment to further work.

3.3 expand and unexpand

The expand and unexpand form a tight couple, one fundamentally do the inverse of the
other. However, their algorithms differ.

In a nutshell, expand converts tabs in given files to a certain number of spaces and out-
puts them to standard output, maintaining the proper alignment at tab stops. Backspaces
in the input are preserved, but they also decrement the tab counter. Additionally, users may
specify the positions of their own tabstops, making the expansion of input with fullwidth
characters non-trivial. Unexpand, conversely, transforms a specified number of consecutive
spaces at desired locations into tabulators. By default, it only converts blank characters at
the beginning of each line. Backspaces are again preserved.

With expand and unexpand, it turned out to be easy to factor out common parts, thus
there is a third module added called expand-core. ¢, with common functions of both expand
and unexpand. Like other utilities, it considers one byte to be one character. The code was
amended to recognize multibyte characters and especially characters in their ”fullwidth”
forms, occupying more than one character cell (see 2.2.6). The algorithm thus had to be
changed to account for the number of characters as well as the number of character cells
they occupy. The algorithms were changed to adhere to those requirements.

initialization;
foreach character do
if character == tab then
repeat

increment column;
print space;

until column == next_tabstop;
continue;

end

else if character == newline then
column = 0;

end

print character;
column += character_width;

end
Algorithm 1: Algorithm of Expand
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initialization;

foreach character do

if character == space then
increment consecutive spaces;
continue;

end

else if character == newline then
column = consecutive_ spaces = 0;
continue;

end
else if column + consecutive__spaces == next_tab__stop then
‘ print tab;
end
else
while consecutive spaces > 0 do
print space;
decrement consecutive_spaces;
end
end
print character;
increment column;

end
Algorithm 2: Algorithm of unexpand when all blanks are converted (unexpand —all)

3.4 cut

Cut is a utility which is used to divide lines by bytes, characters or fields, where fields are
delimited either by a tab, or by a user-specified character. All ranges are specified in the
form of N-M, where N denotes the starting and M denotes the ending byte, character or field.
While division by bytes is relatively straightforward and needs no change, the dividing by
characters and diving by fields features need to be Unicode-aware. There is also a mode
where cut divides by bytes, but preserves valid multibyte characters together. The user can
also specify if non-delimited lines are to be printed and even specify an output delimiter
when in byte or character mode.

All division may be specified by ranges. Here, again, is the problem of distinguishing
characters and comparing them to the delimiter properly. Algorithm 3 illustrates cut’s
internals in more detail.

3.5 fmt

The fmt utility, as its name implies, formats text to a desired width without splitting words,
and reformats indentation, optionally detecting prefixes. Here again, byte-oriented text
processing took place and the fmt utility was patched to properly recognize word widths
and thus properly format the output lines. By default, fmt also expands tab characters
and preserves additional spaces between words or lines. Fmt further uses a few heuristics
to determine when to break sentences for optimal output. For example, if it is possible, it
doesn’t split lines after the first word and before the last word of a sentence. Lastly, fmt has
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initialization;
foreach line do
while true do
find delimiter in line;
if not delimiter_found then
if print_nondelimited_ lines then
‘ print line;
end
break;
end
else if field _number in wanted_fields then
print line[current_ position, delimiter_ position];
print output_ delimiter;
end
current__position = delimiter_ position + 1;
end

end
Algorithm 3: Algorithm of Cut when separating fields

several modes of operation, where it only formats lines beginning with a certain prefix, or
doesn’t format the beginning lines of a paragraph, can squash redundant spacing between
words or work in a split-only manner, where shorter lines are not joined together, which is
often desirable for formatting code. Algorithm 4 illustrates fmt’s internals in more detail.

initialization;
foreach paragraph in text do
process words in paragraph;
format paragraph based on specified width;
output paragraph;
end
Algorithm 4: Fmt’s algorithm with default options

3.6 fold

The fold utility simply rounds the lines to the specified width or character count, concate-
nating the rest with the following line. Characters and especially their widths have to be
accounted for. Additional complexity comes with the option to break at spaces, where
simple character counting is not enough. Algorithm 5 illustrates fold’s internals in more
detail.

3.7 paste

The paste is a simple utility that merges corresponding lines of the files given as arguments.
The issue here is that the user may specify a list of delimiter characters, which may of course
be any valid Unicode characters, with varying column and byte width. This list of delimiters
is then cycled through and continuously inserted between the merged lines.

19



initialization;
foreach line do
foreach char in line do
if column + char_width > folding column then
print newline;
column = 0;

end
print character;
end
end

Algorithm 5: Fold’s character folding algorithm

Three main things were changed in this utility. Firstly, the function to filter escape
characters from the delimiter string uses u8_next to iterate over the string, as it needs
to be multibyte-aware. As we do not have a Unicode equivalent of getchar(), the util-
ity buffers entire newline-delimited lines instead. This is not wasteful, as the utility uses
getc() in a loop anyway. Finally, instead of an array of delimiting characters, the list of de-
limiters is iterated over using a u8_next () function, making it character-aware. Algorithm
6 illustrates paste’s internals in more detail.

initialization;
while true do
for file in input_files do
line = read_ line from file;
print line;
print next_ delimiter;
if end of file then
close file;
if all_files closed then
‘ end program;
end
end

end
print newline;

end
Algorithm 6: Algorithm of the paste utility
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Chapter 4

Implementation of multi-byte
support in the GNU coreutils

In this chapter, I describe in greater detail the implementation and its related problems,
talk extensively about testing, which is an integral part of the process and assess the per-
formance impact of the Lil8nux and libunistring approaches to respective utilities. Unless
otherwise noted, all examples are written in the C language, except when changing the
configuration and building scripts, which are handled by autotools. This chapter contains
a more detailed description of the implementation approach I've taken. It also showcases
several important testcases, describes the correct output, shows original incorrect output
and mentions coreutils tests in general.

Next, section 4.3 compares performance with ASCII input in the classic C locale using
the original code base, then with multi-byte inputs processed by utilities patched with the
Lil8nux patches, which use the standard C functions for wide character and string handling,
and inputs processed by utilities using libunistring.

4.1 Common code sections

The programs bundled in the coreutils package share a few common traits. For one, they
share a common build system. They are also linked with the libcoreutils library, which
is mostly a bundle of required modules from the Gnulib library. Several lines of code are
common to all programs, such as added linking options in the src/local.mk script or
proper #include directives. Control sequences to iterate through strings have also changed
and are basically identical for all programs. Apart from these code segments, other portions
of the code are mostly specific to the application and do not lend themselves to reusability.
All the utilities are single-threaded. The source code has grown by 27% in linecount on
average. Table 4.1 provides more detail.

4.1.1 while loops

Since we can no longer assume that one char equals one byte, we have to use a function
which can iterate over characters.
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Utility lines(orig.) | lines(lil8nux) | lines(thesis)
paste 522 N/A 719
cut 831 1242 1169
expand 430 593 3391
unexpand 532 758 4821
fmt 1033 N/A 1196
fold 308 571 544
Average growth (where applicable) \ \ 51% \ 27%

Table 4.1: Code growth for each utility (measured by wc -1)

Listing 4.1: Classic C-style string processing.
char *string = input_string;
char c;
while ((c = *string++) != '\0")
{

/* Process character c */

3

The classic char* loop above needed to be rewritten to either a vector of UTF-32 char-
acters represented by ucs4_t or to a UTF-8 string.

Listing 4.2: UTF-8 string processing.

uint8_t *string = input_string;

ucs4d_t c;
while ((string = u8_next (string, &c)) != NULL)
{

/* Process Unicode character c */

}

4.1.2 The development environment

As for the implementation environment, all the programs are written in GNU C99, although
no GNU extension to the language are actually used. The compilers being used are the
GCC-4.9.2 on Fedora 21 and a manually built GCC-5.1. However, compiling the source
code with Clang, and on other Linux or Unix flavors should pose no problems, assuming all
dependencies are present on the system. The source code was written on top of Coreutils
v8.23, bootstrapped with Libunistring 0.9.3, using GCC 4.9.2 and GCC 5.1. The resulting
binaries have grown approximately by 2% compared to the binaries compiled with code
patched with the original Unicode support.

Bootstrapping libunistring is a process with several steps. Since libunistring is a gnulib
module, it is added to the list of gnulib_modules in the file bootstrap.conf. Further-
more, the gl _LIBUNISTRING m4 macro needs to be placed in the configure.ac file. The
gl LIBUNISTRING macro ensures the proper definitions such as

HAVE_LIBUNISTRING=yes

!Code refactored to expand-core.c is additional 188 lines long
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if libunistring is found. Among others, it also defines the LIBUNISTRING macro that expands
to necessary linking information.

The coreutils build system needs to be aware of the specific utilities’ need for linking
with libunistring. For cut, for example, this would be done by adding a following line to
the Automake src/local.mk file, written in autotools syntax.

src_cut_LDADD += $(LIBUNISTRING)

4.1.3 Common code
Each internationalized utility contains this definition:

static bool u8_locale;

Being a static variable, it’s zero-initialized by default. For utilities compiled with li-
bunistring support, u8_locale can be set to true if certain conditions hold.

#if HAVE_LIBUNISTRING
u8_locale = STREQ ("UTF-8", locale_charset());
#endif

The u8_locale locale variable is used to determine whether converting input text to

UTF-8 is really necessary.

4.1.4 Outputting separate characters

It is often desirable to output a string character by character. The common function for this
would be putchar (). To output separate Unicode characters, the libiconv library provides
the print_unicode_char () function, which is declared in the unicodeio.h header file.

4.2 Testing the implementation

The testing was done on the following machine:

CPU Intel(R) Core(TM) i5-2540M @ 2.60GHz with two cores, four threads and a 3072
KiB L3 cache

RAM 8GiB

GPU Intel HD Graphics 3000 GPU

HDD 320GB ATA HDD Toshiba with 7200 RPM
System GNU/Linux Fedora 21

The binaries were compiled with GCC-5.1 with options ”-O2 -g”. The functionality
testing is a combination of white-box and black-box testing, as tests are often based on the
knowledge of source code itself, not just the described functionality.

Tests have been taken from three sources. There are multibyte tests used in Fedora,
which are not in upstream repositories. Then there are patches I've written myself, based
on the knowledge of the internals. The last source is made of translated output strings of
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common programs taken from the Fedora Zanata? localization project. Most of these tests
are written in either perl or shell script.

If you’re going to test the original, unpatched programs to see for yourself, I strongly
encourage you to pipe the output through ’'cat -A’ to see the non-printing characters, and
special characters with no visual representation. If you want to run the complete coreutils
testsuite, you can do so with the "make check” command. Tests can be found either in
the tests/<utility>/ directory or sometimes separately in a tests/misc/<utility>.pl
script. The tests I've written were written mostly to fill the gaps left by the Fedora tests, or
where tests were missing altogether, since the Fedora multibyte test coverage is very large.

Thorough testing is necessary for any new feature, especially for solutions like multibyte
support, that often require larger changes. This section shows a deficiency with each con-
verted utility on a simple test. More elaborate testing can be achieved with larger inputs,
such as those used for performance testing (see 4.3).

4.2.1 expand and unexpand

As mentioned before, expand and unexpand are used to convert between tabs and spaces
in text, mostly to preserve indentation. Having the following input:

1a (o} u B

a Unicode-aware version of expand seems virtually unchanged, if one does not closely ex-
amine the whitespace:

a b c d
a o) i B3

Conversely, the original expand would output:

a b C d
a o) i B

Expand would originally garble the output, considering each of the characters on the
second line as being two single-byte characters containing two cells total. The new code
doesn’t consider the byte length of a character but rather its width when printed.

4.2.2 cut

Due to the cut utility’s way of transforming input, multi-byte input is garbled much more
severely than in the case of expand and unexpand, where human-readable text would still be
legible, even after improper expansion/unexpansion. The cut utility offers several modes to
work with input. There is division by individual bytes, which is left untouched. However, a
list may be specified to only cut out certain characters, fields or their ranges, and this portion
of the code has to be multi-byte aware. The original multi-byte support also implements a
mode where bytes generally get split but multibyte characters do not. Here is an example
of running the original cut --characters=2-4, where we only want the second, third and
fourth character from every input line, Having the input line:

1 a60B

*https://fedora.zanata.org/
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a Unicode-aware version of cut outputs:

ouf

In the classic upstream version of cut, the output consists of the second byte of ’4’, the
'6’ letter and the first byte of 'f3’.

4.2.3 fmt

Fmt’s deficiencies can be made pretty obvious with specifying a smaller width. Let there
be a file IN containing

1 Castica X

which means "particle X” in Slovak.
The patched fmt correctly counts characters and doesn’t split a line 9 characters long,
outputting the IN file unchanged:

Castica X

The old fmt would count bytes instead of characters and when invoked as fmt --goal=9
./IN would output:

Castica
X

Fmt has two basic modes — counting characters and counting width, so both have to be
accounted for when processing the input.

4.2.4 fold

As mentioned before, fold compacts the input lines to a certain number of characters per
line, prepending the remaining characters to the next line. However, with fullwidth or multi-
byte characters, output gets malformed quickly. Trying fold --width=2 on the following
input:

1 a6uBi

should give this output:

as
uf3
i

Instead, the original utility counts bytes, considering each of these characters as being two
cells long, resulting in the following output:

[<T > I =T e T
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4.2.5 paste

Paste being one of the utilities without any multibyte support whatsoever, a deficiency can
be found very easily. Let there be a file filel, with the following contents:

1
2

W N =

3

and with paste invoked in the following manner:

paste filel filel -d '='

The output of a Unicode-aware paste utility is:

1zl
222
323

Instead, the original output of paste is simply the contents of the filel with a few
non-printing trailing characters. With the proper patch, paste now handles multibyte
characters of any width correctly.

4.2.6 Results

This section illustrated basic deficiencies in the original utilites, when it comes to Uni-
code handling. The converted utilites have been run through the original upstream tests,
multibyte tests from the Fedora coreutils repository and also tests written by myself with
success.

4.3 Performance evaluation

This section showcases the performance impact of the original Lil8nux approach, compared
to my own, where applicable. The results were measured by the time utility. The envi-
ronment used for performance testing is the same as the one used for functionality testing.
For testing UTF-8, the locale en_ US.UTF-8 was used. For 8-bit locales, the standard "C”
locale was set.

4.3.1 Sources of performance test data

Performance was measured with an input of almost 2 million lines of Japanese text. More
precisely, input was formed of a concatenation of the book American Stories by Kafu Nagai
a 1000 times over. The resulting file is 448MiB big and 171,989,000 characters long. The
file is further referred to as LARGE.txt. This approach was selected over running the utility
a 1000 times with the original book, since the measurements would include the overhead
of creating 1000 processes. The book was downloaded from project Gutenberg®. This
provides a very strong test input, as the book contains a mixture of US ASCII text in
the preface with fullwidth Japanese ideographs with a byte length of either 2 or 3 mixed
with poems in French, containing many French-specific letters. For the testing of 8-bit

3https://www.gutenberg.org/
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encodings, an ASCII version of Alice in Wonderland by Lewis Carroll is used. The book
was converted from UTF-8 from project Gutenberg and concatenated into a file 100,000
times over, resulting in a file 72MiB large. It shall be refered to as ALICE.txt in the
following tables. The books can also be found on the accompanying CD, in the directory
perf. For each utility, the most common usage was selected, based on the info or manual
pages, sometimes modified to be more Unicode-centric. To keep the examples as legible as
possible, multibyte characters used in arguments are printed via escape sequences.

4.3.2 expand and unexpand

Most literature doesn’t contain enough tabs or consecutive spaces to make itself an inter-
esting testcase for expand and unexpand. To compensate for that, I've substituted every
ideographic full stop in the LARGE. txt file with a tab. The file shall be further referred to as
LARGE_EXPAND.txt. The resulting output of expand is used as a test to unexpand --all,
and shall be called LARGE_UNEXPAND. txt. For testing 8-bit encodings, I've similarly substi-
tuted full stops with tabs in the file ALICE.txt. The files used for testing shall be refered
to as ALICE_EXPAND.txt and ALICE_UNEXPAND.txt.

utility with parameters li18nux[s| | thesis[s] | difference
expand LARGE__EXPAND.txt 7.76 7.35 5.43%
unexpand LARGE_UNEXPAND.txt | 8.71 8.46 2.91%

Table 4.2: Performance comparison of expand and unexpand - UTF-8 locale

utility with parameters li18nux([s] | thesiss| | difference
expand ALICE__EXPAND.txt 0.34 0.53 43.67%
unexpand ALICE_UNEXPAND.txt | 0.93 1.10 16.75%

Table 4.3: Performance comparison of expand and unexpand - C locale

Surprisingly, expand and unexpand scored the smallest performance increase of the
converted utilities. It is also the only one which slowed down a little when handling 8-bit
locales.

4.3.3 cut

For cut, I've tried cutting out a range of characters, cutting fields separated by an ideo-
graphic full stop, and cutting a complement of 4 selected characters. The -c, or ——characters
option was not present in the original code.

cut parameters li18nux[s] | thesis[s] | difference
-c2-32 LARGE.txt 5.23 2.78 61.17%
1,3 -d LARGE.txt $(printf \U3002) | 5.41 2.93 59.47%
-c1,3,5,7 —complement LARGE.txt 5.76 3.29 54.59%

Table 4.4: Performance comparison of cut run in UTF-8 locale
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cut parameters li18nux[s] | thesis[s] | difference
-b2-32 ALICE.txt 0.21 0.19 10%
-f1,3 -d ’. ALICE.txt | 0.24 0.22 8.70%

Table 4.5: Performance comparison of cut run in C locale

4.3.4 fold

I've tried the two modes that have changed during conversion of fold. One was to fold to
lines 40 characters long. The second was to fold to the specified width of 60 columns. The
-c, or ——characters option was not present in the original code.

fold parameters | lil8nux[s] | thesis[s] | difference
-c40 LARGE.txt | 6.59 3.64 57.67%
-w60 LARGE.txt | 7.40 4.39 51.06%

Table 4.6: Performance comparison of fold in UTF locale

fold parameters | lil8nux[s] | thesis[s] | difference
-b60 ALICE.txt | 0.41 0.38 7.59%

Table 4.7: Performance comparison of fold in C locale

4.3.5 paste and fmt

Paste and fmt do not have any prior Unicode support to interfere with C locales, thus I'm
only comparing to the bare original, ASCII-only code.

utility upstream][s] | thesis[s| | difference
paste -s ALICE.txt | 0.26 0.29 10.9%
fmt 2.45 2.72 10.44%

Table 4.8: Performance comparison of paste and fmt

4.4 Results

The performance testing clearly shows speed up in executing, when operating under a
Unicode locale. It also demonstrates that operation under a classic "C” locale wasn’t
impacted in most utilites, apart from a slight slowdown in expand and unexpand.
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Chapter 5

Conclusion

The aim of this thesis was to assess the Unicode support of one of the most basic set
of utilities present on the GNU/Linux systems and either augment or add it if it’s either
unsatisfactory or non-existent. The thesis investigated the extent and quality of the current
multibyte support in the GNU Core Utilities, described the history, motivation and the
current status, followed by an attempt at robust implementation of the Unicode support.
It also briefly summarized the Unicode standard. All researched literature and other sources
are duly referenced.

My solutions was benchmarked and compared to the existing solution. I've also de-
scribed the new upstream approach in-depth and used it as a guideline in my implementa-
tion, focusing mainly on the libunistring module, but also on the larger gnulib library and
its independent multibyte modules. The new features were written in such a way as not
to impact performance for single-byte locales, where the utilities already perform properly.
Most programs were written to internally use UTF-8, being very fast for UTF-8 encoded
input consisting of ASCIl-only characters and thus not impacting performance at all or
only very minimally.

The changes were implemented in 6 programs, namely cut, expand, fmt, fold, paste
and unexpand. The programs were properly tested and benchmarked against the lil8nux
movement’s solution. The resulting patches were also sent to upstream maintainers for
further comment. The patches add approximately 1000 lines of new code plus a few lines
of configuration, and around 30 tests. For most utilities, the number of tests has more
than doubled, compared to upstream. The average source code growth in linecount for
these utilities was only 27% as opposed to 51% for the Lil8nux solution, with the smallest
proportional growth needed for expand and unexpand due to refactoring and the largest
growth for the utility fold. The speedup in handling Unicode input was up to 61%.

However, the complete localization of the coreutils package is still far from done. There
are more utilities which require patching, some very difficult to tinker with, such as sort
or uniq, where the upstream developers have yet to decide where to draw the line. Some
utilities work with regular expressions, which the libunistring library doesn’t provide an
API for yet. Moreover, upstream inclusion of larger features often takes years.

I’'m considering several next steps for future work. Since the libunistring library itself is
not yet complete, implementing the remaining support would prove very useful. There are
several alternatives to the standard single-byte string handling functions that are missing
from the library and the regular expression module is missing completely. Regarding core-
utils, upstream should be given more opinions and requests from users and contributors
to be more inclined to deal with problems not yet solved in the previously mentioned up-
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stream plan. Next, there are more difficult utilities such as sort, join or uniq, which share
a common code base and are very sensitive to code change. These utilities need more time
allocated to their conversion.
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Appendix A

CD Contents

The CD contains the following files and directories:

coreutils Directory containing the base code of coreutils-8.23 with fedora tests, patched
with my changes. The code can by compiled by running ./configure and make. The
tests can be run by make check.

patches Directory containing my patches separately.

patches/il8n.patch The original Lil8nux patchset.
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