
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5023  | https://doi.org/10.1038/s41598-022-08957-9

www.nature.com/scientificreports

Production of precision slots 
in copper foil using micro EDM
Katerina Mouralova1*, Josef Bednar1, Libor Benes2, Tomas Plichta4, Tomas Prokes1 & 
Jiri Fries3

Electrical discharge machining (EDM) is an unconventional machining technology. It allows machining 
of at least at least electrically conductive materials. The trend of miniaturization of industrial 
products is obvious. However, the required quality and accuracy must be maintained, which can be 
achieved with micro-EDM. One of the industrial products is also optical devices used for testing cars. 
These contain miniaturized parts, which are, however, necessary for their proper functioning. For 
this reason, this study was performed, which focused on the production of a precise slot measuring 
5000 × 170 µm in a copper foil with a thickness of 125 µm. The same copper foil was used as a tool, 
which represents an advance in the production of micro-parts.The use of the same semi-product for 
the production of the slit as well as the tool itself has not yet been presented in any similar study. 
A design of experiment Box and Behnken Response Surface Design was performed for a total of 
15 rounds, monitoring the effect of machine setting parameters (Pulse current, Pulse on time and 
Voltage) on responses in the form of Erosion rate, corner radius, slot length and width. Using multi-
criteria optimization, the optimal setting of the machine parameters for the production of a given slit 
was determined, which is Pulse current = 2.1 A, Pulse on time = 40 µs and Voltage = 238.8 V. Micro-EDM 
technology has been found to be suitable for the production of miniaturized slits.

Micromachining is generally characterized as the production of parts with dimensions less than 1 mm1. Due to 
the growing demands for product miniaturization in many areas of industry, it is necessary to constantly increase 
the demands on individual production technologies so that these parts can be produced with the required pre-
cision and quality. Technologies fully adapted for the production of micro-parts include unconventional tech-
nologies of electrical discharge die-sinking machining (EDM)2,3. EDM makes it possible to machine all at least 
minimally electrically conductive materials, regardless of their mechanical or physical properties. The principle 
is the thermoelectric removal of the workpiece material into the shape of the used tool electrode in the presence 
of the working medium—dielectric liquid (most often kerosene). In this way, it is possible to create even thin-
walled profiles of very soft materials, because no classical mechanical forces act on the workpiece, as is the case 
with conventional machining. The disadvantage of this technology is its relatively high energy intensity, which 
can be significantly reduced by optimizing a particular production process4.

Thanks to the increased energy intensity of EDM technology, it is necessary to carefully optimize the pro-
duction process of each part so that not only the maximum possible saving of machine time but also so that the 
manufactured part has the required accuracy and quality. For this reason, an extensive study was performed 
containing the design of experiment, which optimized the production of the micro-part of the slit from the 
copper foil using the same copper foil as the tool electrode. The novelty of this study lies mainly in the use of 
the same material for the workpiece and for the tool, all in micro dimensions. This new solution thus brings 
comfort to the manufacturers of these miniaturized parts, who do not have to buy a semi-finished product for 
the product and tool separately. They only buy copper foil, which they use both for the product itself and as a 
machining tool. This study builds on previous studies on EDM, such as the corner wear electrode study5 or the 
study on defects occurrence while machining steels 1.2363 and 1.2343 ESR6. The results of this study can be 
used not only in the production of a key part for optical devices designed for testing car lights, but also for the 
production of other parts from thin films.

This study focused on the production of a slit measuring 5000 × 170 µm (tolerance at the length of the slit 
is ± 60 µm and at a width of ± 5 µm) from copper foil with a thickness of 125 µm. In practice, slits are used in 
optical instruments to reduce the total amount of light that results in a narrow collimated beam (parallel light 
rays), which is used in further analysis. Due to the high infrared radiation (heat loss power) of the light sources 
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used today (xenon lamp with a power input of several kW) in optical devices, it is necessary that the slit material 
has good thermal conductivity and mechanical resistance. In our case, the copper foil intended for the workpiece 
will also be used as a tool—an electrode. The width of the slit depends on the type of light source used and the 
device for which it is intended. These optical instruments are mainly used for testing car headlights.

Literature review.  Lim7 studied the machining of high-aspect ratio micro-structures which were divided 
into two processes using the micro-electro-discharge machining. The two processes contained the on-machine 
fabrication of the micro-electrodes with a high-aspect ratio, and the second—the EDM of the workpiece in the 
micrometre range. During the experiment by employing different methods in order to investigate and make a 
thin electrode of the desired measures, for this purpose an optical sensor was developed. Zhang8 focused on the 
precision machining of micro tool electrodes during the micro EDM process while drilling array micro holes. 
In order to improve the on-line machining accuracy of micro electrode two methods were combined, i.e. a 
tangential feed WEDG method and the on-line measurement employing a charge coupled device, which helped 
to obtain a precise diameter of micro-electrode. For improving the machining efficiency of micro electrodes 
the combination of the TF-WEDG method and a self-drilled holes method was used. Ay9 investigated the best 
factors and level conditions to optimize the micro-electrical discharge machining drilling process of the nickel-
based superalloy Inconel 718. For the experiment, the gray relational analysis method was used and the machin-
ing parameters, such as pulse duration and discharge current were taken into account. The results showed that 
the pulse current was more efficient on performance characteristics than the pulse duration. D’urso10 studied 
the process performance of micro-EDM drilling of stainless steel plates. Varied several process parameters were 
used during the experiment, such as voltage, peak current and frequency, using the electrodes made of two dif-
ferent materials: tungsten carbide and brass. During the drilling process, the material removal rate and tool wear 
ratio were studied. Plaza11 performed an experimental study focusing on the micro EDM drilling of Ti6Al4V 
by the helical electrode. The parameters studied in the experiment were electrode wear, material removal rate, 
micro-hole quality and machining time. They designed a new strategy due to an inefficient removal of debris 
while increasing hole depth. Somashekhar12 studied the numerical simulation of the micro EDM model with 
multi-spark, which was based on the finite volume method and was developed to solve the micro-EDM model 
equations, and consequently, predict the effect of spark ratio, i.e. spark on and off time, on the temperature dis-
tribution in the material. The results obtained were successfully tested against published ones. Shao13 focused 
on the comprehensive electro-thermal modelling of the crater formation in micro-EDM in order to simulate the 
process of crater formation. That model included realistic machining conditions such as Gaussian distributed 
heat flux, expending plasma and temperature dependent thermal properties. The simulation results obtained 
showed a good agreement with experimental results. Liu14 studied the effects of the surface layer of AISI 304 
on micro EDM performance, mainly the effect of three surface layer of austenitic stainless steel. For the experi-
ments, machining multilayer stainless steel workpieces with and without surface treatment were employed. The 
results revealed that the steel workpiece with oxidation treatment has the highest surface free energy and the 
highest material removal rate in comparison with those without treatment and with acid pickling treatment. 
Hourmand15 tried to develop new fabrication and measurement techniques of micro-electrodes with a high 
aspect ratio for micro EDM, which were based on horizontal moving block electrical discharge grinding and 
gage block using a typical EDM machine. Yu16 developed a micro punching system with a micro electrical 
discharge machining module, and the micro punch was produced using reversed electrode. The micro die and 
the reversed electrode were prepared using micro EDM milling. The results showed that after punching there 
was no damage on the edges of the micro die and micro punch. In order to optimize process parameters, many 
techniques are used, including genetic algorithms, such as in the publications by Matousek17,18.

Experimental setup and material
The samples for the experiment shown in Fig. 1c were made of 0.125 mm thick copper foil, the electrodes used 
are shown in Fig. 1b. These electrodes were cut to the required size (always to an eroding edge length of 48 mm) 
clamped in a specially made holder shown in Fig. 1a using an α-C600iB type wire electrical discharge machine 
(WEDM) from FANUC. WEDM cutting of the electrode proved to be necessary because the corners of the 
electrode were tested using conventional shears. Furthermore, the tested corner was not able to erode the slit in 
the required shape and always caused the curvature of the eroded slit.

All samples were made on a 433GS electrical discharge die-sinking machine supplied by PENTA and equipped 
with a P-MG1 generator. During machining, all samples were immersed in kerosene.

The design of experiment performed in this study was based on monitoring the influence of three independent 
machine setting parameters, which were: voltage (U), pulse current (I), pulse on time (Ton). The pulse off time 
(Toff) parameter was fixed at 20 µs in all rounds of the experiment. The machining input parameters are listed in 
Table 1, and their limit values have been determined based on extensive previous tests. It was assumed that some 
response surfaces would be curved, so the design of experiment was designed as a Box and Behnken Response 
Surface Design. It is designed to model a full quadratic regression model, where the quadrates of individual input 
parameters describe the curvature. In addition to the quadrates of the input parameters, the regression model 
contains linear terms describing trends and second-order interactions describing the interaction of two param-
eters. If the examined area of  the input parameters after standardization is viewed as a 3-dimensional cube, the 
responses will be measured in the centres of the edges of this cube. Furthermore, it was measured 3 times at the 
central point in order to capture the variability of the measurement. The relationship between Box and Behnken 
Design and commonly used Central Compossite Design is described in detail statistically in Montgomery19, with 
Box and Behnken Design being more efficient because coefficients of the same regression model can be obtained 
with fewer measurements. The data collection plan itself is described in Table 1, the order of measurements is 
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not standardized, but it is randomized to avoid systematic bias of the experiment due to external influences. The 
investigated responses will be erosion rate and geometric accuracy parameters of shapes.

Results and discussion
Experimental methods.  The studied samples were studied using a Lyra3 type electron microscope (SEM) 
from TESCAN. Using this microscope, all assessed dimensions of the slit, i.e. its length, width and also the radii 
in the corners, were gradually measured. An approximation circle was used to measure the radii.

Statistical evaluation.  The eroding speed of the EDM process is determined by the machine parameters 
and cannot be easily set in the program as in conventional machining. The EDM machine must constantly 
maintain the gap between the tool and the workpiece, otherwise a short circuit would occur. For this reason, the 
eroding rate was described from the machine display throughout the whole design of experiment, and for each 

Figure 1.   Description of the performed experiment with individual tools and workpieces (a) schematic 
representation of the experiment (created in program SolodWorks-www.​solid​works.​com), (b) tool electrodes 
used, (c) workpieces with eroded final slot shape.

Table 1.   Machining parameters used in the experiment and cutting speed.

Number of sample Pulse current (A) Pulse on time (µs) Voltage (V)

1 2.6 70 280

2 1.9 70 220

3 1.2 40 220

4 1.9 70 220

5 1.9 100 160

6 2.6 70 160

7 1.2 70 160

8 2.6 100 220

9 1.9 40 280

10 1.2 70 280

11 1.2 100 220

12 1.9 100 280

13 1.9 70 220

14 2.6 40 220

15 1.9 40 160

http://www.solidworks.com
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sample, this rate was plotted in Fig. 2a. It can be seen from this graph that the eroding rate differed relatively 
significantly with the change in machine parameter settings. The fastest eroded speed was for Sample 9 with the 
setting of machine parameters I = 1.9 A, Ton = 40 µs, U = 280 V at a speed of 0.19 mm/min. On the contrary, the 
slowest eroding rate was recorded for Sample 5 and only of 0.02 mm/min. The highest erosion rate achieved here 
(0.19 mm/min) is relatively high compared to other micro-EDM studies. These are mainly Singh20,21 or Kurnia22 
studies, but unfortunately the same material was not machined or a wall electrode was used as in this study.

Based on the measured data, fully quadratic regression models were compiled, from which insignificant 
members (significance level of 0.05) were removed by the Stepwise method while maintaining the hierarchy of 
the model. The hierarchy of the model preserves insignificant factors in the model if their square is significant. In 
addition to the regression equations themselves, which will be used for multicriteria optimization, the coefficient 
of determination R2 was always determined, which indicates what percentage of the variability of the observed 
response is described by the regression model.

Erosion rate is affected by only two factors Pulse on time and Voltage. Pulse on time has a negative effect and 
Voltage has a positive effect, as can be seen in Fig. 2b. The regression equation describing the dependence is:

Although only 2 factors were significant, regression Eq. (1) describes 72.69% variability in the observed data 
(R2 = 72.69%).

Due to the fact that the most accurate dimension of the slot is 5000 × 170 µm and also the minimum values 
of the radii in the corners were accurately measured using an electron microscope and the results processed into 
Table 2. The smallest radii were achieved for Sample 4, the most accurate slit width for Sample 2 was 172.32 µm 
and the most accurate length for Sample 6 was 5000.54 µm. These best samples are shown in Fig. 3. It is there-
fore clear that for no sample the most accurate parameters were achieved at the same time, therefore a statistical 
evaluation of the performed design of experiment in terms of the accuracy of the produced shapes is necessary.

In contrast to the previous response, which was the Erosion rate in the radius dimension equation, all squares 
and factor interactions, with the exception of the Pulse on time × Voltage interaction, were significant. The action 
of the input factors themselves and their squares is shown in Fig. 4a, while the action of the interactions is shown 
in Fig. 4b. The regression equation itself is:

This Eq. (2) was shown in Fig. 5, as blue-green 3D Contour plots, so that the last variable not shown was 
fixed at the central level. The coefficient of determination R2 = 87.34%, so the model describes about 87% of the 
variability of the observed response.

The width of the slit is mainly affected by the interactions Pulse current × Pulse on time and Pulse cur-
rent × Voltage, which are shown in Fig. 4b and their effect can be seen nicely in Fig. 5, where 3D sections of the 
Width response surfaces are displayed in grey-red. The squares of all three factors are insignificant. Regression 
Eqs. (3):

(1)Erosion rate = 0.0018− 0.00094 Ton + 0.000689 U .

(2)
Edge = 113.7− 58.53I − 0.359Ton − 0.2130U + 13.52I2 + 0.002152T2

on + 0.000449U2
+

+ 0.0642I · Ton + 0.0398I · U .

Figure 2.   (a) Eroding rate of individual samples, (b) main effect plots for erosion rate (A gray background 
represents a term not in the model, which is not statistically significant and is therefore not included in the 
model).
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describes about 60% of the variability of the monitored response (R2 = 59.58%), while the required slit width is 
170 µm.

The length of the slit is affected only by the Voltage factor (p-value = 0.02 < 0.05), as nationalized in Fig. 4a. 
The other members of the regression model were insignificant. The model itself describes about 35% of the 
variability of the monitored data (R2 = 35.07%), and it can be assumed that the length is also influenced by other 
factors that have not been monitored, and now their effect manifests itself as a residual error of the model, while 
the equation is:

Multicriteria optimization.  As usual, there is a technical contradiction in EDM machining, which has 
been studied in several other publications, such as EDM machining of steels 1.2363 and 1.2343 ESR6 or WEDM 
machining of Mg/CRT/BN composites23, titanium alloy 624224 or titanium (α–β) alloy25. Because if the Erosion 
rate is maximized, the Edge will be minimized, the Width will be targeted at 170 µm and the Length will be 
targeted at 5000 µm, the input parameter setting requirements will be conflicting, so multi-criteria optimization 
should be used. Multi-criteria optimization was used to find the optimal process settings, which is integrated 

(3)Width = 139+ 27.3 I − 1.449 Ton + 0.673 U + 0.752 I · Ton − 0.381 I · U ,

(4)Length = 5122.8− 0.729U .

Table 2.   Dimensions of individual slit shapes.

Number of sample Edge 1 (µm) Edge 2 (µm) Edge 3 (µm) Edge 4 (µm) Length (µm) Width (µm)

1 55.24 54.95 56.19 56.56 4927.97 155.41

2 42.57 39.76 39.6 39.75 4966.98 172.32

3 40.33 40.56 39.41 40.4 4973.74 199.36

4 33.24 32.81 34.27 33.08 4994.01 159.03

5 40.76 40.12 41.56 38.92 4977.63 166.93

6 40.63 41.03 45.05 43.11 5000.54 195.98

7 35.5 36.28 38.75 38.92 5006.05 165.81

8 51.07 49.59 55.35 55.67 5000.77 203.64

9 40.15 42.44 39.22 43.52 4784.52 179.28

10 43.69 44.91 44.43 42.81 4989.97 189.22

11 42.86 41.06 40.09 42.63 4953.05 181.14

12 42.07 44.21 43.52 44.26 4922.87 178.96

13 36.13 34.94 37.28 36.13 4948.75 167.93

14 44.82 44.17 48.44 46.74 4997.15 158.72

15 35.26 35.76 37.08 34.22 4990.92 198.4

Figure 3.   (a, b) Corners of Sample 4 (edited in program Adobe Photoshop www.​adobe.​com/​cz/​produ​cts/​photo​
shop.​html), (c) Sample 2 with the most accurate width, (d) Sample 6 with the most accurate length.

http://www.adobe.com/cz/products/photoshop.html
http://www.adobe.com/cz/products/photoshop.html
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directly into the Minitab statistical software. Linear desirability functions were chosen in the whole range of 
monitored responses. Because the main requirement is mainly for a slot width of 170 µm and a minimum Edge 
in the corners, these characteristics were given Importance 2. The eroding rate is less important than the above 
shape characteristics, so Importance was left at the default level 1. The length depends only on the Voltage 
parameter, by maximizing which we achieve an elongation of the slit, but the radius in the corners will increase 
and the slit will be widened, therefore the Importance of length 0.5 was chosen. In addition, the length can be 
changed by making a different length of the machining electrode. The output of the procedure was the optimal 
setting of input parameters and estimation of the value of individual responses (Fit), which are given in Table 3. 
These input parameters were rounded to the resolution level of the machine and on the basis of this setting a 
real product was produced, the individual responses (Real) of which are given in Table 3. The slit thus produced 
is shown in Fig. 6, while the eroding rate decreased slightly, but smaller radii at the corners were achieved. The 
only parameter that differed negatively from the estimate in real terms (Fit) was the width, which decreased to 
168.9 µm.

Figure 4.   (a) Main Effect Plots for Edge, Width and Length (A grey background represents a term not in the 
model, which is not statistically significant and is therefore not included in the model) (b) Interaction plots for 
significant interactions.
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Conclusions
In order to optimize the production of a slit in a 125 µm thick copper foil, which should have dimensions of 
5000 × 170 µm, the design of experiment Box and Behnken Response Surface Design was performed. The eroding 
tool used was the same foil, which is also the material being machined. During the experiment, the influence of 
the machine setting parameters, which were Pulse current, Pulse on time and Voltage, on the responses in the 

Figure 5.   Response areas of responses, where there is a significant interaction and the coordinate not displayed 
is fixed at the central level (created in program MiniTab-www.​minit​ab.​com) (a) 2D, (b) 3D.

http://www.minitab.com
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form of Erosion rate, radius in the corners, length and width of the slit was monitored. Based on the performed 
measurements and statistical evaluations, the following conclusions were reached:

–	 The fastest eroded sample was Sample 9 with the setting of machine parameters I = 1.9 A, Ton = 40 µs, U = 280 V 
at a speed of 0.19 mm/min, on the contrary, the slowest erosion rate was recorded in Sample 5 with the setting 
of machine parameters I = 1.9 A, Ton = 100 µs, U = 160 V and only of 0.02 mm/min.

–	 Erosion rate is affected by only two factors Pulse on time and Voltage, where Pulse on time has a negative 
effect and Voltage has a positive effect.

–	 The smallest radii were achieved in Sample 4, the most accurate slit width in Sample 2, namely 172.32 µm 
and the most accurate length in Sample 6, namely 5000.54 µm, from which it is clear that no sample achieved 
the most accurate parameters at the same time.

–	 An equation describing the radius dimension was created, in the model all squares and factor interactions 
were obtained with the exception of the Puls on time × Voltage interaction significant.

–	 The width of the slit is mainly influenced by the interactions Pulse current × Pulse on time and Pulse cur-
rent × Voltage.

–	 The length of the slit is only affected by the Voltage factor.

Table 3.   Multiple response prediction.

Variable Setting

Pulse current (A) 2.1

Pulse on time (µs) 40

Voltage (V) 238.8

Response Fit Real

Width (µm) 170.06 168.9

Erosion rate (mm/min) 0.128 0.113

Length (µm) 4948.8 4950.59

Edge (µm) 40.01 36.15

Figure 6.   Slot made on the basis of optimized parameters from multi-criteria optimization (edited in program 
Adobe Photoshop www.​adobe.​com/​cz/​produ​cts/​photo​shop.​html) (a, b) slit corners, (c) whole slit.

http://www.adobe.com/cz/products/photoshop.html
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–	 Using multi-criteria optimization, the optimal setting of the machine parameters for the production of a 
given slit was found to be I = 2.1 A, Ton = 40 µs and U = 238.8 V, and based on this setting a slit was produced 
that met all accuracy requirements (the tolerance on the length of the slit is ± 60 µm and the width ± 5 µm).

Based on the above conclusions, it can be clearly stated that the performed multi-criteria optimization ensured 
the production of the slot in the given accuracy, using the same copper foil for the workpiece and for the tool 
itself. It will be possible to produce this slot only at the cost of the foil, it will not be necessary to order material 
separately for the manufactured part and separately for the tool needed for production.

Received: 25 September 2021; Accepted: 15 March 2022
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