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Summary:  

The topic of the thesis is a conceptual study of very light twin jet aircraft. The comparison 

of present aircrafts is made, as well as their engines, and description of proposed solution, 

aircraft mass analysis, basic aerostatic calculations, flight and gust envelope, development 

costs and basic design of main parts of the aircraft.  

 

Key words: 

Aircraft concept design, drag polar, performance of the aircraft, flight and gust envelope, 

development costs. 

 

 

Abstrakt: 

Tématem diplomové práce je koncepční studie lehkého dvoumotorového letounu. Je 

provedeno srovnání současných letounů, jejich motorů, technický popis navrhovaného 

řešení, hmotový rozbor, výpočet aerostatických podkladů, výpočet obálky zatížení, nákladů 

na vývoj a základní konstrukce hlavních součástí. 
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1 INTRODUCTION 

 

In modern society nothing is more important than time. Time - spend for business 

travel or vacation. And this time cost money, which nowadays people are able and want to 

pay. Thus the jet aircrafts came to world. First attempts were regular business jet aircrafts 

and then with smaller and more efficient jet engines were companies able to build smaller 

jet planes for personal usage and move from exclusive small single propeller aircraft to 

small single jet aircraft. This thesis should move it to another level, to show that it is 

possible to design small two seat plane with jet engine which properties are highly above 

current two seat category aircraft. However its exclusivity brings higher price and higher 

operation costs.  

The aircraft should be certified under CS-23 regulation and therefore some of the 

prerequisites are taken from this regulation.  
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1.1 Historical content 

 

 As first representative of business jet category in the world can be marked French 

Morane-Saulnier MS760, which first flew in 1954. The MS760 was four-seat jet trainer and 

liaison aircraft used by French Armée del l’Air between 1959 and 1997. Unfortunately it 

served only in military service, there was effort to sell aircraft as business jet to US market 

but this attempt failed. However its successor on the market Learjet 23 created completely 

new market for fast and efficient business aircraft. But it was in late 90’s and in the 

beginning of new millennium when new companies start working on new generation of 

very light jets. Companies like Cirrus, Diamond or Flaris, came with new design and 

applied new materials to their constructions.  

     

1.2 What is very light jet? 

 

Very light jet (VLJ) definition by NBAA (National Business Aviation Association) [11]:  

Jet aircraft weighing 10,000 pounds or less maximum certificated takeoff weight and 

certificated for single pilot operations. These aircraft will possess at least some of the 

following features:  

(1) advanced cockpit automation, such as moving map GPS and multi-function displays; 

(2) automated engine and systems management;  

(3) integrated autoflight, autopilot and flight-guidance systems. 

We can add some other features which should VLJ fulfill. Take-off distance less 

than 3,000 feet, powered by one or two gas turbine engines (turbofan or turbojets), and 

contain seats for 1-8 passengers and with final price less than $5M per aircraft. 

With comparison to other small single or multiple aircrafts in CS-23 category, like 

Cirrus SR22 or Diamond DA42, has VLJ different systems and capabilities, operates in 

different flight regimes at higher speeds, and places different demands upon its pilots due 

to the diversity in previous flying. 
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Figure 1.1: Market position of VLJ and Personal Light Jet [12] 

 

 

 

 

 

 

1.3 Current very light jets 

In last decade there were a lot of attempts to build light jet aircraft but not many of 

them succeed. However there are still companies which try come to market with 

something new. This chapter will take a look on some of them. 

  

 

 

 



 

16 

 

1.3.1 Cirrus SF50 Vision 

 

The Cirrus SF50 Vision is a single-engine, low-wing, and seven-seat very light jet 

aircraft produced by Cirrus Aircraft. Vision is the Cirrus first attempt to build jet aircraft 

and as is usual for the company, they want to be the best and redefine market, company 

itself call it “personal jet” and not very light jet.  

The SF50 is full composite with V-tail and engine placed behind cabin. This 

configuration produced less noise for passengers and does the travel more comfortable. 

The engine is Williams International FJ33 with thrust of 1,800 lbf (8 kN). Manufacturer 

also placed parachute system into the aircraft, which became standard in small aircrafts. 

Modern cockpit looks more like luxury car than aircraft, and is equipped with advanced 

avionics – Cirrus Perspective by Garmin avionics. Overall price should be about US$2M. 

 

Figure 1.2: Cirrus Vision SF50 [14] 
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1.3.2 Flaris LAR 1 

 

The Flaris LAR 1 is a Polish single-engine, four-seat very light jet aircraft currently 

under development by Metal-Master. The LAR 1 was designed in cooperation with Polish 

technical universities, Institute of Aviation and Air Force Institute of Technology.  

Flaris LAR 1 is full composite, pre-impregnated carbon fibers, with two vertical tails 

placed on the ends of horizontal tail. It is powered by Pratt & Whitney Canada PW615F 

with thrust of 1,460 lbf (6.5 kN) and the engine is placed behind cabin to reduce noise. 

The aircraft is also equipped with parachute system and a cockpit with car-like feeling. 

Approximate price is about US$1.5M. 

 

 

Figure 1.3: Flaris Lar 1 [15] 
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1.3.3 Diamond D-JET 

 

Diamond D-JET is low-wing, single-engine, five-seat very light jet aircraft 

developed by Diamond Aircraft Industries. Diamond wanted it to aircraft for single-pilot 

operation and which can compete with the Eclipse 500 and the Cessna Citation Mustang. 

However this project was suspended in May 2014.  

The D-JET is full composite with T-tail configuration. This is caused by the placing 

the engine into the fuselage. The intakes are placed into the transition between the 

fuselage and wing. The engine is Williams International FJ33-4A with thrust of 1,900 lbf 

(8.5 kN). Cabin is pressurized to 5.5 psi, thus cabin altitude is 8,500ft at FL250. Estimated 

price was about US$1.89M. 

 

 

Figure 1.4: Diamond D-JET [16] 
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1.3.4 Epic Victory 

 

The Epic Victory is single-engine, low-wing aircraft with 4-5 seats designed by Epic 

Aircraft Corporation. The Victory project was the second attempt of very light jet aircraft, 

nevertheless this project leaded to bankruptcy of the company in 2009. 

The Victory is full composite, carbon fiber, with T-tail and engine placed behind 

aircraft’s cabin. The placement of the engine leads to lower noise level in the cabin. It was 

intended to be powered by Pratt & Whitney Canada PW600. Cabin was designed to 

overpressure of 6.5 psi. Price was set to less than US$1M. 

 

 

Figure 1.5: Epic Victory [17] 
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1.3.5 Sport Jet II 

 

The SportJet II is mid-wing, single-engine, and four-seat very light jet aircraft 

under development by Sport-Jet, Ltd. Design is based and improved on the Maverick 

TwinJet aircraft. 

The SportJet II has carbon fiber fuselage and aluminum made wings and horizontal 

tail. Due to design altitude its cabin is full pressurized. SportJet II is powered by one Pratt 

& Whitney Canada JT15D engine with 2,220 lbf (9.8 kN) thrust. It is mounted in the aft 

fuselage and the two intakes are placed on the side in the back of the cabin. Manufacturer 

proclaims that pilot does not need professional jet pilot training or advanced skills to fly. 

The price tag is US$1.35M. 

 

 

Figure 1.6: SportJet II [18] 
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1.3.6 Stratos 714 

 

The Stratos 714 is low-wing, single-engine, and four-seat very light jet aircraft.  

The Stratos 714 is made from carbon fiber. The engine is placed in the aft 

fuselage. Its intakes are on the bottom of the fuselage where the cabin ends. The engine 

is Williams International FJ44-3AP with thrust of 3,030 lbf (13.5 kN). Pressurized cabin is 

necessary equipment. Price is set to US$2M. 

 

 

Figure 1.7: Stratos 714 [19] 
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1.3.7 Adam A700 

 

The Adam A700 is twin-engine, low-wing, and six-seat very light jet aircraft 

developed by Adam Aircraft Industries. Its unusual design is based on previous model 

Adam A500 with two piston-engines in push-pull configuration. 

The A700 used carbon fiber to build fuselage and wing. The twin wing-mounted 

booms supporting aft twin rudders which are linked by high horizontal stabilizer does look 

this aircraft strange. The A700 is powered by two Williams FJ33-4 turbofan engines with 

thrust of 1,350 lbf (6 kN) each.  These two engines are mounted on the sides of the 

fuselage. Cabin was designed to overpressure of 6.5 psi. Estimated price was set to 

US$2.25M. 

 

 

Figure 1.8: Adam A700 [20] 
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1.3.8 Eclipse 550 

 

The Eclipse 550 is the low-wing, twin-engine, and six seat very light jet aircraft 

produced by Eclipse Aerospace. The 550 is developed from previous model 500. 

The Eclipse 550 has an all-metal structure with a T-tail. Engines are mounted in 

the aft fuselage on both sides. The engine is Pratt & Whitney Canada PW610F with thrust 

of 900 lbf (4 kN) each. The overall price is less than US$3M. 

 

 

Figure 1.9: Eclipse 550 [21] 
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1.3.9 Honda Jet 

 

The Honda Ha-420 HondaJet is low-wing, twin-engine, and six-seat very light jet 

aircraft. The Ha-420 is the first aircraft developed by Honda Aircraft Company. 

The HondaJet has composite fuselage and aluminum wings. The biggest difference 

between HondaJet and other VLJ aircrafts is engine placing. The engines are mounted 

over-the-wing at HondaJet. This design should achieve lower wave drag at a high Mach 

number. Honda also developed whole new engine for its plane. Together in cooperation 

with GE they create GE Honda HF120 engine with thrust of 2,050 lbf (9.1 kN) each. 

Estimated price is US$4.5M. 

 

 

Figure 1.10: Honda Ha-420 HondaJet [22] 
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1.3.10 Cessna Citation Mustang 

 

The Cessna Citation Mustang is low-wing, twin-engine, six-seat very light jet 

aircraft built by Cessna Aicraft Company. Citation Mustang is the latest model in Cessna’s 

Citation family of business jets.  

 The fuselage’s airframe is made mostly from aluminum alloys. Mustang has high-

lift airfoil wing design. On each side of the rear fuselage are two Pratt & Whitney Canada 

PW615F-A engines. Thrust of each is 1,460 lbf (6.5 kN). Current price is US$3.28M. 

 

 

Figure 1.11: Cessna Citation Mustang [23] 
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1.3.11 Embraer Phenom 100 

 

The Embraer Phenom 100 is low-wing, twin-engine, and six seat very light jet 

aircraft produced by Brazilian company Embraer S.A. The Phenom 100 has bigger variant 

called Phenom 300. 

The Phenom 100’s construction contains of 20% carbon-fiber composite and 80% 

metal. Two Pratt & Whitney PW 617-F engines are mounted to the rear of fuselage and 

each provide thrust of 1,695 lbf (7.18 kN). Price tag is US$4.5M. 

 

 

Figure 1.12: Embraer Phenom 100 [24] 
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1.4 List of engines for VLJ 

 

Situation with small capable engines for VLJs is brighter than we can think. There 

are several manufacturers producing light but efficient jet engines. In this part we take a 

look for some main which are used in modern planes. For light jet aircraft we can assume 

usage of engines with power thrust between 2.9kN and 4.9kN. As it can be seen on Figure 

1.13 a lot of new designs rises in last two decades.  

 

 

 

 

Figure 1.13: Engine thrust on year of production dependence [25] 
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1.4.1 Price Induction DGEN 380/390 

 

The DGEN engine family represents the world’s smallest turbofan. It is intended for 

4-5 seat twin-engine VLJ flying under 25,000 ft and Mach 0.35. The DGEN is designed 
with easy integration and maintainability, low fuel consumption and low noise level. The 
engine control unit as well as the oil & fuel equipment is fully integrated around the 

engine and controlled by FADEC (Full-Authority Digital Engine Control). A starter-generator 
device is integrated on the high-pressure spool and allows for the electrical start of the 
engine before switching to generation mode. The main advantages are an easy and 

reliable control for the pilot, simplified maintenance and a reduced overall weight. This 
concept also allows for a continuous engine health and aging monitoring. 

The DGEN engine family provides enough thrust for take-off for aircrafts with 
maximum take-off weight of 1,650 to 2,150 kg. Smaller model, DGEN 380, gives 2.5 kN of 
thrust and the bigger one, DGEN 390, gives 3.3 kN of thrust. These engines share 90% of 

parts. However DGEN 390 is still under development.  

Table 1.1: Price Induction DGEN’s specification table [13] 

  DGEN 380 DGEN 390 

Take-off Thrust (lbf) 570 (2.6 kN) 725 (3.2 kN) 
Dry Weight (lb) 175 (80 kg) N/A 

Length (in) 53 (1,346 mm) N/A 
Diameter (in) 18.5 (469 mm) N/A 

 

Figure 1.14: DGEN 380 [13] 
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1.4.2 Pratt & Whitney Canada PW600 

 

The PW600 turbofan engine family is design for thrust from 950 to 1,750 pounds 

(4.2kN – 7.9kN). Three models are currently available with this thrust range (PW610F, 

PW615F and PW617F). The engine core was developed to enable the PW600 family of 

engines to grow to 3,000 pounds thrust.  

The PW600 is a two spool engine with a two-stage high pressure compressor 

driven by a single-stage high pressure turbine and a single-stage low pressure turbine 

driving advanced fan. A high efficiency reverse-flow combustor ensures low emissions and 

fuel consumption. Further a high efficiency exhaust mixes contributes to the engine 

family’s low fuel burn and noise. For relief pilot’s workload is installed the latest Full-

Authority Digital Engine Control (FADEC) and advanced engine health 

monitoring/diagnostics. Design features enable fast access to engine externals. The result 

of all this is a compact, lightweight design powering new generation of light jet aircrafts. 

At present time there are three aircrafts using all available versions. Cessna 

Citation Mustang is using PW615F-A, Eclipse 500 PW610F-A and Embraer Phenom 100 

PW617F-E.  

Table 1.2: Pratt & Whitney Canada PW600’s specification table [26] 

 PW610F-A PW615F-A PW617F-E 

Take-off Thrust 
(lbf) 

950 (4.2 kN) 1,460 (6.5 kN) 1,780 (7.9 kN) 

Dry Weight (lb) 259.3 (118 kg) 310 (141 kg) 380 (173 kg) 
Length (in) 46 (1,150 mm) 49.5 (1,238 mm) 49.5 (1,238 mm) 

Diameter (in) 14 (350 mm) 16 (400 mm) 17.6 (440 mm) 

 

Figure 1.15: Pratt & Whitney PW610F-A (on the left) and PW615F-A (on the right) [26] 
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1.4.3 GE Honda HF120 

 

The HF 120 was developed in cooperation between General Electric and Honda by 

the GE Honda Aero Engines. The goal was to create robust, yet simplified design which 

can deliver greater payload, longer range and outstanding durability. HF120 is a 2,000 

(8.9kN) pound to thrust class turbofan engine. The engine has a wide-chord swept fan, 

two-stage low-pressure compressor and counter rotating high-pressure compressor based 

on a titanium impeller. Greater fuel efficiency and reduced emissions are two of the goals 

of the engine's lightweight design. 

Another innovation is associated by reducing weight and using innovative 3D 

aerodynamic designs. The engine components are designed to interact with greater 

efficiency while optimizing operability. Great engine’s advantage is that it is designed to 

stay on wing over 40% longer than other business jet engines. It is caused by time 

between overhaul set at 5,000 hours and no need to open the engine for interim hot-

section inspection. 

A plan for the future is to place this engine not only to Honda HA-420 HondaJet 

aircraft but also to the Spectrum Freedom, and was also offered to retrofit Cessna 

Citation’s engine Williams FJ44-1.  

Table 1.3: GE Honda HF120’s specification table [27] 

 HF120 

Take-off Thrust (lbf) 2,050 (9.1 kN) 

Weight (lb) Less than 400 (182 kg) 

Length (in) 44 (1,100 mm) 

Diameter (in) 21.2 (530 mm) 

 

Figure 1.16: GE Honda HF120 [27] 
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1.4.4 Williams FJ44 

 

The FJ44 is a family of small, two-spool engines produced by Williams 

International/Rolls-Royce. Until the recent boom in VLJ market, the FJ44 was one of the 

smallest turbofans engines available for civilian applications. At the moment there are four 

different versions of the FJ44 which can provide thrust from 1,900 to 3,600 lbf.  

The FJ44-1AP version is improved FJ33-1A jet engine. It provides up to 2,100 lbs 

of take-off thrust which is 200 pounds more than previous model. It contains from single 

stage blisk fan plus a single intermediate pressure booster stage, driven by a two-stage 

low pressure turbine, supercharging a single stage centrifugal high pressure compressor, 

driven by a single stage uncooled high pressure turbine. It is also equipped with a dual-

channel full-authority digital engine control (FADEC).  

This engine is highly reliable, designed for simplicity and ease of maintenance. 

Huge advantage is the unique design allowing hot section disassembly/reassembly and fan 

removal/replacement while installed on the aircraft. As others modern designed engines 

FJ44-1AP is also very environmentally friendly, it produces low emissions. 

The FJ44-1AP is installed in Cessna CJ1, Cessna CJ1+, Cessna M2 and Saab SK60. 

The FJ44-2 uses the same core and low pressure turbine as the FJ44-1, however it 

has installed unique fan and compressor sections. The engine maintains the modest 

turbine temperatures of the FJ44-1 and retains low cost turbofan technology, such as the 

uncooled, high pressure turbine, effusion-cooled combustor, and high work, two stage low 

pressure turbine. Available thrust is between 2,300 and 2,400 pounds. It is equipped with 

single channel full-authority digital engine control (FADEC).   

The FJ44-2 is installed in e.g. Beechcraft Premier 1A, Cessna CJ2, Scaled 

Composited Proteus or Virgin Atlantic Global Flyer. 

Further updates leads to FJ44-3 version which is similar to previous version (FJ44-

2). Nevertheless it is improved with increases fan diameter and dual channel FADEC. 

Thrust was also increased to 3,000 pounds. 

The FJ44-3 is installed in Cessna CJ2+, Cessna CJ3+, Nextant 400XTi and Sierra 

Industries Super II and Super S-II. 

The FJ44-4 is the biggest and most powerful unit from this family. It provides 

3,600 pounds of thrust. 

There are only three aircrafts using this engine, Cessna CJ4, Hawker 400XPR and 

Pilatus PC-24. 
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Table 1.4: Williams FJ44’s specification table [28] 

 FJ44-1AP FJ44-2 FJ44-3 FJ44-4 

Take-off Thrust 
(lbf) 

1,900-2,100  
(8.5-9.3 kN) 

2,300-2,400 
(10.2-10.7 kN) 

3,000  
(13.3 kN) 

3,600 
 (16 kN) 

Weight (lb) 460 (209 kg) 530 (241 kg) 535 (243 kg) 650 (295 kg) 

Length (in) 41.4 (1,035 mm) 47.2 (1,180 mm) 48 (1,200 mm) 52.8 (1,320 mm) 

Diameter (in) 20.7 (518 mm) 21.8 (545 mm) 23 (575 mm) 25.3 (633 mm) 

 

 

Figure 1.17: Williams FJ44-1AP [28] 

 

 

 

Figure 1.18: Williams FJ44-4 [28] 
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1.4.5 Williams FJ33 

 

The FJ33 fanjet is advanced very light engine which expands the option available 

to airframe manufacturers by providing an engine sized to power light jets in the 5,000 

(2,268 kg) to 9,000 (4,082 kg) pound GTOW class. FJ33 is a scaled-down version of the 

FJ44 engine. This engine is characterized by excellent thrust to weight ration, fuel 

efficiency, and low acquisition and operating cost with thrust from 1,000 to 1,900 lbf (4.4 

– 8.5 kN).  

Williams consider this engine as low-noise, third generation wide-sweep fan 

technology coupled with advanced high work, high efficiency core components which 

results in a high overall pressure ratio that provides light weight and extraordinary cruise 

fuel economy. 

 Right now there are two aircrafts using FJ33 engine, Cirrus Vision SF50 and 

Diamond D-Jet and was on few other aircrafts which are cancelled now or under 

development. 

Table 1.5: Williams FJ33’s specification table [28] 

 Williams FJ33 

Take-off Thrust (lbf) 1,000-1,900 (4.4-8.5 kN) 
Weight (lb) Less than 310 (141 kg) 
Length (in) 38.5 (963 mm) 

Diameter (in) 19.03 (476 mm) 

 

 

Figure 1.19: Williams FJ33 [28] 
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1.5 Statistical analysis of VLJ 

 

Before any design calculations it is important to take a look for other competitor’s 

aircraft available on today’s market and compare their performances. Acquired data comes 

from the developer’s web pages or aircrafts brochures; however some relevant data 

cannot be obtained, because manufacturer did not publish it.  

There are two categories of very light jet aircrafts nowadays, single and two engine 

aircrafts, made from different material and powered by different engines.  

In the first table are shown basic specifications of very light jet aircrafts, like 

wingspan, length, wing area, empty weight, maximal take-off weight, rate of climb, cruise 

speed and engine thrust, while in the second some characteristics that are based on these 

data, dependence of maximum take-off weight on wing area, aspect ratio, thrust on mass 

dependence and empty weight on maximum take-off weight.  

 

Table 1.6: Aircraft properties overview 

 
b 

[m] 
l 

[m] 
A 

[m2] 
me 

[kg] 
mtow 
[kg] 

RoC 
[m/s] 

Vc 
[km/h] 

F 
[kN] 

SF50 11.7 9.0 18.5 1,681 2,727 30 556 8.0 

LAR-1 8.7 8.3 10.0 700 1,500 30 704 6.5 

D-JET 11.5 10.7 n/a n/a 2,318 8 444 8.5 

VICTORY 11.1 10.2 n/a 1,226 2,497 14 463 4.9 

SPORTJET II 10.4 9.1 15.3 1,317 2,384 15 704 9.8 

STRATOS 714 12.3 10.9 n/a 1,981 3,273 16 546 13.5 

A700 13.4 12.4 13.2 2,520 4,245 12 615 12.0 

ECLIPSE 550 11.6 10.2 14.0 1,650 2,724 18 693 8.0 

HONDAJET 12.1 13.0 18.5 n/a 4,177 18 693 18.2 

CITATION 13.1 12.2 19.51 2,433 3,925 15 630 13.0 

PHENOM 100 12.2 12.8 19.58 3,238 4,754 15 720 14.36 
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Table 1.7: Aircraft specifications overview 

 
mtow/A 
[kg/ m2] 

AR 
[-] 

F/G 
[-] 

We/Wmtow 
[-] 

SF50 147 7.4 0.299 0.616 

LAR-1 150 7.5 0.442 0.467 

D-JET n/a n/a 0.374 n/a 

VICTORY n/a n/a 0.200 0.491 

SPORTJET II 156 7.0 0.419 0.553 

STRATOS 714 n/a n/a 0.421 0.605 

A700 322 13.6 0.288 0.594 

ECLIPSE 550 195 9.5 0.299 0.606 

HONDAJET 226 7.9 0.444 n/a 

CITATION 201 8.8 0.338 0.620 

PHENOM 100 243 7.6 0.308 0.681 

 

 

Graph 1.1: Wing load – Cruise speed dependence 
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Graph 1.2: Wempty on Wmtow dependence

 

Graph 1.3: Engine thrust on Mtow dependence 
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Graph 1.4: Wing area on Aspect ratio 

 

Graph 1.5: Wing load on Engine thrust 
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Graph 1.6: Rate of Climb on Mtow 

 

 Previous graphs show us some characteristics of very light jet aircrafts divided 

between single and twin engine. The Graph 1.1 shows that wing load for single-engine is 

significantly lower that for twin-engine aircrafts. Same distribution is visible in Graph 1.5. 

However Graph 1.4 shows that most of the current VLJs have aspect ratio around 8, which 

is applied for both groups. If we take a look on rate of climb versus mtow (Graph 1.6), we 

can think that single engine aircraft are lighter and thus will have higher climbing speed, 

nevertheless only two aircrafts much faster in climbing than the rest.  
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2 CONCEPTUAL DESIGN 

 

2.1 Typical mission 

 

Typical aircraft mission should obtain take-off, climbing to cruise altitude, cruise for 

the time and distance dependent on pilot’s needs and landing.  

 Time for taxiing for airplane with possible maximal fuel capacity should take 

10 minutes. Take-off distance should be less than 3,000 feet (1,000m).  

 Due to the non-pressurized cabin the cruising altitude should not be above 

12,500 feet, therefore maximal designed cruise altitude is 12,000 feet 

(3,658m), flight level FL120.  Climbing to the flight level take approximately 

15 minutes. 

 Horizontal flight at flight level FL120 will be at cruise speed 388 km/h. 

 Descent from FL120 to land will take 40 minutes. 

 Landing on distance less than 3,000 feet (1,000m) and holding, taxiing 

should take 23 minutes. 

 

 

Figure 2.1: Typical mission schematic 
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2.2 Basic configurations 

 

Design option gives us three basic configurations, classical conception, flying wing 

and canard configuration. The present very light jet aircrafts stick to the standard 

configuration of airplane, however this design leads to canard aircraft. These different 

configurations provide variable advantages and disadvantages. Classical conception is the 

most common and the most widespread configuration where the empennage is in the aft 

fuselage behind wing. Wing has always higher angle of attack than horizontal tail. The 

aircraft’s center of gravity is located before wing. Flying wing is tailless aircraft, where 

fuselage creates most of the drag (30-40%) and contributes to the empty weight by 8-

14%. The design configuration leads to light weight and low efficiency. However the lack 

of conventional stabilizing surfaces results in instability and difficult controllability. Canard 

configuration has horizontal unit in the fore fuselage before wing. In this case canard has 

higher angle of attack than wing. Huge advantage is when approaching stall the canard 

will stall first.  

 

Figure 2.2: Example of classical conception – Cirrus SR-22 [29] 
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Figure 2.3: Canard conception approach – Rutan VariEze [29] 

 

Figure 2.4: Flying wing – Boeing B-2 [30] 
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2.3 Aircraft layout 

 

The main structural idea is to build the aircrafts with a canard configuration, as it is 

not common nowadays in the light aircraft industry today. Due to this choice the wing has 

to be set at the aft of the fuselage with an important back sweep. The chosen solution for 

the vertical tail is not common; it is decided to have two of them placed at the end of the 

wing acting as winglets. Therefore canards are placed as much forward as possible and 

near the lower part of the fuselage. Concerning the fuselage it is emphasized the stream 

line design and came up with an aerodynamic shape inspired by rain drop that also 

provides a great visibility to the pilot and passenger.  

The two seater market is mostly oriented towards flight training for aero clubs and 

for customers that are seeking for a sportive, fast and maneuverable aircraft. This is why 

is was decided to orient this design towards making a fast, good looking and high tech 

aircraft.  

The engine pod is mounted at the rear sides of the fuselage, slightly forward of the wings 

and higher. Connection with the fuselage is done by using the designed mast that comes 

with the engines model. In this configuration the engine will be provided with the entire 

air flow it needs, it will also be protected from any kind of dirt or unwanted objects to be 

aspirated into the engine. The engine being behind the people onboard and with the use 

of the latest noise insulation materials so the best comfort for them can be ensured. 

Nevertheless during design development there were several changes in design, like using 

only one engine placed on top at the rear of the fuselage (Figure 2.5).  

 

Figure 2.5: First design drawing 

 Aircraft is equipped with a tricycle landing gear that is fully retractable. The front 

landing gear has a classic design and is retracted towards the front. The main gear is 

designed to be retracted to the wing. 
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2.4 Engine layout 

 

Best available choice on the market right now is French engine DGEN 380 from Price 

Induction. The DGEN jet engines are two spool, unmixed flow turbofan jet engines with a 

high bypass ratio. The engine is optimized for a cruise altitude ranging from 15,000 to 

20,000 ft and Mach 0.35 with a flight ceiling limited to 25,000 ft. They have low specific 

fuel consumption.  

Fuel equipments are designed to operate with Jet A1 fuel with a specific 

consumption of 0.78 Kg of fuel/Kg thrust/hour at design point (ISA conditions, cruise 

setting, 10,000 ft, Mn 0.338).  

The DGEN engine is lubricated and oil-cooled in a closed circuit. 

Each engine has its own regulation group made of a tank, heat exchanger, and pumps. 

The oil tank capacity should allow operation for more than 300 hours under normal 

conditions. The oil cooling system is integrated to the engine and does not require the 

installation of a fuel return line.  

The DGEN engine uses modern and high-performance materials allowing the 

weight of the components to be optimized from both a structural and a functional point of 

view (composites, light alloys…).  

General regulation is carried out by a FADEC that controls the whole engine as well 

as the electric system in real time. The management of the propulsion group (two 

engines) is totally under the control of the FADEC. That translates into an extreme ease of 

use and a much lighter workload for the pilot. Such a layout also allows a continuous 

engine health and usage monitoring. FADEC and electronics are located in each engine.  

The engine starts electrically with the help of an integrated starter-alternator which 

acts as a generator as soon as the engine reaches autonomy. Regulation accessories for 

the fuel and oil systems are autonomous and powered by the general electric system.  
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Figure 2.6: DGEN 380 dimensions [12] 

 

 

Figure 2.7: DGEN 380 performances [12] 
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2.5 Wing configuration 

 

Wing placement is chosen as mid-wing configuration with back sweep. Wing sweep 

is important for airplane’s balance. The wing swept is 25°. However wing tips are far 

behind the center of gravity that the vertical tail can be and it actually is located on the 

wing tips. Their winglets configuration will reduce the induced drag. The wing is double-

refracted trapezoid (Figure 2.8), but for most calculation is used reference simple 

trapezoidal wing. This design was chosen for placing fuel tanks closer to the center of 

gravity. For calculation basic wing characteristics is necessary to choose some data. 

Designed maximal take-off weight should be lower than 1,200 kg, stall speed is higher 

than in classical configuration aircraft, but cannot extend speed required by the 

regulations, which is 113 km/h. Thus maximal cL with flaps must be high as well, in 

configuration with single slotted flaps it is possible to reach           . 

  
        

      
           

 
               

                
                (2.1) 

Next step is to determine wingspan which will be     , root chord           

and tip chord        . 

   

  

Figure 2.8: Wing drawing 
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Other characteristics can be obtained from wing geometry design.  

Aspect ratio:      
  

 
 

  

     
               (2.2) 

Taper ratio:     
  

  
 

   

     
                 (2.3) 

Mean aerodynamic chord:     
 

 
 
      

   
    

 

 
 
            

      
                 (2.4) 

MAC position:         
 

 
 
   

   
      

 

 
 
      

      
                    (2.5) 

             
 

 
 
     

   
 

 

 
 
        

      
               (2.6) 

                                                (2.7) 

 

2.5.1 Airfoil selection 

 

For both chord and tip of the wing was chosen same airfoil NACA 63-415. This 

airfoil has high       (<1.5) which is important in configuration with canard.  

 

Figure 2.9: NACA 65-415 airfoil from XFoil 
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2.5.2 Maximum lift coefficient 

 

Lift coefficient is one of the most important parameters that characterize wing. 

Some of parameters were obtained from Glauert III programme. List of them is below. 

Maximal wing lift coefficient:                   

Glauert coefficient:            

Angle of zero-lift coefficient:                 

Lift curve slope of the wing:                    

Induced drag coefficient:            

 

Stall speed:      
        

              
  

               

                  
                            (2.8) 

 

Figure 2.10: Lift coefficient distribution 
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2.5.3 Maximum lift coefficient with lift devices 

 

For slowing down before landing it is necessary to use lift devices. These are also 

needed for maintaining current wing area. For required lift was chosen single slotted flap. 

 

Maximal wing lift coefficient with flap at 60°:               

Flap root position:              

Flap tip position:              

Chord length:              

Deflection angle:            

 

These parameters require enough lift coefficient growth. 

 

Maximal wing lift coefficient in landing configuration:                  

Angle of zero-lift coefficient:                    

Induced drag coefficient:                

 

  Stall speed in landing configuration (δ=60°):      

  

       
        

              
  

               

                  
                            (2.9) 

 

CS-23 regulation requires stall speed             . This requirement is 

fulfilled. 
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Figure 2.11: Lift coefficient distribution with flaps at 60° 
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2.6 Canard configuration 

 

Canard is placed in front of the fuselage as low as possible. This placing is important 

for static margin of entire aircraft. The chosen airfoil is NACA 64-210, which has lower 

      (          ) than wing airfoil and therefore it stall first, and aircraft lowers its 

nose before pilot will get into trouble. Canard also provides additional lift. Distance 

between wing and canard is         . Volume coefficient of canard was chosen    

   . Canard was designed with swept       . 

                                   
        

  
 

               

    
                       (2.10) 

Canard’s geometrical parameters: 

Span:            

Root chord:            

Tip chord:             

Area:              

Aspect ratio:           

Taper ratio:     
   

   
 

    

    
       

Mean aerodynamic chord: 

        
 

 
 
      

   
     

 

 
 
            

      
                         (2.11) 

MAC position:        
  

 
 
   

   
      

   

 
 
      

      
                   (2.12) 

             
  

 
 
     

   
 

   

 
 
        

      
              (2.13) 

                                                 (2.14) 
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Figure 2.12: Canard drawing 

 

Canard is designed as control-canard which means it pivots as it is necessary for 

pilot’s needs.  

 

2.7 Vertical stabilizer configuration 

 

Vertical tails are placed in the end of wing and works simultaneously like winglet. 

This is caused by two jet engines placed on the fuselage and therefore their outtakes with 

hot gases from engines can damage them. Since there is no necessary need for any 

curved airfoil NACA 0009 was chosen.  Distance between wing and vertical stabilizer is 

         . Volume coefficient of single stabilizer was chosen         , for double 

stabilizer is half         . 

                                       
      

   
 

             

    
               (2.15) 

Vertical tail was designed with swept       . Double vertical stabilizer design was 

chosen due its common usage between canard airplanes where it works simultaneously as 

stabilizer and as winglet.  
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Vertical tail’s geometrical parameters: 

Span:             

Root chord:              

Tip chord:              

Area:               

Aspect ratio:            

Taper ratio:     
    

    
 

    

    
       

Mean aerodynamic chord: 

         
 

 
 
      

   
      

 

 
 
          

     
                  (2.16) 

MAC position:         
   

 
 
   

   
      

   

 
 
      

      
                  (2.17) 

              
   

 
 
     

   
 

   

 
 
        

      
              (2.18) 

                                                (2.19) 

 

Figure 2.13: Stabilizer drawing 
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3 WEIGHTS  

 

3.1 Materials 

 

If we look at current VLJs manufacturers we can divide them into two groups. One 

group consist from companies with long history in aircraft designing and use mostly metals 

and the second one is formed by new companies which prefer composite materials. 

Therefore before the weight estimation is necessary to choose materials for the aircraft 

parts. This information should help for more accurate predictions weight. 

 

3.1.1 Wing 

 

The wing is monocoque two-hollow construction which main parts (skin and main 

spar) are sandwiches, carbon fibre/epoxy + foam, and rear spar is composite, glass 

fibre/epoxy. Wing will have minimal number of ribs. The sandwich’s skin should provide 

sufficient dimensional strength. Flaps and ailerons are composite monocoque filled by 

foam. The fuel tanks are placed in the front of the wing as close to the center of gravity as 

possible. Between spars is also place for main landing gear and its attachment. 

 

3.1.2 Fuselage 

 

The fuselage is composite monocoque made from carbon fibre/epoxy. Fuselage will 

be reinforced by composite bulkheads in the placement of wing hinges, canard, front 

landing gear and engines. Behind the rear seat is also another bulkhead serving as fire 

bulkhead. The aircraft windshield is made by plexiglass. The control stick is in the middle, 

and throttle control on the left. 

 

3.1.3 Canard 

 

The canard is monocoque construction made from carbon fibre/epoxy filled by 

foam. Canard will be control-canard design, which means that main spar is connected to 

the spigot to could be driven by pilot 



 

54 

 

3.1.4 Vertical stabilizer 

 

The vertical stabilizer is monocoque carbon fibre/epoxy construction filled by foam.   

 

3.2 Weight estimation 

Determining weights is based on statistics [7], or manufacturers manual [12], or are 

calculated where it was necessary to do. The mentioned values are indicative only, are not 

known until the aircraft's exact shape.  

Table 3.1: Weight estimation table 

Nr. Component mi 

[kg] 

mi/mTOW 

[%] 

1 wing 187 15.94 

2 vertical stabilizer 27 2.30 
3 canard 15 1.28 
4 fuselage 166 14.15 
5 windshield 30 2.56 

 landing gear   

6 front 10 0.85 

7 main 64 5.46 
8 hydraulics – front ldg. 2 0.17 
9 hydraulics – main ldg. 6 0.51 
 power unit   

10 engine 159 13.55 

11 engine bed 4 0.34 

12 fuel system 10 0.85 
13 inexhaustible supply of fuel 3 0.26 

 airplane equipment   

14 front seat 3 0.26 

15 back seat 3 0.26 

16 front seat avionics 15 1.28 

17 back seat avionics 15 1.28 
18 front seat controls 3 0.26 

19 back seat controls 3 0.26 

20 batteries  7 0.60 

21 electrical components 15 1.28 

    

 empty weight ∑mi 747 63.68 
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The mi/mTOW ration for designed aircraft is 64%, similar ratio numbers can be 

found in chapter 2, Table 1.7. 

 

Table 3.2: Variable weights 

Component mi 

[kg] 

mi/mTOW 

[%] 

first pilot 
60 5.12 
90 7.67 
0 0 

second pilot 
60 5.12 
90 7.67 
0 0 

fuel 
183 15.60 

0 0 

baggage 
50 4.26 
0 0 

 

 For designation of center of gravity it necessary to needs to know weights and 

location of basic aircraft’s parts (Table 3.1). On the other hand there are variables which 

can change and therefore it can cause change center of gravity location. These 

components should be placed near to the center of gravity, due to their changes during 

flight.  

 

 

 

 

 

 

 

 

 

 



 

56 

 

Table 3.3: Values for center of gravity calculation 

Nr. Component    
     

      

    

      
    

         
       

         
       

1 wing 187 5.03 1.13 940.66 210.67 

2 vertical stabilizer 27 6.36 2.08 171.62 56.18 

3 canard 15 0.63 0.80 9.47 12.05 

4 fuselage 166 2.91 1.25 482.94 207.36 

5 windshield 30 2.52 1.50 75.57 44.91 
 landing gear      

6 front 10 1.15 0.22 11.50 2.24 

7 main 64 6.00 0.36 384.00 22.93 

8 hydraulics – front ldg. 2 1.16 0.61 2.32 1.21 

9 hydraulics – main ldg. 6 4.90 1.10 29.39 6.59 

 power unit      
10 engine 159 4.40 1.59 699.60 252.02 
11 engine bed 4 4.33 1.59 17.32 6.35 

12 fuel system 10 4.20 1.15 42.00 11.50 

13 inexhaustible supply of fuel 3 4.20 1.15 12.60 3.45 

 airplane equipment      

14 front seat 3 2.29 0.94 6.88 2.82 
15 back seat 3 3.31 0.96 9.94 2.88 

16 front seat avionics 15 1.60 1.30 24.00 19.50 

17 back seat avionics 15 2.70 1.30 40.50 19.50 

18 front seat controls 3 1.66 0.81 4.99 2.44 

19 back seat controls 3 2.76 0.81 8.29 2.44 

20 batteries  7 1.00 1.13 7.00 7.88 
21 electrical components 15 2.43 0.62 36.42 9.32 

       

                            

  747   2,946.63 904.24 

 

Centre of gravity 

                                                 
          

    
                 (3.1) 

                                                 
          

    
                        (3.2) 

 The difference between extended and retracted gear in x-axis are insignificant, 

thus extended gear will be use for next calculations. 
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Table 3.4: Variable values for center of gravity calculation 

Nr. Component    
     

      

    

      
    

  

       
       

  

       
       

 
first pilot 

60 
2.1 1 

126.00 60.00 
90 189.00 90.00 
0 0.00 0.00 

 
second pilot 

60 
3.2 1 

192.00 60.00 
90 288.00 90.00 
0 0.00 0.00 

10 
fuel 

180 
4.2 1.15 

756.00 207.00 
0 0.00 0.00 

 
baggage 

50 
3.7 1.1 

185.00 55.00 

0 0.00 0.00 

  

The final location of the centre of gravity has been calculated with values from 

Table 3.4 and using equation for centre of gravity. In Table 3.5 is showed the four border 

cases which determine center of gravity location. Table 3.5 also shows that centre of 

gravity is placed in front of the MAC position, therefore there are negative marks.   

 

Table 3.5: The resulting center of gravity location  

Combination of variable values     
     

           
       

           
       

     
    

     
       

     
    

min. fuel + front pilot + no baggage 807 3,072.63 964.24 3.807 -0.246 1.195 
min. fuel + both pilots + max. 
baggage 

977 3,608.63 1,139.24 3.694 -0.333 1.166 

max. fuel + back pilot + no baggage 987 3,894.63 1,171.24 3.946 -0.140 1.187 
max. fuel + both pilots + max. 
baggage 

1157 4,364.63 1,346.24 3.772 -0.273 1.164 

 

 Graph 3.1 shows how the weight distribution influences center of gravity location. 

The front limit is with is almost 33% in front of MAC and the rear limit 14%.  
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Graph 3.1: Center of gravity location diagram 
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4 STABILITY 

 

4.1 Aerodynamic center with fixed controls 

 

The location of aerodynamic center is determined by books [7] and [9]. The basic 

dimension which leads to others is wing’s aerodynamic center. 

         
        

           (4.1) 

   

Fuselage influence: 

                  
 
       

 

     
         (4.2) 

where 

           – value comes from [9, table 2-26] for these values: 

     
    

 
     

    
       

and 

  
    

 
    

    
      

The fuselage influence is then:  

             
         

          
        

 

Engine nacelle influence: 

                           
    

     
    

  

  
         (4.3) 

where   

     is number of nacelles:         

     is nacelle’s placement:           
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      is wing’s lift curve slope:          

  

  
     from [7, pg. 111] 

         
         

     
 

           

           
               (4.4) 

and      is determined from literature [7, fig. 80]. 

         

The engine nacelles influence is then:  

                    
   

      
                

  

Canard influence: 

                      
    

 
    

  

  
          (4.5) 

 

Aircraft’s lift curve slope: 

                      
    

 
    

  

  
         (4.6) 

where 

      is wing’s lift curve slope:              

     is canard’s lift curve slope:           from [7, pg. 112, fig. 81] 

     is reduction coefficient of dynamic pressure:           from [7, pg. 113] 

Upwash gradient at the canard: 

 
  

  
      

     

                
 
             

         (4.7) 

where  

  is wing’s aspect ratio:        

  is wing’s tapper ratio:         
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      is comparative height between       and       : 

       
      

 
 

      

 
                (4.8) 

         is comparative distance between       and       : 

         
  

         
 

 
       

 
               (4.9) 

Thus 

  

  
      

      

                  
 
             

        

and   

                   
    

     
                  

Therefore 

                 
    

    
                  

 

Propulsion influence: 

Propulsion influence can be neglected in this case. 

 

Intakes influence: 

Intakes influence can be neglected in this case, due to the anticipated low values. 

 

Outtakes influence: 

Outtakes influence can be neglected in this case, due to the anticipated low values. 

  

The final AC location:  

          
        

                                         (4.10) 
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4.2 Static margin with fixed controls 

 

Longitudinal static margin of aircraft is determined as: 

                       (4.11) 

where 

    is aircraft’s center of gravity related to the length of MAC; 

Front limit:                                             

Rear limit:                                              

 

4.3 Aerodynamic center with free controls 

 

This is only preliminary calculation due to the lack of input data. 

         
         

 

  
  

    
 

   
        (4.12) 

 

Aircraft’s lift curve slope with free controls: 

                  (4.13) 

              
   

   

        (4.14) 

                 (4.15) 

           
            

  

    
        

  

  
            (4.16) 

where 

   is elevator’s area, in this case             

   is stabilizer’s relief area, in this case      

  is canard angle:          
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                                      (4.17) 

 

                       
  

  
 
   

                            
 

    
 
   

  

                                 (4.18) 

 

          
      

    

 
            

    

     
                   (4.19) 

Thus  

         
   

   

               
       

       
             

And therefore 

   
           

      

      
  

     

     
        

 

    
                                   (4.20) 

 

4.4 Static margin with free controls 

 

Longitudinal static margin of aircraft is determined as: 

         
      The main goal og hte     

     (4.21) 

where 

    is aircraft’s center of gravity related to the length of MAC; 

Front limit:        
                                       

Rear limit:         
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5 DRAG POLAR 

 

Drag polar is necessary to further performance’s calculations. The polar shows 

dependence between lift and drag coefficients at varying angles of attack. The influence of 

altitude and velocity is determined by Reynolds and Mach number. The drag polar was 

determined from literature [5]. 

 

5.1 Airfoil polar 

 

Root and tip airfoil have different polar due to the different Reynolds numbers. To 

calculate airfoil polar I have used Mark Drela’s XFoil software program which can calculate 

polar for given Reynolds number.  

Reynolds number: 

   
      

  
 

where 

   is air density at 0m MSA:                  

   is dynamic air viscosity:                      

   is root chord:             

   is tip chord:            

  is cruise velocity:              

 

Therefore we get these values: 

Table 5.1: Final Reynolds number values 

 c v Re 

 [m] [m/s] [-] 
Root chord 2.255 108           
Tip chord 0.7 108          
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5.2 Wing polar  

 To create a wing polar in pure configuration it necessary to calculate coefficients 

affecting wing with different properties at chord and root wing’s airfoil.  

 

   
 

 
 
       

     
 

 

 
 
           

         
                (5.1) 

   
 

 
 
       

     
 

 

 
 
           

         
                   (5.2) 

Drag coefficient of substitute airfoil: 

                          (5.3) 

 

Lift coefficient of substitute airfoil: 

                               (5.4) 

 

Drag of substitute airfoil including reduce impact surface of the wing by fuselage and 

wing-fuselage interference: 

      
            

  

 
          (5.5) 

where 

   is wing-fuselage interference coefficient for mid-wing:         

   is wing area covered by fuselage:             

  is wing area:                 

 

Induced drag: 

    
      
 

    
                (5.6) 

where 



 

66 

 

  is Glauert coefficient from Glauert III software:            

   is wing effective aspect ratio: 

   
  

 
 

 

  
  
 

 
  

     
 

   

  
   

     

               (5.7) 

where 

  is wing span:           

  is span efficiency factor:           

 

The total wing drag coefficient: 

             
               (5.8) 

 

The total wing drag polar is shown at Appendix 2. 

 

5.3 Drag coefficients 

 

5.3.1 Fuselage drag coefficient 

 

Fuselage drag coefficient is found from [5, pg. 44]: 

             
       

          (5.9) 

 

Fuselage zero-lift drag coefficient: 

          
           

   
  

       
          

  

  
   

       

 
     (5.10) 

where 

    is wing-fuselage interference factor [5, pg. 24, fig. 4.1]:                  
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      is turbulent flat plate skin-friction coefficient of the fuselage [5, pg. 25]: 

                                                                                   

   is fuselage length:            

   is maximal fuselage diameter:            

        is fuselage wetted area:                    

  is wing area:                 

      
           

   
  

       
          

  

  
   

       

 
                

  

        
 

        
 

   
   

      

     
          

 

Fuselage drag coefficient due to lift: 

       
        

  
       

 
        (5.11) 

where 

  is ratio of the drag of finite cylinder to the drag of an infinite cylinder [5, pg. 47,fig. 

4.19]: 

                

    is experimental steady state cross-flow drag coefficient of a circular cylinder [5, pg. 

47,fig. 4.20]: 

          

        is fuselage planform area:                  

  is the fuselage angle of attack in radians 
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5.3.2 Empennage drag coefficient 

 

Empennage drag coefficient is found form [5, pg. 66]: 

                       
 
 
        

 
 
         (5.12) 

Empennage is divided between canards, which have both part,       
 and       

, 

and vertical tail, which has only zero-lift drag coefficient      
. 

 

Canard zero-lift drag coefficient: 

 

Canard zero-lift drag coefficient [5, pg. 23]: 

      
                                          

       

 
      (5.13) 

where           

      is canard-fuselage interference factor [5, pg. 24, fig. 4.1.]:          

    is lifting surface correction factor [5, pg. 24, fig. 4.2.]:              

     is turbulent flat plate friction coefficient of the canard [5, pg. 25, fig. 4.3.]: 

                       

   is airfoil thickness location parameter [5, pg. 26, fig. 4.4.]:        

    is thickness ratio defined at the mean geometric chord of the canard: 

                  

        is wetted area of the canard:                     

  is wing area:                   
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Vertical tail zero-lift drag coefficient: 

 

Vertical tail zero-lift drag coefficient [5, pg. 23]: 

      
              

                          
      

 
      (5.14) 

where  

     is vertical tail-wing interference factor [5, pg. 24, fig. 4.1.]:            

    is lifting surface correction factor [5, pg. 24, fig. 4.2.]:              

    is turbulent flat plate friction coefficient of the vertical tail[5, pg. 25, fig. 4.3.]: 

                     

   is airfoil thickness location parameter [5, pg. 26, fig. 4.4.]:        

    is thickness ratio defined at the mean geometric chord of the canard: 

                  

       is wetted area of the vertical tail:                  

  is wing area:                   

 

     
               

                         
      

 

                                            
    

     
        

 

Canard drag coefficient due to lift 

The canard drag coefficient due to lift is found from [5, pg. 68, eqn. 4.51.]: 

           
  

       
 

           
  

    

 
        (5.15) 

where          

      is canard lift coefficient 
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     is canard’s aspect ratio:            

     is Oswald efficiency [5, pg. 69]:               

     is canard area:                

       

Therefore the final empennage drag coefficient: 

            
      

       
 

   

5.3.3 Nacelle drag coefficient 

 

Calculating engine nacelle it can be assumed that nacelle is small fuselage, thus it 

is calculated same way. 

Nacelle drag coefficient is found from: 

             
       

           (5.16) 

Nacelle zero-lift drag coefficient: 

         
             

   
  

           
          

    

    
   

       

 
       

     (5.17) 

where 

    is fuselage-nacelle interference factor [5, pg. 24, fig. 4.1.]:          

      is turbulent flat plate skin-friction coefficient of the nacelle [5, pg. 25, fig. 4.3.]: 

                                                                                

     is nacelle length:                   

     is maximal nacelle diameter:                 

        is nacelle wetted area:                     

  is wing area:                   

      
 is nacelle base-drag coefficient 
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       (5.18) 

 

   is nacelle base diameter:              

    is maximum nacelle diameter:              

     is nacelle maximum frontal area:               

           
 is zero-lift drag coefficient of the nacelle exclusive of the base, it is determined 

from the first term on the right hand side in       
  

   

      
 

 
 
 
 
 

      

 
  
   

 
 

            
  

 
    

  
   

 
 
 
 
 

  
    
 

 

        
 
     
     

 
 

         
     
     

  
      

     

     
            

      
            

    
  

            
         

    
    

   
       

 
       

               
  

            
         

    

    
   

     

     
          

          

 

Fuselage drag coefficient due to lift: 

       
      

     

 
        

  
       

 
       (5.19) 

where 

      is nacelle base area:                 

  is ratio of the drag of finite cylinder to the drag of an infinite cylinder [5, pg. 47,fig. 

4.19]:              
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    is experimental steady state cross-flow drag coefficient of a circular cylinder [5, pg. 47, 

fig. 4.20]:               

       
 is nacelle planform area:         

         

  is the fuselage angle of attack in radians 

 

5.3.4 Pylon drag coefficient 

 

Calculating engine pylon it can be assumed that pylon is small empennage, thus it 

is calculated same way. 

              
 
 
         (5.20) 

    
                                      

     

 
      (5.21) 

where 

    is pylon-fuselage interference factor [5, pg. 24, fig. 4.1.]:        

    is lifting surface correction factor [5, pg. 24, fig. 4.2.]:              

   is turbulent flat plate friction coefficient of the pylon [5, pg. 25, fig. 4.3.]: 

                     

   is airfoil thickness location parameter [5, pg. 26, fig. 4.4.]:        

    is thickness ratio defined at the mean geometric chord of the pylon: 

                  

      is wetted area of the pylon:                   

  is wing area:                   
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5.3.5 Fuselage-nacelle interference drag factor 

 

The fuselage-nacelle interference drag coefficient may be found [5, pg. 79, eqn. 

4.65.]: 

       
    

        
 
 
       

    

 
       (5.22) 

where          

     is maximum frontal area of the nacelle, excluding the pylon: 

                    

   
 is fuselage-nacelle intersection without local area ruling [5, pg. 79]: 

         
    

   
  is drag of the nacelle includes interference [5, pg. 80, fig. 4.42.]: 

         

          

      
    

        
 
 
       

    
 

               
     

     
        

 

5.3.6 Flaps and ailerons drag influence coefficient 

 

Besides the wing drag in pure configuration, there is a drag influence from flaps 

and ailerons.  Values for these drag coefficients were taken from [10]. 

Flaps:              

Ailerons:             

Therefore final wing drag is:             
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5.4 Final drag polar 

 

           
                                     

           (5.23) 

 

 

Figure 5.1: Polar drag in pure configuration 
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5.5 Windmilling drag polar 

 

The polar calculation is going same way as in previous; the difference is only in the 

windmilling drag coefficient due to the jet engines. 

The incremental drag coefficient due to a windmilling jet engine may be estimated 

from [5, pg. 81, eqn. 4.67.]: 

               
    
 

 
 

 

          
    

  
    

    

  
  

    

 
      (5.24) 

where         

     is engine inlet diameter:            

     is nozzle cross section area:               

        is ratio of average flow velocity in the nozzle to the steady state flight speed [5,  

pg. 81]:                      

for the fan airflow of high bypass jet engines    

              
    
 

 
 

 

          
    

  
    

    

  
  

    

 
       

    

     
 

 

            
      

         
     

     
         

 

Figure 5.2: Drag polar with stopped engine 
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5.6 Drag polar in landing configuration 

 

The polar calculation is going same way as in previous; the difference is only in the 

influence of the flap. 

The drag coefficient due to flap deflection may be estimated from [5, pg. 82, eqn. 

4.70.]: 

                  
         

           
      (5.25) 

where 

           
 is the flap profile drag increment [5, pg. 82, eqn. 4.71.]: 

           
           

           
   

 
        (5.26) 

where         

          
 is the two-dimensional profile drag increment due to flaps. This increment 

depends on the type of flaps used. For single slotted flaps:           
      

       is wing quarter chord sweep angle:              

    is the flapped wing area:                 

           
           

           
   

 
            

     

     
        

 

        
 is induced drag increment due to the flap [5 pg. 86, eqn. 4.74.]; 

         
             

 

                 (5.27) 

where        

        is the incremental lift coefficient due to the flap 

  is an empirical constant [5, pg. 89, fig. 4.53.]:           
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 is the interference drag increment due to the flap [5, pg. 88, eqn. 4.75.]: 

          
                 

       (5.28) 

where 

         for slotted flaps   

          
                 

                   

 

 

Figure 5.3: Drag polar in landing configuration 
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6 THE FLIGHT PERFORMANCE AND CHARACTERISTICS 

 

The flight performance is coming from data obtained in previous chapters. Let us 

assume that engines are working at 74% of their thrust. The other assumption is that all 

flight’s performances are calculating with            . 

 

6.1 Maximum horizontal flight speed 

 

The maximum horizontal flight speed is one of the crucial for determining flying 

envelope. Maximum speed is based on dependence between available and required thrust. 

Required thrust may be estimated from: 

  
 

 
                    (6.1) 

Available thrust is given by engine characteristics and its values are in Appendix 2 as 

required thrust values. 

 

Figure 6.1: Required and available thrust depending on speed 
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As is visible in Figure 6.1, the maximum horizontal speed is:              

 

6.2 Climbing speed 

 

Climbing speed is another performance which determines aircraft performance. The 

ceiling level is not specified due to the lack of information. However we can assume that it 

will be limited by pilot’s needs and engine limitation. 

The climbing speed can be estimated from: 

    
       

 
 

  

 
             (6.2) 

The angle of climb is then calculated from: 

           
   

 
             (6.3) 

 

Figure 6.2: Required and available power depending on speed 
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Figure 6.3: Angle of climb and climbing speed depending on speed 

 

The values for maximum climbing speed and maximum angle of climb can be 

obtained from Figure 6.3: 

Maximum climbing speed:                at                 

Maximum angle of climb:             at               

 

6.3 Speed polar 

 

Speed polar shows the dependence of aircraft’s descent on speed. 

Descent speed may be estimated from: 

    
  

  
     

        

    
           (6.4) 
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Lift-to-drag ratio: 

  
  

  
           (6.5) 

 

 

Figure 6.4: Lift-to-drag ratio and descent speed depending on speed in pure configuration 

 

The values for maximum lift-to-drag ratio and minimal descent speed can be 

obtained from Figure 6.4: 

Minimal descent speed:              at               

Maximum lift-to-drag ratio:            at               

 

 Another speed polar was calculated for stopped engines, where the thrust is equal 

to zero.  
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Figure 6.5: Lift-to-drag ratio and descent speed depending on speed with stopped engines 

 

The values for maximum lift-to-drag ratio and minimal descent speed can be 

obtained from Figure 6.5: 

Minimal descent speed:              at               

Maximum lift-to-drag ratio:            at               

 

6.4 Take-off 

 

The take-off length is calculated for aircraft, which weight is equal to      and 

drag and lift coefficients,       and      , are taken from polar Figure 6.6. The friction 

coefficient is taken from [3] and for dry asphalt is       . 
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Figure 6.6: Drag and lift coefficient determined from aircraft’s drag polar 

 

Start length: 

       
  
 

  
   

   

    

 
          (6.6) 

where 

acceleration is: 

        
 

 
                   

    

  
 

 

            (6.7) 

 

      is optimal drag coefficient:               

      is optimal lift coefficient:             

  is friction coefficient for dry asphalt:        

  is gravitational acceleration:                 
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   is air density at 0m ISA:                  

  is weight of the aircraft at maximum take-off weight: 

                         

     is maximum take-off weight:               

 

 
 is wing loading:    

 

 
 

        

     
               

  is engine thrust  

 

Calculation of the take-off velocity: 

                                 (6.8) 

 

The final length for land part of taking-off:            

 

For calculation of air part of taking-off it is necessary to know air speed: 

                                (6.9) 

Mean value of excess thrust: 

          
                 

 
                 (6.10) 

The final length for air part of taking-off: 

   
 

         
  

  
      

 

   
     

             

       
  

             

         
                  (6.11) 

  

Final taking-off length:                                   (6.12) 
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6.5 Range, endurance 

 

To calculate range it is need to know specific fuel consumption SFC, and thus the 

maximum range distant is calculated for maximum value of   
      . The classical way 

uses constant SFC, but in this case it is not considered.  

Range calculation: 

  
 

   
  

    

      
  

  

 
 

  
                  (6.13) 

Endurance calculation: 

  
 

     
  

  

  
  

 

     
         (6.14) 

   is aircraft’s weight at the beginning (     minus fuel consummated during taxiing and 

take-off):                 

   is aircraft’s ending weight:           

  is gravitational acceleration:                 

   is air density at 0m ISA:                  

    is specific fuel consumption. 
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Figure 6.7: Estimated range, both in kilometers and nautical miles 

 

 Figure 6.7 shows the range diagram both in metric and imperial units, and it is 

possible to estimated maximal range. 
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Figure 6.8: Estimated endurance 

 

Figure 6.8 shows the endurance diagram and it is possible to estimated maximal 

range. 

Maximal endurance:            at                

 

All tables with values used are in Appendix 3. 
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7 FLIGHT ENVELOPE 

 

The flight envelope is a useful source of information for strength design. It encloses 

all possible combinations of load and velocity, which can occur during aircraft’s lifetime. 

Background for all calculation is taken from CS-23 regulations. 

 

Design maneuvering speed: 

                     (7.1) 

    is stall speed:                

   is load factor:          

                    

 

Design maneuvering speed: 

                         (7.2) 

    is stall speed:                

   is load factor:           

                    

 

Maximum flap extended speed: 

                      (7.3) 

or 

                      (7.4) 

    is stall speed in landing configuration: 

             

then 

                      or                       
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The higher value was chosen:                     

Design diving speed: 

                     (7.5) 

   is maximum speed in level flight at maximum continuous power: 

             

                                

 

Load factor table 

Table 7.1: Load factor table 

   +3.8 

   +3.8 

   -1.5 

   -1.5 

 

Gust loads: 

        
               

   

 

           (7.6) 

      
      

     
            (7.7) 

  
  

 

 

       
 

  
     

     

                    
                          (7.8) 

  
      

     
 

            

           
                  (7.9) 

Table 7.2: Loads table 

velocity v n U n – 
gust 

 [m/s] [-] [m/s] [-] 
   72.89 3.8 15.24 3.16 
   42.82 -1.5 -15.24 -0.27 
    151.74 3.8 7.62 3.25 
    151.74 -1.5 7.62 -1.25 
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Figure 7.1: Flight envelope 
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8 CONCEPTUAL DESIGN OF MAIN AIRCRAFT’S PARTS 

 

As part of new design, it is good to present basic referential models.  

8.1 Aircraft’s model 

 

Aircraft’s model represent basic configuration of inner structure. Only the main parts 

are represented here: fuselage, wing and vertical tail. Engine and engine pod, and canards 

are not in this draft mentioned.  

 

Figure 8.1: Aircraft’s reference model 
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8.2 Wing design 

 

Wing is consisted from two spars and four ribs. Space between main spar and rear 

spar is in the inner part of the wing filled with landing gear mechanism. Also between 

leading edge and main spar is placed fuel. The other fuel tanks are placed in space around 

main landing gear. 

 

Figure 8.2: Wing’s referential model 
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8.3 Vertical tail design 

 

Vertical tail consists from two main ribs and two spars. Stabilizer is connected to the 

rear spar.  

 

 

 

Figure 8.3: Vertical stabilizer’s referential model 
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8.4 Fuselage design 

 

In the fuselage pre-design is visible system of ribs which should provide enough 

support to all parts connected to them. The first one behind cockpit is working also as fire 

protection. Area behind cockpit, where the wing and engine are connected is strengthened 

with ribs. Floor is divided in two parts, where the bigger one is mostly in cockpit, and the 

second part works as baggage space floor. 

 

 

Figure 8.4: Fuselage’s referential model 
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9 DETERMINATION AND ANALYSIS OF DEVELOPMENT COSTS 

 

For costs analysis combination of the literatures [3, 6] was used. For determining it 

certain preconditions must be met. At first all the calculations are based on cost in 1970’s 

constant dollars, thus in this case inflation is not added.  

 

9.1 Development support 

 

Development support is defined as the nonrecurring manufacturing effort undertaken 

in support of engineering during DT&E phase of an aircraft program. The cost of the 

development support is the cost of manufacturing labor and material required to produce 

mock-ups, test parts, static test items, and other items of hardware that are needed for 

airframe design and development work.  

                    
       

               (9.1) 

where 

  is airframe weight in pounds:               

   is maximum speed in knots:              

   is development quantity (number of flight test aircraft):       

 

9.2 Flight test operations 

 

The flight test operation cost element includes all costs incurred by the aircraft builder 

to carry out flights tests except the cost of the flight test aircraft. It includes flight test 

engineering planning and data reduction, manufacturing support, instrumentation, spares, 

fuel and oil, pilot’s pay, facilities rental and insurance. The flight test established the 

operating envelope of the aircraft, its flying and handling qualities, general airworthiness, 

initial maintainability features and compatibility with ground support equipment. 

                   
        

               (9.2) 
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9.3 Tooling 

 

Tools are the jigs, fixtures, dies, and special equipment used in the fabrication of an 

aircraft. Tooling hours are defined as the hours charged for tool design, tool planning, tool 

fabrication, production test equipment, checkout of tools, and maintenance of tooling, 

normal changes and production planning.  

                   
                           (9.3) 

where 

  is production rate (deliveries per month):      

  is cumulative quantity:            

   is production quantity (number of production aircraft) 

 

Tooling hours are determined between engineers and labors. This determination’s 

balance ratio is 20% engineer’s work and 80% labor work.  

Therefore: 

                   (9.4) 

                   (9.5) 

The costs for engineers and labors for tooling are: 

                    (9.6) 

                     (9.7) 

where 

   is engineer’s salary:               

   is labor’s salary:                
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9.4 Manufacturing labor 

 

Manufacturing labor hours include those hours necessary to machine, process, 

fabricate, and assemble the major structure of an aircraft, and to install purchased parts, 

government furnished equipment and off-site manufactured assemblies. 

                 
                     (9.8) 

The cost for the manufacturing is: 

                   (9.9) 

  

9.5 Quality control 

 

Quality control is the task of inspecting fabricated and purchased parts, 

subassemblies and assembled items against material and process standards, drawing 

and/or specifications. Quality control is an extremely important activity in the manufacture 

of aircraft because of their complexity. 

                   (9.10) 

The cost for the manufacturing is: 

                  (9.11) 

 

9.6 Manufacturing material and equipment 

 

The material and equipment includes the raw material, hardware and purchased 

parts required for the fabrication and assembly of the airframe.  

                  
                    (9.12) 
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9.7 Engine and avionics costs 

 

The engine production cost is considered. 

                 (9.13) 

where 

   is engine price:                  

  is number of engines:       

 

9.8 Airframe engineering hours and costs 

 

The engineering activities involved in the DT&E are e.g.: design studies and 

integration, engineering for wind tunnel models, mock-ups and engine tests, test 

engineering, laboratory work on subsystems and static test items, development testing 

and so on. 

                  
                   (9.14) 

where 

  is for development number of prototypes, and for production number of prototyped + 

number of production aircraft 

Thus developing hours can be estimated from: 

                   
                   (9.15) 

And production hours can be estimated from: 

                   
             

           (9.16) 

The costs of engineers for developing hours are: 

                   (9.17) 

The costs of engineers for production hours are: 

                   (9.18) 
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9.9 Overall costs 

 

For sustainable business plan, let us assume we are able to produce 4 aircrafts per 

month. Then we can split our goal to build 50, 100, 150, and 200 aircraft in series. This 

prediction will give some data to work with and see what goal we can reach. Margin added 

to cost of one piece is 10 per cent. 

Table 9.1: Costs table 

the number of planned 
aircraft 

QP pcs 50 100 150 200 

overall costs TC USD 35 632 516 54 436 506 71 391 724 87 379 102 

costs for 1 piece PC USD 712 650 544 365 475 945 436 896 

cost for 1 piece + margin PC USD 783 915 598 802 523 539 480 585 

 

Table 9.1 shows how the price for one plane drops with increasing amount of 

produced aircrafts. The difference between price for 50 pieces and 200 is 63% (almost 

303,330USD).

 

Figure 9.1 Average price of aircraft 
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Next step is to show how it affect company’s budget. One of the assumptions is that 

the development will take at least five year without any major income from selling 

aircrafts. After that the company will profit from selling their product.   

 

Figure 9.2: Course of loss and profits 

 

 All the tables with data are in Appendix 4. 
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10 CONCLUSION 

 

The main goal of the thesis was to calculate basic mass and aerodynamics 

characteristics, design main parts and do cost analysis.  

In the theoretical part are showed current very light jet aircrafts and their used 

engines and also their comparison. As it is possible to see there, the market is growing 

and new aircrafts in this category are producing. Crucial for this design was engine 

choosing. The French DGEN 380 was chosen, because for small plane like this looks like 

the best option.  

In the practical part are at first calculated basic wing aerodynamics characteristics, 

which are necessary for other calculations. Next step was to calculate mass distribution 

over the plane. Due its canard design there were some issues with proper placement of 

centre of gravity andsubsequent positions of front and rear limits of static margin. Values 

are higher than in typical aircraft construction design, therefore it should be verified before 

further steps. The drag polar came next and it is calculate from simple airfoil to the wing 

in the landing configuration. There is important to say, that aircraft does not need flaps for 

taking-off, but for landing it must be pulled down to 60° due to the comply with the CS-23 

regulation for maximal landing speed. One of the most important parts is performance 

characteristics. Engines with thrust at 71% were presumed. This give us some interesting 

values which none of the competitors can fulfill, e.g. rate of climb. The take-off distance is 

impressively short, but it is done due to the powerful engines. I have to mention that the 

cause of the failure of one engine was not calculated. From these calculations was created 

the flight envelope. The last two steps were to design main parts of the aircraft and then 

calculate development costs for whole process.  
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12 LIST OF APPENDIXES 

 

Appendix 1 – The center of gravity drawing 

Appendix 2 – Drag polar calculation 

Appendix 3 – Performance calculations 

Appendix 4 – Costs calculation 

Appendix 5 – 3 view drawing 
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APPENDIX 1 

The center of gravity drawing 
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Figure 12.1: Center of gravity drawing 
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APPENDIX 2 

Drag polar calculation 
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 Figure 12.2: Wing polar 
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Table 12.1: Drag polar calculation 

                                     

[-] [-] [-] [-] [-] [-] [-] 

0,005223 0,004918 0,003839 0,004574 0,000981 0,002880 0,019768 

0,030883 0,004863 0,003024 0,004509 0,000713 0,002369 0,018055 

0,056702 0,004884 0,003487 0,004455 0,000783 0,001936 0,018121 

0,082402 0,005005 0,003498 0,004410 0,000783 0,001582 0,017855 

0,108262 0,005225 0,003500 0,004376 0,000783 0,001307 0,017768 

0,134022 0,005571 0,003501 0,004351 0,000783 0,001108 0,017891 

0,159822 0,005996 0,003501 0,004335 0,000783 0,000985 0,018177 

0,185622 0,006508 0,003501 0,004328 0,000783 0,000931 0,018629 

0,211481 0,007120 0,003501 0,004331 0,000783 0,000949 0,019261 

0,237341 0,007809 0,003501 0,004343 0,000784 0,001045 0,020057 

0,263160 0,008576 0,003501 0,004364 0,000784 0,001218 0,021020 

0,288980 0,009454 0,003501 0,004396 0,000784 0,001469 0,022180 

0,314799 0,010434 0,003501 0,004437 0,000784 0,001797 0,023530 

0,340559 0,011506 0,003501 0,004488 0,000784 0,002203 0,025059 

0,391839 0,013971 0,003501 0,004620 0,000784 0,003245 0,028698 

0,417480 0,015352 0,003501 0,004700 0,000785 0,003886 0,030801 

0,443120 0,016819 0,003501 0,004791 0,000785 0,004605 0,033077 

0,468780 0,018362 0,003501 0,004891 0,000785 0,005396 0,035511 

0,494480 0,020003 0,003501 0,004999 0,000785 0,006260 0,038125 

0,520020 0,021721 0,003501 0,005117 0,000785 0,007196 0,040897 

0,545520 0,023534 0,003501 0,005244 0,000785 0,008204 0,043845 

0,571001 0,025433 0,003501 0,005382 0,000785 0,009296 0,046974 

0,596162 0,027426 0,003501 0,005529 0,000786 0,010464 0,050283 

0,620846 0,029496 0,003501 0,005684 0,000786 0,011693 0,053736 

0,694879 0,036207 0,003501 0,006166 0,000786 0,015525 0,064763 

0,719202 0,038591 0,003501 0,006328 0,000786 0,016813 0,068596 

0,767152 0,043591 0,003501 0,006701 0,000786 0,019772 0,076929 

0,791415 0,046217 0,003502 0,006908 0,000786 0,021412 0,081402 

0,815556 0,048911 0,003502 0,007129 0,000787 0,023173 0,086078 

0,862365 0,054466 0,003502 0,007605 0,000787 0,026954 0,095891 

0,954457 0,066343 0,003502 0,008667 0,000787 0,035387 0,117263 

1,000322 0,072681 0,003502 0,009248 0,000787 0,039996 0,128791 

1,023174 0,075938 0,003502 0,009554 0,000787 0,042425 0,134783 

1,046304 0,079275 0,003502 0,009866 0,000788 0,044906 0,140913 

1,069574 0,082688 0,003502 0,010185 0,000788 0,047437 0,147176 

1,092703 0,086154 0,003502 0,010505 0,000788 0,049982 0,153508 

1,162635 0,097016 0,003502 0,011502 0,000788 0,057892 0,173277 

1,186229 0,100801 0,003502 0,011845 0,000788 0,060619 0,180132 

1,209583 0,104628 0,003502 0,012190 0,000788 0,063359 0,187045 

1,232896 0,108521 0,003502 0,012532 0,000789 0,066070 0,193991 
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Table 12.2: Drag polar with stopped engines 

                                     

[-] [-] [-] [-] [-] [-] [-] 

0,005223 0,004918 0,003839 0,008167 0,016334 0,032667 0,022040 

0,030883 0,004863 0,003024 0,007352 0,014704 0,029409 0,020410 

0,056702 0,004884 0,003487 0,007815 0,015629 0,031259 0,021335 

0,082402 0,005005 0,003498 0,007826 0,015653 0,031306 0,021359 

0,108262 0,005225 0,003500 0,007828 0,015657 0,031313 0,021363 

0,134022 0,005571 0,003501 0,007829 0,015658 0,031315 0,021364 

0,159822 0,005996 0,003501 0,007829 0,015658 0,031316 0,021364 

0,185622 0,006508 0,003501 0,007829 0,015658 0,031316 0,021364 

0,211481 0,007120 0,003501 0,007829 0,015658 0,031317 0,021364 

0,237341 0,007809 0,003501 0,007829 0,015658 0,031317 0,021364 

0,263160 0,008576 0,003501 0,007829 0,015658 0,031317 0,021364 

0,288980 0,009454 0,003501 0,007829 0,015658 0,031317 0,021364 

0,314799 0,010434 0,003501 0,007829 0,015658 0,031317 0,021364 

0,340559 0,011506 0,003501 0,007829 0,015658 0,031317 0,021364 

0,391839 0,013971 0,003501 0,007829 0,015658 0,031317 0,021364 

0,417480 0,015352 0,003501 0,007829 0,015658 0,031317 0,021364 

0,443120 0,016819 0,003501 0,007829 0,015658 0,031317 0,021364 

0,468780 0,018362 0,003501 0,007829 0,015658 0,031317 0,021364 

0,494480 0,020003 0,003501 0,007829 0,015658 0,031317 0,021364 

0,520020 0,021721 0,003501 0,007829 0,015658 0,031317 0,021364 

0,545520 0,023534 0,003501 0,007829 0,015658 0,031317 0,021364 

0,571001 0,025433 0,003501 0,007829 0,015658 0,031317 0,021364 

0,596162 0,027426 0,003501 0,007829 0,015659 0,031317 0,021365 

0,620846 0,029496 0,003501 0,007829 0,015659 0,031317 0,021365 

0,694879 0,036207 0,003501 0,007829 0,015659 0,031317 0,021365 

0,719202 0,038591 0,003501 0,007829 0,015659 0,031317 0,021365 

0,767152 0,043591 0,003501 0,007829 0,015659 0,031318 0,021365 

0,791415 0,046217 0,003502 0,007829 0,015659 0,031318 0,021365 

0,815556 0,048911 0,003502 0,007830 0,015659 0,031318 0,021365 

0,862365 0,054466 0,003502 0,007830 0,015659 0,031318 0,021365 

0,954457 0,066343 0,003502 0,007830 0,015659 0,031318 0,021365 

1,000322 0,072681 0,003502 0,007830 0,015659 0,031319 0,021365 

1,023174 0,075938 0,003502 0,007830 0,015659 0,031319 0,021365 

1,046304 0,079275 0,003502 0,007830 0,015660 0,031319 0,021366 

1,069574 0,082688 0,003502 0,007830 0,015660 0,031320 0,021366 

1,092703 0,086154 0,003502 0,007830 0,015660 0,031320 0,021366 

1,162635 0,097016 0,003502 0,007830 0,015660 0,031320 0,021366 

1,186229 0,100801 0,003502 0,007830 0,015660 0,031321 0,021366 

1,209583 0,104628 0,003502 0,007830 0,015660 0,031321 0,021366 

1,232896 0,108521 0,003502 0,007830 0,015661 0,031321 0,021367 
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Table 12. 3: Drag polar in landing configuration 

                                            

[-] [-] [-] [-] [-] [-] [-] [-] 

0,805223 0,042406 0,003839 0,004574 0,000981 0,002880 0,173126 0,230382 

0,830883 0,045152 0,003024 0,004509 0,000713 0,002369 0,176109 0,234453 

0,856702 0,048002 0,003487 0,004455 0,000783 0,001936 0,179206 0,240445 

0,882402 0,050925 0,003498 0,004410 0,000783 0,001582 0,182382 0,246157 

0,908262 0,053953 0,003500 0,004376 0,000783 0,001307 0,185673 0,252169 

0,934022 0,057057 0,003501 0,004351 0,000783 0,001108 0,189045 0,258422 

0,959822 0,060253 0,003501 0,004335 0,000783 0,000985 0,192518 0,264951 

0,985622 0,063536 0,003501 0,004328 0,000783 0,000931 0,196085 0,271740 

1,011481 0,066913 0,003501 0,004331 0,000783 0,000949 0,199755 0,278809 

1,037341 0,070378 0,003501 0,004343 0,000784 0,001045 0,203520 0,286147 

1,063160 0,073925 0,003501 0,004364 0,000784 0,001218 0,207374 0,293743 

1,088980 0,077560 0,003501 0,004396 0,000784 0,001469 0,211323 0,301609 

1,114799 0,081281 0,003501 0,004437 0,000784 0,001797 0,215367 0,309744 

1,140559 0,085081 0,003501 0,004488 0,000784 0,002203 0,219495 0,318129 

1,191839 0,092903 0,003501 0,004620 0,000784 0,003245 0,227995 0,335625 

1,217480 0,096944 0,003501 0,004700 0,000785 0,003886 0,232385 0,344778 

1,243120 0,101070 0,003501 0,004791 0,000785 0,004605 0,236869 0,354198 

1,268780 0,105286 0,003501 0,004891 0,000785 0,005396 0,241449 0,363884 

1,294480 0,109594 0,003501 0,004999 0,000785 0,006260 0,246131 0,373847 

1,320020 0,113961 0,003501 0,005117 0,000785 0,007196 0,250876 0,384014 

1,345520 0,118407 0,003501 0,005244 0,000785 0,008204 0,255707 0,394425 

1,371001 0,122934 0,003501 0,005382 0,000785 0,009296 0,260626 0,405100 

1,396162 0,127488 0,003501 0,005529 0,000786 0,010464 0,265574 0,415918 

1,420846 0,132035 0,003501 0,005684 0,000786 0,011693 0,270515 0,426791 

1,494879 0,146153 0,003501 0,006166 0,000786 0,015525 0,285855 0,460564 

1,519202 0,150948 0,003501 0,006328 0,000786 0,016813 0,291065 0,472018 

1,567152 0,160627 0,003501 0,006701 0,000786 0,019772 0,301582 0,495547 

1,591415 0,165639 0,003502 0,006908 0,000786 0,021412 0,307029 0,507852 

1,615556 0,170703 0,003502 0,007129 0,000787 0,023173 0,312530 0,520401 

1,662365 0,180738 0,003502 0,007605 0,000787 0,026954 0,323434 0,545597 

1,754457 0,201318 0,003502 0,008667 0,000787 0,035387 0,345796 0,598034 

1,800322 0,211981 0,003502 0,009248 0,000787 0,039996 0,357383 0,625474 

1,823174 0,217396 0,003502 0,009554 0,000787 0,042425 0,363267 0,639508 

1,846304 0,222948 0,003502 0,009866 0,000788 0,044906 0,369299 0,653884 

1,869574 0,228603 0,003502 0,010185 0,000788 0,047437 0,375444 0,668535 

1,892703 0,234294 0,003502 0,010505 0,000788 0,049982 0,381628 0,683276 

1,962635 0,251927 0,003502 0,011502 0,000788 0,057892 0,400788 0,728976 

1,986229 0,258021 0,003502 0,011845 0,000788 0,060619 0,407409 0,744761 

2,009583 0,264124 0,003502 0,012190 0,000788 0,063359 0,414041 0,760582 

2,032896 0,270288 0,003502 0,012532 0,000789 0,066070 0,420738 0,776496 
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Figure 12.3: Aircraft drag polar 
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APPENDIX 3 

Performance calculations 
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Table 12.4: Values for rate of climb and angle of climb calculation 

                             

[-] [-] [m/s] [km/h] [N] [N] [kW] [kW] [kW] [m/s] [°] 

0,13402 0,01789 116,97 421,10 1535,59 1770,34 179,62 207,08 27,46 8,59 4,21 

0,15982 0,01818 107,11 385,61 1308,30 1893,76 140,14 202,85 62,71 19,63 10,50 

0,18562 0,01863 99,39 357,81 1154,44 1999,23 114,74 198,71 83,97 26,28 15,15 

0,21148 0,01926 93,12 335,22 1047,70 2091,96 97,56 194,80 97,24 30,43 18,72 

0,23734 0,02006 87,90 316,43 972,12 2174,54 85,45 191,14 105,69 33,08 21,56 

0,26316 0,02102 83,47 300,51 918,82 2248,74 76,70 187,71 111,02 34,74 23,85 

0,28898 0,02218 79,66 286,77 882,92 2316,05 70,33 184,49 114,16 35,73 25,70 

0,31480 0,02353 76,32 274,76 859,82 2377,49 65,62 181,46 115,83 36,25 27,21 

0,34056 0,02506 73,38 264,16 846,42 2433,77 62,11 178,59 116,48 36,45 28,46 

0,39184 0,02870 68,41 246,27 842,48 2533,35 57,63 173,30 115,67 36,20 30,32 

0,41748 0,03080 66,27 238,59 848,68 2577,90 56,25 170,85 114,60 35,87 31,01 

0,44312 0,03308 64,33 231,58 858,67 2619,48 55,24 168,51 113,27 35,45 31,57 

0,46878 0,03551 62,54 225,16 871,39 2658,44 54,50 166,27 111,77 34,98 32,04 

0,49448 0,03812 60,90 219,23 886,91 2695,06 54,01 164,12 110,11 34,46 32,42 

0,52002 0,04090 59,38 213,78 904,68 2729,33 53,72 162,07 108,35 33,91 32,72 

0,54552 0,04385 57,98 208,72 924,55 2761,61 53,60 160,11 106,51 33,33 32,94 

0,57100 0,04697 56,67 204,01 946,32 2792,13 53,63 158,23 104,60 32,74 33,10 

0,59616 0,05028 55,46 199,66 970,23 2820,70 53,81 156,44 102,63 32,12 33,18 

0,62085 0,05374 54,35 195,65 995,64 2847,34 54,11 154,74 100,63 31,49 33,20 

0,69488 0,06476 51,37 184,93 1072,10 2920,07 55,07 150,00 94,93 29,71 33,14 

0,71920 0,06860 50,49 181,78 1097,15 2941,90 55,40 148,55 93,15 29,15 33,08 

0,76715 0,07693 48,89 176,01 1153,53 2982,35 56,40 145,81 89,41 27,98 32,79 

0,79142 0,08140 48,14 173,29 1183,17 3001,63 56,95 144,48 87,53 27,39 32,61 

0,81556 0,08608 47,42 170,70 1214,11 3020,08 57,57 143,20 85,63 26,80 32,38 

0,86236 0,09589 46,11 166,01 1279,10 3053,95 58,98 140,83 81,84 25,61 31,82 

0,95446 0,11726 43,83 157,79 1413,27 3114,18 61,95 136,50 74,55 23,33 30,50 

1,00032 0,12879 42,82 154,13 1481,03 3141,44 63,41 134,50 71,09 22,25 29,77 

1,02317 0,13478 42,33 152,40 1515,32 3154,42 64,15 133,54 69,39 21,72 29,39 

1,04630 0,14091 41,86 150,71 1549,21 3167,18 64,86 132,59 67,73 21,20 29,01 

1,06957 0,14718 41,41 149,06 1582,87 3179,65 65,54 131,66 66,12 20,69 28,63 

1,09270 0,15351 40,97 147,47 1616,03 3191,70 66,20 130,75 64,55 20,20 28,25 

1,16264 0,17328 39,71 142,97 1714,42 3226,17 68,09 128,12 60,04 18,79 27,11 

1,18623 0,18013 39,32 141,54 1746,80 3237,19 68,68 127,28 58,60 18,34 26,72 

1,20958 0,18704 38,94 140,17 1778,80 3247,81 69,26 126,46 57,20 17,90 26,34 

1,23290 0,19399 38,57 138,84 1809,98 3258,15 69,80 125,65 55,85 17,48 25,97 
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Table 12.5: Values for descent and lift-to-drag ratio calculation 

               

[-] [-] [m/s] [km/h] [m/s] [-] 

0,10826 0,01777 130,15 468,52 21,36 6,09 

0,13402 0,01789 116,97 421,10 15,61 7,49 

0,15982 0,01818 107,11 385,61 12,18 8,79 

0,18562 0,01863 99,39 357,81 9,97 9,96 

0,21148 0,01926 93,12 335,22 8,48 10,98 

0,23734 0,02006 87,90 316,43 7,43 11,83 

0,26316 0,02102 83,47 300,51 6,67 12,52 

0,28898 0,02218 79,66 286,77 6,11 13,03 

0,31480 0,02353 76,32 274,76 5,70 13,38 

0,34056 0,02506 73,38 264,16 5,40 13,59 

0,39184 0,02870 68,41 246,27 5,01 13,65 

0,41748 0,03080 66,27 238,59 4,89 13,55 

0,44312 0,03308 64,33 231,58 4,80 13,40 

0,46878 0,03551 62,54 225,16 4,74 13,20 

0,49448 0,03812 60,90 219,23 4,70 12,97 

0,52002 0,04090 59,38 213,78 4,67 12,72 

0,54552 0,04385 57,98 208,72 4,66 12,44 

0,57100 0,04697 56,67 204,01 4,66 12,16 

0,59616 0,05028 55,46 199,66 4,68 11,86 

0,62085 0,05374 54,35 195,65 4,70 11,55 

0,69488 0,06476 51,37 184,93 4,79 10,73 

0,71920 0,06860 50,49 181,78 4,82 10,48 

0,76715 0,07693 48,89 176,01 4,90 9,97 

0,79142 0,08140 48,14 173,29 4,95 9,72 

0,81556 0,08608 47,42 170,70 5,00 9,47 

0,86236 0,09589 46,11 166,01 5,13 8,99 

0,95446 0,11726 43,83 157,79 5,39 8,14 

1,00032 0,12879 42,82 154,13 5,51 7,77 

1,02317 0,13478 42,33 152,40 5,58 7,59 

1,04630 0,14091 41,86 150,71 5,64 7,43 

1,06957 0,14718 41,41 149,06 5,70 7,27 

1,09270 0,15351 40,97 147,47 5,75 7,12 

1,16264 0,17328 39,71 142,97 5,92 6,71 

1,18623 0,18013 39,32 141,54 5,97 6,59 

1,20958 0,18704 38,94 140,17 6,02 6,47 

1,23290 0,19399 38,57 138,84 6,07 6,36 
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Table 12.6: Values for descent and lift-to-drag ratio calculation with stopped engine 

               

[-] [-] [m/s] [km/h] [m/s] [-] 

0,00522 0,02290 130,15 468,52 25,12 5,18 

0,03088 0,02118 116,97 421,10 18,35 6,38 

0,05670 0,02125 107,11 385,61 14,28 7,50 

0,08240 0,02098 99,39 357,81 11,65 8,53 

0,10826 0,02090 93,12 335,22 9,86 9,45 

0,13402 0,02102 87,90 316,43 8,59 10,24 

0,15982 0,02131 83,47 300,51 7,66 10,90 

0,18562 0,02176 79,66 286,77 6,98 11,42 

0,21148 0,02239 76,32 274,76 6,46 11,81 

0,23734 0,02319 73,38 264,16 6,07 12,08 

0,26316 0,02415 68,41 246,27 5,56 12,31 

0,28898 0,02531 66,27 238,59 5,39 12,30 

0,31480 0,02666 64,33 231,58 5,26 12,24 

0,34056 0,02819 62,54 225,16 5,16 12,13 

0,39184 0,03183 60,90 219,23 5,08 11,99 

0,41748 0,03393 59,38 213,78 5,03 11,81 

0,44312 0,03621 57,98 208,72 4,99 11,61 

0,46878 0,03864 56,67 204,01 4,97 11,40 

0,49448 0,04125 55,46 199,66 4,97 11,16 

0,52002 0,04403 54,35 195,65 4,98 10,92 

0,54552 0,04697 51,37 184,93 5,02 10,24 

0,57100 0,05010 50,49 181,78 5,04 10,03 

0,59616 0,05341 48,89 176,01 5,10 9,58 

0,62085 0,05687 48,14 173,29 5,14 9,36 

0,69488 0,06789 47,42 170,70 5,19 9,14 

0,71920 0,07173 46,11 166,01 5,29 8,71 

0,76715 0,08006 43,83 157,79 5,53 7,93 

0,79142 0,08453 42,82 154,13 5,65 7,58 

0,81556 0,08921 42,33 152,40 5,71 7,42 

0,86236 0,09902 41,86 150,71 5,76 7,26 

0,95446 0,12039 41,41 149,06 5,82 7,12 

1,00032 0,13192 40,97 147,47 5,87 6,98 

1,02317 0,13791 39,71 142,97 6,03 6,59 

1,04630 0,14404 39,32 141,54 6,07 6,47 

1,06957 0,15031 38,94 140,17 6,12 6,36 

1,09270 0,15664 38,57 138,84 6,17 6,25 
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Table 12.7: Values for take-off length calculation 

                 

[kmh] [N] [m/s-2] [1/s] [m] 

0 5024,70 3,7933 0,0000 0,0000 

20 5018,03 3,7862 1,4673 4,0759 

40 5011,36 3,7764 2,9423 12,2594 

60 5004,70 3,7638 4,4282 20,5008 

80 4998,06 3,7484 5,9285 28,8189 

100 4991,42 3,7303 7,4466 37,2330 

120 4984,79 3,7094 8,9863 45,7634 

130 4978,17 3,6950 9,7728 26,1027 
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Table 12.8: Values for range and endurance calculation 

                      

[-] [-] [m/s] [km/h] [kts] [kg/N∙h] [km] [nm] [h] 

0,10826 0,01777 130,15 468,52 253,00 0,614 658,73 355,71 2,31 

0,13402 0,01789 116,97 421,10 227,39 0,594 752,39 406,29 2,75 

0,15982 0,01818 107,11 385,61 208,23 0,579 829,64 448,01 3,15 

0,18562 0,01863 99,39 357,81 193,22 0,568 889,32 480,23 3,50 

0,21148 0,01926 93,12 335,22 181,02 0,558 934,52 504,64 3,79 

0,23734 0,02006 87,90 316,43 170,87 0,55 964,55 520,86 4,02 

0,26316 0,02102 83,47 300,51 162,28 0,543 981,65 530,09 4,20 

0,28898 0,02218 79,66 286,77 154,86 0,537 985,74 532,30 4,32 

0,31480 0,02353 76,32 274,76 148,37 0,532 978,94 528,63 4,40 

0,34056 0,02506 73,38 264,16 142,65 0,527 965,16 521,19 4,43 

0,39184 0,02870 68,41 246,27 132,99 0,521 914,41 493,78 4,40 

0,41748 0,03080 66,27 238,59 128,84 0,517 886,22 478,56 4,33 

0,44312 0,03308 64,33 231,58 125,06 0,514 855,15 461,78 4,26 

0,46878 0,03551 62,54 225,16 121,58 0,512 822,48 444,14 4,18 

0,49448 0,03812 60,90 219,23 118,38 0,509 791,45 427,38 4,08 

0,52002 0,04090 59,38 213,78 115,44 0,506 761,10 410,99 3,98 

0,54552 0,04385 57,98 208,72 112,71 0,505 728,56 393,42 3,88 

0,57100 0,04697 56,67 204,01 110,17 0,502 699,89 377,94 3,77 

0,59616 0,05028 55,46 199,66 107,82 0,501 669,42 361,49 3,67 

0,62085 0,05374 54,35 195,65 105,65 0,499 641,80 346,57 3,56 

0,69488 0,06476 51,37 184,93 99,86 0,494 569,09 307,31 3,28 

0,71920 0,06860 50,49 181,78 98,16 0,493 547,71 295,77 3,19 

0,76715 0,07693 48,89 176,01 95,04 0,491 506,46 273,49 3,03 

0,79142 0,08140 48,14 173,29 93,58 0,49 487,13 263,05 2,94 

0,81556 0,08608 47,42 170,70 92,18 0,489 468,60 253,04 2,86 

0,86236 0,09589 46,11 166,01 89,64 0,487 434,32 234,53 2,71 

0,95446 0,11726 43,83 157,79 85,21 0,484 375,96 203,02 2,43 

1,00032 0,12879 42,82 154,13 83,23 0,482 351,90 190,02 2,31 

1,02317 0,13478 42,33 152,40 82,30 0,481 340,78 184,02 2,26 

1,04630 0,14091 41,86 150,71 81,38 0,481 329,62 177,99 2,21 

1,06957 0,14718 41,41 149,06 80,49 0,48 319,74 172,66 2,16 

1,09270 0,15351 40,97 147,47 79,64 0,479 310,50 167,67 2,11 

1,16264 0,17328 39,71 142,97 77,20 0,478 284,33 153,54 1,98 

1,18623 0,18013 39,32 141,54 76,43 0,477 276,85 149,50 1,94 

1,20958 0,18704 38,94 140,17 75,69 0,476 269,80 145,69 1,90 

1,23290 0,19399 38,57 138,84 74,97 0,475 263,19 142,12 1,87 
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Costs calculation 
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Table 12.9: Development costs table 

the number of planned 
aircraft 

QP [pcs] 50 100 150 200 

engineering hours for 
development 

Ed [hr] 48 125 48 125 48 125 48 125 

engineering hours for 
production 

Ep [hr] 87 359 98 822 106 306 111 985 

tooling hours T [hr] 255 975 288 589 309 826 325 913 

engineering tooling hours Te [hr] 51 195 57 718 61 965 65 183 

labor tooling hours Tw [hr] 204 780 230 872 247 861 260 731 

labor hours L [hr] 827 617 1 178 013 1 451 876 1 685 185 

quality control hours QC [hr] 107 590 153 142 188 744 219 074 

development support D [USD] 147 075 147 075 147 075 147 075 

flight test operations F [USD] 18 443 18 443 18 443 18 443 

manufacturing material and 
equipment 

M [USD] 2 224 320 3 792 574 5 201 670 6 515 698 

engine price P [USD] 10 400 000 20 400 000 30 400 000 40 400 000 

costs for engineering work 
development 

Edc [USD] 1 203 117 1 203 117 1 203 117 1 203 117 

costs for engineering work 
production 

Edp [USD] 2 183 976 2 470 547 2 657 643 2 799 616 

costs of engineering tooling 
hours 

Tec [USD] 1 279 877 1 442 947 1 549 129 1 629 567 

costs of labor's tooling 
hours 

Tdc [USD] 3 071 704 3 463 073 3 717 911 3 910 960 

costs of labor’s hours Lc [USD] 12 414 250 17 670 190 21 778 139 25 277 775 

quality control costs QCc [USD] 2 689 754 3 828 541 4 718 597 5 476 851 

overall costs TC [USD] 35 632 516 54 436 506 71 391 724 87 379 102 

costs for 1 piece PC [USD] 712 650 544 365 475 945 436 896 

cost for 1 piece + margin PC [USD] 783 915 598 802 523 539 480 585 
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Table 12.10: Income table 

Qo 50 100 150 200 

year Income [USD] 

1 37 627 936 28 742 475 25 129 887 23 068 083 

2 75 255 873 57 484 950 50 259 773 46 136 166 

3 112 883 809 86 227 425 75 389 660 69 204 249 

4 150 511 746 114 969 900 100 519 547 92 272 332 

5 188 139 682 143 712 375 125 649 433 115 340 415 

6 225 767 619 172 454 850 150 779 320 138 408 497 

7 263 395 555 201 197 325 175 909 207 161 476 580 

8 301 023 492 229 939 800 201 039 094 184 544 663 

9 338 651 428 258 682 275 226 168 980 207 612 746 

10 376 279 365 287 424 751 251 298 867 230 680 829 

11 413 907 301 316 167 226 276 428 754 253 748 912 

12 451 535 238 344 909 701 301 558 640 276 816 995 

13 489 163 174 373 652 176 326 688 527 299 885 078 

14 526 791 111 402 394 651 351 818 414 322 953 161 

15 564 419 047 431 137 126 376 948 300 346 021 244 

16 602 046 984 459 879 601 402 078 187 369 089 327 

17 639 674 920 488 622 076 427 208 074 392 157 409 

18 677 302 857 517 364 551 452 337 961 415 225 492 

19 714 930 793 546 107 026 477 467 847 438 293 575 

20 752 558 730 574 849 501 502 597 734 461 361 658 
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Table 12.11: Budget table 

 
budget for nr. of produced aircraft [USD] 

year 50 100 150 200 

-5 0 0 0 0 

-4 -7 126 503 -10 887 301 -14 278 345 -17 475 820 

-3 -14 253 006 -21 774 602 -28 556 689 -34 951 641 

-2 -21 379 509 -32 661 903 -42 835 034 -52 427 461 

-1 -28 506 012 -43 549 205 -57 113 379 -69 903 282 

0 -35 632 516 -54 436 506 -71 391 724 -87 379 102 

1 1 995 421 -25 694 031 -46 261 837 -64 311 019 

2 39 623 357 3 048 444 -21 131 950 -41 242 936 

3 77 251 294 31 790 919 3 997 937 -18 174 853 

4 114 879 230 60 533 394 29 127 823 4 893 230 

5 152 507 167 89 275 869 54 257 710 27 961 313 

6 190 135 103 118 018 345 79 387 597 51 029 396 

7 227 763 040 146 760 820 104 517 483 74 097 478 

8 265 390 976 175 503 295 129 647 370 97 165 561 

9 303 018 913 204 245 770 154 777 257 120 233 644 

10 340 646 849 232 988 245 179 907 143 143 301 727 

11 378 274 786 261 730 720 205 037 030 166 369 810 

12 415 902 722 290 473 195 230 166 917 189 437 893 

13 453 530 659 319 215 670 255 296 803 212 505 976 

14 491 158 595 347 958 145 280 426 690 235 574 059 

15 528 786 532 376 700 620 305 556 577 258 642 142 

16 566 414 468 405 443 095 330 686 464 281 710 225 

17 604 042 405 434 185 570 355 816 350 304 778 308 

18 641 670 341 462 928 045 380 946 237 327 846 390 

19 679 298 278 491 670 520 406 076 124 350 914 473 

20 716 926 214 520 412 995 431 206 010 373 982 556 
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APPENDIX 5 

3 view drawing 
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Figure 12.4: 3-view drawing 


