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A B S T R A C T

In field electron emission (FE) studies, interpretation of measured current–voltage characteristics and extraction
of emitter characterization parameters are usually carried out within the framework of ‘‘smooth planar metal-
like emitter (SPME) methodology’’, using a data-analysis plot. This methodology was originally introduced in
the 1920s. Three main data-plot types now exist: Millikan–Lauritsen (ML) plots, Fowler–Nordheim (FN) plots,
and Murphy–Good (MG) plots. ML plots were commonly used in early FE studies, but most modern analysis
uses FN plots. MG plots are a recent introduction.

Theoretically, it is now known that ML and FN plots are predicted to be slightly curved in SPME
methodology, but a Murphy–Good plot will be very nearly straight. Hence (because 1956 Murphy–Good
emission theory is ‘‘better physics’’ than 1928 Fowler–Nordheim emission theory as corrected in 1929),
expectation is that parameter extraction using a MG plot will be more precise than extraction using either
ML plots or FN plots.

In technological FE studies, current–voltage characteristics are often converted into other forms. Thus,
measured voltage may be converted to (apparent) macroscopic field, and/or current values may be converted
to macroscopic current densities. Thus, four data-input forms can be found in the context of analysing FE
current–voltage results.

It is also the case that over-simplified models of measurement-system behaviour are very widely assumed,
and the question of whether simple use of a data-analysis plot is a valid data-interpretation procedure for the
particular system under investigation has often been neglected. Past published studies on field emitter materials
development appear to contain a high incidence of spurious values for the emitter characterization parameter
‘‘characteristic field enhancement factor’’. A procedure (the so-called ‘‘Orthodoxy Test’’) was described in 2013
that allows a validity check on measurement-system behaviour, and found that around 40% of a small sample
of results tested were spuriously high, but has had limited uptake so far.

To assist with FE current–voltage data interpretation and validity checks, a simple user-friendly webtool
has been under design by the lead author. The webtool needs as user input some system specification data
and some ‘‘range-limits’’ data from any of the three forms of data-analysis plot, using any of the four data-
input variations. The webtool then applies the Orthodoxy Test, and—if the Test is passed—calculates values
of relevant emitter characterization parameters.

The present study reports the following: (1) systematic tests of the webtool functionality, using simulated
input data prepared using Extended Murphy–Good field electron emission theory; and (2) systematic compar-
isons of the three different data-plot types, again using simulated input data, in respect of the accuracy with
which extracted characterization parameter values match the simulation input values. The paper is introduced
by a thorough summary review of the theory on which modern SPME-based current–voltage data-analysis
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procedures are based. The need in principle to move on (in due course) to data-analysis procedures based on
curved-emitter emission theory is noted.

An important result is to confirm (by simulations) that, particularly in respect of the extraction of formal
emission areas, the performance of the Murphy–Good plot is noticeably better than the performances of Fowler–
Nordheim and Millikan–Lauritsen plots. This result is important for field electron emission science because it
is now known that differences as between different theories of field electron emission often affect the formal
emission area.
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1. Introduction

An important technique for generating electron beams from a metal-
lic electron source (called here the emitter), is the well-known process of
old field electron emission (CFE) [1–6]. Emitter electrons from a popula-
ion in local thermodynamic equilibrium, at or near room temperature,
re extracted from electron-energy states close to the Fermi level (FL),
nder the influence of a negative surface electrostatic field of high
bsolute magnitude 𝐹L, typically a few V/nm.

There are several different mathematical theories of this process
based on different physical assumptions), but they all generate formu-
ae for the local emission current density (LECD) 𝐽L in terms of the local

work function 𝜙L, the local field magnitude 𝐹L and (in some cases)
other emitter characterization parameters.

Although more advanced emission theories do now exist, emission
aspects of most experimental CFE work are still interpreted within
the framework of a basic underlying theoretical model originally in-
troduced into CFE theory in the 1920s. This disregards the existence
of atoms and the possible role of surface-atom atomic orbitals in
the emission process, and assumes that the emitter can be treated
as a Sommerfeld-type free-electron conductor with a smooth, planar,
structureless surface of large lateral extent. This methodology has been
called [7] smooth planar metal-like emitter (SPME) methodology. Mathe-
matical emission theories derived in the context of SPME methodology
are called here ‘‘smooth-surface planar field electron emission (FE)
theories’’.

SPME methodology can in practice be applied to needle-shaped
and post-shaped emitters that are ‘‘not too sharp’’ by making the so-
called planar emission approximation, and carrying out an integration of
the LECD over the emitter surface. The planar emission approximation
involves the assumption that, at any given point ‘‘P’’ on the needle (etc.)
surface, the LECD is given by the planar FE equation of interest, using
the values of 𝜙L and 𝐹L at point P. This is an approximation because,
in reality, the true value of the LECD 𝐽L(𝜙L, 𝐹L) is also influenced by
the local surface curvature.

Within SPME methodology, the two most popular emission theories
are the (long discredited—see [8]) 1928/29 theory of Fowler and Nord-
heim (FN)—unfortunately now widely re-introduced in a simplified
form, often with a recent new form of error, and the 1956 theory of
Murphy and Good (MG) [9], which corrected significant errors found
in the 1920s work. The FN theory is described as the 1928/29 theory
because there is a large calculational error in Eq. (22) of the 1928
paper [10] (very roughly of the order of 1015) that was rapidly found
and corrected in the 1929 paper of Stern et al. [11]. The 1956 MG
paper then corrected additional FN errors relating to the shape of the
tunnelling barrier.

More recently (see [7]), one of us (RGF) has introduced so-called Ex-
tended Murphy–Good (EMG) theory, in which a prediction uncertainty
factor is introduced into the pre-exponential of the MG local emission
current density equation, in order to formally recognize various physi-
cal effects (including atomic-level effects) that 1956 MG FE theory does
not include.

In past FE literature, 1956 Murphy–Good FE theory has often been
called the ‘‘Fowler–Nordheim equation’’, and some authors continue to
do this. We regard this nomenclature convention as highly confusing,
and do not use it. We commend the idea that the 1956 equation should
2

be called after its actual developers, and should be known as the ‘‘1956 c
Murphy–Good FE equation’’: its predictions for LECD are typically 100
to 500 times higher [8] than those of the 1928/29 FN FE equation.

Obviously, many modern forms of field electron emitter are not
metals. All of the planar FE theories just discussed were derived in
the context of (metal-based) SPME methodology. Nevertheless, it is
customary practice (partly due to the lack of any easy alternative) for
experimentalists interested in characterizing their emitters to use one
of the two popular theories derived for metal emission.

In reality, there is some justification for using existing SPME method-
ologies, because what they first attempt to investigate relates to the
nature of the tunnelling barrier and the electrostatics of the system
geometry, and these behaviours are relatively similar for most materi-
als, including modern non-metals. However, the existing methodologies
‘‘work adequately’’ only in a proportion of cases (probably around 50%
or slightly more). In the remaining cases there is a high chance that
extracted emitter-material characterization parameters are spurious.

The reason is not necessarily some inadequacy in emission the-
ory. What the emission theories generate is some expression for the
predicted emission current 𝐼e in terms of some characteristic local field-
magnitude 𝐹C, at some location ‘‘C’’ (near the emitter tip) where the
ECD has a maximum value. But what is measured is the relation
etween the measured current 𝐼m and the measured voltage 𝑉m: other
actors may affect this.

The term FE system is defined to include all aspects of the ex-
erimental system that can affect the 𝐼m(𝑉m) relationship, including:
mitter composition, geometry and surface condition; the mechani-
al, geometrical and electrical arrangements in the vacuum system;
ll aspects of the electronic circuitry and all electronic measurement
nstruments; the emission physics; and ALL relevant physical processes
hat might be taking place (for example, the generation of field emitted
acuum space-charge, Maxwell-stress-induced reversible changes in
mitter geometry, and adsorbate atom dynamics).

In general, the interpretation of FE measured current–voltage data
an be a highly complex problem in electronic engineering that is im-
ossible to solve exactly in the present state of research knowledge.
owever, for some systems, for example when the emitter and its

upport arrangements are good conductors and there are no ‘‘system
omplications’’, the interpretation problem reduces to one involving
nly FE emission physics and the electrostatics of the system geometry.
e call systems of this kind electronically ideal. Systems where the

nterpretation problem cannot be reduced in this way (due to ‘‘system
omplications’’) are termed electronically non-ideal.

‘‘System complications’’ can include (amongst other things): series
esistance in the current path between the high-voltage generator and
he emitter; voltage-deficit effects (due to emitter resistivity) that can
ead to unexpected current-dependent variations in emitter characteri-
ation parameters; effects due to field emitted vacuum space charge;
ield-dependent changes in system geometry due to Maxwell stress;
ork-function changes due to current-related heating effects (Joule
nd/or Nottingham heating) and related desorption of adsorbates; and
arious effects related to field penetration into semiconductor emitters.
ith large area field electron emitters (LAFEs), which can involve

arge numbers of individual emission sites, plot non-linearity can oc-
ur because the emission comes from a distribution of emitters, all
ith different field enhancement factors. Further, several different
omplications can operate simultaneously.
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This distinction between electronically ideal and non-ideal emitters
can be set up in another way. The relationship between 𝐹C and the

easured voltage 𝑉m can be written formally as

C =
𝑉m
𝜁C

, (1)

where 𝜁C is a parameter called the (characteristic) voltage conversion
length (VCL). The VCL is a system characterization parameter, not a
physical length. If the emitter physical condition is unchanging (apart
from changes in applied field) and the VCL is constant, then the FE
system is electronically ideal; if the VCL-value depends on current
and/or voltage, then the FE system is electronically non-ideal.

It is possible for the system behaviour to be electronically ideal
over part of the voltage range (usually the low-voltage part), but to
be non-ideal over the remainder of the range.

If the FE system is electronically ideal, even if only over a limited
range of input values (but a range of ‘‘reasonable length’’), then values
of emitter characterization parameters can be validly extracted from
measured current–voltage data.

Two forms of validity check exist that can be applied in order to
establish whether observed data have been taken from an electron-
ically ideal system. First, a data-analysis plot of one of the three
standard types (the Fowler–Nordheim plot is the best known) has
to be ‘‘nearly linear’’ over all or part of its voltage range. If this
test is passed, then good practice is to apply the so-called Orthodoxy
Test [12]. If this second validity check is passed, then emitter charac-
terization parameters can be validly extracted. If the Orthodoxy Test is
failed, then characterization-parameter values extracted using standard
data-analysis procedures are very likely to be spurious.

Until recently, the orthodoxy test was applied by using a spread-
sheet, downloadable from the Royal Society (of London) website [12].
A couple of years ago, the lead author (MMA) felt that it would be
more convenient for users if he built a webtool that would apply the
Orthodoxy Test, and – if the test were passed – would extract relevant
characterization parameters from the data [13,14].

In order to extract emitter characterization parameters from elec-
tronically ideal data-analysis plots, it is mathematically possible either
to use (a simplified version of) 1928/29 FN FE theory or to use 1956
MG FE theory. The difference lies in the formulae that are used to
interpret the extracted values of the slope and intercept of the straight
line fitted to the plot (see [7] for an illustration). For slope-related
parameters the difference in final values is typically 5% or slightly less,
and not usually of any significance. However, for the area-like param-
eter extracted by using both the fitted slope and the fitted intercept,
the two approaches yield final values typically varying by a factor of
order 100. Since it is decisively known (see [8]) that the 1956 MG
FE equation is ‘‘better physics’’ than the 1928/29 FN FE equation, it
follows that (of the two choices) theory based on the MG FE equation
should always be used for the data interpretation process, irrespective
of which form of data analysis plot is being used. The theory used here
and used in building the webtool is based on 1956 MG FE theory, and
we do not allow the option of using the ‘‘worse physics’’ inherent in
1928/29 FN FE theory.

In this matter we have adopted a stance different from that found
in much of existing FE technological literature, which uses a simplified
version of 1928/29 FN FE theory to interpret the slope of a FN plot.
Little direct harm is done by this, because usually interest is only in
the determination of a dimensionless field enhancement factor from an
extracted value of FN-plot slope, and the procedure error involved is
usually less than 5%. But, in our view, scientific damage is done by
the frequently repeated publication of an equation long known to be
outdated (or, worse, the publication of a defective variant of it with a
new type of error), and scientific damage is also done by the frequently
repeated citation (often the only theoretical citation used) of a paper in
which the discrepancy between theory and later experiment [15] can be
shown to be very roughly of order 1015. The associated repeated failure
3

to mention this discrepancy when citing the 1928 FN paper may tend
to leave non-experts with the false view that ‘‘Fowler and Nordheim
got the details right’’ in their 1928 paper, when in fact they did not.
(By ‘‘repeated’’ we mean a failure that occurs in probably more than
1000 papers.) There is also, of course, an issue of repeated failure of
the scientific Peer Review process.

Our view is that, in fact, there is no useful merit in using discredited
equations that are nearly 100 years old in order to analyse modern
FE data. For electronically ideal systems, the more modern approach
described below provides both useful additional information for tech-
nology developers, and better value for money for FE research funders.
Further, more widespread use of the Orthodoxy Test might help to
diminish the numbers of questionable results in the literature. Thus,
we hope that this paper can contribute in a small way to improving
the quality of FE literature.

The inputs to both the spreadsheet and webtool versions of the
Orthodoxy Test are an assumed value for the relevant local work
function and the coordinates of two points (on a relevant data-analysis
plot) that define the ends of a straight line fitted to the data. These two
points are called the (working) range limits. There are four different pairs
of quantities that can be used in a FE data-analysis plot, and three dif-
ferent conventional types of data-analysis plot. The decision was taken
to make the webtool accommodate all twelve possible forms of data
input, even though our strong view is: (a) that the best data-input form
is the raw data that gives measured current as a function of measured
voltage; and (b) that (at present) the best form of data-analysis plot is
the Murphy–Good plot, discussed below.

The webtool is also set up so that it can accept and process data
relating to single-tip field electron emitters (STFEs) (which are usually
needle-like), and also data relating to large area field electron emitters
(LAFEs). The term ‘‘LAFE’’ relates to any multi-emission-site device
that has a significant macroscopic area (or ‘‘foot-print’’)—-often 1 to
25 mm2, but not limited to this range. The characterization parameters
most suitable for these two types of emitter are slightly different.

A main aim of this paper is to validate the software engineering
of the webtool, but the paper also provides a further introduction to
the tool and to the theory and reasons behind its development. This
validation is best done using simulations of FE current as a function
of voltage, because the exact form of the input is then known, and
extracted outputs can be compared with the known inputs.

The structure of the remainder of the paper is as follows. Sec-
tion 2 presents a thorough summary review of relevant basic emission
theory (especially modern developments) and of the electronic engi-
neering of FE current–voltage data interpretation. Section 3 presents a
brief overview of the MMA webtool. Section 4 presents the results of
simulations designed to test both the webtool and different methods
of data analysis. Section 5 discusses conclusions and possible future
developments.

Values of universal physical constants used in FE are given here
to 7 significant figures, in field emission customary units. These, like
SI units, are based on the modern system of equations that has 𝜖0 in
Coulomb’s Law and that has (since 2009) been known as the Interna-
tional System of Quantities. These customary units are more convenient
than SI units for discussing atomic-scale processes, and are recognized
for continued use alongside SI units. Values of universal constants
should be appropriately rounded in practical applications.

2. Review of basic theory

The theory here is based on the ‘‘scaled’’ form of Extended Murphy–
Good FE theory, as developed by one of us (RGF). This is the most
recent form of planar FE theory. We consider basic emission theory,
the different forms of data input and data-analysis plot, the theory
of the orthodoxy test, the different types of emitter characterization
parameters that can be extracted from electronically ideal data-analysis
plots, and the related extraction formulae.
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Fig. 1. Schematic diagram to show the image-rounded zero-field barrier and the
Schottky–Nordheim (SN) barrier. The Schottky–Nordheim barrier is evaluated for 𝜙 =
4.50 eV and at 𝐹 ≈ 2.8 V/nm.

2.1. Summary review of Extended Murphy–Good emission theory

2.1.1. The Schottky–Nordheim transmission barrier
In deriving the emission physics of CFE, two high-level factors need

to be considered: the supply of electron current to the inside of the
emitting surface, and the tunnelling probability (or, more generally,
transmission probability) that an approaching electron will be emitted.
The first of these factors is a long-solved standard problem in statistical
mechanics (e.g., [16], see §11.31 to §11.36), so our remarks here
concentrate on simple models for evaluating transmission probability,
and aim to provide a simple ‘‘experimentalist-oriented’’ explanation of
the physics involved. For simplicity, we now drop the subscript ‘‘L’’
from 𝜙L, leaving it to be understood that 𝜙 denotes the local work
function relevant to the emission location.

As already noted, CFE occurs when an intense negative electrostatic
field, of magnitude often in the approximate range 3 to 5 V/nm (for a
𝜙 ≈ 4.5 eV emitting surface), is applied to the surface. As illustrated in
Fig. 1, this changes the shape of the potential energy (PE) barrier from
its zero-field ‘‘image rounded’’ shape to a reduced image-rounded PE
barrier (e.g., [8], see Fig. 1), now often called the Schottky–Nordheim
(SN) barrier.

Strictly, the form of the barrier is determined, not by the PE 𝑈 (𝑧)
alone (where 𝑧 is measured from the emitter’s electrical surface), but by
the difference 𝑀(𝑧) ≡ 𝑈 (𝑥) − 𝐸n, where 𝐸n is the electron’s so-called
normal-energy. 𝐸n is the component (of the electron’s total-energy 𝐸)
that is associated with electron motion normal to the emitter surface.
Both 𝑈 (𝑧) and 𝐸n need to be measured relative to the same energy
reference level.

Strictly, also, the parameter 𝑀(𝑧) is not a potential energy, because
it is a difference between a potential energy and a normal-energy.
Following Newton’s use of the term ‘‘motive force’’ in his original for-
mulation of his Second Law [17] (see p.19 in the translated version [18]
of Principia), 𝑀(𝑧) has sometimes been called the electron motive energy.

For a SN barrier of zero-field height equal to the local work function
𝜙, the motive energy 𝑀SN(𝑧) for an electron with normal-energy equal
to the Fermi level is given by:

𝑀SN(𝑧) = 𝜙 − 𝑒𝐹L𝑧 −
𝑒2

16𝜋𝜖0𝑧
, (2)

where e is the elementary positive charge, and 𝜖0 is the electrical
ermittivity of free space.

When the SN barrier becomes sufficiently narrow, cold electrons can
4

uantum tunnel through to vacuum without requiring any additional
energy. In this case, emission of electrons is in the CFE regime, and
the electrostatic field must be intense enough (of magnitude at least
around 3 V/nm for a 𝜙 = 4.50 eV surface) to make the SN barrier
narrow enough for the cold electrons to be able to tunnel through.
However, in practice, the field magnitude must stay well below a value
where the emitter becomes unstable (due to heating or other effects)
and self-destructs.

In the simplest form of tunnelling theory, the transmission proba-
bility 𝐷SN for the SN barrier is given by

𝐷SN ≈ exp
[

−(2𝜅e)∫

𝑧2

𝑧1
{𝑀SN(𝑧)}1∕2d𝑧

]

. (3)

where (2𝜅e) is an universal constant of value 10.24633 eV−1∕2nm−1, and
the limits of the integral are the points where 𝑀SN(𝑧) = 0. If we now
denote the value of the integral in Eq. (3) by 𝑄SN, then this equation
can be written in the simplified form

𝐷SN ≈ exp[−2𝜅e𝑄SN], (4)

Fig. 2 shows how increasing the electrostatic field magnitude 𝐹L: (a)
affects the shape of SN barrier and decreases the SN barrier height; and
(b) reduces the area 𝑄SN. Hence, from Eq. (4), increasing 𝐹L increases
the transmission probability 𝐷SN. At the reference field-magnitude
(≈14.06 V/nm for a 𝜙 = 4.500 eV emitting surface) the barrier height
and the integral 𝑄SN both become zero.

For comparison, the behaviour of the exactly triangular (ET) barrier
is also shown; the related mathematics follows the pattern of Eqs. (2)
to (4), but with the image PE term removed.

The horizontal axis in Fig. 2 represents an electron normal-energy
equal to the Fermi level. So, when the top of the barrier is pulled below
the horizontal axis, as illustrated in Figs. 2(b) and 3(a), electrons with
normal energy equal to the Fermi level (or above) can ‘‘fly over’’ the
top of the barrier. This occurs at the reference field-magnitude for the SN
barrier 𝐹 SN

R given by

𝐹 SN
R = (4𝜋𝜖0∕𝑒3)𝜙2 ≡ 𝑐S

−2𝜙2 ≈ (0.6944615 V∕nm) ⋅ (𝜙∕eV)2, (5)

where 𝑐S [≡
√

𝑒3∕(4𝜋𝜖0) ≈ 1.999985 eV (V∕nm)−1∕2] is the Schottky
constant. For 𝜙 = 4.500 eV, 𝐹 SN

R ≈ 14.06 V/nm. This formula can be
found, either by setting the maximum value of 𝑀SN(𝑧) equal to zero,
or by considering the case where 𝑧1 → 𝑧2.

Using this definition, a parameter 𝑓C called the characteristic scaled-
field (for a SN barrier of zero-field height 𝜙) is defined as the ratio

𝑓C ≡
𝐹C

𝐹 SN
R

= 𝑐S
2𝜙−2𝐹C, (6)

where 𝐹C, as before, is a characteristic local field at some location ‘‘C’’
near the emitter apex (usually taken at the apex in modelling). The
situation shown in Fig. 3(a) corresponds to 𝑓C = 1. As shown below,
this parameter 𝑓C plays an important role in modern FE theory.

When electrons can easily fly over the top of a field-reduced barrier,
the emission is no longer in the CFE regime. In fact, the derivation
of the 1956 MG FE equation as given above breaks down at a 𝑓C-
alue around 0.8. However, it is more useful to show a regime diagram:

Fig. 3(b) shows the temperature/scaled-field regime where the deriva-
tion of a finite-temperature version of 1956 MG FE theory is adequately
valid [19]. (The correction due to finite temperature is always small
within this regime, typically less than 20%, and customary practice is to
omit the temperature correction term from theory being used at room
temperature, as has been done above.)

2.1.2. The extended Murphy-Good equation for local emission current
density

The 1956 zero-temperature Murphy–Good FE equation for char-
acteristic local emission current density, 𝐽MG0

C , can be written in the
‘‘linked’’ form

𝐽MG0 = t−2𝐽SN, (7)
C F kC
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Fig. 2. To illustrate the changes, as the electrostatic field-magnitude 𝐹L increases, in: (a) the shapes of the exactly triangular (ET) and Schottky–Nordheim (SN) barriers, and (b)
the areas 𝑄 that appear in Eq. (4) for the SN barrier and in the equivalent equation for the ET barrier. The barriers are evaluated for 𝜙 = 4.500 eV.
Fig. 3. (a) Schematic diagram to illustrate the distinction, in electron emission, between wave-mechanical (or‘‘quantum’’) tunnelling and wave-mechanical (or‘‘quantum’’) flyover.
(b) Regime diagram that shows the regime of validity of the finite-temperature version of the 1956 Murphy–Good FE equation, as a function of temperature and characteristic
scaled-field, for an electron-emitting surface of local work function 4.50 eV. The regime of validity is the region inside both the red (nearly straight) and the blue (hump-shaped)
curves (which represent two different validity requirements). The green horizontal line shows the range of validity at 300 K.
𝐽SN
kC ≡ 𝑎𝜙−1𝐹 2

C exp
[

−
vF𝑏𝜙3∕2

𝐹C

]

, (8)

where 𝑎 [ ≡ 𝑒3∕(8𝜋ℎP) ≈ 1.541434 × 10−6 A eV V−2], and 𝑏 [ ≡
8𝜋

√

2𝑚e∕(3𝑒ℎP) ≈ 6.830890𝑒𝑉 −3∕2 (V/nm)] are universal constants
called the First and Second Fowler–Nordheim (FN) constants (see sup-
plementary electronic material for Ref. [20]), 𝑚e is the electron rest
mass in free space, and ℎP is Planck’s constant. The parameters vF
and tF are appropriate particular values (appropriate to a SN barrier
defined by 𝜙 and 𝐹C) of well-known special mathematical functions
(e.g., see [21]). The parameter 𝐽SN

kC is called the kernel current density
for the SN barrier and is defined by eq. (8).

To define a suitable version of the so-called Extended Murphy–Good
(EMG) FE equation, Forbes replaced Eq. (7) by the equation

𝐽EML
C = 𝜆C𝐽

SN
kC , (9)

where 𝜆 is a parameter originally called a ‘‘knowledge uncertainty
factor’’ but now called a prediction uncertainty factor. 𝜆C is its value for
location ‘‘C’’. The factor 𝜆 was introduced into FE theory some years
ago [22]; the name ‘‘EMG theory’’ is more recent [12].

As explained earlier, this parameter 𝜆C is a ‘‘placeholder’’ that
formally takes account of ALL physical effects that are not included in
1956 MG FE theory, in particular the disregard of atomic-level effects.
The 1956 MG FE theory pre-exponential t−2F , and the temperature
correction factor evaluated in the 1956 paper, are also swept into 𝜆,
because these are assumed to be very small corrections when compared
with the major sources of uncertainty.

Neither the functional dependences of 𝜆 nor its range of values is
well known. Further, as research stands at present, neither FE theory
5

nor FE experiment is good enough to derive reliable estimates of how
it behaves: all one can do is to make informed guesses. Those of
Forbes were based originally on the experience of Modinos, mainly via
private discussions, with some tweaking (see [22]). The recent work of
Lepetit [23] is also directly relevant (see [24]). The current suggestion
by Forbes is that the prediction uncertainty factor is a function of field
and most probably lies somewhere in the range 0.005 ⩽ 𝜆C ⩽ 14,
but it would be no great surprise if the lower limit turned out to be
pessimistically low.

2.1.3. Progress with the theory of the special mathematical function v(x)
Basic conventions. In the period 2006–2010, significant advances

in mathematical understanding were made in connection with the
function ‘‘v’’ used in Murphy–Good FE theory. These are reviewed
in [25]; the remarks here are a summary.

A major advance was to understand that ‘‘v’’ is in fact a very special
solution of the Gauss Hypergeometric Differential Equation (HDE). This
is the highest-level mathematical context in which ‘‘v’’ appears, and it
follows that ‘‘v’’ should be expressed as a function of the independent
variable in the Gauss HDE. A new convention has been to denote this
variable by ‘‘𝑥’’ and call it the Gauss variable.

An argument has been made that the mathematics of ‘‘v’’ should
be conceptually separated from the use of ‘‘v’’ in specific modelling
contexts such as field electron emission, and that v(𝑥) should be treated
as a special mathematical function (SMF) with its own body of mathe-
matical theory. The symbols for SMFs are, by international convention,
normally typeset upright, so we now prefer to write the function
as v(𝑥), and to also typeset upright the symbols for closely related
functions, such as t(𝑥). There seems no obvious objection-free short
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name for v(𝑥), so it is provisionally being called the principal field
emission special mathematical function (but ‘‘v’’ for short).

Previously, the mathematics of ‘‘v’’ has been formulated in terms of
he Nordheim parameter 𝑦, which (it can be shown) is equal to +

√

𝑥.
It can be argued that, since 𝑥 is the natural variable for use in the
mathematics, the legacy practice of using the Nordheim parameter 𝑦
should (from the strictly mathematical point of view) now be regarded
as mathematically perverse. In particular, it is NOT normal mathematical
practice to look for a solution to a differential equation in terms of
a function of the SQUARE ROOT of the independent variable in the
equation. Normal practice is to look for a solution that USES the
independent variable in the differential equation.

It has also been argued that, in fact, the natural variable to use
in an MG-type theory of current densities is the characteristic scaled-
field 𝑓C defined by Eq. (6), rather than the legacy convention of
using the Nordheim parameter 𝑦. Both conventions should continue
to be permissible, at least for the time being, but it can be argued
that it is likely that experimentalists will in fact find that using 𝑓C is
a more powerful and flexible approach, particularly when discussing
current–voltage measurements and theory.

Thus, our strongly recommended ‘‘21st Century approach’’ is that
the special mathematical function v(𝑥) should be applied to MG theory,
as for example set out in Eq. (8), by setting vF = v(𝑥 = 𝑓C). The
mathematical proof that this is a correct procedure is lengthy and is
currently spread over several papers, using a variety of notations. A
short argument that this is correct is as follows. In the legacy approach
it has been shown that ‘‘𝑦’’ in the modelling is the same parameter as
‘‘𝑦’’ in the basic mathematics. It follows that ‘‘𝑦2’’ in the modelling is
the same as ‘‘𝑦2’’ in the basic mathematics. It follows that if we replace
‘‘𝑦2’’ in the mathematics by 𝑥 and ‘‘𝑦2’’ in the modelling by 𝑓C, then the
substitution procedure described above is a procedure compatible with
the legacy approach. There remains a need for a full proper proof to be
published in a single tutorial-type paper.

The alternative approach is the legacy modelling convention in
which we write vF = v(𝑥 = 𝑦2). Eq. (8) is written using the symbol
vF in order to allow either convention to be used.

Scaled planar FE equations. A further consequence of introducing
the parameter 𝑓C is that this allows the development of useful so-
called scaled equations for kernel current densities. For the SN barrier,
work-function-dependent scaling parameters for the exponent and pre-
exponential, respectively, can be defined (using FE universal constants
defined earlier) by

𝜂(𝜙) ≡ 𝑏𝑐2S𝜙
−1∕2, (10)

𝜃(𝜙) ≡ 𝑎𝑐−4S 𝜙3. (11)

Algebraic manipulation of Eq. (8), using these equations and also
Eq. (6), yields the scaled-format equation for the kernel current density
for the SN barrier, namely

𝐽SN
kC ≡ 𝜃𝑓 2

C exp
[

−v(𝑓C) ⋅
𝜂
𝑓C

]

, (12)

ere, and below, the dependence of 𝜂 and 𝜃 on work-function is not
normally shown explicitly, but the dependence of ‘‘v’’ on 𝑓C is now
hown explicitly.

A merit of this equation is that it contains only a single, direct, in-
ependent variable. This makes mathematical manipulations, including
ifferentiation, markedly easier.

If this scaled equation is to be used to help interpret FE current–
oltage measurements from electronically ideal systems, then a formula
s needed that relates 𝑓C to the measured voltage 𝑉m. This is achieved

by using Eq. (21) below to define a parameter 𝑉mR, called the reference
measured voltage (for the SN barrier), by

SN
6

𝑉mR = 𝐹R 𝜁C, (13) d
where 𝜁C is (for an electronically ideal system) a system-specific char-
acterization constant called the characteristic voltage conversion length
(VCL). For an electronically ideal system modelled using a SN barrier,
𝑉mR is the measured voltage needed to pull the top of the SN barrier
down to the Fermi level.

Applying a similar equation to the field-magnitude 𝐹C yields

𝑓C =
𝐹C

𝐹 SN
R

=
𝑉m∕𝜁C
𝑉mR∕𝜁C

=
𝑉m
𝑉mR

. (14)

Thus, for an electronically ideal system, 𝑓C is also ‘‘scaled measured
voltage’’ (and, for a LAFE, is also ‘‘scaled macroscopic field’’).

The ‘‘simple good approximation’’ for v(𝑓C). As part of ‘‘21st Century’’
mathematical developments, several accurate (exactly equivalent) ex-
pressions, and some high-quality mathematical approximations, have
been developed for v(𝑥). These are described elsewhere [25]. Of rel-
evance here is the so-called simple good approximation vF06 [25,26]:

v(𝑓C) ≈ vF06 = 1 − 𝑓C + 1
6
𝑓C ln(𝑓C), (15)

Over the range 0 ⩽ 𝑓C ⩽ 1, where ‘‘v’’ takes values in the range
1 ≥ v ≥ 0, the maximum relative error in expression (15) is 0.33%
and the maximum absolute error is 0.0024.

If this expression is inserted into Eq. (12), algebraic re-arrangement
leads to the expanded scaled format for the SN-barrier kernel current
density, namely

𝐽SN
kC ≈ 𝜃𝑓 (2−𝜂∕6)

C exp [𝜂] exp
[

−
𝜂
𝑓C

]

. (16)

As shown below, this equation forms the basis for the construction of
Murphy–Good plots.

Note that the exponent exp [−𝜂∕𝑓C] also appears in the elemen-
ary version of the 1928/29 FN FE equation. Thus, in this expanded
caled formulation, the whole of the difference between 1956 MG FE
heory and elementary FE theory appears in the pre-exponential of the
quations. This in turn affects the intercept of a data-analysis plot, and
mplies a need for accurate extraction of plot intercept values.

.2. Data analysis plots and related issues

Data input variables. As indicated above, our strong view is that by
ar the best choice for data input variables is to use the measured
urrent and voltage and current {𝐼m, 𝑉m}. This is because, for both
deal and non-ideal FE systems, these data are experimental facts, and
re therefore scientifically valid items of information. However, other
lot-variables are found in FE literature.

For a LAFE, the macroscopic (or ‘‘LAFE-average’’) current density 𝐽M
s defined by

M ≡
𝐼m
𝐴M

, (17)

where 𝐴M is the macroscopic or ‘‘footprint’’ area of the LAFE. This area
𝐴M can be independently measured, so the macroscopic current density
𝐽M is a well-defined experimental parameter.

Note that it is important that the subscript ‘‘M’’ (or ‘‘av’’) be added
to the symbol for macroscopic current density. This is because, in real
situations, emission comes only from the tips of individual emitters,
and this ‘‘effective tip emission area’’ is only a small fraction of the
‘‘site area’’ (i.e., the footprint associated with a single emitter). Thus,
the parameter 𝐽M is much smaller than the characteristic local emission
urrent densities (𝐽C) discussed earlier, perhaps sometimes by a factor
s much as 109. Formal ways of dealing with this situation are discussed
elow.

In FE literature, this distinction between local current densities and
acroscopic current densities is often not made, and the same symbol
(and the same name ‘‘current density’’) are used for both: for 𝐽M in
iagrams and for 𝐽C in equations. This can lead to publication situations
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where there are large apparent discrepancies between experiments
and theory-as-given-in-the-paper. These discrepancies are often not
discussed, apparently because no-one (authors, reviewers or editors)
has detected their existence.

A further parameter widely used in LAFE literature is an (apparent)
macroscopic field 𝐹 app

M defined by

𝐹 app
M =

𝑉m
𝑑M

, (18)

where 𝑑M is an experimental parameter associated with the FE system
geometry. There is more than one geometrical option for the choice
of 𝑑M, so for illustration we consider the commonly used situation of
so-called PPP geometry, where a LAFE has been fabricated on one of a
air of well-separated parallel planar plates, and put 𝑑M = 𝑑sep, where
sep is the separation between the plates.

In this case, what the experimentalist is trying to deduce is the true
acroscopic field 𝐹 true

M between the plates, which is defined by

true
M =

𝑉p
𝑑sep

, (19)

where 𝑉p is the voltage between the front surface of the emitter substrate
nd the distant counter-plate. However, in real systems there is no
equirement for 𝑉P to be equal to the measured voltage 𝑉m. This is

especially the case when a LAFE is fabricated on the surface of a
resistive semiconductor slab or layer, because it is the front surface of
the slab or layer that has to be treated as one of the parallel plates.

Thus, the experimentalist thinks that he/she is calculating 𝐹 true
M but

s actually calculating 𝐹 app
M . The correct formula for 𝐹 true

M has the form

true
M =

𝑉m
𝑍mM

, (20)

here the so-called measured-voltage-to-macroscopic-field conversion pa-
ameter 𝑍mM is defined by this equation, and is a system characteriza-
ion parameter, rather than a physical distance. For an electronically
deal FE system, 𝑍mM is indeed a constant equal to a physical distance
n the system; but for an electronically non-ideal system 𝑍mM is an
nitially unknown characterization parameter that is likely to be a func-
ion of voltage and/or of current. For a more mathematical discussion,
ee [27].

A consequence of this situation is that experimental voltage data
hat are converted using Eq. (18) lose their validity, and data plots
ased on this data cease to be ‘‘experimental data’’ but become ‘‘uncon-
irmed pre-converted mathematical data’’. After validity checks have
een applied, these unconfirmed data can either be ‘‘recognized’’ as
rue experimental data (if the checks are passed), or may remain in

state of ambiguity (if the checks are failed). This is because some
ypes of system complication (e.g., high series resistance) will certainly
enerate false experimental data plots, but other types of complication
e.g., space-charge) may be generating true experimental data for an
lectronically non-ideal FE system. In the present state of research
nowledge, it can be difficult to distinguish between these alternative
ossibilities.

In FE literature these difficulties are usually not discussed, and often
ll data plots are presented as if they were true experimental data.
on-expert readers, in particular industrialists and defence scientists

nterested in using field emitter characterization data, may not realize
hat authors, reviewers and editors may (sometimes or often) not be
ble to distinguish between false experimental FE data and true exper-
mental FE data. A merit of the Orthodoxy Test, and of our webtool
mplementation of it, is that they can (with good probability) identify
hich data plots in the literature are true experimental data taken from
lectronically ideal FE systems.

Another unfortunate feature of FE experimental/technological lit-
rature is that sometimes pre-conversion of 𝐼m(𝑉m) data into 𝐽M(𝐹 app

M )
data is done, but the papers concerned do not record the values of
7

both of the parameters (𝐴M and 𝑑M) used to make the conversion. If v
the resulting data plot fails the orthodoxy test, then the original raw
experimental data cannot easily be retrieved. The technology may be
interesting but the emitter materials cannot be characterized by readers
unless they contact the author(s).

The ambiguities just described, over the meanings of the terms
‘‘current density’’ and ‘‘macroscopic field’’, are a primary cause of our
strong view that by far the best data-plotting approach is 𝐼m(𝑉m). In
this case the ambiguities do not arise. And, as already stated, whether
or not the FE system turns out to be electronically ideal, at least the
plotted data are true raw experimental data.

These ambiguities have also been a partial cause of the decision
to build the webtool so that it can accept all four variants of data-
input form, namely 𝐼m(𝑉m), 𝐼m(𝐹

app
M ), 𝐽M(𝑉m) and 𝐽M(𝐹 app

M ). In practice,
eedle-type emitters are nearly always analysed using the 𝐼m(𝑉m) ap-

proach. With LAFEs, all four of the approaches have sometimes been
used, but the 𝐽M(𝐹 app

M ) approach is probably the most common.
The conventional forms of data-analysis plot. In order to keep discus-

sion general, we shall here use ‘‘𝑋’’ to denote the independent variable
in the data input (either 𝑉m or 𝐹 app

M ), and ‘‘𝑌 ’’ to denote the dependent
variable (𝐼m or 𝐽M).

All three of the conventional forms of FE data-analysis plot have the
mathematical form of a plot of ln{𝑌 ∕𝑋𝑛} versus 1∕𝑋, where 𝑛 is a pa-
ameter called here the data plot index, and the ‘‘curly-bracket notation"
𝑍} means ‘‘take the numerical value of 𝑍 when 𝑍 is expressed in the
esignated units, discussed in the related text’’. There is no requirement
or 𝑛 to be integral.

In some cases common logarithms (to base 10) have been used
y experimentalists for making plots and evaluating plot slopes. The
ebtool will convert common logarithms to natural logarithms (to base
). The theory below is based on the use of natural logarithms. It is
lso highly desirable that any new data-analysis plots are made using
nly the SI units A, V and m (not sub-multiples of these units). The
rthodoxy Test will work if any consistent set of units has been used,
ut evaluation of characterization parameters requires the consistent
se of only A, V and m (in particular, fields must be in V/m and current
ensities in A/m2). If necessary, conversion of units must be undertaken
efore data entry into the webtool.

The Millikan–Lauritsen (ML) plot [28] has 𝑛 = 0, and is based
n the empirical law found experimentally by Lauritsen in his PhD
ork [29] and reported in [30]. The Fowler–Nordheim (FN) plot has
= 2, and was introduced by Stern et al. [11] because the 1928/29 FN
E theory of the 𝐽L(𝐹L) dependence predicts that this form will generate
straight-line plot. The Murphy–Good (MG) plot has 𝑛 = 𝜅SN = 2−𝜂∕6,
nd was introduced by Forbes [7] because the expanded scaled version
f the MG theory of the 𝐽L(𝐹L) dependence predicts that this form will
enerate a ‘‘very nearly straight’’ line.

Fig. 4(a) uses EMG theory to present a simulated current–voltage
haracteristic 𝐼m(𝑉m) for the ‘‘typical’’ metal local work-function value
= 4.50 eV, and for illustrative characterization parameters 𝜁C =

00 nm and 𝐴SN
fC = 100 nm2 (These values have been chosen as typical

xtracted values for a tungsten STFE). Fig. 4(b) presents simulations of
he three conventional types of data-analysis plot, based on the data
hown in Fig. 4(a).

Other data-analysis-plot forms have been suggested, based in part
n the thinking that the mathematical form of the experimental depen-
ence of 𝐼m on 𝑉m does not have to be the same as the mathematical
orm of the theoretical dependence of 𝐽L on 𝐹L in SPME methodology.
hus, for example, Abbott and Henderson [31] suggested 𝑛 = 3 or
= 4, and Forbes, Popov et al. [32] have suggested that the actual

xperimental value of 𝑛 should be determined by ‘‘best fit’’ methods.
Notwithstanding this, the present webtool and paper are confined

o analysis of the three conventional data-analysis plot forms, because
hese are the ones that have normally been used in experimental papers.

It should be added that eventually the subject area will need to
ove on to the use of data-analysis tools that take local surface cur-
ature into account in emission theory, probably based in the first
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fC = 100 nm2; and (b) the related data analysis plots, with 𝑛 = 0 for ML plots, 𝑛 = 2
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nstance on the work of Kyritsakis and Xanthakis [33,34]. But it has
ppeared to us that a useful (and probably necessary) prior task is to
evelop improved practice within the framework of SPME methodol-
gy.

.3. Emitter characterization parameters

We first need to make the point that there are two categories of
mitter characterization parameter: those obtained by carrying out
ata-plot analysis after validity checks have been passed; and those
btained by applying standard ‘‘ideal-emitter’’ procedures to emitters
hat have not been tested or have failed the orthodoxy test or equivalent
alidity check. In the former case, provided that there are no distorting
ffects due to counter-electrode adjacency, the extracted parameters
haracterize the emitter material, as fabricated in a specified way. In the
atter case the extracted parameters do NOT reliably characterize the
mitter or the emitter material, but might provide a useful laboratory
ecord of how a particular emitter, prepared and mounted in a partic-
lar way, in a particular FE system, was behaving on a particular day.
he remarks here apply to emitters that have passed validity checks.

Slope-related parameters. Parameters extracted from the data-plot
lope alone relate to the geometry of the system, as it affects the sys-
em electrostatics. Our view is that scientifically the most satisfactory
pproach is to suppose that there exists a formula 𝐼m(𝐹C) for predicting

the measured current 𝐼m as a function of a well-specified characteristic
LOCAL field 𝐹C, and then write a formula that connects 𝐹C to the
measured voltage 𝑉m. As indicated earlier, we prefer the form

𝐹C =
𝑉m
𝜁C

, (21)

where 𝜁C is called the characteristic voltage conversion length (VCL). In
general, 𝜁C is a system characterization parameter that is a function
of measured voltage and/or measured current, but for electronically
ideal systems 𝜁C becomes a constant. For ideal systems, a systematic
review of the related quantitative electrostatics is in preparation (de
Assis, Dall’Agnol and Forbes, in preparation, 2022).

In FE literature, the reciprocal of 𝜁C is denoted by 𝛽 and is some-
times used instead of the VCL. We avoid this approach, partly because
of potential confusion with the widespread FE convention that uses 𝛽
to denote the field enhancement factor discussed below, partly because
we think it easier to use a parameter typically measured in ‘‘nm’’, rather
than one typically measured in ‘‘m−1’’.

In FE literature relating to LAFEs, it is common practice to at-
tempt to describe the electrostatics of FE systems by using one of a
set of related dimensionless parameters called here characteristic field
enhancement factors (FEFs). Parameters of this kind are denoted here by
𝛾MC and defined by

𝛾MC ≡
𝐹C
true . (22)
8

𝐹M
p

We use the symbol ‘‘𝛾 ’’, rather than the more conventional symbol ‘‘𝛽’’,
in order to avoid confusion with the use of 𝛽 to denote the reciprocal
of a VCL.

If the experimental 𝐼m(𝑉m) data plot passes validity checks (includ-
ng the Orthodoxy Test), then formulae discussed below (depending on
he chosen data-plot form) can be used obtain an extracted value 𝜁 extrC
f the characteristic VCL.

For LAFEs, an extracted value of the related FEF 𝛾MC can then be
btained from the formula
extr
MC =

𝑑M
𝜁 extrC

, (23)

where 𝑑M is the parameter used earlier and called the macroscopic
distance.

There are, in fact, different geometrical options for the choice of
macroscopic distance, and there exist correspondingly different types
of dimensionless FEF. The main alternatives currently used are PPP
geometry (where the macroscopic distance is the plate separation,
as discussed earlier), and ‘‘gap geometry’’, where the macroscopic
distance is taken equal to the gap length between the emitter apex
and a closely adjacent counter-electrode (which is sometimes a pointed
probe). For clarity, the definition of a dimensionless PPP-geometry FEF
is illustrated in the Appendix.

Care also needs to be taken over how macroscopic distance is
defined when considering, for example, cylindrical-wire geometry or
blade geometry (likely to be relevant for emission from graphite flake
edges [35], for example). The formulae given below should work
adequately for all types of macroscopic distance, but what type of
FEF you get out depends on what type of macroscopic distance you
put in. Note that comparing the numerical values of different types of
FEF (which is sometimes done in FE literature) is not electrostatically
legitimate, except in a general qualitative fashion.

When working with scaled equations, the characterization param-
eters ‘‘reference measured voltage’’ and ‘‘reference macroscopic field’’
can be obtained in a generally similar manner, but extraction of these
parameters is not currently implemented in the webtool.

Finally, we note that in FE literature a substitution of the form

𝐹C =
𝑉m𝛾MC
𝑑M

, (24)

s sometimes made into an equation for 𝐼m(𝐹C), and it is implicitly
ssumed that 𝑑M is a physical distance, that 𝐹M is a true macroscopic
ield, and that 𝛾MC is a well-defined constant. These things are true for
n electronically ideal system, but they cannot all be true for a non-
deal system. There is an awkward (unsolved) pedagogical problem of
ow best to formulate the theory in such cases. At present it looks as
hough it may be best to have parameters that represent the ‘‘ideal’’
alues, and a set of correction factors, as for example done in [36].
urther discussion of this topic is outside the scope of this paper.

Area-like parameters. The definition and measurement of area-like
arameters via FE experiments is very complicated. The approach here
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is a slight advance on previous treatments, but should be regarded as
‘‘work in progress’’.

In order to make a prediction about the emission current from
a needle-like or post-like emitter, it is first necessary to adopt some
specific model for the emitter shape and for how the local work-
function varies across the model surface. As before, we assume here
that the work function is uniform across the surface.

Ideally, one would wish to have a good theoretical expression for
the local emission current density (LECD) and integrate this across the
emitter surface. But this cannot be done at present, because of the
unknown nature of the prediction uncertainty factor in Eq. (9). Hence,
instead, one makes the planar emission approximation and integrates
the kernel current density for the SN barrier over the surface of the
model. This yields a notional emission current (for the SN barrier) 𝐼SNn
hat one can write in the form
SN
n ≡ 𝐴SN

nC𝐽
SN
kC , (25)

here, as before, 𝐽SN
kC is the value of the kernel current density at some

uitably chosen characteristic location. The parameter 𝐴SN
nC is defined by

his equation and is called the notional emission area (for the assumed
mitter shape, etc., model, as analysed using a SN barrier). The value
f this notional area will depend on the details of the assumed emitter
odel, and the choice of location ‘‘C’’.

We now assume that (for a given emitter model) if, we knew an
xact expression for the LECD, then that would yield a ‘‘true model
mission current’’ 𝐼SNtm that could be written in the form

SN
tm = 𝜆𝐽 𝐼

SN
n , (26)

here 𝜆𝐽 is a prediction uncertainty factor (of the same general kind
s considered before) that is associated with uncertainties in emission
heory. It will depend on many things, and we do not think it helpful
o introduce complicated notation about this. The symbol is basically a
‘placeholder’’ that records the fact that uncertainty exists.

Unfortunately, this is not the end of the story because, when dealing
ith a real emitter, it may be that the real emitter and its surface

ondition do not correspond to the assumptions made in the model.
his introduces a second source of uncertainty, and a formula for the

‘predicted measured current’’ 𝐼SNp has to be written

SN
p = 𝜆EM𝐼SNtm = 𝜆EM𝜆𝐽 𝐼

SN
n = 𝜆EM𝜆𝐽𝐴

SN
nC𝐽

SN
kC , (27)

here 𝜆EM is a second prediction uncertainty factor associated with
eficiencies in the emitter model.

This formula can be simplified by defining a new area-like parame-
er 𝐴SN

fC , called the formal emission area, by

SN
fC = 𝜆EM𝜆𝐽𝐴

SN
nC . (28)

q. (27) can then be rewritten in the simplified form
SN
p = 𝐴SN

fC 𝐽
SN
kC . (29)

e now assert that a formula for actual measured current 𝐼m can also
e written in this form, as

m = 𝐴SN
fC 𝐽

SN
kC . (30)

ince 𝐼m is well-defined, and the expression for 𝐽SN
kC is well defined

though there will be some uncertainty over the values of 𝜙 and 𝐹C), it
ollows that in principle 𝐴SN

fC is a well-defined parameter and that one
ight hope to extract its value from experiment.

From Eq. (17) earlier, it follows that (for LAFEs)

M =
𝐼m
𝐴M

≈ 𝐽SN
kC

(

𝐴SN
fC

𝐴M

)

≡ 𝛼SNfC 𝐽SN
kC , (31)

here 𝛼SNfC [≡ 𝐴SN
fC ∕𝐴M] is the formal area efficiency (for the SN barrier)

nd is defined by this equation. This dimensionless parameter is a
easure of what fraction of the LAFE footprint area is actually emitting
9

lectrons. Values of 𝛼SNfC are not well known, but are thought to typically
ie in the range 10−9 to 10−4.

The area-like parameters that are extracted from FE experiments
re these formal parameters. For a real field emitter there is no easy
elationship between the extracted formal emission area and measures of
he real emitting area.

It is also possible to define a notional area efficiency (for the SN
arrier) by the relation 𝛼SNnC = 𝐴SN

nC∕𝐴M. This parameter cannot be
measured but can be estimated theoretically [37], and (when combined
with the prediction uncertainty factor 𝜆SNC ) can perhaps give a rough
indication of an upper limit on the likely range of values of 𝛼SNfC .

Commentary. There is an argument to be made that field electron
emission is still in a pre-scientific or ‘‘partially scientific’’ state. This is
because FE does not really satisfy either of the requirements needed
for a subject area to be regarded as ‘‘properly scientific’’, namely:
(a) compatible with and deducible from general principles of physics;
and/or justified by experiment. A subject area where virtually all theory
disregards the existence of atoms fails on the first test. It also seems to
be true that at no stage in the 100 years of the subject’s existence have
quantitative comparisons of theory and experiment been made that
are precise, reliable and decisive (although, of course, general trends
are compatible). Further, defining and precisely measuring/calibrating
the relevant real surface electrostatic field is a major problem, not yet
adequately solved.

A conclusion drawn in earlier work was that attempting to make
direct comparisons between theory and experiment would not provide
an easy way of putting FE onto a better scientific basis. (If this were so,
then reliable comparisons would have been made by now.) Rather, it
was concluded (Forbes, unpublished work) that the scientific endeav-
our related to making FE into ‘‘proper science’’ needs to be split into
four parts: (1) activities aimed at reducing the massive amount of con-
fusion and error in FE experimental and technological literature, and
at establishing a ‘‘common 21st Century starting place’’ for developing
future FE science (including activities aimed at persuading people to
go there); (2) investigation and development of methods (including
the design of suitable apparatus) for the accurate extraction of formal
emission area and other relevant parameters from experiments; (3)
theoretical investigation of what needs to be done in order to develop
improved theory (some of the problems seem to be very deep); and
(4) investigation of any other procedures that can help reduce (or
‘‘side-step’’) the prediction uncertainty issues just discussed. To these
one should perhaps add: (5) establishing how to measure, reliably and
precisely, the relevant local surface electrostatic field.

Obviously, this paper contributes to the second of these tasks, and
also aims to help reduce errors in current FE literature.

2.4. Basic theory of the Orthodoxy Test

The FE Orthodoxy Test is a powerful validity check that can be
applied to any of the three conventional forms of data-analysis plot,
whatever the choice of data-input variables, and whether or not authors
have remembered to label the axes on their data plots clearly. It should
be seen as an ‘‘engineering triage test’’ that assesses whether emitter
characterization parameters deduced using conventional data-analysis
techniques are likely to be valid, and divides data plots into three
broad classes: ‘‘Pass’’ - extracted results are likely to be reliable; ‘‘Fail’’
- extracted results are highly likely to be spurious; and ‘‘Inconclusive’’
- reliability is certainly not guaranteed and further investigation is
needed. The test has a good scientific basis, but should not be treated as
precise science. It should be understood as a test AGAINST the hypoth-
esis that the data in question have been taken from an electronically
ideal system that can be adequately modelled by MG FE theory, using
the value of local work function that is input.

The test is based on the scaled form of Murphy–Good FE theory, and
works by extracting from the experimental data the range of scaled-

field values (𝑓C-values) that would be deduced from the experimental
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Fig. 5. Orthodoxy test summary: (a) definitions of zone boundaries; (b) definitions of ‘‘Pass’’, ‘‘Fail’’ and ‘‘Inconclusive’’ conditions.
data-input variable if the system were electronically ideal and MG
theory applied. This extracted range is then compared for compatibility
with reference zones for 𝑓C, for the three output categories described
above. These reference zones depend on the assumed local work-
function of the emitter, and are determined in a manner described
below.

For the FE system under test, the working range is determined by
extracting individual 𝑓C-values that correspond to the lower (𝑓low) and
upper (𝑓up) ends of the working range, using the coordinates {�̄�, 𝐿}
of the ends of a straight line fitted to the experimental data. (�̄� is an
alternative symbol for 𝑋−1; as before, ‘‘𝑋’’ is being used here to denote
the data-input variable.) The �̄�-values used must correspond exactly to
the those of the lowest and highest data-points used. Also, bear in mind
that 𝑓low is derived from the right-hand end of the plot, and 𝑓up from
the left-hand end.

The slope 𝑆f it depends on which type of data plot is being used,
but the extraction formula does not depend on which data-variables
are being used.

For a Fowler–Nordheim (FN) plot, the extraction formula is [12]

𝑓 extr
C =

st ⋅ 𝜂(𝜙)
|𝑆f it

FN| ⋅𝑋
−1

, (32)

where 𝑆f it
FN is the (negative) slope of the line fitted to the FN plot, and st

[≡ s(𝑓t )] is the so-called ‘‘fitting value’’ of the slope correction function
s(𝑓 ). It is usually adequate to approximate st ≈ 0.95 [12].

For a Murphy–Good (MG) plot, the extraction formula is [7]

𝑓 extr
C =

𝜂(𝜙)
|𝑆f it

MG| ⋅𝑋
−1

, (33)

where 𝑆f it
MG is the (negative) slope of the line fitted to MG plot. Appli-

cation of the Orthodoxy Test to MG plots has been discussed in more
detail in [38].

For a Millikan–Lauritsen (ML) plot the FN-plot formula is used, but
with a (negative) slope value 𝑆eff

FN given by [14]

𝑆eff
FN ≈ 𝑆f it

ML + 4
�̄�lef t + �̄�right

(34)

where �̄�lef t and �̄�right are the horizontal-axis coordinates of the left-
hand and right-hand range limits of an experimental ML plot.

Fig. 5(a) below shows fives zones of extracted values that are rele-
vant to the three Orthodoxy-Test outcomes (F, I, P). The zone boundaries
are denoted (in ascending order) by 𝑓1 < 𝑓2 < 𝑓3 < 𝑓4. These
boundaries depend on the assumed local work function, as shown in
Table 1. For convenience, the values for 𝜙 = 4.50 eV are also shown in
Fig. 5. This useful ‘‘traffic light’’ approach to the Orthodoxy Test was
devised by Dr Eugeni Popov and colleagues, of the Ioffe Institute in
Saint-Petersburg.

2.5. Extracting emitter characterization parameters for electronically ideal
FE systems

2.5.1. Which parameters from which plot?
We next discuss the detailed methods by which characterization

parameters are extracted from the conventional plot types, using the
10
Table 1
The Orthodoxy Test zone boundaries as functions of the local work-function 𝜙.
𝜙 (eV) 𝑓1 𝑓2 𝑓3 𝑓4
5.5 0.09 0.14 0.41 0.69
5.0 0.10 0.14 0.43 0.71
4.5 0.10 0.15 0.45 0.75
4.0 0.11 0.16 0.48 0.79
3.5 0.11 0.17 0.51 0.85
3.0 0.12 0.18 0.54 0.91
2.5 0.13 0.20 0.59 0.98

Table 2
The four data-input formats and their related extracted and derived parameters.

Data input
format

Extracted parameters Main derived parameters

From slope From slope
and intercept

Using 𝑑M Using 𝐴M

𝐼m(𝑉m) 𝜁C 𝐴SN
fC 𝛾C 𝛼SN

fC
𝐼m(𝐹M) 𝛾C 𝐴SN

fC 𝜁C 𝛼SN
fC

𝐽M(𝑉m) 𝜁C 𝛼SN
fC 𝛾C 𝐴SN

fC
𝐽M(𝐹M) 𝛾C 𝛼SN

fC 𝜁C 𝐴SN
fC

various forms of data input, when the FE system under investigation
has passed validity checks. Each of the 12 possible combinations of
data-input variables and data-plot form requires a slightly different
approach, and the webtool accordingly has twelve sets of formulae
available for use.

The whole process of FE system characterization would be much
simpler (and, arguably, more accurate) if the community could agree on
a single well-defined procedure that was not prone to error. As already
indicated, our view is that (within SPME methodology) the obvious
choice at present is the raw 𝐼m(𝑉m) experimental data analysed using as
Murphy–Good plot. Thus, we shall only look at the fine details of how
to process 𝐼m(𝑉m) data. (The other forms of data-input require broadly
similar procedures.)

With needle-geometry emitters, as used in electron microscopes
and traditional projection-type field electron microscopes, an 𝐼m(𝑉m)
approach is the only sensible one, since there is significant geometrical
difficulty in defining what might be meant by ‘‘true macroscopic field’’.
In the 𝐼m(𝑉m) approach, using the ‘‘non-scaled’’ Eqs. (8) and (9), the pa-
rameter directly extracted from the plot slope is the voltage conversion
length 𝜁C (or its reciprocal, which we denote here by 𝛽𝑉 ). A related
parameter is the so-called (characteristic) shape factor or ‘‘field factor’’
𝑘C (also called a ‘‘𝑘-factor’’), defined via

𝜁C = 𝑘C𝑟a, (35)

where 𝑟a is the emitter’s apex radius of curvature.
This approach can also be applied to LAFEs, in which case the

derived parameters apply to the sharpest emitters in the array. For
LAFEs, a characteristic macroscopic field enhancement factor 𝛾MC can
be derived using Eq. (23); this also applies to the sharpest emitters
in the array. For LAFEs, the question of how the extracted VCL and
FEF values relate to the actual distribution of such parameters for



Materials Today Communications 31 (2022) 103654M.M. Allaham et al.

f
e
t
u
d
I
E

o
c
t

2

e
O
‘
s
h s
s

t
i
u
w
c

o
(
G

𝐼

I
b

𝐿

𝑉

𝑆

w e
i

f
t

𝑆

w
p
v

v
t
v
o

𝜁

p
w

{

w
i
p
t

f

𝛬

the emitters in the array is exceptionally complicated in detail and is
outside the scope of this paper.

If, instead of the ‘‘non-scaled equations’’, a scaled form of equation
is used to interpret the plot, then the parameter directly extracted
from the plot slope is the reference measured voltage 𝑉mR. This can
be converted to the corresponding VCL (and thence to other forms of
characterization parameter) via the relation

𝜁C = 𝑐2S𝜙
−2𝑉mR, (36)

This equation is derived using Eqs. (5), (13) and (14).
With the dependent variable (𝐼m or 𝐽M), the situation is much

simpler. If 𝐼m is used then the extracted parameter is the (characteristic)
ormal emission area (for the SN barrier) 𝐴SN

fC . If 𝐽M is used then the
xtracted parameter is the (characteristic) formal area efficiency (for
he SN barrier) 𝛼SNfC . (But many FE technologists apparenty do not
nderstand this, due to the widespread use of a defective current-
ensity equation in FE technological literature, as discussed earlier.)
n both cases, the other characterization parameter is obtained via
q. (31).

The information just discussed is presented, in a more precise form,
n the first line of Table 2. Equivalent information for the other three
hoices of data-input parameter are shown on the remaining lines of
he table.

.5.2. Extraction formulae
In general, there are several different methodologies available for

xtracting characterization-parameter values from data-analysis plots.
ur approach, when designing the webtool, was to use the so-called

‘tangent method’’ described below. For a more general discussion
ee [39] or (better)
ttps://doi.org/10.13140/RG.2.2.32112.81927/3. This Section discusse
ome of the detailed formulae used in the webtool.

Fowler–Nordheim plots: slope analysis. For the extraction of parame-
ers from the FN plot slope, the extraction theory has been written out
n full, partly as an example, partly because it is the commonest analysis
ndertaken in the literature, but the proof of the slope formula is not
ell known and is not well presented in existing literature. In other

ases only the final formulae will be given here.
With FN plots, it is convenient to work with non-scaled versions

f MG FE theory. Combining Eqs. (8) and (29) yields the ‘‘direct’’
i.e., ‘‘non-scaled’’) equation for measured current in Extended Murphy–
ood theory, namely

m = {𝐴SN
fC 𝑎𝜙

−1𝜁−2C }𝑉 2
m ⋅ exp

[

−
vF𝑏𝜙3∕2𝜁C

𝑉m

]

. (37)

n Fowler–Nordheim-type natural semi-logarithmic coordinates, this
ecomes an expression for the natural logarithm 𝐿FN(𝑉 −1

m ) ≡ ln{𝐼m∕𝑉 2
m}:

FN(𝑉 −1
m ) = ln {𝐴SN

fC 𝑎𝜙
−1𝜁−2C } −

vF𝑏𝜙3∕2𝜁C
𝑉m

. (38)

It has been well established since the 1950s [40] that these theo-
retical FN plots made using 1956 MG theory are very slightly curved,
though many experimentalists seem not to realize this. Since 1956
MG FE theory is known to be ‘‘better physics’’ than 1928/29 FN
FE theory, expectation is that, in FN plots, experimental data plots
would (in the absence of data-noise) lie on a slightly curved line. One
cannot, of course, change the nature of the real world by writing down
a simplified equation that ignores this curvature effect—as is often
done in modern FE technological papers. This is why the data-analysis
procedures used in most modern FE technology papers do not yield
‘‘best-current-practice’’ numerical results.

In the tangent method of interpreting FE data-analysis plots, the slope
f it
11

𝑆FN of the straight line fitted to the data-plot points is modelled as a
tangent to the theoretical plot made in FN coordinates. For the current–
voltage type FN plot, the slope 𝑆 tan

FN,IV is given by (using 𝑉m to denote
−1
m )

tan
FN,IV =

d𝐿FN

d𝑉m
= −(𝑏𝜙3∕2𝜁C) ⋅

d(vF𝑉m)
d𝑉m

= −(𝑏𝜙3∕2𝜁C) ⋅
[

vF + 𝑉m
dvF
d𝑉m

]

.

(39)

here it has been assumed that there is no significant voltage-dependenc
n 𝐴SN

fC , 𝜙 or 𝜁C.
Now d𝑉m = d(𝑉 −1

m ) = −𝑉 −2
m d𝑉m, and 𝑉m = 𝑓C𝑉mR, and 𝜁C is constant

or an electronically ideal system, and we can replace vF by a symbol
hat shows its explicit dependence on 𝑓C, all of which yields

tan
FN,IV(𝑓C) = −𝑏𝜙3∕2𝜁C ⋅

[

v(𝑓C) − 𝑓C
dv
d𝑓C

]

= −s(𝑓C) ⋅ 𝑏𝜙3∕2𝜁C, (40)

here s(𝑓C) is known as the slope correction function and is an appro-
riate particular version of a FE special mathematical function s(𝑥) ≡
− 𝑥dv∕d𝑥.

We now suppose that there is a value of 𝑉m and a corresponding
alue 𝑓C = 𝑓t at which, in the FN plot, the fitted straight line is parallel
o the tangent to the theoretical plot. This value 𝑓t is termed the fitting
alue, and we define st = s(𝑓t ). On identifying 𝑆f it

FN with 𝑆 tan
FN,IV, we

btain the extracted VCL as

extr
C =

|𝑆f it
FN|

st𝑏𝜙3∕2
. (41)

The slope correction function is an exactly known, weakly varying,
function. Initially, the values of 𝑓t and st are not exactly known, but it
is usually adequate to make the approximation st = 0.95. More precise
estimates of 𝑓t and st can in principle be obtained by iteration [41],
but usually this is not worthwhile. The value st = 0.95 is used in the
webtool.

For the 1953 discussion of ‘‘s’’, using the Nordheim parameter 𝑦, see
the letter of Burgess, Kroemer and Houston [40]. For a ‘‘21st Century’’
mathematical discussion, using the scaled field 𝑓C, see [42]; there is a
modern tabulation of values of ‘‘s’’ in [43].

Fowler–Nordheim plots: extraction of area-like parameters. For the ex-
traction of formal emission area, we have preferred to use the extraction
arameter approach, in which a formula for formal emission area is
ritten in the form

𝐴SN
fC }

extr = 𝛬SN
FN𝑅

f it
FN(𝑆

f it
FN)

2, (42)

here 𝛬SN
FN is a so-called extraction parameter. The subscript position

ndicates the type of data-analysis plot being analysed; the superscript
osition indicates the type of tunnelling barrier being assumed in the
heoretical analysis.

The value of the extraction parameter depends both on local work
unction and on the fitting value 𝑓t , and is given by the formula

SN
FN(𝜙, rt ) =

1
[

rts2t 𝑎𝑏2𝜙2
] , (43)

where rt is the fitting value of the 2012 intercept correction factor
discussed in [42] and denoted in the present paper by r(𝜙, 𝑓C).

The parameter 𝑟t is in fact a relatively sensitive function both of 𝑓t
and of the local work-function 𝜙. The 𝜙-dependence is illustrated in
Fig. 6. If precise values are needed with respect to 𝑓t , then iteration
as described above can be used. (But with modern data, as opposed to
historical data, it will be better to use a Murphy–Good plot, as described
below.)

Because a FN plot involves fitting a straight line to data points
that are known to lie on a curve, it follows that in principle a ‘‘chord
correction’’ ought to be applied to area extraction by the tangent
method. In reality the correction is very small (and the need goes away
if a MG plot is used).

Apart from the tangent method, there are FE data-analysis methods
based on fitting chords to FN plots and others based on ‘‘linearizing the

https://doi.org/10.13140/RG.2.2.32112.81927/3
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Fig. 6. In the context of the tangent method, to show how the vertical-axis intercept
correction factor 𝑟t depends on the local work function 𝜙 of the emitting surface, for
the specific fitting value 𝑓t = 0.2815163. This value corresponds precisely (to 7 sig. fig.)
to the assumption that s(𝑓t ) = 0.95 exactly.

emission equation’’. However, these approaches also have limitations.
Further, each different extraction method will or may return a slightly
different extracted area value from a given single set of input data,
thereby making scientific comparisons of reported values problematic.
One objective of designing the Murphy–Good plot was to make prob-
lems of this general kind obsolete, and specify a data-analysis approach
that (within the more general limitations of SPME methodology) re-
turns a result that depends only on the assumed uniform value of local
work-function.

Millikan–Lauritsen (ML) plots. Extraction of VCL and related values
from the slope of an ML plot can be done by finding the equivalent
slope for a FN plot, using Eq. (34), and using the theory above for a FN
plot. At present, there is no standard methodology for extracting values
of formal emission area.

Murphy–Good (MG) plots. The theory and merits of MG plots have
recently been discussed elsewhere [7], and are not examined in de-
tail here. The theory derives from the expanded scaled form of MG
FE theory and uses the fact that, in Eq. (16) for the kernel current
density (for the SN barrier), the characteristic scaled field appears as
an non-integral power 𝜅SN given by

𝜅SN = 2 − 𝜂∕6. (44)

Hence, by making a data-analysis plot with index 𝑛 = 2 − 𝜂∕6, a plot
should be obtained that is ‘‘very nearly straight’’. The reservation ‘‘very
nearly’’ arises because the so-called ‘‘simple good approximation’’ is not
exact; however, the linearity is significantly better than that of a FN
plot. Formulae for extracted characterization parameters are

𝜁 extrC =
|𝑆f it

MG|

𝑏𝜙3∕2
. (45)

{𝐴SN
fC }

extr = 𝛬SN
MG𝑅

f it
MG(|𝑆

f it
MG|)

𝜅 , (46)

𝛬SN
MG(𝜙) =

1
[exp(𝜂) ⋅ 𝜂−𝜂∕6 ⋅ 𝑎𝑏2𝜙2]

, (47)

where 𝑆f it
MG and 𝑅f it

MG are the slope and intercept of a straight line
fitted to a MG plot. A table of values of the extraction parameter is
provided in [7]. There is only a moderate dependence on the assumed
local-work-function value.

3. Webtool overview

The webtool is built on the mathematical assumptions of FE theory,
with JavaScript used as a programming language. The webtool is self-
contained in the sense that the specified inputs are used to calculate
all relevant working parameters, as well as to generate Orthodoxy-Test
12
results and (where relevant) emitter characterization-parameter values.
Inputs are validated roughly for incorrect and/or illogical values, like
empty cells, zero values or negative values of 𝜙.

Required inputs are set out in the flowchart shown as Fig. 7.
Optional inputs are the system geometrical parameters 𝑑M and 𝐴M. The
webtool then operates as follows. The slope of the fitted line that passes
through the two range limits is calculated. The vertical (�̄� = 0) axis
intercept is then calculated using the coordinates of the left-hand limit
and the generated slope value. The input local work-function is then
used to extract the characteristic-scaled-field values (𝑓C-values) that
correspond to the two range-limits. Next, the input local work function
is rounded to the nearest first decimal value listed in Table 2. This
rounded work-function value is then used to determine the relevant
orthodoxy-test zone boundaries. The test can then be applied to the
extracted range of scaled-field values, and the result reported. Where
relevant, the webtool also reports precise values of the 𝜙-related charac-
terization parameters 𝜂(𝜙) and 𝜃(𝜙), and the pre-exponential parameter
𝜅SN.

The requirements for applying the FE Orthodoxy Test (by itself)
to any of the data-analysis plots are simple, since the only input-data
requirements are the assumed local work function of the emitter surface
and the coordinates of the two range-limits of the data-analysis plot
under test. Further, the test is known to be robust, in that the obtained
results do not depend on the units of measurements used for the
horizontal axis and for the arguments of the vertical-axis logarithms.
Thus, if the only objective is to apply the Orthodoxy Test, then the user
is not obliged to work with plots made using only the units A, V and
m.

However, if it is required to extract values of emitter characteriza-
tion parameters, then it is NECESSARY to use only data-input values
involving the units A, V, and m, NOT submultiples of these units. This
applies to values of �̄�, to the arguments of logarithms, and to the values
of the geometrical parameters 𝑑M and 𝐴M.

The webtool will display values of emitter characterization param-
eters only if the Orthodoxy Test is passed. Depending on the nature
of the data-input format, the ‘‘extracted parameters’’ in Table 2 will
automatically be displayed. The ‘‘derived parameters’’ will be displayed
if values of 𝑑M and 𝐴M have already been entered, or are then entered.

In theory, if the Orthodoxy Test is failed then it may sometimes be
possible to use the procedure of phenomenological adjustment [44] to
convert a spurious extracted VCL or FEF value into a rough estimate of
the true value, but this option is not incorporated in the current version
of the webtool.

Fig. 7. Information inputs needed in order to use the webtool (in its present form) to
apply the Orthodoxy Test.
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Table 3
Simulated data values for input into the webtool, in order to compare extraction
performances. Data are generated using EMG theory and the input values 𝜙 = 4.50 eV,
𝜁C = 200 nm and 𝐴SN

f = 100 nm2. All quantities are measured using the SI units A, V
and m.
𝑓C → 0.30 0.43 0.55 0.77

𝑉m 844 1209 1547 2166
𝐹M 8.44×105 1.21×106 1.55×106 217×106
𝐼m 3.20×10−8 5.24×10−6 7.39×10−5 1.23×10−3
𝐽M 3.20×10−4 5.24×10−2 0.74 12.33
1∕𝑉m 1.19×10−3 8.27×10−4 6.46×10−4 4.62×10−4
1∕𝐹M 1.19×10−6 8.27×10−7 6.46×10−7 4.62×10−7
ln{𝐼m} −17.26 −12.16 −9.51 −6.70
ln{𝐼m∕𝑉 2

m} −30.73 −26.36 −24.20 −22.06
ln{𝐼m∕𝑉 𝜅

m} −25.53 −20.87 −18.53 −16.12
ln{𝐼m∕𝐹 2

M} −44.55 −40.17 −38.02 −35.87

ln{𝐼m∕𝐹 𝜅
M} −34.00 −29.35 −27.00 −24.60

ln{𝐽M} −8.05 −2.95 −0.30 2.51
ln{𝐽M∕𝐹 2

M} −35.34 −30.96 −28.81 −26.66

ln{𝐽M∕𝐹 𝜅
M} −24.79 −20.14 −17.79 −15.39

ln{𝐽M∕𝑉 2
m} −21.52 −17.15 −14.99 −12.85

ln{𝐽M∕𝑉 𝜅
m} −16.32 −11.66 −9.32 −6.91

4. Simulations of webtool use

4.1. Simulation input data

This Section describes our testing procedure for the functionality
and software engineering of the webtool. Assumed emitter and system
characterization parameters are: 𝐴M = 100 mm2; 𝑑M = 1 mm; and, as
reviously mentioned: 𝐴SN

fC = 100 nm2, 𝜁C = 200 nm, and 𝜙 = 4.50 eV.
hese yield 𝛾MC = 5000 and 𝛼SNfC = 10−12. For MG plots, the value

𝜙 = 4.50 eV yields the precise value 𝜅SN = 1.227192. Three scaled-
field ranges have been chosen, as described below, in order to allow
coverage of to all possible orthodoxy-test outcomes . The corresponding
𝐼m(𝑉m) characteristics were shown in Fig. 4, for the whole scaled-field
range.

The simulations have been carried out for all four data-input formats
and all three data-analysis plot types. Thus, this simulation exercise
covers all the variations commonly used in the literature.

The total scaled-field range used has been 0.30 ⩽ 𝑓C ⩽ 0.77. This
ange has been also used to generate Fig. 4. Within this overall range,
hree sub-ranges have been considered: (0.30–0.43), (0.30–0.55), and
0.30–0.77). The resulting calculated data needed for input into the
ebtool are presented in Table 3.

.2. Webtool output data

Tables 4 and 5 present output data from the webtool. Table 4 shows
he results of extracting the range-limiting 𝑓C-values, for the various

plot types and data forms, together with the errors as compared with
the values input into the simulations. Three main conclusions can be
drawn from these results.

(1) For each data-plot type, the errors for the 𝐽M(𝑉m) cases are the
ame as those for the 𝐼m(𝑉m) cases (e.g., lines ‘‘10’’ and ‘‘1’’), and the
rrors for 𝐽M(𝐹M) cases are the same as those for the 𝐼M(𝐹M) (e.g., lines
‘7’’ and ‘‘4’’). This is presumably because, for any given emitter, the
atio 𝐼m∕𝐽M[= 𝐴M] is a system related constant. Thus, any future
omparisons do not need to investigate the data forms involving the
acroscopic current density 𝐽M.

(2) In the simulations, when extracting values of scaled field and the
haracterization parameters, it was found that using the original input
urrent–voltage characteristics gave more accurate results than when
he measured voltage was converted to the related macroscopic field.

(3) Both when extracting values of characteristic scaled field, and
13

hen extracting values of the voltage conversion length and (where e
ossible) the formal emission area, the use of a current–voltage Murphy–
ood plot is seen to involve smaller methodology-errors than use of
ither a FN plot or a ML plot (data-noise errors are not part of the
resent discussion). This strongly suggests that it would be advanta-
eous for those interested in analysing FE current–voltage data to move
o the use of Murphy–Good plots, rather than FN plots (or ML plots).

As already indicated, the essential reason for the superior perfor-
ance of the MG plot is that the FN plot is slightly curved, but the MG
lot is ‘‘very nearly straight’’. This can be illustrated by using EMG FE
heory, and the 𝐼m(𝑉m) data form, to predict how the slopes of the three
ypes of data plot vary with measured voltage. Using current–voltage
imulation results within the orthodoxy-test pass-range of 𝑓C values
.15 ⩽ 𝑓C ⩽ 0.45, the total variation for the slope has been investigated.
or illustration, results have been obtained by evaluating the slope at
everal points within the interval 0.31 ⩽ 𝑓C ⩽ 0.43, At each point the
lope is evaluated using two very-close points around the corresponding
C value. The results are presented in Table 5.

The slope variations from Table 5 demonstrate that (when EMG
heory is used in the simulations) then neither a FN plot nor a ML
lot is exactly straight, but that an MG plot is ‘‘very nearly straight’’.
hus, MG plots are clearly a better analysis tool (if precise extraction
f intercept-related parameters is the goal).

However, it is important to remember that these simulations are
arried out within the framework of ‘‘smooth planar metal-like emitter
SPME) methodology’’. If the emitting surface has significant local
urvature, then both experimental MG plots and MG plots simulated
sing curved-emitter emission theory will be slightly curved. Discussion
f such effects is outside the scope of this paper.

. Conclusions and future developments

.1. Conclusions

This research has used Extended Murphy–Good (EMG) FE theory
o generate simulated FE current–voltage data, and has then used this
ata to explore the processes of applying the FE Orthodoxy Test and
f extracting field emitter characterization parameters. This has been
et in the context of summaries of EMG emission theory and of the
lectronic engineering of FE systems, and of a detailed discussion of
hy validity checks should be a standard part of FE data analysis. Using

he webtool previously developed by one of us (MMA), a thorough
omparison has been made of the merits of the three conventional data-
lot types (Millikan–Lauritsen, Fowler–Nordheim and Murphy–Good),
sing all four of the data-input formats that have been used (either
easured voltage or apparent macroscopic field as the independent

ariable, and either measured current or macroscopic current density
s the dependent variable). In particular, we have compared plot slope
alues, extracted scaled-field values, and extracted values of voltage
onversion length and formal emission area.

This detailed discussion of the electronic engineering of FE systems
as re-confirmed that significantly the best data-input method is to use
he raw experimental current–voltage data, with voltages measured in
olts and currents in amperes (not in submultiples of these units).

The general consistency of the results obtained demonstrates that
he webtool is functioning effectively. The analysis has also confirmed
hat use of a Murphy–Good plot is a methodology that has a parameter-
xtraction precision superior to that of either a FN plot or a ML plot,
articularly in respect of the extraction of formal emission areas. This
onfirmation is particularly important in the context of developing
etter FE science, where it is now known that important differences
s between different theories can manifest themselves in the formal

mission area, rather than in the FE equation exponent.
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a
o

Table 4
Results of extracting scaled field values and characterization parameters, using the webtool. The characterization parameters are compared to the original input values 𝜁C = 200 nm
nd 𝐴SN

fC = 100 nm2. All the quantities are measured using the SI units A, V and m. N/A indicates that results are not available because they are not valid because they failed the
rthodoxy test.

Data Num. Slope Tested Extracted 𝑓C values 𝐴SN
fC Error 𝜁C Error 𝛼SN

fC 𝛾C

Form Np ⋅[𝑋] 𝑓C-Range 𝑓extr
low Error 𝑓extr

up Error nm2 nm

MG plots

𝐼m(𝑉m) 1 −12944 0.3–0.43 0.3010 0.34% 0.4316 0.37% 96.92 −3.08% 198.51 −0.74% 0.96 5037
2 −12963 0.3–0.55 0.3006 0.20% 0.5503 0.06% 99.25 −0.75% 198.80 −0.60% 0.99 5030
3 −12890 0.3–0.77 0.3023 0.76% 0.7820 1.56% N/A N/A N/A N/A N/A N/A

𝐼m(𝐹M) 4 −1.28×107 0.3–0.43 0.3042 1.39% 0.4377 1.79% 82.11 −17.89% 196.45 −1.78% 0.82 5090
5 −1.29×107 0.3–0.55 0.3021 0.69% 0.5564 1.17% 88.43 −11.57% 197.33 −1.33% 0.88 5068
6 −1.29×107 0.3–0.77 0.3021 0.69% 0.7780 1.04% N/A N/A N/A N/A N/A N/A

𝐽M(𝐹M) 7 −1.28×107 0.3–0.43 0.3042 1.39% 0.4377 1.79% 82.08 −17.92% 196.45 −1.78% 0.82 5090
8 −1.29×107 0.3–0.55 0.3021 0.69% 0.5564 1.17% 88.41 −11.59% 197.33 −1.33% 0.88 5068
9 −1.29×107 0.3–0.77 0.3021 0.69% 0.7780 1.04% N/A N/A N/A N/A N/A N/A

𝐽M(𝑉m) 10 −12944 0.3–0.43 0.3010 0.34% 0.4316 0.37% 96.88 −3.12% 198.51 −0.74% 0.96 5037
11 −12963 0.3–0.55 0.3006 0.20% 0.5503 0.06% 99.22 −0.78% 198.80 −0.60% 0.99 5030
12 −12890 0.3–0.77 0.3023 0.76% 0.7820 1.56% N/A N/A N/A N/A N/A N/A

FN plots

𝐼m(𝑉m) 13 −12139 0.3–0.43 0.3049 1.65% 0.4372 1.68% 75.88 −24.12% 195.96 −2.02% 0.75 5103
14 −12092 0.3–0.55 0.3061 2.04% 0.5604 1.89% 71.27 −28.73% 195.21 −2.39% 0.71 5123
15 −11877 0.3–0.77 0.3117 3.89% 0.8063 4.71% N/A N/A N/A N/A N/A N/A

𝐼m(𝐹M) 16 −1.21×107 0.3–0.43 0.3059 1.97% 0.4402 2.37% 68.45 −31.55% 194.78 −2.61% 0.68 5134
17 −1.20×107 0.3–0.55 0.3085 2.82% 0.5682 3.32% 62.89 −37.11% 193.77 −3.11% 0.63 5161
18 −1.19×107 0.3–0.77 0.3111 3.69% 0.8012 4.06% N/A N/A N/A N/A N/A N/A

𝐽M(𝐹M) 19 −1.21×107 0.3–0.43 0.3059 1.97% 0.4402 2.37% 68.24 −31.76% 194.78 −2.61% 0.68 5134
20 −1.20×107 0.3–0.55 0.3085 2.82% 0.5682 3.32% 62.87 −37.13% 193.77 −3.11% 0.63 5161
21 −1.20×107 0.3–0.77 0.3111 3.69% 0.8012 4.06% N/A N/A N/A N/A N/A N/A

𝐽M(𝑉m) 22 −12139 0.3–0.43 0.3049 1.65% 0.4372 1.68% 75.86 −24.14% 195.96 −2.02% 0.76 5103
23 −12092 0.3–0.55 0.3061 2.04% 0.5604 1.89% 71.25 −28.75% 195.21 −2.39% 0.71 5123
24 −11877 0.3–0.77 0.3117 3.89% 0.8063 4.71% N/A N/A N/A N/A N/A N/A

ML plots

𝐼m(𝑉m) 25 −12186 0.3–0.43 0.3038 1.25% 0.4355 1.28% N/A N/A 196.72 −1.64% N/A 5083
26 −12178 0.3–0.55 0.3040 1.32% 0.5565 1.18% N/A N/A 196.59 −1.70% N/A 5087
27 −12042 0.3–0.77 0.3074 2.47% 0.7953 3.28% N/A N/A N/A N/A N/A N/A

𝐼m(𝐹M) 28 −1.21×107 0.3–0.43 0.3059 1.97% 0.4402 2.37% N/A N/A 194.79 −2.60% N/A 5134
29 −1.21×107 0.3–0.55 0.3059 1.97% 0.5635 2.46% N/A N/A 194.81 −2.59% N/A 5134
30 −1.21×107 0.3–0.77 0.3059 1.97% 0.7880 2.34% N/A N/A N/A N/A N/A N/A

𝐽M(𝐹M) 31 −1.21×107 0.3–0.43 0.3059 1.97% 0.4402 2.37% N/A N/A 194.79 −2.60% N/A 5134
32 −1.21×107 0.3–0.55 0.3059 1.97% 0.5635 2.46% N/A N/A 194.81 −2.59% N/A 5134
33 −1.21×107 0.3–0.77 0.3059 1.97% 0.7880 2.34% N/A N/A N/A N/A N/A N/A

𝐽M(𝑉m) 34 −12186 0.3–0.43 0.3038 1.25% 0.4355 1.28% N/A N/A 196.72 −1.64% N/A 5083
35 −12178 0.3–0.55 0.3040 1.32% 0.5565 1.18% N/A N/A 196.59 −1.70% N/A 5087
36 −12042 0.3–0.77 0.3074 2.47% 0.7953 3.28% N/A N/A N/A N/A N/A N/A
Table 5
Total variation of the simulated slope values that are obtained from each of the current–
voltage data-analysis plot types, over the range 0.31 ⩽ 𝑓C ⩽ 0.43. Note that the neper
(Np) is the ‘‘amplitude’’ unit of difference in natural logarithms, and is a marker that
natural logarithms are being used.
𝑓C 𝑆ML (Np ⋅ V) 𝑆FN (Np ⋅ V) 𝑆MG (Np ⋅ V)

0.32 −14104 −12304 −12999.21
0.34 −14172 −12259 −12998.37
0.36 −14240 −12215 −12997.69
0.38 −14309 −12171 −12997.16
0.40 −14377 −12127 −12996.77
0.42 −14446 −12084 −12996.53

Total variation 342 220 2.7

5.2. Future developments — theoretical

As already indicated, the next major development stage in FE
current–voltage data analysis will be to use emission theory for curved
emitters. (Whether existing curved-emitter theory is exactly correct
from the point of view of quantum mechanics is another matter —
14
for example it is still an ‘‘atom-free’’ theory; however, existing curved-
emitter FE theory is ‘‘better physics’’ than existing planar-emitter FE
theory.) This will bring another emitter characterization parameter –
the local surface radius of curvature – into the discussion.

When FE experimentalists are confronted with TWO incompletely
known parameters (work function and radius of curvature), plotting
methods of the types discussed here look as though they will become
significantly less effective, even if implemented correctly. Method-
ologies based on multi-variable numerical regression look a better
choice (for example, see [34]). However, our view is that numerical
methodologies of this kind should first be tried out on the planar-
emission situation, using the work-function value as a third unknown
variable (in addition to the VCL and formal emission area). The details
of how data noise will affect numerical results of this kind (especially
statistical error limits) are far from obvious, and there is scope for
relevant simulations.
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5.3. Future developments — webtool applications

For most of the authors, our particular interests are in improved
electron microscope (EM) sources, including hybrid-design sources in-
volving dielectric layers on metal needle-like substrates (which may be
able to operate in poorer vacuum conditions than bare metal needles).
We expect the webtool to be useful in these applications, but we also
expect the webtool to be useful more generally in other research and
development activities relating to FE based sources and devices.

As specific examples within the context of electron sources, the
webtool has been used to analyse results from tungsten needle-like
emitters [45] and from LAFEs of polymer graphite flakes [46]. We plan
that the webtool should be a first step in a larger project that aims to
monitor and control the behaviour of electron sources during operation,
not only in FE experiments, but also in related scientific and industrial
instruments, for example field emission scanning electron microscopes.

The webtool is still under development, but in its current state may
be accessed via [47]. This paper has described the checks we have made
on basic aspects of its software engineering, but (thanks to comments
made by an anonymous reviewer) we have set this in the context of
a much more general discussion of the underlying theory and of why
validity checks on measured current–voltage data (and on converted
versions of this data) should be a standard part of FE data-analysis
procedures.

Finally, we emphasize again the following three points. (1) Best
scientific and engineering practice is to make plots using the raw
experimental data (measured voltages in V and measured currents in
A). (2) For orthodoxly behaving FE systems, the Murphy–Good plot
provides better accuracy than the FN plot, particularly as regards
the extraction of formal emission area. (3) ALWAYS apply a validity
check (preferably the Orthodoxy Test, and preferably using a MG plot)
before extracting values for characterization parameters. We believe
that our webtool (and any future extensions) can help the user do
these things, and that using it will provide an easy and convenient
way of interpreting FE current–voltage characteristics, albeit within the
framework of ‘‘the smooth planar metal-like emitter’’ methodology and
‘‘21st Century planar FE theory’’.
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Appendix. Definition of a dimensionless PPP-geometry field en-
hancement factor (PFEF)

Fig. 8 illustrates the definition of the type of field enhancement
factor most commonly used in the theory given in FE literature, called
here a ‘‘characteristic true plate-field enhancement factor’’. The inter-
pretation of the labels is as follows: ‘‘plate-field’’ indicates that the
type of macroscopic field being considered is that between two parallel
15
Fig. 8. To illustrate the definition of the ‘‘plate-field enhancement factor (PFEF)’’ used
in parallel-planar-plate (PPP) emission geometry.

planar plates; ‘‘true’’ indicates that the voltage used in the definition
is that between the plates (this voltage may or may not be equal to
the measured voltage); ‘‘characteristic’’ means the local field is taken
at some location that characterizes the emitter behaviour (the location
where the local current density is highest is in principle usually best:
in modelling this usually coincides with the emitter apex).
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