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Abstract. In this paper, a fast frequency sweep technique 
is applied to the analysis of Substrate Integrated Wave-
guides performed with a Green’s function technique. The 
well-known Asymptotic Waveform Evaluation technique is 
used to extract the Padè approximation of the frequency 
response of Substrate Integrated Waveguides devices. The 
analysis is extended to a large frequency range by adopting 
the Complex Frequency Hopping algorithm. It is shown 
that, with this technique, CPU time can be reduced by 
almost one order of magnitude with respect to a point by 
point computation. 
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1. Introduction 
Since their introduction [1], Substrate Integrated 

Waveguides (SIW) have been used to realize several 
microwave devices [2]-[7]. SIWs may be implemented in 
both LTCC and more conventional and cheaper PCB 
technology, thus offering a low cost alternative to metallic 
waveguides and printed lines. For this reason, in the last 
years the number of research papers devoted to the design 
of SIW based devices has increased steadily. Filters, power 
dividers/combiners, antennas and active devices have been 
studied and successfully realized [2], [8], [9]. The availa-
bility of powerful commercial software packages, mainly 
based on FEM or FDTD techniques, makes the analysis of 
SIW structures smooth. However, more effective ap-
proaches with reduced computational time have been 
proposed. In [10], the Boundary Integral Resonant Mode 
Expansion (BI-RME) was used, while in [11] a single 
mode analysis was proposed. In [12], [13], [14] the authors 
present an analysis method adopting the dyadic Green’s 
function of an infinite parallel plate structures. All these 
techniques, even if more efficient than general purpose 
software packages, can be further accelerated adopting fast 
interpolation methods which rely on model order reduction 

techniques. Among them the Asymptotic Waveform Eval-
uation (AWE) moment matching technique [15], [16] 
coupled to a Pade’ rational expansion [17] is the most 
known technique which has been already proposed to speed 
up the solution of electromagnetic problems. A first ap-
plication of AWE to the analysis of SIW structures is 
discussed in [18], where a fast frequency sweep is adopted 
to accelerate the solution of a hybrid modal technique. 

In this paper, the AWE – Padè method is used to 
improve the performance of the Green’s function based 
analysis originally presented in [12].  High accuracy and 
significant computation time reduction up to 80-90% are 
obtained by adopting interpolation polynomials of order 2, 
while typical order ranging from 2 up to 36 are required by 
similar interpolation procedures, such as the Cauchy’s 
method [19]. 

The paper is organized as follows. In Section II, 
a brief account of the theory related to the Green’s function 
method is presented. In Section III, a detailed explanation 
of the implemented AWE – Padè technique is provided, 
while numerical validations on three different cases of 
passive SIW devices are discussed in Section IV. Con-
clusions are finally outlined in Section V. 

2. Green’s Function Analysis of SIWs 
SIW structures are modeled in [12] as an ensemble of 

via holes embedded into a parallel plate waveguide, and 
their analysis is efficiently performed by using the dyadic 
Green's functions of the parallel plate, and considering the 
scattering by metallic vias. Only magnetic current sources 
are taken into account. Under these conditions, the total 
magnetic field into the SIW structures can be expressed as 
the sum of two contributions, namely: 

   (1) 

where the integral represents the parallel plate contribution, 
and the second term gives the contribution due to the field 
scattered by vias. 

In the previous expression,  is the magnetic 
current representing the source, while  is the 
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magnetic dyadic Green's function, which can be 
conveniently expressed in terms of cylindrical wave 
functions as follows [12]: 

  (2) 

 
 

In the previous equation, , ,  d being 

the parallel plate height, and  The field 
scattered by the vias is expressed in terms of a series of 
vector cylindrical wavefunctions as: 
 

 
 (3) 

 

where 

  (4) 

 
 

Coefficients into (3) are determined by solving the follow-
ing matrix equations for the TE and TM modes: 
 

  (5) 
 

where 

  (6) 
 
 

 , (7) 
 
 

      (8) 

 , 
 
 

  (9) 
 
 

 , (10) 

 

      (11) 

 
 
 

In the previous equations, the terms  are 
the excitation coefficients relevant to the current source 

. Once the coefficients in (5) and the excitation 
coefficients are known, the admittances at the ports are 
calculated as: 
 

  (12) 
 
 

where  is the total magnetic field due to the current 
 on port ,  is the surface of port  and  is the 

current impressed on port . More details on formula (12) 
and how it specializes to coaxial and waveguide ports are 
given in [12]. 

3. Fast Frequency Sweep 
As remarked in the introduction, the most used and 

straightforward method to achieve a fast frequency sweep 
is the AWE technique [15], [16]. The method applies to 
any transfer functions or, more in general, to any system 
matrix, in the frequency domain as well as in the s-domain, 
to synthesize a reduced order model giving a good ap-
proximation of the frequency response of the original 
system.  

Given a matrix equation of the form: 
 

 , (13) 
 
 

the solution of the system is expanded around in 
a Taylor series as : 
 

  (14) 
 

where  are the moments that can be recursively 
calculated as: 
 

(15) 
 
 

Taylor expansion (14) can be used to find a rational Pade' 
expansion [17] of  which is valid over a wider 
frequency range. 

The AWE technique may be used to find the Padè 
approximation of the frequency response of the device 
under analysis by directly operating on the output 
parameters, such as S matrix. Even if being the most rapid 
way to apply the method, this approach does not produce 
significant performance improvements. To further reduce 
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the computation time, the AWE technique is applied in this 
paper to find a moment expansion (14) for the coefficients 

 into expansion (5). As a matter of fact, fill time and 
inversion of (6) are the most time consuming tasks to be 
performed. Once the moments expansion of coefficients 
into (5) is known, it can be used to efficiently compute the 
Padè approximation of the port admittances (12) and then 
of the S parameters relative to the device under analysis. 
Notice that, as the elements of and  are expressed into 
analytical form, moments (15) may be computed in a 
closed form because they mainly contain derivatives of 
Hankel and Bessel functions. The main difficulty remains 
in the lengthy and tedious algebra, because the derivatives 
of Hankel and Bessel functions are easily and efficiently 
derived recursively with a minimum computational effort. 
In the appendix are reported, as illustrative example, the 
derivatives of expression (6) for the TM case up to the 
fourth order. Derivatives of other terms are determined in 
a similar manner. 

As it is well known, AWE method becomes quickly 
ill conditioned when the number of moments increases, 
therefore increasing the number of moments used in the 
approximation does not guarantee a better fit. One can say 
that the method remains applicable if the number of 
moments required stays below 8 [21]. This limitation 
restricts the range of validity of the Pade' rational 
expansion on a single frequency point. To overcome this 
problem, the Complex Frequency Hopping (CFH) tech-
nique has been introduced in [20]. Once the frequency 
range of interest (fmin, fmax) is fixed, the algorithm  
straightforwardly selects a minimum number of points with 
respect to which the expansion of coefficients into expres-
sion (5) is performed according to Padè; the number of 
points (hops) required to obtain an accurate result over the 
specified frequency range is controlled by a binary search 
algorithm [20]. The steps involved in the search algorithm 
are summarized below:  

1. Set fL= fmin and  fH= fmax; 

2. Evaluate the Pade’ expansion of the port admittance 
around fL (YL(f)) using the AWE moment expansion 
of the coefficient into (5); 

3. Evaluate the Pade’ expansion of the port admittance  
around fH: (YH(f)) using the AWE moment expansion 
of the coefficient into (5); 

4. Set fmid=(fL+fH)/2 and evaluate YL(fmid) and YH(fmid); 

5. IF| ( YL(fmid) - YH(fmid) )/ YH(fmid) | < ɛ then Stop. 
ELSE evaluate the Pade’ expansion of the port 
admittance around fmid (Ymid(f)); repeat steps 2-5 in 
the range fL..fmid and fmid..fH. 

The term ɛ adopted in the algorithm is a predefined 
percentage error limit. 

The Padè approximation of the port admittance Y(f) 
around a fixed frequency f0 is evaluated by using two poles 
and two zeros: comparison with discrete results have 
shown that this is the best choice for both accuracy and 

simulation time. The rational function used in the Padè 
approximation is defined by its 5 coefficients. Y(f0) and its 
derivatives till order four are used to evaluate the 
5 unknown coefficients [20]. Derivatives are evaluated by 
using the forward-difference method, then Padè approxi-
mation at each expansion point is obtained with 5 sample 
frequencies. 

4. Numerical Results 
The theory presented in the previous paragraphs is 

implemented into a MATLAB code. Three structures 
presented in [12] are analyzed in order to test the efficiency 
and the accuracy of the proposed approach. 

4.1 Three-Pole Posts Filter 
As a first test, the three pole posts filter presented in 

[12] is considered. Fig. 1 shows the comparison between 
the results provided by the CFH technique and that 
obtained by applying the Green’s function method in [12] 
with a discrete frequency sweep. For comparison, moments 
of scattering coefficients in (5) are computed using both 
analytical and numerical derivatives. 

A complete agreement between the discrete sweep 
and the fast sweep responses can be observed, both with 
numerical and analytical derivatives computation. 
A percentage error limit of ɛ = 0.1 is used in the CFH for 
both cases. The calculation of the analytical derivatives 
improves the method efficiency by reducing the total 
computation time. As a matter of fact, for a fixed error 
limit of ɛ=0.1, the adopted procedure provides, when 
compared to the discrete method, a computation time 
reduction equal to 78.2 % for the numerical case and equal 
to 84.3 % for the case of analytical derivatives (see Tab. 1). 
Comparison between numerical and analytical derivatives 
shows a maximum error of 0.4 %. 

Fig. 2 compares results for three error-limit (ɛ) values.  

 
 

Method 

Nr. of 
expans. 
points 

Mean  
Absolute 
Error 
(MAE) of S12 

Total Time 
(112  
frequency 
points) 

Time  
reduction 

Discrete 
simulation [12] 112 0 130.6 sec - 

Numerical CFH 
(ɛ = 0.1) 5 0.0066 28.5 sec 78,2% 

Analytical CFH 
(ɛ = 0.1) 5 0.0087 20.5 sec 84,3% 

Analytical CFH 
(ɛ = 0.2) 4 0.0167 16.7 sec 87,2% 

Analytical CFH 
(ɛ = 0.6) 3 0.0479 12.2 sec 90,7% 

 

Tab. 1. CPU Simulation time for the post filter. Results 
obtained on an AMD Athlon(tm) II*2 250 processor 
3.00 GHz 4.00 GB RAM. 
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Fig. 1. Frequency domain analysis of the three pole posts 

filter proposed in [12] compared to the CFH analysis. 
(Numerical and Analytical calculated derivatives). 
p = 1.525 mm, W = 5.563 mm, S1 = 4.71 mm, 
S2 = 5.11 mm, O1 = 1.01 mm, O2 = 0 mm, Relative 
dielectric constant = 2.2, h = 0.787 mm. 

 
Fig. 2. Results comparison for three error-limit (ɛ) values.  

 
Fig. 3. Circular filter. Error-limit ɛ = 0.2 W = 3.8mm, Wio = 

1.683 mm, a = 0.2 mm, r = 2.4 mm, p = 0.7 mm, 
Relative dielectric constant = 9.9, h = 0.380 mm. 

 
Fig. 4. Dual coupled cavity filter. Error-limit ɛ = 0.3. 

W1 = 4.08 mm, W2 = 3.93 mm, W3 = 5.50 mm, a = 
0.2 mm, p = 0.851 mm, l1 = 3.404 mm, R = 4.83 mm, 
a = 2.55 mm. Relative dielectric constant = 2.2, 
h = 0.5 mm.  

As expected, by reducing the error tolerance, more 
accurate results are obtained; on the other hand, lower 
values of ɛ require a larger number of expansion points. 
Tab. 1 also shows the comparison between CPU time 
obtained by applying the proposed CFH method and 
a discrete simulation. A good agreement with this latter 
method [12] is obtained by enforcing an error-limit (ɛ) of 
0.2. In this case, a computation time reduction of 87.2 % is 
derived.  

4.2 Circular Filter 
Fig. 3 shows the scattering parameters of a simple 

circular cavity filter presented in [12]. A good agreement 
with discrete simulations [12] is obtained by enforcing an 
error-limit (ɛ) of 0.2. In this case, a speed up of 90 % is 
achieved. 

4.3 Dual Coupled Cavity Filter 
Finally, a more complex dual-coupled cavity filter 

based on circular resonators [12] is considered as validation 
example. Fig. 4 shows and compares the fast results with 
the discrete ones. The agreement between the simulations 
is very good. An error-limit (ɛ) of 0.3 is enforced; in this 
case, a computation times reduction of 79 % is achieved.  

5. Conclusions 
In this paper, the AWE – Padè method has been used 

in conjunction with the CFH technique to improve the 
performance of the Green’s function based analysis pre-
sented in [12]. The AWE technique has been applied to 
find a moment expansion of the scattering coefficients used 
in [12], subsequently adopted to efficiently compute the 
Padè approximation of the port admittances and the 
S parameters of the device under analysis. 
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The method has been applied to known cases taken 
from literature. Very accurate results, with a computation 
time reduction up to 80-90 %, have been obtained. The 
proposed technique can be efficiently applied to the 
analysis and design of SIW devices. 

Appendix 
In this appendix, the derivatives of equation (6) are 

presented. Derivatives of the other components can be 
derived in a similar manner. 

Let us consider the expression: 

   . (A1) 
 

It is considered as the product of three terms. Derivatives 
with respect to kρm can be considered first. Derivatives with 
respect to ω can be later computed with the use of the chain 
rule. Indicating the first term as: 

  (A2) 
 

we obtain: 

 , (A3) 

 
 

  (A4) 
 
 

 , (A5) 
 
 

 

 (A6) 
 

where: 

, (A7) 

 
 

, (A8) 
 
 

  (A9) 

The derivatives of function (1) are then computed 
using the standard formulas relative to the derivative of the 
product of functions. Notice that, up to know, derivatives 
with respect to kρm have been considered, and AWE has 
been applied to the coefficients into (5) as functions of the 
frequency. To do this, derivatives of kρm with respect to the 
frequency are required, which are given below: 

 , (A10) 
 

  (A11) 
 

  (A12) 
 

where 

 , (A13) 
 

      (A14) 
 

 , (A15) 
 

    , (A16) 
 

 . (A17) 
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