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Abstract. Microwave hyperthermia appears as an adju-
vant technique to heat relatively small tumors in a mini-
mally invasive way. As this technique is based on intersti-
tial antennas, we propose a review of the physical 
phenomena involved in the radiation of such antennas in a 
dispersive medium, using the different analytical modeling 
developed since the 1970’s. These modeling have been 
implemented in a freely available software tool, that will 
allow antenna designers and medical researchers to per-
form rapid parameter studies to further understand the 
role of the several parameters involved; this tool will also 
help the interpretation of results issued from numerical 
simulations. Simulation results associated with different 
antenna geometries are presented and compared to results 
obtained by several authors. 

Keywords 
Insulated antenna, dipole antennas, radiation, hyper-
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1. Introduction 
Hyperthermia has emerged as a promising alternative 

or adjunct to other forms of cancer therapy. It uses either 
electromagnetic field, ultrasound or perfusion based 
methods to raise the tumor temperature above 40°C while 
maintaining the surrounding normal tissue below this tem-
perature. All the techniques used can be distinguished by 
the spatial scale at which thermal ablation is induced: local 
hyperthermia, regional hyperthermia, and whole-body 
hyperthermia.  

Among more or less invasive electromagnetic tech-
niques, two types can be considered depending on the 
range of frequency used [1-6]: at first, capacitive and in-
ductive coupled radiofrequency (RFA, RadioFrequency 
Ablation) methods (300 kHz-1 MHz) are based on resistive 
currents, because the displacement currents appear negligi-
ble at these frequencies. Secondly, microwave radiative 
applicators (300 MHz-2.45 GHz), based on propagative 
waves generated by one or several antennas, are positioned 
in contact with the malignant tissue in order to deposit a 
focused electromagnetic energy in a limited volume (2 to 

5 cm) in the near-field zone of the antenna system. In 
general, the electromagnetic energy absorption at the ap-
plied frequency is proportional to the tissue conductivity 
and to the square root of the dielectric constant of the tar-
geted material; usually such an absorption leads to local 
temperature elevation of cells belonging to malignant tis-
sues between approximately 40°C and 45°C for 30 to 
60 minutes. So, an efficient coupling of the electromag-
netic energy to the malignant tissue is necessary to ensure a 
sufficient transfer of energy inside the tumor, and a heating 
distribution as uniform as possible with minimal unwanted 
hot spots. Due to its intensive metabolic activity, malignant 
tissue has a higher conductivity than normal tissue, as well 
as the dielectric constant at the applied frequencies is also 
higher in the malignant tissue than in the healthy one [7].  

The aim of this paper is to provide a review of ana-
lytical modeling of microwave insulated antennas encoun-
tered in the literature. In general, the modeling associated 
with hyperthermia applications is composed of two parts: 
an electromagnetic modeling and a thermal modeling. The 
present work concerns a detailed study relative to the elec-
tromagnetic part of the initial problem. The electromag-
netic models issued from the literature have been imple-
mented in the Matlab interface, and are available on re-
quest1. The insulated dipole applicator, first modeled by R. 
W. P. King in the 1970’s [8-10], was concerning a sym-
metrical coaxial antenna supposed to be inserted in a 
highly dissipative medium. Afterwards, the modeling has 
been numerically improved by J. P. Casey in 1986 [11], 
and extended by M. F. Iskander in 1989 [12], K. L. Clib-
bon [13] in 1994, and L. K. Wu in 1996 [14] to further 
consider a multisection antenna and possibly non symmet-
rically fed. Such an analytical modeling appears useful to 
antenna designers and medical researchers to further 
understand the physical phenomena involved in 
electromagnetic absorption, to study the influence of the 
different parameters, and to interpret numerical 
simulations. Once the SAR (Specific Absorption Rate) 
distribution is determined, it serves later as a source in the 
bioheat equation to calculate the temperature distribution in 
the tissue region.  
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Moreover, we have studied the distribution of insu-
lated dipole antennas in an array in order to obtain a more 
uniform heating pattern; the heating pattern is controlled by 
choosing relative phases between antennas in order to 
obtain constructive and/or destructive interferences fea-
tures of the electromagnetic fields radiated by the antennas 
[15], [16]. Finally, a few simulation results obtained with 
the Matlab toolbox are presented; these simulations have 
been analyzed and compared with the results issued from 
the literature. 

2. General Formulation 
The modeling of a symmetrical uniform coaxial di-

pole applicator surrounded by a dissipative medium, as 
first proposed by R. W. P. King in the 1970’s at frequency 
915 MHz [8-10], can be visualized in Fig. 1a. The dimen-
sion of the dipole is close to the wavelength λL=2π/βL (βL is 
the wavenumber), which characterizes the antenna elec-
tromagnetic length as it is surrounded by a lossy dielectric 
medium. Such an antenna produces propagative waves 
which are rapidly attenuated in the near-field zone of the 
surrounding medium. This medium acts as an imperfect 
outer conductor for the antenna; thus, it can be modeled as 
a coaxial transmission line. A non-lossy insulation medium 
inserted between the central conductor with a finite con-
ductivity and the outer medium with an infinitely extent 
allows the generation of electromagnetic waves which 
propagate inside the outer medium. Moreover, by applying 
a simple scaling of size and frequency to the antenna ge-
ometry, other working frequencies can be considered. It 
must be underlined that, in such a structure, the current 
distribution along the inner conductor of the antenna de-
pends closely on the insulation layer, thus leading to a 
relatively complicated wavenumber current determination 
as it is quite different from the wavenumber of the outer 
medium.  

As the determination of the distribution of energy ab-
sorbed in the outer medium implies the knowledge of the 
electric field radiated mainly in the near-field zone, a solu-
tion was first given by R. W. P. King, using approximate 
numerical calculations [8]. However, such a solution was 
inadequate near the surface of the insulated antenna, which 
led J. P. Casey to provide improvements [11]. Later in 
1989, M. F. Iskander proposed an approximate solution for 
a thin-wire antenna which led to very similar electric field 
distribution in the outer medium [12]; however, this model 
cannot evaluate the electric field inside the antenna. Such 
an approach allows to consider a non uniform coaxial an-
tenna made of several sections to improve the uniformity 
of the electromagnetic energy absorbed in the near-field 
region; in such an antenna structure, the sections are char-
acterized by different inner conductor radii and insulation 
thicknesses as visualized on Fig. 1b. The approximate 
model is based on the decomposition of the current distri-
bution along the antenna as a linear array of point sources 
representing infinitesimal electric dipoles assumed to be 

distributed along the insulation surface. In such a case, the 
electric field radiated in the outer medium is the sum of the 
infinitesimal electric fields produced by all the aligned 
point-sources.  
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Fig. 1. Geometries of two types of insulated dipoles. 
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Fig. 2. Square array of 4 identical insulated dipoles in the plane 

(xOy). 

Because the highest electromagnetic absorption 
generally occurs in the near zone of the feed-point and on 
the antenna surface, the solution to provide a more uniform 
absorption around the antenna was to break down the an-
tenna length into several sections characterized by proper 
conductor and insulation layer thicknesses, thus leading to 
different radiation efficiencies. Thus, a section with a thin-
ner (thicker) insulation layer will cause higher (lower) 
energy loss, mainly induced by ohmic losses in the near-
field zone of the antenna. The solution is then to position a 
thinner insulation layer close to the feed-point. Moreover, 
the association of antennas distributed in an array (Intersti-
tial Microwave Antenna Array Hyperthermia system, 
IMAAH) with a spacing of about 1-2 cm between the an-
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tennas to which a specific driving phase has been applied, 
is discussed (see Fig. 2) [14-16]; this phase represents an 
additional parameter that allows to control the heating 
pattern, and particularly to push away hot spots at the 
boundary of the tumor to reduce the cooling effect gener-
ated by blood flow. 

3. Modeling Based on the Transmis-
sion Line Approach 

3.1 Overview of the Transmission Line 
Approach 
In King’s developments [8-10], an insulated dipole 

antenna of length 2h and aligned along axis Oz is driven at 
its center (z = 0) (see Fig. 1a). As it is terminated by two 
open circuits at both ends, such an antenna can be con-
sidered as an open coaxial cable. Thus, it can be analyti-
cally modeled using the transmission line theory. The 
modeling presented in this paper is valid either for dipole 
or monopole antennas. 

Following R. W. P. King’s developments, the external 
conductor (medium 4) is supposed to be made of the sur-
rounding medium represented by an infinite and isotropic 
lossy dielectric medium. The inner conductor (medium 1) 
with the radius a is characterized by a high but finite con-
ductivity. To prevent radial currents from flowing into the 
outer lossy medium, which contribute to decrease the axial 
current along the antenna, a non-lossy dielectric medium 
(equivalent effective single-layer medium with index 2e) 
with the outer radius rc is placed between the inner con-
ductor and the surrounding medium; the inner conductor is 
thus insulated from the surrounding medium. Depending 
on the applications, the insulation medium can be made of 
superimposed non-lossy dielectric layers (for example, two 
layers made of media 2 and 3 [10]). The so-called insulated 
antenna is characterized by numerous parameters that can 
be adjusted to change its radiating properties; these pa-
rameters include the length h, the ratio rc /a of the radius of 
the insulating medium rc to the radius of the inner conduc-
tor a, the constant βLh (βL is the real part of the wavenum-
ber kL=βL+jαL associated with the propagating current 
inside the inner conductor), and the wavenumber ratios 
|k4/k2e| in media 4 and 2. 

The analytical modeling initially proposed by R. W. 
King, and further extended by different authors [11-13], 
supposes several initial conditions and parameters such as: 

• The operating frequency: 
200 MHz < f ≤ 2.45 GHz. 

• The half antenna length h in the case of a dipole, 
which is generally defined in order to obtain a 
resonant structure with βLh  = π/4 or π/2.  

• The cross-section of the antenna is electrically small 
(higher propagation modes become negligible, end-

effects are small, and the antenna current is only 
axial), and the wavenumber of the outer medium is 
large compared to that of the insulation layer [8]: 
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• The radius of the inner conductor a is such that [8]: 

12 <<
<<
ak

ha
e

 (2) 

Considering several values of the ratio rc /a, a thin 
insulation is considered if it can be assumed that the 
following assumption holds: 1 ≤ rc/a ≤ 2. Moreover, a 
thick insulation is assumed if rc /a > 2. 

• The effective insulation layer is a non-lossy dielectric 
medium that is σ2e = 0, so that  '
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• The complex wavenumbers in the several media are: 

For the inner conductor (index L): 
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• The current at the feed-point z = 0 is defined as 
follows: 

inZ
V

I 0
0 =  (9) 

(V0 is assumed to be equal to 1V) 
where Zin is the input impedance at the position of the 
feed-point z = 0, which will be defined later. 

                                                           
2 a permittivity with a tilde notation indicates a complex 
variable 
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The reflection coefficient at the antenna feed-point is 
defined with respect to the reference impedance of 50 Ω, 
and for impedance matching consideration, the aim is to 
obtain an antenna with a low reflection coefficient S11dB at 
the feed-point: 

)
50
50

(log20 1011 +
−

=
in

in
dB Z

Z
S . (10) 

3.2 Current Distribution 
The analytical formulation based on the transmission 

line theory first introduced by R.W.P. King is now pre-
sented [8-10]. The insulated antenna (monopole or dipole) 
is treated as a lossy transmission line. In such a case, losses 
induced in the outer conductive medium are due to ohmic 
losses and radiation. 

Considering at first a uniform antenna (made of a 
single section) aligned with the axis Oz , the current 
distribution versus z  writes as follows: 
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where I0 = I (z = 0). 

If the insulated antenna with the constant outer radius 
c is made of N multisections connected to each other along 
the axis Oz (each characterized by a proper inner conductor 
radius ai and an insulation layer thickness (rc-ai)), we ob-
serve that distinct current distributions I i(z) are traveling 
inside each section i of the length hi with the wavenumber 
ki

L (see Fig. 1b). The current I i(z) associated with the sec-
tion i is given by: 
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where zi
0 represents the lower end of the section i which 

the current enters, and z is the coordinate along the axis Oz 
(z = 0 corresponds to the feed-point). Ii

0 is the current 
Ii(z=zi

0). θi
h is the phase angle that results from the loading 

effect of the sections connected upward to the section i. 

It must be underlined that the current distribution 
follows the continuity relation at each position z=zi

0: 
I i(z=zi

0)= I i-1(z=zi
0). 

The current in each of the N sections is determined 
using the several following steps: 

1) At first, the characteristic impedances Zi
c of each 

section have to be determined according to the following 
relation: 
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Note that the ratio |α i
L/βi i

L| represents a measure of 
the capacity of each section to transfer power to the sur-
rounding medium by conduction, radiation, or the combi-
nation of both. Depending on the ratio |α4/βi

4|, and rc/ai, it 
must be remarked that |α i

L/βii
L| is larger for radiation when 

the losses for a given medium 4 are weaker. Moreover, 
from relation (14) it can be deduced that |α i

L/βi i
L| can be 

made quite large when rc/ai is near one, and quite small 
when rc/ai is much greater than one. Thus, when rc/ai is 
large and |α i

L/βi i
L| quite small, the transmission of power is 

made axially along the antenna like a low-loss transmission 
line, and when rc/ai is near one with |α i

L/βi i
L| relatively 

large, the transmission is mainly made by conduction or 
radiation in the radial direction into medium 4 [9]. 

2) Starting at the top open-ended terminal of the an-
tenna corresponding to the section i = N at the position 
z = h-hN the phase θN

h= 0 is assumed (Zin= ∞). In a more 
general case, θ ih is expressed by: 
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Afterwards, the input impedance Zi
in associated with 

this section can be calculated according to: 
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where Cant= 1 in the case of a monopole, and Cant= 2 in the 
case of a dipole. 

Thus, the input impedances of the different sections 
are sequentially determined from the top end to the feed-
point. 

3.3 Electric Field Radiated 
R. W. King has first proposed analytical expressions 

associated with the electric field radiated by a uniform 
insulated dipole in the lossy medium (index 4) surrounding 
the antenna. The solution of the Maxwell equations given 
in the cylindrical coordinates (ρ, φ, z) is expressed under its 
integral form. The electric field, formed of two components 
E4r(ρ,z) and E4z(ρ,z), includes both near-field and far-field 
variations. However, to solve the surface integrals over the 
insulation in both components, R. W. P. King has used an 
approximate numerical calculation, which leads to an in-
adequate solution in the vicinity of the insulation boundary. 
J. P. Casey has highlighted this inadequacy [11], and has 
thus proposed a numerical solution. Later, M. F. Iskander 
has formulated a solution which simplifies significantly the 
calculation of the electric field radiated, and allows to con-
sider in particular a multisection antenna (monopole or 
dipole) for which no analytical solutions exist [12]. This 
simplified solution assumes that the current distribution 
along the axis  can be modeled by a linear array of 
elementary point sources localized at z’ and distributed 

Oz
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along the antenna; they individually contribute to an in-
finitesimal electric field determined at a given position 
(ρ,z) and expressed in the local polar coordinates (r’,θ’) as 
(see Fig. 1a): 
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It must be underlined that in the case of a multisection 
antenna, a correction factor has to be applied to the current 
distribution I i(z’), so as to represent more accurately the 
power dissipation in the near-field zone of the antenna as a 
function of the insulation thickness. This factor consists of 
an intensity modifying factor such as: 
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Otherwise, in the case of a uniform antenna, we have: 
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The projection of both elementary E-components in 
the plane (ρ,z) leads to: 

⎩
⎨
⎧

+=
−=

'cos)',','('sin)',','()',','(
'sin)',','('cos)',','()',','(

'
4

'
4

'
4

'
4

'
4

'
4

θθθθθ
θθθθθ

θ

θρ

zrEzrEzrE
zrEzrEzrE

rz

r  (20) 

Then, the total electric field radiated by the insulated 
antenna in the surrounding medium (index 4) is expressed 
as follows: 
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The parameters h1 and h2 have the following values: 
in the case of a monopole antenna h1 = 0 and h2 = h, and in 
the case of a dipole antenna h1 = h and h2 = h. 

4. Energy Absorbed in the 
Surrounding Medium 
The electromagnetic field radiated in the lossy di-

electric medium surrounding the insulated antenna with 
index 4 produces energy dissipation which is converted 
into heat. The energy per unit volume of the surrounding 
medium (tissue) dissipated in heat (W/m3) is expressed as 
follows [11]: 
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The penetration depth δ of the electromagnetic field 
in the surrounding medium, which corresponds to the dis-

tance at which only 13.5 % of the maximum power ab-
sorbed remains, is equal to: 
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We assume that the power absorbed in a depth corre-
sponding to 50 % of the maximum power is likely to pro-
duce a sufficient temperature rise. This depth is defined as: 

2
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The distribution of the energy absorbed per unit of 
mass contained in a volume element of density ρc (kg/m3) 
is called the Specific Absorption Rate (SAR). It is ex-
pressed by: 
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The SAR is related to the temperature rise ΔT (°C) at 
the steady state through the equation: 

t
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Δ
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where kc= 4186 (J/kcal) and C is the specific heat of the 
medium (kcal/kg.°C). It must be underlined that relation 
(26) does not take into account heat exchange with the 
blood flow. 

5. Phased Antenna Array 
Considering identical monopole or dipole antennas, 

with index i = 1,...,L (see Fig. 2), positioned in an array in 
plane (x0y), such that their driving point is localized at z=0 
with coordinates (x0i, y0i, 0), the components of the total 
electric field induced by the array at a given observation 
point (x, y, z) may be expressed as the sum of the complex 
elementary electric field associated with each antenna [15], 
[16]. In the case considered here, the first hypothesis is that 
the current distribution of a given antenna is not modified 
by the electromagnetic fields radiated by the others; so the 
distance between two antennas has to be greater than 2 or 3 
penetration depth. The second hypothesis is that the anten-
nas are parallel. The field components write as follows 
[16]: 
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Therefore, the power absorbed per unit mass (SAR) 
in medium 4 is expressed by: 
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where the local power dissipated is: 
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6. Results 
Several antenna geometries have been considered to 

allow comparisons with results issued from the literature, 
considering different antenna structures, and also to illus-
trate the possibilities of the Matlab toolbox we have de-
veloped. In general, the simulation results allow to obtain 
plots of the current distribution along an antenna, a contour 
line chart of the power dissipated in a given plane inside 
the surrounding medium (a normalization has been defined 
in reference to a given power arbitrarily chosen by several 
authors from the antenna axis at z = 1 cm and ρ = 2 mm), 
and a 3D representation of the power dissipated in medium 
4, for a fixed value of z (the normalization is adopted rela-
tive to the maximum power value).  

At first, we considered uniform and multisection 
monopole antennas with the length h = 6 cm at the fre-
quency f = 500 MHz as studied previously by Iskander et 
al. [12]. The insulation layer is supposed to be made of 
Teflon (ε’r2e= 2), and the surrounding medium is formed of 
muscle (ε’r4= 52.5, σ4 = 0.88 S/m). The geometry charac-
teristics are collected in Tab 1. 
 

Uniform antenna Multisection antenna  
(3 sections) 

h=60 mm 
rc=1.7 mm 

a=0.794 mm 

h=60 mm 
rc=2.25 mm 

a1=1.5 mm ; z=40 to 60 mm 
a2=1.2 mm ; z=20 to 40 mm 

  a3=0.794 mm ; z=0 to 20 mm 

Tab. 1. Geometry parameters of monopole insulated antennas 
(f=500 MHz). 

Considering the monopole antenna, the simulations 
lead to the following values associated with the wavenum-
ber kL= 27.807 – 5.738j (βLh = 1.67 ≈ λL), the characteristic 
impedance Zc = 66.91 – 13.73j, the input impedance 
Zin = – 23.55 – 1.24j, and the wavenumber of medium 4, 
k4= 79 – 22j (λ4 = 7.95 cm). The current distribution along 
the monopole is presented in Fig. 3. The isocurves of the 
dissipated power expressed in percentage relative to the 
reference power defined previously, are visualized on Fig. 
4; they agree satisfactorily with the results issued from [9]. 
We observe that the power dissipated along that antenna 
does not appear uniform and decreases rapidly with the 
distance to the antenna. The higher dissipated power ap-
pears located close to the feed-point. It must be underlined 
that the 13 percent line corresponds to 1/e2 values of the 
power dissipated, which is usually defined as the power 
depth of penetration. To obtain a sufficient heating around 
the antenna, it appears that the heating region is far smaller 
than the region delimited by the 50 percent line. 
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Fig. 3. Current distribution I(z) along the antenna in the case of 

a uniform insulated monopole antenna (f=500 MHz). 
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Fig. 4. Contour line chart of the normalized power dissipated 

versus the radial distance r from the antenna (reference 
z=10 mm, r=2 mm) in the case of a uniform insulated 
monopole antenna (f=500 MHz). 

In the case of a multisection antenna working at the 
same frequency, the thicker dielectric layer has to be 
placed at the feed-point where the power dissipation is 
maximum, in order to reduce losses close to the insulation 
surface. Thus, several sections characterized by their 
proper dielectric thickness are positioned along the antenna 
to improve the uniformity of the heating pattern. Fig. 5 
shows the corrected current distribution Je(z) according to 
[12]. Starting from section 1 to section 3, the parameters 
rc/ai

 and |αi
L/βi

L| have the following values: 1.5 and 0.248 
for section 1, 1.875 and 0.228 for section 2, and 2.83 and 
0.198 for section 3. In Fig. 6 the heating pattern highlights 
the fact that the power dissipated is more uniform com-
pared to the previous case of a uniform antenna; this pat-
tern is similar to the one obtained in [12]. The parameters 
associated with the different sections have to be optimized 
in order to obtain an efficient coupling between the antenna 
and the dissipative medium.  

We consider now an array of 4 parallel symmetric di-
poles positioned at the corners of a 20 mm square (size 
range of a tumor) with their feed-points at z = 0. The di-
poles are working at the frequency f = 915 MHz with the 
characteristics defined by King in [8-11], such as 
h = 30 mm, rc = 0.8 mm, a = 0.47 mm, ε’r2e = 1.373, 
ε’r4 = 42.5, and σ4 = 0.88 S/m. The current distribution 
along each antenna is plotted on Fig. 7. The electric field of 
a given antenna is obtained as follows: at first, the antenna 
is located at the origin and the electric field is determined 
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in the plane (ρ0z) from relation (21). Then, by a rotation 
around the axis Oz, we can determine the field in the addi-
tional plane (x0y). Afterwards, the field map is shifted to 
move the initial antenna from the origin to the actual posi-
tion of the given antenna in the plane (x0y). A linear inter-
polation has been used to transform the geometrical repre-
sentation from the cylindrical coordinates to the cartesian 
coordinates, best suited to the positioning of the antennas. 
The simulation results of the power dissipated in the sur-
rounding medium and presented in Fig. 8 and Fig. 9 high-
light the effect of the variation of relative phases between 
each antenna (Δz = h/30, Δx = Δy = 0.5 mm); these simu-
lations have been compared to studies performed previ-
ously by several authors [14-16]. Defining a cut plane 
(xOy) corresponding to z0 = 10 mm, we remark that 
according to Fig. 7, in the presence of identical phases, the 
maximum power is positioned at the center of the array; in 
such case, this point is equidistant from all antennas, and 
the complex electric fields add coherently. This maximum 
location can be shifted by using phase differences between 
the antennas.  
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Fig. 5. Current distribution Je(z) along the antenna in the case of 

a multisection (3 sections) monopole antenna 
(f=500 MHz). 
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Fig. 6. Contour line chart of the normalized power dissipated 

versus the radial distance r from the antenna (reference 
z=10 mm, r=2 mm) in the case of a multisection 
(3 sections) monopole antenna (f=500 MHz). 

As an illustration, Fig. 8 and Fig. 9 show two dif-
ferent results where two phases equal to 0° and 180°, and 
0° and 90° respectively, have been considered for pairs of 
antennas. We remark that in the case of a 180° phase delay, 
hot spots of the same amplitude remain at the location of 
the antennas; between antennas with different phases, the 
power dissipated decreases rapidly. A weak dissipated 
power is observed between antennas of identical phase. In 

the case of a 90°phase delay, the hot spots associated with 
the position of the antennas are not identical, and an im-
portant and quasi uniform power deposition is noticed 
between both antennas of the same phase with the lowest 
value 0° (see Fig. 10). 
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Fig. 7. Power dissipated in medium 4 (φ1=φ3= φ2=φ4=0°; 

z0=1 cm) in the plane (xOy) considering an array of 
uniform and symmetric dipoles (f=915 MHz, z0=1 cm).  
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Fig. 8. Power dissipated in medium 4 (φ1=φ2=0°; φ3=φ4=180°; 

z0=1 cm) considering an array of uniform and symmetric 
dipoles (f=915 MHz, z0=1 cm). 
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Fig. 9. Power dissipated in medium 4 (φ1=φ2=0°; φ3=φ4=90°; 

z0=1 cm) considering an array of uniform and symmetric 
dipoles (f=915 MHz, z0=1 cm). 

7. Conclusion 
In this paper, we have reviewed the principles of mi-

crowave interstitial antennas for hyperthermia applications 
by presenting the several electromagnetic modeling de-
veloped since the 1970’s. The main analytical electromag-
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netic models have been implemented in Matlab interface, 
and are freely available at request. These modeling con-
sider different antenna geometries (uniform or multisec-
tion) and allow also to position antennas in a parallel array. 
Considering initial conditions previously specified by 
several authors, we have presented a few simulation results 
associated with several antenna geometries (uniform or 
multisection) studied separately at first, and afterwards 
considered in an array. The different 2D and 3D plots 
agree satisfactorily with the results issued from the litera-
ture. Since the 1990’s, electromagnetic and thermal nu-
merical modeling have emerged to simulate more real 
geometries of antennas and biological tissues [17-19]. 
These models rely mainly on the FDTD and the FEM 
methods. 
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Fig. 10. Contour line chart in percentage of the maximum power 

dissipated in medium 4 (φ1=φ2=0°; φ3=φ4=90°; z0=1 cm) 
considering an array of uniform and symmetric dipoles 
(f=915 MHz, z0=1 cm). 
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