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Abstract 

BACKGROUND: Based on mainly vascular diseases and traumatic injuries, around 40,000 upper limb 

amputations are performed annually worldwide. The affected persons are strongly impaired in their 

physical abilities by such an intervention. Through myoelectric prostheses, affected persons are able 

to recover some of their abilities. 

METHODS: In order to control such prostheses, a system is to be developed by which 

electromyographic (EMG) measurements on the upper extremities can be carried out. The data 

obtained in this way should then be processed to recognize different gestures. These EMG 

measurements are to be performed by means of a suitable microcontroller and afterwards processed 

and classified by adequate software. Finally, a model or prototype of a hand is to be created, which is 

controlled by means of the acquired data. 

RESULTS: The signals from the upper extremities were picked up by four MyoWare sensors and 

transmitted to a computer via an Arduino Uno microcontroller. The Signals were processed in 

quantized time windows using Matlab. By means of a neural network, the gestures were recognized 

and displayed both graphically and by a prosthesis. The achieved recognition rate was up to 87% 

across all gestures. 

CONCLUSION: With an increasing number of gestures to be detected, the functionality of a neural 

network exceeds that of any fuzzy logic concerning classification accuracy. The recognition rates 

fluctuated between the individual gestures. This indicates that further fine tuning is needed to better 

train the classification software. However, it demonstrated that relatively cheap hardware can be 

used to create a control system for upper extremity prostheses. 
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1. Introduction and Background 
The following chapter explains the basics of the project as well as its background and gives a short 

introduction into the topic of prostheses and myoelectric sensing. 

In the beginning, a brief description of the project is given. The reasons and the distribution of 

amputations are discussed, followed by an introduction of different prostheses, in particular 

myoelectric ones.  

Afterwards, the further scope of this project as well as the emerging tasks are described in more 

detail. 

 

1.1. Preamble 
Many people worldwide suffer from the loss of a limb. Therefore, it is important to advance the 

development of intelligent prostheses in order to give these people a better life. With the help of 

myoelectric prostheses, affected persons can recover parts of their limb functionality. A significant 

step to achieve this is to develop cost-effective alternatives compared to conventional prostheses 

which can cost a substantial amount of money. Therefore, this work deals with the development of a 

low cost concept alternative. 

With the device which is going to be developed it shell be possible to obtain electrical muscle signals 

from the upper extremities and to convert these into movement of a prosthesis. The muscle signals 

are to be taken simultaneously at several positions of the arm. To record these signals, a suitable 

microcontroller should be used so that they can be processed and filtered afterwards. The resulting 

cleaned signals are then to be used to control, for example, a generatively fabricated prosthesis or 

computer model. For this, the individual signal patterns must be classified and assigned to specific 

gestures. The project is completed by means of an analysis regarding the success rate in the 

detection of different movement patterns. 

With the help of this work it should be possible in the future to build cheap myoelectric prostheses 

by means of simple and easy to acquire components. 

 

1.2. Characteristics of limb amputations 
An amputation can be defined as the “Removal of part or all of a body part that is enclosed by skin. 

Amputation can occur at an accident site, the scene of an animal attack, or a battlefield. Amputation 

is also performed as a surgical procedure. It is typically performed to prevent the spread of gangrene 

as a complication of frostbite, injury, diabetes, arteriosclerosis, or any other illness that impairs blood 

circulation. It is also performed to prevent the spread of bone cancer and to curtail loss of blood and 

infection in a person who has suffered severe, irreparable damage to a limb.” [1] 

Around 1.5 ‰ of the total world’s population are affected by such an amputation of a limb. This 

corresponds to around 10 million people who suffer from the loss of a body part whereby 30% of 

those amputations affect the upper extremities. Almost 80% of these 3 million arm amputees are 

people living in developing countries. [2] 

The cause of such measures is usually an arterial circulatory disorder. The affected part has then to 

be removed because otherwise the life of the patient could be at risk due to dying tissue. Another 

reason for an amputation of a limb may be a traumatic injury at which the affected part of the body 

cannot be rescued. The third main reason for amputations is tissue damage due to malignant ulcers. 
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Finally, in exceptional cases, an amputation can be the outcome of a punishment. However, such 

punishments are only practiced in a few countries such as Saudi Arabia, United Arab Emirates or Iran 

and are very rare. [3]  

The reasons for amputations differ greatly between different age groups as well as between 

industrialized nations and developing countries. For example, in industrialized countries about 80% 

of all amputations are due to vascular diseases, whereby in developing countries only 20% are 

caused by these. On the other hand, traumas with about 20-30% prevalence are much more 

common as cause in developing countries compared to industrialized nations with 5%. These 

divergences are especially high when considering infections. For these, the ratio is 3-5% in first world 

countries, compared to around 20% in developing countries. [4] 

Due to the higher life expectancy in higher developed countries, people are usually older when 

undergoing amputations and the cause are lifestyle-related illnesses. 

In contrast, people from low-income countries are mostly affected by amputation reasons that are 

not due to lifestyle-related diseases. Due to lower occupational safety, riots and poorer healthcare, 

traumatic amputations are more common. [5] 

The following table shows the cause-to-age-dependency relationship in industrialized countries. 

Table 1: Etiology dependency due to age 

Age at amputation 
(years) 

Arterial occlusive 
diseases 

Trauma Tumor 

0-20 <1% 90% 5-10% 

20-60 30% 60% 5-10% 

60+ 90% 5% 5-10% 

 

Such an amputation of a limb can severely affect a person's autonomy, depending on the height of 

amputation and the lost body part. In some cases an amputation can be equivalent to a severe 

disability. In addition, such an intervention has a strong impact on the psyche of those affected. 

Therefore, prostheses need to be used to recover parts of these body functions and to help the ones 

affected to have a normal life. [3] 

 

1.3. Common upper limb amputations 
There are several heights at which an amputation of the upper limb is normally carried out. Those 

positions start at the fingers and go all the way up to the shoulder. The most common ones are listed 

below [6] [7]: 

 Fingers/ Metacarpal: Amputation of finger segments or parts of the metacarpal bones. 

 Wrist disarticulation: Surgery at the wrist whereby both, radius and ulna are not affected. 

Leaves a relative long residual limb which is suitable for mounting of aids. 

 Transradial: Transradial is also known as “below the elbow” whereby the amputation takes 

place through the radius and ulna. The length of the residual limb is important to allow 

control over pro- and supination.  

 Elbow disarticulation: The amputation is carried out in such a way, that the entire humerus 

is maintained. The surgery is through the elbow joint and the lower arm is removed. 

 Transhumeral: Transhumeral amputation is also known as “above the elbow” whereby the 

amputation takes place through the humerus. 
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 Shoulder disarticulation: Shoulder disarticulation describes an amputation at the height of 

the shoulder. The scapula remains, but the clavicle may or may not be removed. 

 Forequarter (intrascapulothoracic) amputation: During this amputation, the humerus, 

scapula and clavicle are removed.  

 

Figure 1: Different upper limb amputation levels [8] 

 

1.4. Prostheses 
A prosthesis can be defined as ”an artificial device to replace or augment a missing or impaired part 

of the body”. [9] Prostheses of the upper extremities can be attached to different places and replace 

different parts of the limb. This ranges from fingers to the hand, wrist, forearm, elbow, upper arm 

and shoulder. [10] 

Nowadays there are many different types of prostheses. These range from cosmetic embellishments 

over simple passive mechanical aids, such as hooks or the like, to actively driven prostheses, which 

can at least partially restore the function of the missing limb. The development and different kinds of 

such upper limb prostheses are explained in more detail below. 

1.4.1. History of prostheses 
The idea of artificially replacing lost limbs has existed for thousands of years. There are prostheses 

that are over 3000 years old, such as the so-called "Cairo Toe" which was found at an Egyptian 

mummy and was supposed to replace a lost right big toe. Prostheses like this one were made from 

natural raw materials such as leather, wood and flax. In Figure 2, the Cairo Toe can be seen. [4] 
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Figure 2: The Cairo Toe from around 950 B.C. [11] 

In 300 B.C., the first known prosthetic leg, the so called “Capua leg” was crafted by the Romans. It 

was made out of iron and bronze and had a wooden core. 

During the dark ages, prostheses such as hand hooks and peg legs appeared which allow for walking 

or holding shields. Those were mainly built from iron and steel. [12] 

During the Renaissance, anesthesia and wound management made great progress, making 

amputations safer compared to before. With new amputation options, the proliferation of 

prostheses increased and inventions like the tourniquet helped to stop heavy bleedings during the 

amputation process. There were prostheses like the “Knight Götz von Berlichingen iron hands” 

(1504), which could be moved and manipulated due to spring loaded mechanisms inside the hand. 

During this time, mainly iron, steel, copper and wood were used for prostheses. [13] 

At the time of the American Civil War as well as during the two world wars, prosthetics experienced 

big boosts from the multitude of wounded soldiers. In addition, new materials such as cosmetic 

rubber were invented, which supplement the former prostheses made of wood and leather. This 

resulted in attachments like brushes and hooks. 

In the years after the Second World War, many new materials were developed that made wood and 

leather unnecessary. These included, among others, resins, polycarbonates, plastics, carbon fiber and 

laminates. Their use made prostheses lighter and more durable. 

Since then, the used material compositions have been further refined in recent years and now allow 

high-performance prostheses that have higher stabilities and comfort despite lower weights. In 

addition, sensors and actuators can be partially embedded in prostheses, which enable active control 

by means of microprocessors. These prostheses are complemented by new, generative 

manufacturing processes such as 3D printing, with which simple prostheses can be produced very 

cheap and uncomplicated. [14] 

1.4.2. Classification of prostheses 
Upper limb prostheses can be divided into two main parts. The first one is the socket which is the 

interface between the actual prosthesis and the residual limb. Connected to this is the second part, 

the actual prosthesis, which replaces the missing limb. At the distal end of the prosthesis is the 

terminal device which can be for example a mechanical hand or a hook. In addition, prostheses can 

be subdivided into active and passive ones.  

Passive prostheses are prostheses that have no moving parts. These are mostly used for aesthetic 

purposes. There are also terminal devices designed for special tasks, such as gardening or sports. 
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Active prostheses, in contrast, are intended to support more productivity and functionality. These 

have moving parts that are powered either by the body itself or by external energy. In addition, there 

are hybrid combinations of these two active types, which are driven partly by the body, partly by 

actuators. [6] This subdivision is shown in Figure 3. [7] 

 

Figure 3: Subdivision of prostheses 

Prostheses can fulfill two different tasks, which may be fundamentally different. On the one hand, 

prostheses are supposed to restore functions that have been lost due to the loss of the limb. On the 

other hand, they are used to optically restore the "normal state" of the body. However, this often 

results in function and appearance competing with each other. Prostheses that visually resemble a 

natural limb are often limited in functionality, whereas functional prostheses are often not visually 

pleasing. 

Therefore, there are many patients who have several different prostheses, for example one that 

visually looks similar compared to a natural limb and one that is as functional as possible. [10] 

In general prostheses intended for below-the-elbow amputations are much easier to construct and 

to control compared to those where the amputation was above the elbow. If the shoulder is also 

affected by the amputation, the complexity of prostheses needed increases again. [7] 

1.4.3. Passive prosthesis 
The cosmetic use of prostheses is quite important because especially the upper extremities are 

frequently used in social interactions, such as gestures or during communication. Visually 

inconspicuous appearance can thereby help to avoid psychological stress due to being “different”. 

This is especially the case if not only the forearm is affected by the amputation, but also the upper 

arm. [15] 

The best representation of a natural hand is provided by passive cosmetic prostheses. These have no 

noticeable harness and can be adapted to the patient by means of shape and color. Thus, for 

example, skin color and anatomical features such as moles or even arm hair can be imitated. 

Aesthetic prostheses can also be used for simple bimanual tasks like fixating paper when writing, to 

stabilize objects which are held in the intact hand, or to keep a door open. [16] [7]  

Generally, these are very light and have a high wearing comfort. The low weight is because they have 

no motors and only a few mechanical components. [7] Such passive prostheses are shown in the 

following figure. 
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Figure 4: Examples of passive prostheses [17] [18] 

1.4.4. Active prosthesis 
The much more frequently occurring prostheses are the active ones. These have moving parts that 

are driven either by the body or by their own energy source. With body powered prostheses the 

control is usually done by the movement of a muscle near the amputated limb. The energy of this 

movement is transmitted via metal cables to the prostheses and there converted to perform, for 

example, an opening or closing of a gripper. With myoelectric prostheses, the action potentials of 

muscles are monitored and used to control the movement the prosthesis. 

Active prostheses can take many forms such as hands, moving hooks or special shapes for specific 

tasks and activities. In the case of hooks, these usually have a movable and a stationary part which 

allows objects to be gripped. The moving part is usually adjusted by steel cables or electric actuators. 

This kind of prostheses is usually heavier than passive prostheses because they are designed for 

higher loads. As a result, they are often made of heavier but more durable materials such as metal, 

hardened plastic or compounds. 

The most important task of active prostheses is to restore limb functionality to those affected. This is 

because the upper extremities and especially the hand are of great importance for manipulating 

objects. With the help of such prostheses it is possible to grasp objects and to handle the activities of 

everyday life. This can be anything from simple activities like dressing or putting on robes, to holding 

cutlery. Most active prostheses allow one or two specific actions to be performed. However, there 

are also prostheses that are even more versatile and allow several different actions. [10] 

Body powered prostheses: 

Body-powered prostheses are often referred to as "cable controlled" because they require steel 

cables as well as harnesses during operation. Usually, these harnesses are constructed in such a 

manner that a strap passes over the scapula and attaches to a cable pull which in turn operates the 

prosthesis. Since body powered prostheses are directly linked to e.g. shoulder movement, such 

prostheses have a high level of feedback based on the control cable’s tension. [6] [18] 

Other advantages of these body powered prostheses, compared to actively driven ones, are that 

they are in most cases lighter, quieter and more resistant. Since they have no electronical parts, they 

are in most cases waterproof and easy to clean. Their simple design allows affected persons to faster 

learn how to operate them and they also cost significantly less compared to actively driven ones. 

A disadvantage of these body powered prostheses is that they need the harness to operate the 

terminal device. This meant that the affected persons must have a certain strength and freedom of 

movement in order to be able to utilize such devices. This can be very difficult, especially when 
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working overhead. In addition, these prostheses are often optically less appealing compared to 

electrically driven ones due to the harness. [6] [7] 

Prostheses with such a mechanical power transmission are more popular than the electric ones. 90% 

of people who use an active prosthesis use a body powered one. This is largely due to their 

lightweight, durable construction and the better haptic feedback generated by the cables. In less 

developed countries, durability, no need for regular services and their lower costs are a major selling 

factor. [6] [10] 

Such body powered prostheses can be seen in Figure 5.   

 

Figure 5: Body powered prostheses [19] [20] 

Externally powered (myoelectric) prostheses: 

The second large group of active prostheses is the group of the externally powered prostheses. These 

are mainly electrically powered and are often called myoelectric or switch-controlled prostheses. [6] 

Such prostheses have external energy storage, which in turn supplies the built-in actuators. 

Generally, the energy is stored in form of accumulators. These devices can be controlled by multiple 

inputs such as electromyography (EMG) signals, the current measurements and feedback of the 

motors, as well as dedicated switches. Such physical switches are particularly useful when a high 

amputation has been performed. This is because in such cases usually many different motors for the 

different joints are needed and have to be controlled individually. However, myoelectric prostheses 

are the most widely used externally-powered prostheses, especially in cases of low amputation 

heights. 

Myoelectric prostheses are based on measuring the electric excitation of muscles. Electrodes are 

attached to the muscles which measure the electrical signals from skeletal muscle contractions. The 

changes in electromagnetic fields, which arise when a muscle is flexed, is picked up by surface 

electrodes and forwarded to a microcontroller. In most cases, the electrodes are attached to two 

antagonistic muscles, such as the wrist extensor and the wrist flexor. In this case one muscle is used 

for one direction of movement of the prosthesis. For example, tensing one muscle opens a gripper 

and tensing the counterpart closes the gripper. This is also referred to as a simple two-site direct 

control system. In order to avoid involuntary movements, thresholds are set for the EMG signals. 
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Only when a certain threshold has been exceeded, the prosthesis begins to move. In many cases 

there is also a functionality which controls the speed of the movement. Slightly exceeding the 

threshold results in a slow movement and a greater divergence in a faster one. Thus, the speed of 

the prosthesis is proportional to how much the limit is exceeded. This allows the users to control the 

speed and gripping power. [7] 

One of the advantages of such a myoelectric prosthesis is that it allows greater gripping forces to be 

achieved compared to body-powered devices. In some cases, this can be beneficial when holding 

objects for a longer time. In addition, no harnesses are needed for controlling purposes. This allows 

controlling multiple axes and joints simultaneously. The absence of a harness also allows the 

prostheses to look more like a real limb and therefore provides an aesthetic advantage over body 

powered devices.  

However, there are also reasons why body-powered prostheses are 10 times more popular than 

myoelectric ones. This is mainly due to the higher purchase price of such devices. In addition, they 

are less robust, due to the built-in electronics only partially waterproof and they usually need to be 

recharged on a daily basis to be functional. Since there is no mechanical connection between the 

terminal device and the remaining limb, the haptic feedback is worse. It is sometimes harder for 

those affected to properly assess and apply the required gripping force. Therefore, a lot of training 

and education is necessary, especially when several actuators have to be controlled.  

Furthermore, due to the complex design, these prostheses break more easily and must be serviced 

more often. Finally, the electrodes used are another disadvantage of these devices as it may happen 

that they move or lose contact. In these cases, prostheses cannot be operated properly. Constant 

contact with electrodes also may cause skin irritation or an unpleasant feeling if the prosthesis is not 

properly adjusted. Nevertheless, these prostheses are constantly evolving and could be more 

widespread in the future. [10] [7] 

 

Figure 6: Active electrically controlled prostheses [21] [22] 

Hybrid: 

As mentioned above, there are also devices that consist of a combination of body-powered and 

myoelectric components. An example of such a hybrid prosthesis is a myoelectric terminal device 

with a body-powered elbow joint. This combination allows utilizing the benefits of both types. One 

can achieve high gripping forces whilst keeping the prosthesis lightweight. In addition, this approach 

can ease the control of the prosthesis, if the person concerned does not cope with the sole control 

by means of muscle signals. [10] [6] 
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1.5. Problem statement and approach  
As briefly described in the beginning, a myoelectric prosthesis is to be developed, which is controlled 

by means of electric activity signals of muscles of the upper extremities. These signals are to be 

picked up by means of surface electrodes. All muscles of the forearm and the upper arm are available 

for this purpose.  

A microcontroller, such as the Arduino Uno together with a MyoWare Muscle Sensor should be used 

for data collection. These are designed for biomedical applications as they have the required 

resolution and processor power to record muscle signals without significantly falsifying them. [23] 

[24] Such a commercial microcontroller, like the Arduino, should be used as they are readily available 

and sufficiently tests as many EMG sensing projects are based on such microcontrollers.  

The recorded muscle signal should then be processed to access which muscles were moved. The 

classification should be done by means of a database which has been recorded in advance. For this 

analysis, the data can be forwarded to an external computer, which handles the processing of the 

signals.  

Thresholds for the individual muscles and gestures are to be determined as well as where the best 

position for attaching the electrodes is. By determining the correct electrode positions, the quality of 

the signals shell be improved and thus the reliability of the classification in total. Additionally, it 

should be tested how many electrodes are needed to distinguish between individual gestures 

reliably.  

The classification process itself shell be performed by an algorithm, for example a neural network. 

Such classification algorithms are further described in Chapter 3 and shell be carried out in a Matlab 

or LabView. To implement algorithms like neural networks, readily available libraries shell be used 

like the Deep Learning Toolbox from MathWorks. [25] 

Since the control is supposed to be a quasi-real-time application, a certain delay should not be 

exceeded, so that a tensioning of a muscle is followed by a reaction of the prosthesis in a timely 

manner. This time dependency shell be analyzed and broken down. 

The presentation of the recognized gestures may initially be done in a Matlab script. In this script, the 

model of a human hand shell be shown which replicates the gestures of the actual limb. Toolboxes 

such as the Robot Toolbox from MathWorks or other modelling programs can be used for this 

purpose.  

Based on the graphical output of the script, it can then be recognized whether a movement has been 

identified correctly. [26] [27] 

Right now, systems like the one presented in [26], allow differentiating between few gestures by 

means of support vector machines. [26] used EMG signal recognition based on 3 channels to 

distinguish 5 different gestures. This should serve as a starting point for this work. Similar results 

shell be recreated and serve as a reverence value. With this kind of setup around, 85% classification 

accuracy could be reached.  

Other projects like the one presented in [28] could classify 15 different gestures with a reliability of 

around 95%. Similar results should also be achieved with the algorithms developed for this work. 

By improving the position of the electrodes and implementing alternative classification algorithms, 

like fuzzy logics or neural networks, the reliability should be improved. The recognition rate shell 

then be compared to the one of former solutions.  
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Compared to other solutions, the number of EMG Sensors may be adapted for better gesture 

recognition. The achieved classification algorithms are to be designed in such a way that they deliver 

consistent results as far as possible, even if they are applied to different test persons as it turned out 

that this was a big problem for similar systems. 

Once this works reliably for several different gestures, a real mechanical prosthesis is to be created, 

which is powered by several motors. To produce this prosthesis, generative manufacturing processes 

such as 3D printing may be considered. The reliability of the whole system has then to be tested. For 

this, the recognized gestures shell be compared to the real ones and it shell be calculated how many 

were correctly classified by the algorithm.  
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2. EMG control acquisition 
The following chapter explains what muscle signals are and how they can be recorded. In the 

beginning, the anatomy of the human arm will be examined, in particular the anatomy of muscles. 

Afterwards it is examined what myoelectric signals are, as well as how an electric circuit looks like to 

record and process those. 

 

2.1. Muscles of the upper limb 
Skeletal muscles are part of the musculature responsible for active voluntary body movements and 

thus part of one of the three main muscle types. Just like the heart muscles, skeletal muscles belong 

to the group of striated muscles and are also referred to as voluntary muscles. Apart some 

exceptions, those muscles are connected to bony structures by tendons. They often exist in pairs, 

whereby the first muscle is the primary mover and the second one is its antagonist. For example, the 

biceps and triceps are such a pair of antagonists. When one of them contracts, the other one relaxes 

to allow the movement and vice versa.  

Skeletal muscles have a complex structure. They are composed of fascicles which are bundles of 

elongated muscle fibers. The muscle fibers themselves are consisting of bundles of myofibrils. 

Myofibrils themselves are composed of myosin and actin filaments. These two filaments are stacked 

in regularly repeating arrays and are responsible for the muscle contraction itself by sliding against 

each other. Those myosin and action arrays are called sarcomeres. Through this sliding action, the 

muscles can be shortened and thus contracted. Motor neurons which control the contraction are 

connected to bundles of muscle fibers and are together called a motor unit. In places where finer 

movements have to be achieved, only few muscle fibers are connected to one neuron. In places 

where a lot of strength is required, one motor neuron is in control of lots of muscle fibers. [29] 

The most important muscles of the arm are listed below. The numbering scheme follows Figure 7. 

 1: Musculus pectoralis major 

 2: Musculus deltoideus 

 3: Musculus bizeps brachii 

 4: Musculus trizeps brachii 

 5: Musculus brachioradialis 

 6: Musculus flexores digiti 

 

Figure 7: Most important muscles of the upper limbs [30] 
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Motor neurons are located inside the brainstem and the spinal cord and are connected to the muscle 

via axons which can transfer excitation signal over long distances. The activation of the muscle fibers 

is done by electrical potentials of cell membranes. This means that the voltage inside of a cell is 

usually 60 to 90mV lower compared to its surrounding. By opening and closing of ion channels 

membranes can allow movement of ions and thus create an electromagnetic field signal. This signal 

will travel along the axons as a wave to the end of the motor neuron.  

The place where the motor neurons connect to the muscle fibers is called neuromuscular junction. 

This is the place, where the fibers start to respond to the signal of the motor neuron and thus start to 

contract. The neurons release acetylcholine at the junction which itself creates an excitation in the 

muscle fibers. 𝐶𝑎2+ is freed and allows the sarcomeres to be shortened. With help from released 

ATP, the sarcomeres can return to their normal position to allow the contraction to end. The 

structure of skeletal muscles is shown in Figure 8. [31] 

 

Figure 8: Structure of a skeletal muscle [32] 

 

2.2. EMG signals 
As described in the section above, action potentials are created during the contraction of skeletal 

muscles. Those action potentials can be measured and are the basis of EMG signals. EMG signals are 

used for analysis and clinical diagnosis in biomedical applications such as management and 

rehabilitation of motor disabilities. 

The electrical currents generated during the flexion process can be measured using electrodes on top 

or inside the muscle. EMG signals are quite complicated as they are dependent on the anatomy and 

the physiological properties of the muscle. Impurities of these signals are quite common and 

accumulate whilst traveling through the body. Also, an EMG signal is the sum of multiple motor units 

firing at the same time and thus there can be interactions between these different signals. As the 
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intervals at which the action potentials of specific motor unit occur are random, the EMG signal may 

be either positive or negative at a given time.  

The motor unit action potential itself is the combination of the muscle fibers action potentials 

belonging to a single motor unit. It can be described with the formula below. 

𝑥(𝑛) = ∑ ℎ(𝑟)𝑒(𝑛 − 𝑟) + 𝑤(𝑛)

𝑁−1

𝑟=0

 

In this discrete formula, x(n) is the resulting EMG signal, e(n) the firing impulse of sample n, h(r) the 

motor unit action potential, w(n) the additive white Gaussian noise and N the number of motor unit 

firings. [33] The composition of an EMG signal can be seen in Figure 9. 

  

Figure 9: Composition of an EMG signal [34] 

EMG signals have distinct properties which differentiate them from other body signals. The most 

important properties are its frequency range and its amplitude. Motor units have a high dynamic 

range of amplitudes which results in combined amplitudes of 0 to 10mV (peak-to-peak) or 0 to 1.5 

mV (root mean square). The frequencies are between 20 and 500Hz whereby the dominant 

frequencies are in the range of 50-200 Hz as shown in Figure 10. [33] [35] 

 

Figure 10: Power of individual frequencies, measured at the Tibialis Anterior muscle during isometric contraction [35] 

2.2.1. Recording of EMG signals 
EMG signals are picked up by electrodes which are either placed on the skin above the muscle or 

inside the muscle itself. Both variants have their pros and cons. When using intramuscular sensors, 

the environment and the sensors as well have to be sterilized. As it is an invasive procedure it carries 
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the risk of transmitting a disease or triggering an infection. On the other hand, once the electrode is 

places it does not cause discomfort and the signals are not distorted by the tissues between the 

muscle and the skin surface. This leads to a higher signal to noise ratio. Also, high spatial resolution is 

possible. On the other hand surface electrodes can be repositioned if the position is not suitable and 

do not need invasive procedures. Thus they are also suitable for patients with a needle aversion. For 

short measurements those surface electrodes are also more versatile. [34]  

It is very important to place electrodes correctly and to use electrodes suitable a specific task, as 

their selection will influence the obtained signals. To get the highest signal strength, the electrode 

has to be placed on the muscle belly in the direction of the muscle fibers.  

The most commonly used electrodes are Ag/AgCl as they are not polarizable and allow immediate 

current flow. In most cases they are attached using a conductive gel to reduce impedance of the skin. 

The placement of the electrodes relative to each other and the size of the electrodes are also 

important. The further away electrodes are compared to each other, the higher the measuring depth 

is. The bigger the electrodes are, the lower the spatial resolution as increased size leads to an 

averaging effect. On the other hand, the skin impedance is reduced which leads to less noise and 

better frequency response. [36] [37] 

Usually 2𝑛 + 1 electrodes are used; two for each channel 𝑛 and one reference electrode which is 

located on electrically unrelated tissue.  

After the signal is picked up, it is usually amplified as its amplitudes are quite small. For the first stage 

of amplification, a differential amplifier is commonly used. Additional stages of amplification may 

follow afterwards. [33] [35] 

A differential amplifier is used to eliminate the common mode currents of the signal. To do this, the 

signal is picked up at 3 locations, two detection electrodes and one reference electrode. The 

reference electrode defines the neutral ground that the other two electrodes share. Any signal that is 

common to these electrodes will be removed. The signals they don’t share will then be amplified. It is 

essential to have high accuracy electronics as this step strongly influences the shape of the resulting 

signal. Common Mode Rejection Ratios of 90dB and more are considered as sufficient. The 

differential amplifiers impedance shell be as large as possible to prevent attenuation and distortion 

of the signal.  

Afterwards an amplifier is used to further increase the system’s signal amplitudes. Typical values for 

the total amplification are 1000 up to 20000. A low pass filter shell be applied to eliminate high noise 

frequencies. Cut off frequencies of around 1000Hz are appropriate as it is two times the highest 

expected EMG frequency according to the Nyquist theorem.  

The 50Hz frequency interferences of the mains power line can be eliminated with a band stop filter. 

Furthermore, a rectification of the signal can be applied to flip the negative signal parts and makes 

them positive. This eases the application of an integrator low pass filter to get the envelope of the 

signal if needed. Finally, an analog to digital converter is applied to transform the continuous signal 

to a discrete one, so that a computer or microcontroller can work with the EMG signal. A resolution 

of 10 bits is a typical value for such applications.  

An important part of every electric circuitry in medical applications is the galvanic isolation of the 

patient from mains power. This is needed to eliminate the risk of electrocution due to malfunction of 

the system. Another way of handling this problem is to only use low voltage power sources and to 

abstain from mains power. [38] [35] 

This filtering and amplification process is shown in Figure 11. 
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Figure 11: Electronics for recording EMG signals [38] 

2.2.2. Interferences 
When measuring such signals, there are also many factors that can decrease the quality of the signal. 

These interferences are also called artifacts or noise. Some of them can be avoided or reduced. For 

example, this can be done by applying the electrodes at the correct position and using a reference 

electrode as briefly discussed before. The most important sources of noise are: 

 Inherent noise in the equipment: This kind of noise can’t really be avoided as it is inherent to 

the acquisition system itself. It’s the noise the acquisition system itself produces during 

capturing and processing. It has a frequency range of 0 Hz to several thousand Hz. It cannot 

be completely removed, but it can be reduced by high quality equipment and intelligent 

circuit design. 

 Movement artifact: This noise is due to movement of the electrode when the muscles 

contract as well as from the movement of the cables connecting the electrode to the 

amplifier. This kind of artifact is usually in the range of 1 to 20Hz. Unfortunately their 

amplitudes are in the range of the EMG signals’ amplitudes so it can highly distort the signal. 

Recessed electrodes can minimize movement artifacts significantly by reducing the skin 

impedance as well as proper design of the electronic circuit. 

 Electromagnetic ambient noise: Electromagnetic noise can appear in EMG signals due to the 

fact that every electromagnetic device generates noise. The human body is at all times 

inundated by such electromagnetic radiation which is then picked up by the electrodes. Such 

noise can be up to 3 times higher than the EMG signal itself. The most common ambient 

noise is the one from the mains power supply with 50Hz. If the frequency of the ambient 

noise is known, the noise and its harmonics can be filtered by means of band stop filters.  

 Cross talk: Crosstalk describes unwanted signals from muscle groups near the muscle which 

is actually under investigation. It can be reduced by placing the electrodes in such a way that 

the signals of other muscles are attenuated as much as possible before reaching the 

electrode. 

 Inherent instability of the signal: EMG signals are affected by the rate at which the motor 

units fire. These fire randomly with a frequency of 0 to 20Hz and thus create quasi random 

amplitudes in the EMG signal.  

 Electrocardiographic (ECG) Artifacts: As the heart is also a muscle, it produces artifacts 

which highly influence EMG measurements. This is especially the case when measuring with 

surface electrodes near the shoulder and trunk region. This noise can be removed by either 

applying a high pass filter which lets frequencies of 100Hz and higher pass, or by applying an 

electrode along the heart's axis and using common-mode rejection. [37] [33] [35] 

The aim is to have the highest signal to noise ratio possible to ease further processing.   
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3. Classification of the movement 
Picking up the signals from the muscles is only the first step of many to control a myoelectric 

prosthesis. The picked-up signals are still raw and unprocessed and need further processing to be 

able to be used for controlling of such devices. Furthermore, the individual processed signals have to 

be classified to detect which gestures were performed and thus how the prosthesis itself should 

move.  

This chapter is concerned with the different techniques how recorded signals can be enhanced and 

classified so that the prosthesis moves as it is supposed to. The following steps are suited for filtered 

and mostly noise free signals. As described above, low pass filters, band stop filters as well as 

rectifiers may be used to achieve such noise free signals. These can be implemented either in 

hardware, software or a combination of both. A benefit of an implementation in hardware is that it 

causes nearly no delay to filter the signal. On the other hand, the implementation is in most cases 

easier in software, as frequencies can be selected more specific, and filters can be adjusted if the 

results are not appealing.  

The time dependencies of the feature extraction and classification algorithms will also be concerned, 

as the whole system should be able to act with as little as possible delay. 

As the following signal processing steps can be quite intensive in computational resources, these 

might be performed on a more capable device like a computer or laptop. 

 

3.1. Signal analysis and feature extraction 
The first step after the signal is pre-filtered will be to determine whether or not muscle activity is 

present at all. This is because most of the time there will be no muscle activity and the prosthesis will 

be in an idle state. In this case, there will be only minor signals, such as random noise or artefacts 

from heart activity which couldn’t be filtered. Thus, a threshold can be applied to distinguish if there 

is muscle activity from one of the muscles under investigation. While the signal is beneath a given 

threshold, it does not have to be analyzed and the processing device can save resources.  

In case that there is activity after a period of non-activity, an interrupt signal can be used to start 

with the feature extraction. [39]  

Furthermore, a discrete time window can be assigned in which the signal is then analyzed. Typically, 

the longer the window in which the signal is analyzed, the better the result. The downside is that this 

reduces the real time capability of the system and thus it should be tried to reduce the delay and 

window length to a minimum. In similar projects a window length of around 250ms was found to be 

sufficient. [26] [40] [41] Those sample frames can then be analyzed in the frequency and time 

domain.  

There are also other important parameters which can be used to distinguish between noise and 

muscle signals if normal thresholding cannot be applied. Such parameters are for example the root 

mean square or the mean absolute value. These can also be used during the classification process to 

tell different muscle signals apart due to their specific properties. [42] 
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3.1.1. Typical parameters used to describe signals 
The following list is a short summary of commonly used parameters to distinguish or detect muscle 

activity in an EMG signal.  

 Root Mean Square (RMS): The root mean square is defined as the arithmetic mean of a set 

of squared values. In discrete signal processing it can be described with the formula below, 

whereby N is the length of the signal frame and 𝑥𝑛 are the individual signal values inside the 

sample. In electronics it can link the power of alternating current to the one of direct current 

and in prosthesis control it can be interpreted as amount of muscle activity. [42] [43] 
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 Modified Mean Absolute Value (MMAV): The mean absolute value can be calculated similar 

to the RMS. One advantage is that it can be adapted to get the modified mean absolute value 

whereby each individual signal value 𝑥𝑛 can be weighted to smooth the results. The formula 

is given below whereby 𝜔𝑛.is the weight of the individual values 𝑥𝑛. [42] 
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 Mean and Median Frequency (MNF and MDF): Mean and median frequency are often used to 

describe the process of muscle fatigue as they can be used as indicator for it. As MNF and MDF 

are in the frequency domain, they can show better performance compared to other 

characteristic parameters. The Fourier Transform is used to obtain the power spectrum of the 

signal and transform it from the time domain into the frequency domain. MNF is the average 

frequency of the signal and MDF is the frequency which divides the power spectrum into two 

regions with the same amplitude. The formulas for MNF and MDF can be seen below whereby 𝑓𝑛 

is the frequency of the power spectrum and 𝑃𝑛 the power spectrum itself. [42] [44] 
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 Variance (VAR) and Standard Deviation (SD): The variance is the squared deviation of a 

variable from its mean value. It can give information about how far a signal is spread around 

its mean value. With the formula below the variance can be calculated. The standard 

deviation is the square root of the variance. [42] [28] [4] 
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 Peak amplitude: The peak amplitude is an indicator for the maximum value of a signal and 

can be used to distinguish between signals which have the same RMS but a different shape. 

[28] 

3.1.2. Fourier Transformation 
When measuring a signal, the values gathered are mostly in the so-called time domain. This means 

that each sample is interconnected to one specific moment in time. Such a signal in the time domain 

can be seen for example on the screen of an oscilloscope which displays the measured signal in real 

time. On the other hand, a signal can also be displayed in its spectral domain. The spectral domain 

shows how a signal is composed of individual oscillations that add up and together compose the 

complete signal. This is due to the fact that every waveform can be generated by adding up sine 

waves. This time and spectral domain relationship can be seen in Figure 12. At a) the two individual 

sinusoids are displayed which together compose the signal. At b) the overlay of the two signals can 

be seen in the time domain and at c) how those two signals are represented in the frequency 

domain. 

 

Figure 12: Relationship between b) time domain and c) frequency domain [45] 

In case that the signal is not continuous but discrete, one has to work with the formula for the 

Discrete Fourier Transformation to get the information about which frequencies compose the signal. 

As the signal of the sensor will be polled and processed in timely discrete periods (e.g. 1000HZ), the 

Discrete Fourier Transformation has to be applied. Its formula can be seen below. 

 

𝐹(𝑗𝜔) = ∑ f|𝑘|𝑒−𝑗𝜔𝑘𝑇

𝑁−1

𝑘=0

 

 

In this equation, N is the number of samples, 𝑓|𝑘| the individual samples, 𝑇 the sample time and 𝑗𝜔 

is the frequency response.  
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During a Fourier Transformation a signal is compared with sinusoids of various frequencies to get the 

corresponding magnitude and phase shift for each frequency. The magnitude spectrum is an 

indicator for how present a specific frequency is in a signal. If the magnitude spectrum is high, that 

means that the signal under investigation composes a high share of this signal. The phase shift on the 

other hand adds the information on whether or not there is an offset of the individual frequency and 

how big the offset is compared to the origin. [46] 

This information can help to either filter for specific frequencies or to distinguish between actual 

muscle signals and noise. As some noise includes all frequencies, those can be easily filtered because 

the frequency range of muscle signals is known.  

When time samples are investigated, there are some flaws when applying Fourier Transformations as 

some information describing the original signal may be lost in the process. For example, a longer 

time window may improve the resolution of frequencies, but information about the exact time when 

events happened during the time window is lost. When using a short time window, the time 

resolutions stays quite high, but the frequency resolution is compromised. Wavelet analysis can help 

to solve this problem. 

3.1.3. Wavelet Transformation 
The Wavelet transformations works in a similar way like the Fourier Transformation. The difference is 

that the Wavelet Transformation compares the signal to so-called “wavelets” to gain coefficients 

showing the similarity between those and the signal. These wavelets are finite in length and can have 

different shapes; they can be symmetric or asymmetric, regular or irregular. Such wavelets can be 

seen in Figure 13. 

 

Figure 13: Different shapes of frequently used wavelets [47] 

What differentiates the Fourier Transformation from the Wavelet Transformation is that the 

wavelets are localized in the time domain as well as the frequency domain. This is because the 

wavelets have a limited time duration and frequency spectrum. Thus, Wavelet Transformation is very 

well suited for processing non-stationary signals whose spectrum changes with time. Also, the 

Fourier Transform may not present abrupt changes sufficiently. [48] 
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By changing the size and the position of the so called mother wavelet, a wavelet family containing 

the dilated and translated sub-wavelets can be created. This process is called scaling and shifting.  

Scaling means the compression or stretching of a wavelet in time. A scale factor larger than 1 means 

that the wavelet is stretched so that it correlates with lower frequencies. A scale factor between 0 

and 1 means that the wavelet is shrunk so it correlates with high frequency components of the 

signal. 

Shifting means the change of the onset of the wavelet in comparison to the signal. When a wavelet 

center is shifted over a signal artefact and the artefacts frequency correlates to the length of the 

wavelet, the correlation between those two is large. The Wavelet Transformation itself then 

computes the inner product of a signal with a wavelet family.  

In case of a Continuous Wavelet Transform (CWT), the number of coefficients can be much higher 

compared to the original length of the signal. For example, if the signal has a length of 1000 samples 

and the wavelet family would consist of 20 different wavelets, there would be 20000 coefficients. 

This would allow a deep level of analysis but would also need high computational power at the same 

time. The formula for the CWT of a function 𝑥(𝑡) can be seen below. The variable 𝑎 represents the 

scale factor, 𝑏 is the translation and 𝜓 is the used mother wavelet. [40] [47] [48] [49] 

𝑦(𝑎, 𝑏) =  
1

√|𝑎|
∫ 𝑥(𝑡)𝜓 (

𝑡 − 𝑏

𝑎
) 𝑑𝑡

∞

−∞

 

Because of the high number of coefficients, CWT is rarely used in real time applications and the 

Discrete Wavelet Transformation (DWT) is used instead as it uses fewer coefficients. When using 

dyadic scaling and shifting, it eliminates redundant coefficients. In this case, the number of output 

coefficients is the same as the number of input samples. 

The dyadic WT is performed by passing a signal through a series of high- and low-pass filters which 

then give the coefficients of the transformation. The filters used have to be quadrature mirror filters 

which means that their magnitude response is mirrored around 𝜋 2⁄  respectively to each other. After 

passing through one level of the filter, half of the signal samples are removed. This is because in the 

resulting signals half the frequencies have also been removed and thus, according to the Nyquist 

theorem, only have the samples are needed to faithfully represent the signal.  

The signal from the low-pass filter is then further processed by passing it through a new high-pass 

and low-pass filter combination. This is done for each level of the filter bank and can be seen in 

Figure 14. After each filter the signal is down sampled by a factor of 2. 
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Figure 14: Composition of a dyadic filter bank for DWT [50] 

These individual signal bands can then be processed to gain information or to reduce noise. This can 

be done by e.g. removing all signals of the highest frequency band which are below a given 

threshold. By inverting the decomposition procedure the modified input signal can be reconstructed. 

[33] [47] 

In most cases, the Discrete Wavelet Transformation is used for signal compression, to decrease noise 

and for peak detection. The low number of coefficients results in high computational performance.  

 

3.2. Movement pattern classification 
When only one joint of a myoelectric prosthesis has to be controlled, the easiest way is to use the 

EMG signal from two antagonist muscles. In this two-site direct control scheme, the EMG signal from 

one muscle indicates that the prosthesis should move in one direction. When the antagonist muscle 

is contracted, the prosthesis does the opposite. These muscles could be for example the wrist flexor 

and wrist extensor.  

With such a simple control scheme it is easy to distinguish between a few possible movements. But 

the control gets much more complex when more joints and terminal device movements have to be 

controlled. In this case new strategies have to be implemented to allow the control of multiple axis 

and joints. These strategies can be multiple quick contraction of one muscle, the combination of 

multiple muscles at the same time or in a sequential manner. For example a contraction of the wrist 

extensor and flexor in a short time window could cycle through the different joints of a prosthesis 

which can be controlled. [7] 

This combination of multiple movements in a sequence allows control over multiple axis but can be 

quite hard to remember if it exceeds a certain limit. When combining more than only the EMG 

signals from two antagonist muscles the functionality of the prosthesis can be widely improved. Such 

multi-channel EMG signals can then be analyzed to recognize individual movements and thereby 

control a prosthesis accordingly. This classification can be carried out in multiple ways.  
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3.2.1. Thresholding 
The simplest way to classify the combination of multiple EMG channels is to threshold the individual 

channels. In this case the rectified signal is compared to a reference amplitude threshold. By doing 

this, one could achieve a control as stated in Table 2. 

Table 2: Possible movements due to exceeding thresholds in individual channels 

Action Activity 
channel 1 

Activity 
channel 2 

Activity 
channel 3 

Idle 0 0 0 

Close terminal device 0 0 1 

Open terminal device 0 1 0 

Wrist pronation 0 1 1 

Wrist supination 1 0 0 

Wrist extension 1 0 1 

Wrist flexion 1 1 0 

Go into defined position 1 1 1 

 

By simply combining the individual channels, a high number of different movements can be achieved.  

The threshold to distinguish whether or not a channel is active can be either static or dynamic and 

the thresholding applied can be hard or soft. A possibility for dynamic thresholding could be to 

monitor the average amplitude in the samples before and to use this value as a reference. This would 

decrease the problem of electrode movement which leads to a shift of idle potential. Furthermore, a 

combination of static and dynamic thresholding can be applied so that a dynamic threshold is 

calculated but with a second hardcoded limit as backup to decide if a muscle is active or not.  

There are also other possibilities how the thresholding techniques for classification of movements 

can be adapted. For example it would also be possible to set a threshold for the time the signal has 

to be high before it is considered an active signal. This can minimize the amount of false detections. 

[7] [33] 

However since such a strict distinction between active and not active cannot be achieved in every 

situation and for every movement, there are other techniques how EMG signals can be classified.  

3.2.2. Fuzzy logic 
One real time classification technique which doesn’t rely on the strict distinction of the muscles into 

active and non-active is fuzzy logics. Fuzzy logic is a part of artificial intelligence and is a method of 

clustering whereby data can belong to one or more clusters. Instead of calculating definitive outputs, 

the system returns a probability of a state. By doing this, computers are able to calculate with 

uncertainties, as uncertain values don’t have to be 1 or 0 but can be somewhere in between. [51] 

Fuzzy logic systems are based on reasoning and can be fed with knowledge to help it build up a rule 

base for decision making. The working principle of a fuzzy system can be seen below.  
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Figure 15: Working principle of a fuzzy system [52] 

In this diagram, crisp values get injected into the system as input. This data is then fuzzified which 

means that it is translated into probabilities of belonging into a specific class. The fuzzified values are 

translated into fuzzy sets during this step. These sets are then injected into the inference block, 

where logical rules are applied to it to get a fuzzy output set. The fuzzy output is then defuzzified to 

get a crisp system output value which can afterwards be applied to a device or prosthesis. The rules 

which are applied are based on a knowledge database which increases over time and in which 

knowledge can be injected. [51] In practice, the inference rules are on a “IF…AND…THEN” basis. 

When a certain combination of probability values are exceeded, the fuzzy system will inference a 

rule. 

To give a frequently used example, one can look at a temperature controller of a shower. The crisp 

input of the system is the current temperature of the water. This exact data is then fuzzified into a 

fuzzy set “temperature”. Inside this set are multiple members, for example “cold”, “warm” and “hot” 

as the temperature could be described in such dimensions. Depending on the value of the input it 

belongs to some members more than to others. A temperature corresponding to the black line in 

Figure 16 would correlate to “cold” with 0.8, to “warm” with 0.1 and to “hot” with 0.0.  

 

Figure 16: Fuzzy temperature set [53] 

Depending on those values the inference rule block would then decide which actions to take. If the 

rules state that a temperature in the “warm” range would be better, it would take actions to achieve 

this goal. By following the “IF…AND…THEN” decision process it would reason that if the water is cold 

and not warm enough, then turn on hot water. There can be many such rules which together 

comprise the rule base.  

These output actions are also in a fuzzy state which means that the output could look like “turn hot 

water on” with 0.7, “turn down cold water” with 0.6 and “turn on space heater” with 0.4.  
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This fuzzy output set would then be defuzzified which would lead to crisp values like turning down 

the cold water by half a turn and turning on the hot water by ¾ of a turn. [51] 

Logics like this can also be applied to a prosthesis control where the input signals can be translated to 

fuzzy values like “little activity”, “medium activity” and “high activity”. 

Fuzzy logic systems can be used very well in biomedical signal classification as it can handle slightly 

deviating signals very well. As muscle signals are never exactly the same and change over time due to 

muscle fatigue and other factors, these applications are very well suited for this kind of classification. 

Also, fuzzy systems can detect interconnections between input factors which may be very well 

hidden in the raw data. Thus it can also help with understanding the data. [33] The downside is that 

it can need plenty of data till it works in a meaningful manner. [51]  

3.2.3. Support Vector Machines 
Support vector machines (SVM) are another alternative to classify data based on machine learning. 

They are founded on supervised learning and can, after a learning phase, distinguish data into 

multidimensional pre-selected groups. The algorithm itself separates the data into groups and tries 

to fit a linear decision boundary, also called hyperplane between the extreme points of each dataset. 

Thereby it tries to find the border which best separates the individual groups apart. 

To distinguish between the classes, properties of these are mapped against each other on a 

multidimensional scale. Between the different classes, a boarder is drawn using the data points 

which are nearest to the estimated boarder. Those data points are called support vectors and are 

used to define the specific position and slope of the hyperplane. This is done by choosing the 

hyperplane which leaves the maximum margin between two classes.  

The margin is defined as the closest distance between the hyperplane and the closest members of 

the individual groups. Such segregation into two groups using a linear border can be seen in Figure 

17. In this case the margin of 𝑧2 is bigger compared to 𝑧1 so it is a better solution for the problem 

and will be chosen to separate the groups. [54] [55] 

 

Figure 17: Two different possibilities to place a hyperplane [54] 

Finding the maximum margin between the multidimensional data is a nonlinear constraint 

optimization task which is solved by using complex conditions and Lagrange multiplications. 

As the algorithm has to be trained, it is necessary to carry out multiple runs where the gesture is 

known and the corresponding muscle signal is recorded. The muscle signals have to be normalized 

and turned into a one feature vector. This data then has to be processed to fit the model. 
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In some case a linear hyperplane cannot be inserted into the data sets because it wouldn’t be able to 

separate two groups without intersecting one. In these cases the data has to be transformed into 

higher dimensional feature space using so called kernels. The most widely used kernels are the 

Polynomial Kernel, the Radial Basis Function Kernel and the Sigmoid Kernel. Unfortunately it is very 

complex to choose the right kernel for a specific task as each kernel has its own strengths and 

weaknesses. Such a higher dimensional kernel transformation can be seen in Figure 18. In this case, 

by going from two dimensional space to three dimensional, a hyperplane could be fitted. 

 

Figure 18: Projection from 2D into 3D [56] 

After a kernel is chosen, one hast to tune its parameters to get good classification performance. 

An advantage of support vector machines compared to other classification methods is that they 

require less input data for training purpose and in some cases it is easier to optimize them compared 

to e.g. neural networks. They work really well with small data sets and are well suited for high 

dimensional data. 

A downside is that they have to map the data into multidimensional feature space and this can be 

very computational insensitive which might infringe its real time capability. Also, finding the right 

parameters for the model can be quite complex. [54] [55] [56] [57] 

3.2.4. Neural Networks 
The third widely used method to classify EMG signals is to use Neural Networks (NN). NN consist of 

multiple layers. Using mostly either Fourier analysis or wavelet transformation, specific features can 

be extracted from signals which serve as input for the neural network classification. 

The first layer is the input layer where the different features are ingested into the system. The input 

layer has multiple nodes, so called neurons, which are all connected to the nodes of the layer behind 

it. Past the input layer are multiple hidden layers which further process the signal according to the 

inner nodes and their interconnections. The weighted sum of the whole previous layer is the input 

for each neuron. Inside each node, linear and nonlinear functions may be applied. Finally there is an 

output layer which then gives the result of the neural network. In the case of an EMG signal the input 

features could be specific frequencies, pauses in the signal or arbitrary looking artefacts. The output 

would be the classification of the movement. [58] 

The inner nodes are weighted linear or nonlinear combinations of the neurons of the layer before. 

These weightings are built by teaching the NN. This teaching process is also called back propagation. 

It works by giving the network a specific signal and telling the network which signal it is. The neural 

network then recalculates how the weights would have to be to come to the same results. A strength 

of neural networks is that EMG signals which don’t display relevant muscle activity can also be fed 
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into the system to teach it how a relevant EMG signal does not look like. As neural networks are now 

being used more frequently, implementations in software are readily available. [57] [33] 

Such a neural network layout can be seen in Figure 19. 

 

Figure 19: Layout of a Neural Network [57] 

One downside of neural networks is that human knowledge cannot be injected into this classification 

system and thus the learning process takes longer and needs more input data compared to other 

classification techniques. Also it is not possible to understand or research why a NN outputs a specific 

value as the inner proceedings of a NN are unknown. The initial state is known, but through the 

learning process the weightings are changed. [58] 

Some EMG prostheses are based on this kind of classification, as neural networks allow real time 

signal processing and controlling. They can be highly adapted to individual patients and thus reducing 

the failure rate. [33] 

As all these systems have their strengths and weaknesses, it is also possible to use a combination to 

overcome those individual weaknesses. For example it is possible to use fuzzy logics to cluster 

features and then use neural networks for classification of those clusters. This joint use of several 

classification algorithms can certainly reduce the error rate. [33] 

  



36 
Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno 

4. Practical implementation 
In the following chapter, the individual steps that were necessary for the implementation of the 

project are explained in more detail. Different solution concepts are discussed as well as the 

hardware and software which was suitable to collect, transmit, process and visualize the data.  

 

4.1. Concepts for implementation 
Several different possible solutions were appropriate to be used for the implementation of the given 

task. These possible options were related to both, hardware and software choices, and are explained 

below. 

4.1.1. Possible processing techniques 
With regard to implementation, there were several possibilities on which devices the program could 

be executed. The choice was between the required resources and the resulting performance. Several 

different concepts based on microcontrollers or computers were considered. These different 

possibilities are described in more detail below and then explained on which bases the decision was 

made. 

In all cases it was assumed that the muscle signals are recorded by a sensor which has an analog 

voltage as output. Thus, the analog voltage must subsequently be digitized and processed. 

Microcontroller: 

Considering processing devices, there were multiple options to choose from. 

The first possibility was to use a microcontroller to measure the muscle activity and to evaluate the 

signals. Such microcontrollers could be e.g. Arduinos from the open source company of the same 

name or the MSP430 from Texas Instruments. Such development boards usually have a small energy-

efficient processor as well as various connectors to communicate with other sensors and devices. For 

example, the Arduino Uno is based on an ATMEL ATmega328 chip, runs at a frequency of 16 MHz 

and can communicate with other devices via UART, SPI and I2C. In addition, the general purpose 

input and output (GPIO) pins can be used to control various other peripherals or to read analog and 

digital signals thanks to the built in 10bit analog to digital converter. Some of these GPIO pins can 

also be used as pulse width modulation pins to control servo motors. [24] [59] 

This capability is particularly advantageous in terms of controlling prostheses, as such tasks require a 

control unit that controls the individual motors of a prosthesis anyway. 

A further advantage of these development boards is that they can usually be programmed via various 

integrated development environments and don’t require dedicated accesses and bit manipulations 

of individual registers. This facilitates the handling and programming of these microcontrollers. In 

addition, such boards are widespread, easily accessible and there are large amounts of already 

created code examples and documentation to further facilitate programming.  

A disadvantage, however, is usually the performance of the processors used. Since they have to be as 

small and energy efficient as possible, they often have only limited performance. 

This means that only simple mathematical operations can be carried out on these devices. Otherwise 

it could have a significant impact on the performance of the entire system. This can outweigh by far 

the advantages, especially for real-time applications such as the EMG analysis discussed in this paper. 
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Due to the low performance, signals may not be read out on time and processing may take longer, 

resulting in a high delay in the overall system or limited functionality. [60] 

Therefore, further alternatives for the control of the system were investigated, which have better 

performance to avoid getting into a bottleneck, limiting the overall performance. 

In the figure below an Arduino Uno R3 can be seen. The GPIO connectors and the ATmega328 chip 

are easily recognizable. 

 

Raspberry Pi: 

Single-board computers, which have more power than the microcontrollers discussed above, were 

another option. The best-known representatives of this category are the computers of the Raspberry 

Pi series, whereby the current generation is the Raspberry Pi Model 3B+, which is manufactured by 

the Raspberry Pi Foundation. It is similar to an Arduino but has components that remind you more of 

a conventional computer. A Raspberry Pi Model 3B+ has several USB ports for input and output 

devices, an HDMI and Ethernet port, a quad-core processor with 1.4 GHz from Broadcom and 1 GB of 

RAM. As the memory space can be increased by an SD card, larger programs and scripts can also be 

stored. 

Since the Raspberry Pi can be installed with a Linux-based operating system, it can be operated like a 

normal computer by means of a graphical interface. There are several editors available to create your 

own programs and there is also a wide range of code examples on the Internet. 

Furthermore, the Raspberry Pi offers the possibility to control GPIO pins and to communicate with 

peripheral devices. However, the Raspberry Pi has no analog to digital converter and supports pulse 

width modulation only poured. This makes it difficult to control servo motors and therefore requires 

a control unit. [61] 

Figure 20: Arduino Uno R3 [23] 
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Since the GPIO pins have no analog to digital converter functionality, a dedicated ADC would have to 

be connected in order to record signals with a Raspberry Pi. For example, the ADS 1X15 product 

family comprises ADCs that can be controlled via the pins of the Raspberry. These are also 

compatible in terms of voltage and communication protocols and have a resolution of 12 to 16 bits. 

[62] 

In terms of costs, Raspberries are usually somewhat more expensive than conventional 

microcontrollers, but are also much more powerful than those. [63] 

Figure 21 shows the different connections of a Raspberry Pi. 

 

Figure 21: Raspberry Pi 3 Model B+ [63] 

Another advantage of solutions using an Arduino or Raspberry Pi is that programs like Matlab have 

hardware support for these platforms. With these respective packages the devices can be 

programmed and functions such as filters and repetition instructions can be provided. 

Conventional computer with DAQ: 

The third way how the signals can be processed is by means of an ordinary computer. The signals are 

gathered by a DAQ, i.e. a data acquisition tool. This is necessary because most sensors cannot be 

directly connected to a PC.  

The advantage of using a PC is that it is extremely powerful compared to the other alternatives. In 

addition, a large number of programs are available which can be used for further processing of the 

signals. For example, Matlab, LabView and other similar programs offer innumerable functions for 

signal processing and evaluation. 

In addition, practically everyone can access a PC, making it easy to share a solution developed in this 

way with other people. 

In this case, an Arduino can be used as a DAQ, to which the sensors are connected. The serial 

interface of the Arduino allows it to forward the signals it receives to the computer without any 

problems. 
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4.1.2. Concepts for signal processing 
As already described in Chapter 3, there are several ways to extract information from signals. The 

different methods have different advantages and disadvantages. These are shown above all in the 

robustness of the solution with fluctuations of the input signal, the simplicity of the implementation 

as well as the required hardware resources. Thus, simple solutions could also be implemented using 

thresholds on devices that only provide relatively low hardware performance. However, their 

performance might be inferior. 

The other methods of classification aside plain thresholding sometimes require considerably more 

resources. Especially when training a neural network a lot of processor power is needed. In many 

cases even a dedicated graphics card is recommended to train neural networks for new tasks. [64] 

Since better performance was expected from more complex code and processing, the decision was 

made to use more powerful hardware. Solutions using PC and Raspberry Pi were considered. With 

regard to classification, both Neural Networks and Fuzzy Logic were narrowed down. 

A solution using Arduino and simple thresholds would also have been possible, but this would have 

had to be connected to an output device anyway in order to display the recognized gestures 

graphically. For these reasons, the other options were preferred. 

  

4.2. Used hardware 
The two concepts, using Raspberry Pi and computers, were followed more closely. The structure and 

the components used are described in more detail below. In both cases, servo motors were attached 

to the hardware to simulate control of a prosthesis. 

4.2.1. Data acquisition 
The first step in data acquisition was to identify the correct positions for the electrodes and to 

correctly prepare these spots. 

In order to be able to recognize gestures correctly, several muscle signals must be tapped. To classify 

the individual fingers, at least 4 sensors are required. One sensor for the thumb, one sensor each for 

the middle and index finger and one sensor for ring and little finger together. Theoretically a 5th 

sensor could have been used to have a dedicated sensor for each finger and thus a dedicated signal. 

This turned out to not be necessary because the individual fingers could be clearly identified with 

only four sensors. Meanwhile, it became apparent that 3 sensors were not sufficient to detect the 

individual fingers apart with certainty. With only 3 sensors, especially the little finger and ring finger 

could not always be distinguished. Therefore 4 sensors were chosen for the further proceeding. 

A total of 9 electrodes were used. Four pairs with two electrodes each as well as an additional 

electrode, which was used as reference electrode. This reference electrode was placed on the back 

of the forearm at the level of the elbow, as little muscle activity was to be expected there. 

The remaining positions where the electrodes were mounted are shown in Figure 22. The signals of 

the following muscles were tapped [65]: 

 Thumb: Extensor Pollicis Brevis and Abductor Pollicis Longus 

 Index finger: Flexor Carpi Ulnaris 

 Middle finger: Flexor Digitorum Superficialis 

 Ring and little finger: Palmaris Longus and Flexor Carpi Ulnaris 
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When attaching the electrodes, it was important to make sure that the skin was prepared in advance. 

This included the removal of excessive hair as well as the cleaning of lipid residues with soap or 

alcohol swabs. 

Round self-adhesive silver-silver chloride disposable electrodes from the company TIGA-MED were 

used which had a diameter of 48mm. [66] Due to the size of the electrodes and the spacing given by 

the sensors, they had to be cut to size. Care had to be taken that the gel body in the middle was not 

damaged, as this could have an influence on the signal transmission quality. Alternatively, it would 

also have been possible to use children's electrodes, which usually have a diameter of about 25 mm. 

With these, cutting to size would not have been necessary. 

 

Figure 22: Position of the electrodes [65] 

The sensors were then connected to the electrodes themselves to amplify and transmit the muscle 

signals. These sensors were the MyoWare muscle sensor from Advancer Technologies. 

These sensors can be operated with 3.3V or 5V and can output signals in the 0 to 𝑉𝐼𝑛𝑝𝑢𝑡 range. A 

processing logic is attached to the sensors, which can generate the signal envelope. If this function is 

not used, the raw EMG signal can also be picked up. In this case the output signal is centered around 

the value 𝑉𝐼𝑛𝑝𝑢𝑡 2⁄ .  

The MyoWare sensors have an input impedance of 110G Ohm and a common mode rejection ratio of 

110. The signal gain can be adjusted by means of a potentiometer. [23] 

The output signal of the MyoWare muscle sensors were analog signals, which had to be processed by 

following devices. 

The sensor itselfe is depicted in Figure 23. 
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Figure 23: MyoWare Muscle Sensor 

In addition, a cable was made with which the reference electrode could be attached further away as 

the standard cable was to narrow.  

In addition, all sensors could be connected to the same reference electrode by using the crafted 

cable. 

4.2.2. Data processing 
As described above, there were two approaches to solving the problem. On the one hand by means 

of a Raspberry Pi in combination with an ADC, and on the other hand by means of a computer and a 

DAQ. The following two variants were considered: 

Conventional computer with an Arduino as DAQ: 

In this approach an Arduino Uno R3 was used as DAQ, which in turn was connected to a PC. The 4 

sensors were connected to the Arduino with 3 lines each. These were 5V, GND and the data line. The 

lines were tangled to make the handling easier and to receive less interfering signals.  

Via the data lines the analog signals were forwarded to the ADC of the Arduino and converted to 

digital 10Bit signals. This was done via the pins A0-A3 of the Arduino. The signal lines of the servo 

motors were connected to pins 11 to 9 as well as 6 and 5. These concrete pins were chosen because 

the pulse width modulation functionality is given there. 

Since the motors required more power than the Arduino could supply, they were supplied by an 

external power supply. However, the ground lines were connected so that all voltages referred to the 

same potential. Otherwise it would not have been possible to control the motors. 

The Arduino itself was subsequently connected to a computer via an USB cable. This experimental 

setup can be seen below. However, power cords and the USB cable weren’t drawn in this schematic. 
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Figure 24: Schematic of first experimental setup 

Raspberry Pi 3 Model B+ with ADS1015 ADC: 

In the second approach, a Raspberry Pi was used as the central control unit. In addition, an ADS1015 

analog to digital converter and a PCA9685 pulse width modulation servo driver were used. I2C was 

chosen as the communication protocol, as it was supported by all 3 parts. The I2C addresses could be 

set for both, the ADS1015 and the PCA9685.  

The wiring has been carried out as shown in Figure 25. As is the case before, the servomotors were 

supplied by a more powerful current source, whereby the ground potential was again connected to 

the logic ground potential.  

The used ADS1015 had a resolution of 12bits, whereby 11bits were used for the result and one bit for 

the sign. With a sampling rate of up to 3300 samples per second, this converter was fast enough for 

the expected frequencies. [62] 

The PCA9685 PWM chip was used to control the individual servos needed to output the recognized 

gesture. The Raspberry Pi itself would not have been able to do this because it only has pulse width 

modulation signals generated by software. This can lead to malfunctions and problems when 

controlling servo motors. 
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Figure 25: Schematic of second experimental setup 

As in the case of the first schematics, the power cables and the connecting cables to other 

peripherals were not drawn in here either. 

4.2.3. Prosthesis implementation 
After the gestures have been recognized, they should be displayed afterwards. On the one hand, this 

should be done as a graphical output on a screen and on the other hand, the recognized gesture 

should be reproduced by a mechanical prosthesis. Two different prostheses were used for this task.  

The purpose was to show in a simple way which gesture was recognized and how myoelectric signals 

could be used to control such prostheses. 

Sain Smart Humanoid Robotic Hand: 

This robotic hand was used because it was a ready-made solution and the movements could be easily 

adjusted.  

The prosthesis consisted of 2 metal rails between which 5 "9g Micro Servo" servo motors were 

mounted. With the exception of the thumb, the fingers were made up of 3 links which, thanks to 

rotation axes, were movable and could bend. The motors were attached to the tips of the fingers by 

means of connections and, if necessary, they exerted a pull on them. This pull allowed the fingers to 

be bent individually. 

However, due to its simple construction and weak motorization, this prosthesis was not able to 

reproduce all gestures correctly. In addition, the motors did not manage to approach all positions 

from every position, as the torque required for this was lacking. The manufacturer stated a 

positioning force of up to 1.6kg/cm, but this could not be achieved. Especially when only small 

movements were made, the servomotors were difficult to handle, especially when they were under 

load. This could have been due to the power supply or to fluctuations within the production 

tolerances. [67] [68] 

The Sain Smart Humanoid Robotic Hand can be seen in the figure below. 
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Figure 26: Sain Smart 5-DOF Humanoid Robotic Hand [68] 

InMoov prosthetic hand: 

The InMoov Hand offers a better way to display movements. It is part of an open source project of 

the French sculptor and designer Gael Langevin. The InMoov project consists of files for hundreds of 

3D printed parts that can be connected to actuators to create a life-size robot. The individual limbs 

can be controlled and moved by means of motors.  

The files for the upper left extremity were downloaded from this open source platform to be able to 

produce them using a 3D printer. In the 3D printing process, polymers are melted and applied layer 

by layer by means of a nozzle. These layers usually have a height of 0.1-0.4mm. Thus, small details 

and a high resolution can be achieved. 

By this layer wise generative production, various objects can be produced, which are difficult or 

expensive to produce with conventional manufacturing methods. 

 

Figure 27: InMoov hand [69] 

As with the Sain Smart hand, the fingers can be controlled individually. This is also done by means of 

5 servos, which are mounted in the forearm and control the finger via cables. Another servo can be 

used to rotate the hand around the wrist.  
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Compared to the Sain Smart hand, however, larger servos such as the MG996R with up to 12kg/cm 

are used in this robot. In addition, the design went through several design iterations and is 

continuously adapted and improved. This is to ensure that the hand reacts adequately to signals.  

Furthermore, the InMoov hand was life sized in comparison to the other hand. Due to the improved 

design and the larger dimensions it is anticipated that the gestures can be displayed better and more 

clearly. [70] 

 

4.3. Software 
In the following, the details of the software solution are described in more detail. The flow of 

information and the processing of the signals are briefly described.  

4.3.1. Arduino code 
This code refers to the approach where the Arduino was used as a DAQ in combination with a PC. It 

describes how the signals were recorded and subsequently how the prostheses were controlled. 

Data acquisition and streaming: 

Several different versions of code were used for data recording. On one hand code was written which 

collected test data in advance to train the classification algorithms. On the other hand, a program 

was written that was used during operation of the prosthesis. 

The main difference between those programs was that one transmitting a constant data stream. The 

second program only recorded data for a certain period of time and repeated this process for a 

defined number of repetitions. Each of these time windows contained exactly one gesture. A portion 

of the code is shown in Figure 28.  

 

Figure 28: Example of Arduino code 

The code, which recorded data for training purposes, took two or four second long signal samples 

from certain gestures. This process was repeated more than 400 times per gesture. Either the raw 

EMG signal or the signal envelopes were recorded during this type of measurement. 

As can be seen in the code, during normal operation, time windows with 250 samples each were 

generated and transferred, which were then further processed. Since 1000 samples per second 

should be measured, i.e. twice the expected highest frequency, a time window had a duration of 0.25 

seconds. 
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The analog signal, which was provided from the sensors was converted to a digital value with a 

resolution of 10bits, thus a value between 0 and 1023. This was done by means of the analogRead() 

command. 

The baudrate for data transmission was set to 230400, as with lower baudrates, the serial 

communication was not able to transmit the gathered time frames quickly enough.  

By means of the Serial.println() command, the signals were sent via the serial interface and were 

followed by a tailing ‘\n’ indicating a new line. The data itself was sent in string format. Different 

other commands like Serial.write(), where the data is sent as bytes, were also tested, but this 

brought only minor performance improvements. On the receptor side, however, this caused 

problems with the serial buffer, so the string variant was chosen. 

To exactly know which channel was transmitted at a current time, a sync value was used every fifth 

time. The sync value was chosen with 5000, as this was a value the ADC would never reach and thus 

was unambiguous. However, this sync-value was only used during real operation. When creating the 

test files this was omitted and the data was saved directly into a file instead. 

The code itself was written in both the Arduino IDE and Matlab and loaded onto the microcontroller. 

When Matlab was used as the programming environment, it was also possible to program the 

Arduino using function blocks. This was made possible by the Simulink Support Package for Arduino 

hardware. [71] 

Most of the code was written in Arduino IDE version 1.8.1 and Matlab 2019a. 

Prosthesis control: 

In order to control the prosthesis with the Arduino, further code was written. This code waited for a 

command from the computer to be sent via the serial interface. Depending on which character was 

sent, a corresponding gesture was output. A switch statement was used to identify the received 

character. A dedicated motor was assigned to each finger. This was done using the servo.attach() and 

servo.write() functions. The Arduino "servo.h" library was used to enable these commands. The 

individual fingers were then either stretched out or tilted in. [72] 

The corresponding letter and gesture combinations can be found in Table 3. 

Table 3: Corresponding gestures and characters 

Gesture Character Gesture Character 

Idle A Fist B 

Scissor C Thumb D 

Index finger E Middle finger F 

Ring finger G Little finger H 

Thumb + index finger I Thumb + middle finger J 

Thumb + ring finger K Thumb + little finger L 

 

4.3.2. Matlab code 
The functions and code snippets described below are related to those described in 4.3.1. The Matlab 

code started where the Arduino part ended. The code was divided into several functions that called 

each other. These are now described in more depth. 
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Data acquisition processing: 

The first part of the Matlab code dealt with data acquisition and processing. The data was sent from 

the Arduino to the computer via a serial connection. Therefore a serial port object had to be created 

in Matlab. This was done with the command serial_object=serial('COM PORT', 'baudrate', baudrate). 

The correct COM port had to be selected, as well as the baudrate specified in the Arduino code. The 

object created in this way was then used for communication. The most important functions were 

fgets() and fprintf(). With these data between the devices could be read and sent. 

The data were then merged to the respective timeframes. A part of the corresponding code can be 

found in Figure 29. 

 

Figure 29: Matlab code to receive data 

The query for a value above 1024 can also be recognized. This is related to the synchronization value, 

which was transmitted by the Arduino and in this particular case was 5000. 

The individual time windows were then processed further. The first step of this processing was to use 

the detrend() function to subtract the mean value of the voltage in order to refer it to 0V. Then the 

root mean square, the standard deviation, the peak value and the mean frequency were determined. 

The values calculated in this way were then saved as shown below and used for the classification 

algorithms. These 4 parameters were calculated for all 4 channels of the EMG signal. 

 

Figure 30: Generation of classification values 

Classification: 

In order to classify the signals, two possibilities were considered more closely. The first was to train a 

neural network to classify the signals. The second possibility was to use fuzzy logic to recognize the 

gestures. 

In order to implement these two types, both the Deep Learning Toolbox and the Fuzzy Logic Toolbox 

were installed. 

For both variants, characteristic values first had to be generated that could be used as the basis for 

teaching the systems. The training files recorded by the Arduino were used for this and the 

corresponding parameters were calculated from these.  

When training the neural network, these parameters were taken as input. Furthermore a file was 

generated in which it was specified which gesture the parameters correspond to. The training files as 

well as the gestures were used as input for the training. A neural network was used which was suited 
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for pattern recognition and classification. This neural network teaching was started with the 

command "nprtool". 

In this tool, the input and target files were selected as well as how many percentages of the input 

files should be used for training, validation and testing. The percentages were set to 70%, 15% and 

15% respectively. The number of hidden neurons which are responsible for the functioning of the 

neural network was chosen with 50. With this setup, the neural network was trained. The structure 

of the system can be seen in Figure 31. [73] 

 

Figure 31: Structure of the neural network 

The 16 inputs represent the 4 parameters of the 4 channels and the 12 outputs represent the 

different gestures. 

For the classification with fuzzy logics the same test files were used again. These were deployed to 

reassign the associated gesture to the input variables. Subsequently, a tool was started via the Fuzzy 

Logic Toolbox and the command "neuroFuzzyDesigner", with which fuzzy logic systems can be 

created and taught. 

In this tool it was set how many fuzzy membership functions should be created for each variable. For 

each input and output variable 3 membership functions were created. By using the Neuro Fuzzy 

Designer the individual weightings of these functions could be determined automatically. With the 

training finished this fuzzy system could be applied to further input data. [74] 

With both variants the output was the recognized gesture. This output was then passed to a function 

that was responsible for the reproduction of the recognized gesture. If the new gesture was different 

from the one before, a character which was unique to the gesture was sent to the Arduino which was 

responsible for controlling the servo motors.  

Graphical display: 

In addition to the visualization with the Arduino, a graphical user interface was also created. This 

served basically 2 different tasks, to start the software as well as to display the recognized gestures. 

Therefore an app was created in which the other functions were located and started from there. The 

Matlab App Designer was used to create the app. This was done by means of callback functions, 

among other things. [75] 

The output of the gestures was done by a text display as well as an image of the recognized gesture. 

To create the images, the Design Doll software was used, which is designed to simulate and control 

human postures. [76] This graphical interface can be seen below. 
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Figure 32: Graphical user interface 

4.3.3. Raspberry Pi code 
In the following, the code used with this solution alternative is described in more detail. Many 

procedures were identical with those of the first solution variant. In order to avoid redundancy in 

such cases, the exact procedures are only briefly outlined with reference to the previous pages. 

The software solution for this variant was created on the text editor “nano” and was implemented in 

the programming language Python. This language was chosen because Python can be used to write 

executable programs in a simple way. It also offered the option to access many libraries and code 

examples. Two of the libraries used for the project were the ADS1015 and PCA9685 libraries which 

were used to ease communication with those two devices.  

With the command adc.read_adc(Channel, Gain) the individual channels of the ADC could be read. 

The 4 EMG sensors were read out one after the other. The gain for the ADS1015 chip was 2/3. Thus 

measured values of +/-6.144V could be read in. By a print() request the results could be printed to 

the console. This was used to debug the program which turned out to be necessary. Also a version of 

the code was written, where the sensor values were written to a file. [62] 

As in Matlab, the analysis of the signal was done by calculating several different characteristic values 

of time windows. These were the root mean square, the standard deviation and the peak amplitude. 

The time windows had a length of 250samples as in the first solution and a planned frequency of 

1000 samples per second as well.  

Even using the numpy library, some commands had to be written from scratch. For example the root 

mean square was calculated by the command rms = sqrt(mean(square(value))). The calculated values 

were then compared to thresholds. 

The servomotors were again controlled so that the fingers were either stretched out or flexed. This 

was done with the command pwm.set_pwm(Channel, relative pulse start, relative pulse end). The 

difference between the two pulse lengths start and end was calculated and set in relation to 4096. 

From this the pulse width modulation signal and thus the position of the motor was calculated. The 

control of the motors was done according to the same schema as in Table 3, whereby again a switch 

instruction was used to select between the individual gestures. 
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4.4. Description of the test procedure 
The test phase was divided into two parts. First, all methods were tested against test files to get 

comparable results. This was done to reduce the influence of random disturbances. The best method 

was then selected and its accuracy further tested. 

In order to determine the reliability of the best solution, random gestures were made and tested to 

determine whether the gesture recognized matched the gesture which was done. There was no fixed 

sequence. This procedure was carried out with 2 other test persons in order to display to what extent 

the system was adjusted to a specific person through the training data. Each gesture should be 

presented 20 times to achieve some statistical significance. 

Since the measurements of the test files were carried out on the left arm, this arm was also used for 

the comparison measurements on the test persons. Both a female and a male subject were selected, 

who also fell into different age groups. This was done to highlight possible deviations in the results. 

The signals as well as test files were recorded whilst sitting. The electrodes were placed on the left 

arm and the arm itself was supported on the thigh. This was intended to reduce distortions caused 

by movement. This procedure was used for all subjects. 
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5. Results 
In this chapter, the results obtained are presented and explained in more detail. In this context, both 

discoveries in the development process as well as decisions based on these discoveries are examined 

more closely. 

 

5.1. Choice of hardware solution 
As described in the previous chapter, 2 different hardware solutions were considered in more detail. 

On the one hand a solution with a computer and a DAQ and on the other hand a Raspberry Pi in 

combination with an analog to digital converter. Both variants offered advantages and 

disadvantages. These are discussed below. 

5.1.1. General considerations concerning hardware 
The advantages of the solution using a conventional computer consisted in the fact that this has by 

far the largest computational power. The processor unit of a conventional PC is up to 3 times faster 

as a Raspberry Pi and in many cases a graphics card is additionally available which can also accelerate 

the program flow. Furthermore, conventional computers usually have more and faster memory, 

which means that programs, functions and variables can be loaded more quickly. 

In addition, there are further advantages with regards to the software. These consist in the fact that 

many programs exist, with which the necessary tasks which are required during the execution of this 

work can be accomplished. These programs included Matlab in particular, which was used for the 

majority of the processing procedures. 

However, this variant also had major disadvantages. The first was that it was by far the most 

expensive solution in terms of total price. Most people have access to a computer, but should this 

not be the case, this variant would cost about 10 times as much as the one with the Raspberry Pi. In 

addition there are also the costs for the Arduino as well as those for the software. In the case of 

Matlab this can cost up tp several thousand Czech crowns. 

The second big disadvantage is that this solution is not very portable. As long as you don't use a 

laptop you are bound to a stationary place with this solution. Even if the graphical output were not 

used, a computer would still be needed to process the data. 

The second variant with the Raspberry Pi also had advantages and disadvantages. In most cases they 

are exactly contrary compared to the first approach. This means that the Raspberry is extremely 

mobile compared to a normal computer, especially if the graphical display is not used. In this case, 

the mechanical hand can be used to display the gestures. Moreover, the price of this solution is much 

lower than that of the first one.  

However, the biggest disadvantage of this solution was the low processor power available. Since the 

code had to be processed in real time, this was a big problem. The processing power had to be 

sufficient to avoid data jams and to avoid processing the collected data for too long. This was also 

true for the other approach, but there the performance was much higher. 

5.1.2. Practical implications for the Raspberry Pi 
Both hardware variants were investigated, but the Rapsberry Pi variant turned out not to provide the 

required performance. This was due to the fact that the required sampling frequencies could not be 

achieved. There were several reasons for this.  
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The first reason was that the ADS1015 sensor did not reach the required speeds. The sensor has a 

sampling rate of 3300 samples per second, but it turned out that this refers to all 4 analog to digital 

converters of the sensor together. However, according to the Nyquist theorem, the 4 signals should 

be sampled with 1000 samples per second each, since the highest expected frequency is 500Hz. 

Therefore a sample rate of 4000 would be necessary. 

However, this could have been solved by using two ADS1015 sensors. Furthermore the baudrate of 

the Raspberry Pi was set to 400000, because the standard rate of 100000 was too slow. This 

theoretically allowed the required speed to be achieved.  

Nevertheless, it turned out that with this configuration it took about 1.3 seconds to receive and store 

1000 samples. By calculating the individual parameters such as the root mean square, this was only 

made worse. To process a time window with 250 samples, up to 450ms were needed. Thereby the 

further processing and control of the program flow has not yet been taken into account. These would 

have only further slowed down the program and increased the cycle times. 

This meant that during at least 45% of the time the muscle signals were not actively monitored. In 

addition, the time needed to control the servo motors and to recognize which gesture was being 

performed is not yet included in this numbers. 

Since this was too slow to work, the solution was finally abandoned and the computer was used to 

select the solution. 

5.1.3. Practical implications for the conventional computer 
In contrast to the other variant, this solution allowed a sample rate of about 1400 samples per 

second per channel right from the start when no other tasks were pursued. This was limited by the 

speed of the Arduino's analog to digital converter and the possible baudrates. This conversion rates 

could have been further increased by directly accessing the corresponding registers and using 

interrupts. Theoretically up to 15000 conversions should be possible. 

The receiving and storing of data also showed that this variant had considerably more processing 

power. Thus only about 330ms were needed for recording one time frame. 

The control of the prosthesis could also be successfully implemented using this configuration. 

Therefore this variant was chosen. The complete real structure of the implemented setup is shown in 

Figure 33. 



53 
Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno 

 

Figure 33: Structure of the real implemented setup 

 

5.2. Software and signal analysis 
This chapter describes the decisions and discoveries regarding the software and signal in more detail. 

This applies in particular to the processing of signals and the classification of gestures. 

5.2.1. Findings concerning the signal 
Before the signals were classified, the characteristic values had to be determined. Some decisions 

had to be made regarding data processing. These are discussed below. 

Recorded Signal: 

Signals as recorded by the MyoWare sensors and the Arduino as DAQ can be seen in the figures 

below. Figure 1Figure 34 shows the signal envelope of a gesture and Figure 35 the same gesture as 

raw EMG signals. The color scheme is as follows: thumb: yellow, middle finger: green, index finger: 

red and the remaining two fingers are shown in blue. 

 

Figure 34: Signal envelope of the fist gesture 
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Figure 35: Raw EMG signal of the fist gesture 

In the two images it can be seen that in both recording modes offsets occur between the individual 

channels, although the measured voltages are related to the same reference electrode. Therefore it 

was necessary to clean the individual channels from their offset. This was done in the software 

before calculating the individual characteristic values. Apart from the offsets that had to be removed, 

there were also other artifacts in the signals that made processing more difficult. These are shown in 

the following two pictures. 

 

Figure 36: Characteristic signal features 

This picture shows how the muscle signals could behave in case of initial movement of the fingers. 

The signal could get so high that it reached the maximum value of the analog to digital converter. The 

effect was amplified by the fact that the MyoWare muscle sensors are equipped with a CMOS 

amplifier. These can be saturated over longer durations or due to very high muscle activity, and react 

afterwards only delayed to a decrease of the activity. In this case, the maximum value was outputted 

for a longer time than it actually occurred. This could be prevented by further reducing the gain of 

the sensor. [23] 

Furthermore, a second effect could be observed during data recording of this image. The muscle 

signals rose within a short time and afterwards weakened again considerably. When the hand 

returned to the resting position, the signals jumped up again. This is because the antagonists of the 
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muscles were activated and there was also a re-polarization of the affected muscles into the resting 

state. Its results were the two high peaks which can be seen.  

Finally, an effect can be seen below that occurred during the recording of muscle signals. These 

artefacts could be seen when the arm was moved or when the sensors themselves were moving. Due 

to their position around the wrist, this could also occur when gestures were performed or when 

tension occurred through the wires leading to the sensors. Such motion artifacts are shown in Figure 

37. 

 

Figure 37: Movement artefacts 

Concerning electrode position, no noticeable differences could be observed as long as the electrodes 

were roughly in the correct position. Although the signal became stronger or weaker depending on 

the exact position, the signal conditions remained more or less the same. However, there were 2 

exceptions. On the one hand the electrode of the middle finger which was partly located above the 

tendons of the finger muscles. At some positions, the electrode moved heavily, causing disturbances 

and movement artifacts. Therefore, when positioning the electrode, it had to be ensured that the 

sensor did not fluctuate too much during gestures. 

The second exception was the sensor, which was responsible for the ring or small finger. Depending 

on its position, the behavior of the signal changed when one of the two fingers was tensed. This 

could lead to the signals of both fingers to become relatively similar. However, the signals of the 

other sensors, in particular the sensor responsible for the index finger, could be used to distinguish 

between such gestures. 

Time resolution: 

It was important to weigh the real time capability of the solution against the quality of the signals. It 

was discovered that the longer the time window, the better the individual gestures could be 

recognized. In addition, this had a positive influence on the calculation speed of the characteristic 

values, since the time was not proportional to the length of the processed signal. The reason for this 

is that the fixed time costs were split among a prolonged time window. 

For longer time windows, random fluctuations of the signals were less problematic because they had 

less weighting. In addition, it was more likely that whole gestures were in one time window and that 

gestures were not spread over several frames. 

Shorter time windows had the advantage, however, that the feeling of real time was not affected. 

Long delays between input and output made the prosthesis feel unnatural. After studying the 
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literature and trying out different time window lengths, the length was set to 250ms as this was a 

good average. However, window length of up to 1second also worked quite well.  

Filtering: 

As described in Chapter 3.1, filtering of the signals would be possible to improve the quality of the 

classification. It could also reduce the influence of interfering factors. However, there are also some 

arguments against filtering the signals. The most important reason why the idea of using e.g. Fourier 

or Wavelet transformations has been abandoned is that it represents another source of delay. The 

conversion of the signals from the time domain to the frequency domain and back again resulted in a 

delay that further worsened the real-time behavior of the system.  

In addition, it turned out that, for example, filtering the 50Hz supply voltage was not necessary, since 

these only accounted for a small proportion of the frequencies occurring. By omitting filtering, 

further delays were avoided. The filtering and processing contributed about 100ms delay which, 

considering a signal length of 250ms, corresponds to a downtime of 40% in which no signals were 

read in.  

Thus the filtering was limited to the most necessary. This consisted of subtracting the offset of the 

individual muscle signals as well as calculating the absolute of the signal values after subtracting said 

offset. 

If it had not been for reasons of timing issues, filtering would have been highly recommended. 

However, there are some ways to alleviate the time problem. This includes e.g. bandpass filtering in 

hardware instead of software by using capacitors and inductors. A further solution would be to 

accelerate the software solutions by dedicated hardware or corresponding programs, which can also 

use other hardware such as graphics cards for processing. 

Chosen parameters: 

Furthermore, the selection of the characteristic parameters used to classify the signals was 

examined. These parameters were the root mean square, the peak amplitude, the standard deviation 

and the mean frequency.  

During the analysis of the results it turned out that some of these values had considerably more 

information content than the others. These include in particular the root mean square and the peak 

amplitude. 

The mean frequency showed the strongest fluctuations within the same categories. This is probably 

due to the short duration of the time windows and the low resolution of the frequencies contained in 

them. For example, the gesture “Fist” had a mean value of 99.3 with a standard deviation of 13.6. 

This shows that the results varyed quite widely. Therefore the determination of the mean frequency 

could be omitted without a greater loss of accuracy. 

5.2.2. General considerations concerning classification 
The second big decision that had to be made, apart from the hardware, was how to classify and 

recognize the data. As described above, two approaches were followed. These were neural network 

or fuzzy logic classification. The design of the individual systems can be found in Chapter 4.3.2. 

Both approaches had their advantages and disadvantages, which lay mostly in the convenience of 

training. This was mostly demonstrated by the amount of training data needed to teach the systems. 

Both variants had a total of almost 4000 training files available. This was by far enough for the 

weighting of the individual fuzzy membership functions and also enough to train the neural network 
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for classification. However, it turned out that with more data, the neural network could have 

achieved even better results. In contrast, the fuzzy logic could be excellently adapted.  

The advantage of a neural network was that it automatically adjusted the hidden nodes by itself, 

making programming much more user friendly. When manually programming a fuzzy logic, this can 

quickly take on huge dimensions as the number of input and output variables increases. With 3 input 

variables, each with 3 membership functions, there are already 3³ rules that have to be programmed. 

The use of the "neuroFuzzyDesigner" function therefore had the advantage that the fuzzy logic was 

taught automatically. This combined the advantages of both approaches. This was also confirmed by 

the first trials at the beginning of the project in which a fuzzy logic was trained on a few gestures with 

2 MyoWare sensors. This worked very well, but with an increasing number of inputs the weakness of 

this method became apparent. With 16 inputs, each with 3 member functions, the number of rules 

exceeded to 43 046 721. Even with the automatic derivation of these functions, this represented an 

enormous computing requirement. 

 

5.3. Statistics of measurements and experiments 
Apart from delay times of the two hardware options, many other static values were also determined 

in order to classify the performance achieved. For example, the recognition rate of the potential 

software models was analyzed. Such performance is discussed in more detail below. In addition, the 

overall performance of the achieved solution is subsequently considered. 

5.3.1. Performance comparison of the individual systems 
The performance of the individual systems was tested using the same test files to see how they 

performed in direct comparison. It was important to make sure that the same prerequisites were 

created. Otherwise bad signals could have led to a falsification of the results. Therefore, the muscle 

signals were stored in advance in a file and later used for testing of both systems. The recognition 

rates achieved can be seen below. The tests were carried out on the basis of the files of one person 

and represent values under ideal conditions.  

However, it should be noted that the fuzzy logic classification was only applied to a smaller data set 

that did not contain all gestures and a minor amount of input variables. The reason for this was that 

due to the sheer size of the classification logic with 16 inputs, the program became unstable and no 

longer worked properly. Thus, only the root mean squares as well as two of the four peak amplitudes 

were taken into account for the fuzzy logic. 

Table 4: Results of the fuzzy logic 

Gesture Detections  

Fist 88% 

Thumb 76% 

Middle finger 94% 

Ring finger  85% 

  86% 
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Table 5: Results of the neuronal network 

Gesture Detections  

Idle 91% 

Fist 92% 

Scissor 87% 

Thumb 90% 

Index finger 91% 

Middle finger 89% 

Ring finger  96% 

Little finger 91% 

Thumb + index finger 90% 

Thumb + middle finger 85% 

Thumb + ring finger 75% 

Thumb + little finger 71% 

  87% 

 

The neural network achieved an average detection rate of 87%, with the best single detection rate 

being 96%. The fuzzy logic reached nearly the same value with 86% with 94% as the peak figure. This 

shows that the fuzzy logic can achieve similar results as the neural network. It should be noted, 

however, that due to the smaller range of gestures, this was easier than with a larger selection. On 

the other hand, the number of input variables was also lower, making it more difficult to distinguish 

between gestures. 

The reason why the fuzzy logic performed so well is that it was also trained by a neural network. 

Thus, with small amounts of variables, it combines the advantages of both types. This shows that 

whilst using powerful hardware, the fuzzy logic could deliver even better results than a neural 

network. 

However, since more gestures are to be recognized, the variant with the neural network was chosen 

for the final evaluation. During this, 2 additional test persons were consulted and live data were 

used. 

5.3.2. Overall obtained performance 
As described in Chapter 4.4, the solution was tested on multiple persons. This was intended to help 

to identify possible influences on the solution, as whether or not it performed the same when 

applied on different persons. It should also test whether the results are reproducible. Table 6 shows 

the individual results of the cycles. Each gesture was performed 20 times. 
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Table 6: Results of the measurements 

Gesture Detections 
subject 1 

Detections 
subject 2 

Detections 
subject 3 

Total 

Idle 100% 95% 100% 98.33% 

Fist 85% 80% 75% 80% 

Scissor 80% 65% 80% 75% 

Thumb 90% 80% 95% 88.33% 

Index finger 90% 80% 90% 86.66% 

Middle finger 75% 90% 65% 76.66% 

Ring finger  90% 75% 80% 81.66% 

Little finger 85% 80% 85% 83.33% 

Thumb + index finger 65% 75% 65% 68.33% 

Thumb + middle finger 80% 55% 55% 63.33% 

Thumb + ring finger 75% 65% 70% 70% 

Thumb + little finger 70% 80% 65% 71.66% 

 82.08% 76.67% 77.08% 78.61% 

 

As can be seen from the results, the individual gestures could be recognized to a large extent. 

However, in 21% of all cases a wrong gesture was recognized. 

The gesture with the highest achieved recognition rate was “Idle” followed by “Thumb” and the one 

with the worst was “Thumb + middle finger”. This could be due to the fact that gesture “Thumb + 

middle finger“ is very similar to other gestures which include the thumb and that the signal of the 

middle finger itself isn’t that strong either. This makes it difficult for the algorithm to recognize the 

differences. As can be seen, gestures that clearly differ from the others achieved the best results. 

Single fingers thus had better results than combinations of several fingers. 

Most of the false statements were made by displaying "Idle" instead of the real gesture. This is 

because gestures were only accepted if they had more than 75% confidence over two consecutive 

time windows. This was done so that gestures do not appear arbitrarily while e.g. a fist is being 

formed. 

It can also be seen that the best results could be achieved with subject 1. This is most likely due to 

the fact that the training data came from this person. As a result, the measured muscle signals were 

more similar to those used as a reference for learning. In addition, the position of the electrodes was 

more accurately known and more similar signals were tapped. A further reason why the results were 

different for the individual test persons is the differences in their anatomy and physiological status. 

However, the accuracy difference was only about 5%. This shows that the system can be used quite 

flexibly. 

These results are broadly in line with those achieved in similar projects. In these projects, recognition 

rates of about 80-90% were achieved. [26] [28] However, it should be noted that more gestures had 

to be distinguished than had to be done in for example [26]. The increased number of gestures 

thereby increases the complexity of differentiating between the signal structures as they are more 

similar than it would be e.g. with only 3 gestures.  

Compared to [28], three fewer gestures had to be detected, however [28] used more and different 

kinds of sensors to achieve the 95% accuracy. In terms of EMG sensors alone, 87% of all gestures 

were detected in this project whilst using 8 EMG sensors. 
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As described above, one of the main goals was that the entire system processed the data as quickly 

as possible and reacted promptly to muscle signals. Therefore the code was optimized in this 

direction. However, not all delay influences could be eradicated.  

The delays that occurred nevertheless were measured and are listed in Table 7. 

Table 7: Time needed for one cycle 

Cause of delay Time needed 

Recording of signals 330ms 

Calculation of the characteristic values 30ms 

Classification 35ms 

Program logics (GUI, program flow,…) 50ms 

  445ms 

 

As can be seen, one cycle needed roughly 445ms. Some delays were expected because the 

processing of signals is automatically associated those. The largest factor leading to time loss was 

thereby the data recording and transmition. Without the 250ms that the signal itself needed to 

record, an additional 80ms were needed. This means that the actual sample rate was only about 750 

samples per second. If one includes all delays, only 56% of the time signal samples were taken. The 

remaining 44% were used for processing. During this time the muscle signals were not monitored. 

It should be noted, however, that the exact speed was also dependent on other processes running in 

the background of the computer. In general, the more background processes, the slower the 

performance. 

However, it turned out that in most cases this did not constitute any problems for classification. The 

only problems arose when the majority of a signal was not recorded due to delays. In these cases, a 

correct classification could not be made. However, this was only the case with extremely swift 

gestures. In most cases these signals would have been filtered out anyway because they did not go 

past 2 time windows. 

 

5.4. Possibilities to improving detection 
Even though in most cases the gestures could be recognized correctly, there are still some 

possibilities to further improve the performance of the system. The data used to train the neural 

network is thereby the most important one. 

The first suggestion for improvement is to collect more training data in general, so that the individual 

movements are better known to the classification algorithm in their different execution styles and 

speeds. This would be especially helpful in the case of the neural network, where the need for 

training data is very high.  

In addition, it would be good not to obtain the training files from just one person, but to generate 

them from several individuals. This would also contribute to the robustness of the solution. Also, the 

influence of different anatomy of users would be better balanced. Thereby the difference of signals 

from different persons with different physiological dispositions would be better compensated. 

Another major source of error was the interference picked up by the MyoWare sensors. The most 

prominent ones were the movement artefacts as shown in Figure 37. Mostly these effects were 

triggered by a motion of the sensor itself. This could be prevented by sensor solutions as shown in 

the following picture. 



61 
Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno 

These devices consist of up to 8 myoelectric sensors which are worn as a bracelet around the arm 

and measure the muscle signals from all sides. Such sensors are better protected against unwanted 

movements by the radial mounting around the entire arm. In addition, some of these solutions are 

equipped with Wlan or Bluetooth, which eliminates the need for a cable connection. This further 

increases mobility with such solutions. [77] 

 

Figure 38: Myo sensor armband 

A further step to improve the recognition rate is to bring the training data closer to the real 

measured data. This is due to the fact that the training data were recorded over longer periods of 

time than it was the case in real operation. The longer duration recordings were done in order to 

have an entire event from tensing to relaxing a muscle in one time window. However, this also 

results in the training data being different from the real data. Therefore it would be advisable to 

shrink the training data into time windows with a length of 250 samples as well. However, this 

significantly increases the effort required to generate such data. 

The remaining key factor in improving detection is the testing of other parameters. It has been 

shown that some are more suitable than others. Therefore, it is important to test which combination 

of parameters can achieve the best outcomes. The selection is not only limited to combinations of 

the parameter values used. Other values, such as those described in Chapter 3.1.1, can also be tested 

for the purpose of classification.  

In addition, it is possible to not process the parameters as absolute values, but to set them in relation 

to the other values. This could further reduce the susceptibility to offsets of the recorded signals. 

These relations could be formed between the same values of the other channels or also other values 

of the own channel. 

Apart from testing different classification parameters, it would be advisable to test the other 

classification systems apart from neural networks and fuzzy logic as well, and to weigh their 

performance against the achieved one. 

Similar gestures could also be omitted in order to further increase the differences between the 

remaining gestures. This could avoid confusion between similar gestures. 

It would also be advisable to reduce or optimize the hardware resources required to the necessary 

minimum in order to achieve a smaller, more portable solution. This could be achieved by single chip 

computers that have more power than e.g. a current Rapsberry Pi does.  
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6. Summary and discussion 
In the following, the individual sections of the work will be recapitulated and then an outlook will be 

given on how this work could be continued. The required tasks, the results achieved and the 

implementation are also addressed. 

 

6.1. Assignment and implementation 
The work as presented above was created in the course of obtaining a Master’s degree. Thereby 

certain tasks were set, as they were explained in the beginning. These tasks included giving a short 

summary of electromyography control of upper limb prosthesis as well as researching EMG sensing 

and processing possibilities to control such prosthesis. Subsequently, muscle signals were to be 

recorded, processed and used to control a robotic hand or a graphical display to show which gestures 

were performed. Finally, the results obtained should be evaluated and analyzed with regard to the 

degree of recognition achieved and potential improvements.  

The purpose of this work was to show how to create a classification and recognition system for 

muscle signals using relatively cheap hardware. In the future, such a system could be used to help 

people with musculoskeletal disorders, such as muscle weakness, to operate a prosthesis. These 

artificial limbs would then have the necessary strength and utility to cope with the demands of 

everyday life. Such smart prostheses can thus help to compensate for disadvantages and support an 

independent lifestyle. 

This is particularly the case when the recognition hardware is combined with prostheses which can 

be produced relatively cheaply, such as those produced in 3D printing processes. Considering that a 

large proportion of amputees live in countries of the 3rd world, where expensive sophisticated 

prostheses can only be afforded in the rarest of cases, this is particularly advantageous. 

The tasks given to create the classification and control functioning could be fulfilled and the control 

of an upper limb prosthesis could be achieved. The muscle signals were recorded using four 

MyoWare muscle sensors which were attached to the forearm. The individual devices were assigned 

to specific fingers. The sensors recorded the signals, enhanced them and forwarded these analog 

values to an Arduino Uno R3, which acted as an analog to digital converter.  

The Arduino was also responsible for communication purposes. The digital signals were then sent to 

a computer, where they were further processed. For the analysis Matlab 2019a was used in 

combination with several of its toolboxes. Furthermore, test files were created in advance which 

could be used to teach and train the classification system. The classification itself was performed 

using a neural network.  

 

6.2. Results and outlook 
Compared to the fuzzy logic, superior results were achieved with the neural network. Even though 

the fuzzy logic had the advantages of both solution variants it still couldn't capitalize on it. This has to 

do with the fact that the number of rules to be calculated was too big. Even though the training of 

the fuzzy logic was done through a neural network, this solution proved to be impractical. Thus, the 

chosen classification algorithm was the neural network. 

Finally, the gestures could be displayed in a graphical output or via a prosthesis in real time. Hereby 

the mechanical hand was controlled by the Arduino and replicated the gestures which were 

recognized. 
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With regard to detection, it was shown that the best results could be achieved with the neural 

network. About 87% of all gestures could be recognized correctly during static testing procedures. 

The recognition rate of the individual gestures was between 71% and 96%. The best gesture 

recognized was the ring finger alone and the worst was the “Thumb + little finger“.  

However, it turned out that the results varied depending on the test subject. The best detection rates 

were achieved by the test person, who generated the data for the training files of the algorithm, and 

thus to whom the whole system was adjusted to. Its results were about 5% better than those of the 

other subjects. 

The results achieved are quite similar to those achieved in other projects. However, this is 

aggravated by the fact that a larger number of gestures had to be recognized in this project. Due to 

the similarity of the signals in similar gestures, this is more difficult than when only a few have to be 

distinguished. 

Based on the results obtained, it would nevertheless be advisable to carry out further research in this 

direction in order to increase the detection rate. Some suggestions on how this could be done are 

outlined in the previous chapter. In general, it is based on the idea that more training data will 

improve the recognition rate. This allows the individual variables of the software to be better 

adapted and thus optimized. In addition, more data increases the chance that the training data itself 

will be closer to the real signals, which in turn would again increase the potential recognition rate. 

Also, other classification techniques can be tried to see if they achieve better results. Examples of 

such were also explained in more detail in this paper. Furthermore, parameters of the programs can 

be adapted or the parameters can be replaced by completely different ones.  

Finally, a processing and filtering of the signals would also be suitable, if this is possible through an 

optimization of the software or through the use of even more powerful hardware. It should be noted 

that the filtering should have as little influence as possible on the time behavior of the system. 

If these suggestions are followed, it should be possible to further improve the solution and thus have 

a reliable option for the myoelectric control of prostheses that could help many people in particularly 

poor countries. 
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