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F-RESOLVABLE SPACES

INTISSAR DAHANE, LOBNA DRIDI and SAMI LAZAAR

Abstract. In this paper we study topological spaces whose F-reflections are resolv-

able. In particular, the reflectors T0, S, ρ, and FH-reflection are characterized.

1. Introduction

In 1943, Hewitt introduced resolvable spaces. A topological space is called resolv-
able if it has two disjoints dense subsets, or equivalently if it has a subset A such
that A and X \ A are dense. By maximally irresolvable spaces, Hewitt means
spaces such that any dense subset is open.

Recently, Arhangel’skii, Belaid, Dridi, and Lazaar have been concerned with
maximally irresolvable spaces, which are also called submaximal spaces (for more
information see [10] and [2]).

In [1], Belaid and Al-Hajri characterize topological spaces X such that K(X) is
resolvable in particular cases of the one-point compactification and the Wallman
compactification. Furthermore, in [3] and [4] ([6] and [7]), the authors give a char-
acterization of spaces such that their F-reflections (their compactifications) are
submaximal, door and nodec. In this paper F designates a covariant functor from
the category Top to itself. So, it is natural to ask the same question for a resolv-
able space. That is characterize topological spaces such that their F-reflections
are resolvable.

Firstly, let us recall the standard notion of reflective subcategories. A full
subcategory A of B is called reflective with reflector F if and only if the embedding
functor I from A to B has a left adjoint F : B −→ A. Further, it is well known
that for all i ∈ {0, 1, 2, 3, 3 1

2} the subcategory Topi whose objects are Ti-spaces
is reflective in the category Top of all topological spaces.

It is with Belaid, Echi, and Lazaar in 2004 that we discovered some new sepa-
ration axioms namely T(i,j)-spaces as follow (see [5]):

A topological space X is called T(i,j)-space if and only if its Ti-reflection is
a Tj space. More generally, if we consider a reflector F from Top to itself and
a topological property P, X is called T(F,P) if and only if its reflection F(X)
satisfies the property P. As a motivation of the foundation of these new separation
axioms, some authors have been interested in particular cases, on the one hand, by
topological properties such as door, submaximal, nodec and, on the other hand,

MSC (2010): primary 54B30, 54D10, 46M15.
Keywords: categories, functors, resolvable spaces.

3



4 I. DAHANE, L. DRIDI and S. LAZAAR

by functors such as T0, S, ρ, and FH-reflection. In this paper, we have interested
by the notion of resolvable spaces as a topological property.

In the first section of this paper, we consider T0-reflection and the S-reflection
(called also soberification). Topological spaces whose T0-reflections (S-reflections)
are resolvable are called characterized.

The second section is devoted to the same topics using ρ-reflector and FH-
reflector.

2. T0-resolvable spaces and S-resolvable spaces

First let us recall the T0-reflection of a topolgical space. Let X be a topological
space. We define the binary relation ∼ on X by x ∼ y if and only if {x} = {y}.
Then, ∼ is an equivalence relation on X and the resulting quotient space T0(X) :=
X/ ∼ is the T0-reflection of X.

The canonical surjection µX : X −→ T0(X) is a quasihomeomorphism (a con-
tinuous map q : X −→ Y is said to be a quasihomeomorphism if U 7−→ q−1(U)
(C 7−→ q−1(C)) defines a bijection O(Y ) −→ O(X) (F(Y ) −→ F(X)), where O(X)
(F(X)) is the collection of all open sets (closed sets of X), see [9]).

Before giving the main result of this section let us introduce some definitions,
notations and remarks.

Notations 2.1. [6, Notations 2.2] Let X be a topological space, a ∈ X and
A ⊆ X. We denote:

(1) d0(a) := {x ∈ X : {x} = {a}}.
(2) d0(A) := ∪[d0(a); a ∈ A].

Remarks 2.2. [6, Remarks 2.3] Let X be a topological space and A be a subset
of X. The following properties hold.

(i) d0(A) = µ−1X (µX(A)).
(ii) d0(d0(A)) = d0(A).

(iii) A ⊆ d0(A) ⊆ A and consequently d0(A) = A.
(iv) In particular if A is open (closed), then d0(A) = A.

Definition 2.3. Let X be a topological space. X is called a T0-resolvable
space if its T0-reflection is a resolvable space.

Now we are in a position to give the characterization of a T0-resolvable space.

Theorem 2.4. Let X be a topological space. Then, the following statements
are equivalent:

(1) X is a T0-resolvable space;
(2) There exist two dense subsets A1 and A2 of X satisfying d0(A1)∩d0(A2) =
∅.

Proof. We need a Lemma:

Lemma 2.5. [6, Lemma 2.16] Let f : X −→ Y be a quasihomeomorphism.
Then, the following statements are equivalent:

(1) f is onto;

(2) For any subset A of Y , we have f−1(A) = f−1(A).
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Proof of the Theorem:
(1) =⇒ (2)
Suppose that X is a T0-resolvable space. Then, there exist two subsets A1 and

A2 of X such that µ
X

(A1) and µ
X

(A2) are two disjoint dense subsets of T0(X).
So applying µ−1

X
, one can see easily that d0(A1) and d0(A2) are disjoint. Now

since µ
X

is an onto quasihomeomorphism, Lemma 2.5 shows that µ−1
X

(
µ

X
(Ai)

)
=

µ−1
X

(µ
X

(Ai)) for every i ∈ {1, 2} and, consequently, d0(A1) and d0(A2) are two
dense subsets in X, which means exactly that A1 and A2 are dense subsets in X
(see Remarks 2.2(iii)). Finally, A1 and A2 are two dense subsets of X satisfying
d0(A1) ∩ d0(A2) = ∅.

(2) =⇒ (1)
Conversely, let A1 and A2 be two dense subsets of X such that d0(A1)∩d0(A2) =

∅. Then, by Remarks 2.2(iii) d0(A1) and d0(A2) are two dense subsets in X
and consequently, µ−1X (µX(A1)) ∩ µ−1X (µX(A2)) = µ−1X (µX(A1) ∩ µX(A2)) = ∅.
So, µX(A1) and µX(A2) are two disjoint subsets of T0(X). Now, according to

Lemma 2.5, X = d0(Ai) = µ−1X (µX(Ai)) = µ−1X

(
µX(Ai)

)
, for every i ∈ {1, 2}.

Thus, for every i ∈ {1, 2}, µX
(
µ−1X

(
µX(Ai)

))
= µX(Ai) = T0(X), which means

that µX(A1) and µX(A2) are two disjoint dense subsets of T0(X). �

Remark 2.6. Clearly, every T0-resolvable space is a resolvable space. The
converse does not hold as the following examples show:

(1) Given a set X containing at least two points equipped with the indiscrete

topology, it is clear that for, any x ∈ X, {x} = X, and, consequently, T0(X) is
a one-point space. Now, since any subset of X is dense, X is a resolvable space
but T0(X) is not.

This is a non-trivial space which is resolvable and its T0-reflection is not.
(2) Equip the open interval X =]0, 1[ with a topology τ whose open sets are ∅,

X and the subset Un =
]
0, 1− 1

n

[
, for n ≥ 2. Such a topology is called the Nested

Interval Topology. Since every non-empty open set contains both 1
8 and 1

4 , X is not

T0. That is, T0(X) 6= X. Let, A1 =
]
0, 14
[

and A2 = [ 14 ,
1
2 [. Then, A1 and A2 are

disjoint dense subsets. Therefore, X is resolvable. However, T0(X) is not resolv-
able. Indeed, we have T0(X) =

{
cl
(
1
4

)
, cl
(
1
2

)
, cl
(
2
3

)
, cl
(
3
4

)
, cl
(
4
5

)
, cl
(
5
6

)
, . . .

}
,

where cl
(
1
4

)
=
]
0, 12
[
, cl

(
1
2

)
=
[
1
2 ,

2
3

[
, cl

(
2
3

)
=
[
2
3 ,

3
4

[
, cl

(
4
5

)
=
[
4
5 ,

5
6

[
, cl

(
5
6

)
=[

5
6 ,

6
7

[
, . . . . We can see that, if a subset A is dense, then it must contain cl

(
1
4

)
.

Hence, T0(X) does not contain two disjoint dense subsets which makes it an irre-
solvable space.

Recall that a topological space is said to be sober if any nonempty irreducible
closed subset of X has a unique generic point. Let X be a topological space
and S(X) the set of all irreducible closed subsets of X [8]. Let U be an open

subset of X and set Ũ = {C ∈ S(X) : U ∩ C 6= ∅}. Then, the collection

{Ũ : U is an open subset of X} provides a topology on S(X) and the map

ηX : X −→ S(X) : x −→ {x} is a quasihomeomorphism. Moreover, the set S(X)
is a sober space called the sobrification of X and the assignment S defines a functor
from the category Top of topological spaces to itself, see [8].
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Definition 2.7. Let X be a topological space. X is called S-resolvable space
if its sobrification S(X) is resolvable.

Theorem 2.8. Let X be a topological space. Then, X is an S-resolvable space
if and only if there exists a family A of closed irreducible subsets of X such that,
for any open set U of X, there exist two irreducible subsets C1 ∈ A and C2 /∈ A

that both meet U .

Proof. Necessary condition. Suppose that X is S-resolvable, then there exists
a subset A of S(X) such that A and S(X) \ A are two disjoint dense subsets of

S(X). Thus, for every open set U of X, A ∩ Ũ 6= ∅ ((S(X) \ A) ∩ Ũ 6= ∅), which
means that there exists C1 ∈ A such that C1 ∩ U 6= ∅ (C2 ∈ (S(X) \A) such that
C2 ∩ U 6= ∅).

Sufficient condition. It is clear that the family A defined by the hypothesis
satisfies A = S(X) \A = S(X). Therefore, S(X) is a resolvable space. �

Examples 2.9. (1) An S-resolvable space need not be resolvable. Indeed, let
X be an infinite set and α /∈ X. Put Y := X ∪{α} and equip Y with the topology
whose closed sets are all finite sets of X together with X and Y . Clearly, Y is
not sober because X is an irreducible closed set of Y without a generic point, so
{α} = Y and {x} = {x}, for any x ∈ X.

Now, S(X) is the subset Y equipped with the topology whose closed sets are
all finite sets of X and Y .

It is clear that {α} is an open set in Y , so Y is not resolvable and Y is resolvable

since any infinite subset A of Y such that Y�A is also finite satisfies A = Y�A =
Y .

(2) A resolvable space need not be an S-resolvable space. Indeed, let X = {0, 1}
be equipped with the indiscrete topology so it is resolvable.

Now, it is clear that S(X) is a one-point set and, consequently, not resolvable.

3. FH-resolvable spaces and ρ-resolvable spaces

Let X be a topological space. The ring of all real-valued continuous functions will
be denoted by C(X) and C?(X) will denote its subring of bounded functions.

Recall that two subsets A and B are said to be completely separated in a topo-
logical space X if there exists a mapping f in C(X) such that f(a) = 0 for all
a in A and f(b) = 1 for all b in B. It will be convenient to say that x, y ∈ X
are completely separated if {x} and {y} are completely separated. On the one
hand, a topological space in which any two distinct points are completely sepa-
rated is said to be functionally Hausdorff. On the other hand, a topological space
is called completely regular (or Tychonoff ) if it is T1 and every closed subset F
of the space is completely separated from any point x not in F . It is clear that
a Tychonoff space is functionally Hausdorff and, consequently, a Hausdorff space.
Some authors characterize Tychonoff space as a subspace of a compact Hausdorf
space but in our case we need the following characterization of Tychonoff spaces.

Theorem 3.1. [13, Proposition 1.7] A space is completely regular if and only
if the family of zero-sets of the space is a base for the closed sets (or equivalently,
the family of cozero-sets is a base for the open sets).
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Note that A is called a zero-set if there exists an f ∈ C(X) such that A =
f−1({0}). The complement of a zero-set is called a cozero-set.

Now, for a given topological space X, we define the equivalence relation ∼ on X
by x ∼ y if and only if f(x) = f(y) for all f ∈ C(X). Let us denote by X/ ∼ the
set of equivalence classes and let ρX : X −→ X/ ∼ be the canonical surjection map
assigning to each point ofX its equivalence class. Since every f in C(X) is constant
on each equivalence class, we can define ρ(f) : X/ ∼−→ R by ρ(f)(ρX(x)) = f(x).
One may illustrate this situation by the following commutative diagram.

X

5

ρX // X/ ∼

ρ(f)}}
R
��f

Now, equip X/ ∼ with the topology whose closed sets are of the form

∩[ρ(fα)−1(Fα) : α ∈ I],

where fα : X −→ R (Fα) is a continuous map (a closed subset of R). It is well
known that, with this topology, X/ ∼ is a Tychonoff space (see for instance [13])
and it is denoted by ρ(X).

The construction of ρ(X) satisfies some categorical properties:
For each Tychonoff space Y and each continuous map f : X −→ Y , there exists

a unique continuous map f̃ : ρ(X) −→ Y such that f̃ ◦ ρX = f . We will say that
ρ(X) is the ρ-reflection, or the Tychonoff-reflection of X.

From the above properties, it is clear that ρ is a covariant functor from the
category of topological spaces Top into the full subcategory Tych of Top whose
objects are Tychonoff spaces.

On the other hand, the quotient space X/ ∼ which is denoted by FH(X) is
a functionally Hausdorff space.

The construction FH(X) satisfies some categorical properties:
For each functionally Hausdorff space Y and each continuous map f : X −→ Y ,

there exists a unique continuous map f̃ : FH(X) −→ Y such that f̃ ◦ ρX = f .
We will say that FH(X) is the functionally Hausdorff-reflection of X, or the FH-
reflection of X.

Consequently, it is clear that FH is a covariant functor from the category of
topological spaces Top into the full subcategory FunHaus of Top whose objects
are functionally Hausdorff spaces (for more information see [12]).

Now, as in the first section, we need to recall some notations and results intro-
duced by the authors in [6].

Notations 3.2. [6, Notation 3.1] Let X be a topological space, a ∈ X and A
a subset of X. We denote by:

(1) dρ(a) := ∩[f−1(f({a})) : f ∈ C(X)].
(2) dρ(A) := ∪[dρ(a) : a ∈ A].

The following results are given in [6].

Proposition 3.3. [6, Proposition 3.2] Let X be a topological space, a ∈ X and
A a subset of X. Then:
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(1) dρ(A) = ρ−1X (ρX(A)).
(2) dρ(a) is a closed subset of X.
(3) A ⊆ dρ(A) ⊆ ∩[f−1(f(A)) : f ∈ C(X)].
(4) ∀f ∈ C(X), f(A) = f(dρ(A)).

Now, we introduce the following definition.

Definition 3.4. Let X be a topological space. X is called a ρ-resolvable (FH-
resolvable) space if its ρ-reflection (FH-reflection) is a resolvable space.

In [11, Remark 3.5] it is shown that a closed (open) subset of ρ(X) is of the
form ∩[ρ(f)−1({0}) : f ∈ H] (∪[ρ(f)−1(R?) : f ∈ H] , where H is a collection of
continuous maps from X to R.

Now, in order to characterize ρ-resolvable spaces and FH-resolvable spaces, we
need to recall the following definition introduced in [6].

Definition 3.5. [6, Definition 3.13] Let X be a topological space.

(1) A subset V of X is called a functionally open subset of X (F -open for
short) if and only if dρ(V ) is open in X.

(2) A subset V of X is called a functionally dense subset of X (F -dense for
short) if and only if for any F -open subset W of X, dρ(V ) meets dρ(W ).

(3) A nonempty subset V of X is said to be ρ-dense, if g(V ) 6= {0} for every
nonzero continuous map g from X to R.

Theorem 3.6. Let X be a topological space. Then, the following statements
are equivalent:

(1) X is FH-resolvable;
(2) There exist two F -dense subsets A1 and A2 of X satisfying dρ(A1) ∩

dρ(A2) = ∅.

Proof. (1) =⇒ (2)
Suppose thatX is an FH-resolvable space. Then, there exist two subsets A1 and

A2 of X such that ρX(A1)∩ρX(A2) = ∅ and ρX(A1) = ρX(A2) = FH(X). Thus,
ρ−1X (ρX(A1) ∩ ρX(A2)) = ρ−1X (ρX(A1)) ∩ ρ−1X (ρX(A2)) = ∅, which means that
dρ(A1) ∩ dρ(A2) = ∅. On the other hand, let U be an F -open subset of X which
means that ρX(U) is an open set of FH(X). Since for every i ∈ {1, 2},ρX(Ai)
is a dense subset of FH(X), then ρX(U) ∩ ρX(Ai) 6= ∅. Therefore, by applying
ρ−1X , we get easily, dρ(U) ∩ dρ(Ai) = ∅, for every i ∈ {1, 2} and, consequently, A1

and A2 are two F -dense subsets of X such that dρ(A1) ∩ dρ(A2) = ∅.
(2) =⇒ (1)
Conversely, let A1 and A2 be two F -dense subsets of X satisfying dρ(A1) ∩

dρ(A2) = ∅. For any open subset ρX(V ) of FH(X), where V is a subset of X,
we have V is an F -open subset of X and, thus, dρ(A1) (dρ(A2) ) neessarily meets

ρX(V ). Thus, ρ−1X (ρX(A1))∩ρ−1X (ρX(V ))) and ρ−1X (ρX(A2))∩ρ−1X (ρX(V ))) are
nonempty subsets, which implies that ρX(U) ∩ ρX(A1) and ρX(U) ∩ ρX(A2) are
also nonempty. Hence, ρX(A1) and ρX(A2) are two dense subset of FH(X).

Moreover, ρ−1X (ρX(A1) ∩ ρX(A2)) = ρ−1X (ρX(A1)) ∩ ρ−1X (ρX(A2)) = dρ(A1) ∩
dρ(A2) = ∅. Therefore, ρX(A1) and ρX(A2) are disjoint sets. �
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By noting that, for any subset A of X, dρ(dρ(A)) = dρ(A), the following corol-
lary is immediate

Corollary 3.7. Let X be a topological space. Then, the following statements
are equivalent:

(1) X is FH-resolvable;
(2) There exist two disjoint F -dense subsets dρ(A1) and dρ(A2) of X.

Proposition 3.8. [6, Proposition 3.4] Let X be a topological space and A a sub-
set of X. Then, the following statements are equivalent:

(i) A is a ρ-dense subset of X;
(ii) ρX(A) is a dense subset of ρ(X).

Theorem 3.9. Let X be a topological space. Then, the following statements
are equivalent:

(1) X is ρ-resolvable;
(2) There exist two ρ-dense subsets A1 and A2 of X such that dρ(A1) and

dρ(A2) are disjoint.

Proof. (1) =⇒ (2)
Since X is a ρ-resolvable space, there exist two subsets A1 and A2 of X such

that ρX(A1) ∩ ρX(A2) = ∅ and ρX(A1) = ρX(A2) = ρ(X). In the same way as
in Theorem 3.6, one can easily see that dρ(A1) and dρ(A2) are disjoint subsets of
X. Now, the ρ-density of A1 and A2 are immediate by Proposition 3.8.

(2) =⇒ (1) Conversely, let A1 and A2 be two ρ-dense subsets of X such that
dρ(A1) ∩ dρ(A2) = ∅.

Clearly, by Proposition 3.8, (ρX(A1) and (ρX(A2) are two dense subsets of
ρ(X). Now, since dρ(A1)∩dρ(A2) = ρ−1X (ρX(A1))∩ρ−1X (ρX(A2)) = ρ−1X (ρX(A1)∩
ρX(A2)) = ∅, then ρX(A1)∩ ρX(A2) = ∅. Therefore, ρX(A1) and ρX(A2) are two
disjoint dense subsets of ρ(X) and consequently ρ(X) is resolvable or equivalently
X is ρ-resolvable. �

In the same way, the following result is immediate.

Corollary 3.10. Let X be a topological space. Then, the following statements
are equivalent:

(1) X is ρ-resolvable;
(2) There exist two disjoint ρ-dense subsets dρ(A1) and dρ(A2) of X.

Remark 3.11. If X is an FH-resolvable space, then X is a ρ-resolvable space.
Indeed, let X be an FH-resolvable space. Then, there exist two subsets A1 and

A2 of X such that dρ(A1) and dρ(A2) are disjoint F -dense subsets. By [6, Remark
3.3] every F -dense subset is a ρ-dense subset, thus, according to the last theorem,
X is a ρ-resolvable space.
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