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Abstrakt
Práce předkládá metody a výsledky návrhu, výroby a výzkumu pětiprsté protézy ruky. In-
spirace jdoucí z přírody a z toho vyvozený princip použitého mechanizmu je uveden. Zák-
ladní koncept řídícího schéma založeného na procesingu a ohodnocení EMG je navrhnut a
implementován. Části senzorického systému protézy jsou navrhnuty a zahrnuty do rídícího
algoritmu a shématu. Velké množství inovací a návrhů pro budoucí práce a výzkum jsou
prezentovány, stejně tak komplexní analýza a diskuse dosažených a možných budoucích
výsledků.

Summary
The text shows idea flow, methods and results in design, manufacture and research of five–
fingered prosthetic hand. The inspiration of the nature and mechanical principle elicited
is presented. Fundamental control scheme based on processing and evaluation of EMG
is designed and implemented. The segments of sensory system are designed and involved
into the overall controll scheme idea. Large innovations and suggestions for future work
and research are given with complex discussion through reached and hopefully future
results.
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Introduction and Work Aims 1

Construction of a prosthesis and its control is a desire of man somewhere from the begin-
ning of his existence. A lot of effort has been applied on it over the time but we are still
far away from the design by the Nature however it does not mean that we should not to
continue in exploring of this area.

This work is closely linked to [90] where mechanical design based on detailed study of
human hand is presented as well as multi criteria analysis of actuators etc. In connection
on that work these aims for the consequent research has been selected:

• Verification of an Authentic Mechanical Principle – The verification is done
on the prototype which was manufactured for this purpose.

• Design and Verification EMG Based Control Scheme – The main problem of
EMG (electromyogram – electromyographic signal) is its processing and evaluation.
Its more less stochastic signal therefore some sophisticated methods like wavelet
transform and artificial neural networks are used.

• Design of Sensory System – This is subtask of Control Scheme but finally it has
been found as very large field of research and therefore it is considered as separate
part.

The summary and overview of the current research worldwide can be found below
same as reached results, innovations and conclusions which resulted from.
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Mechanical Principles of
Aids – Overview

2

The current state in a field of commercial prosthetic hands is such that probably only
one producer has a device with an opposition of the thumb. [80] All others are just any
kinds of pliers. [66] [58] [11]

If we have a look on mechanical constructions in research of the prostheses all of them
has opposition of thumb but they are either reduced on number of degrees of freedom
[84] [49] [85] or reduced on force performance by preloaded backward elastic elements [8]
[93] [21] or has unideal adaptability of a grasp [88] [49] or both disadvantages mentioned
above. [30] [29] Alternatively they are using “alternatives” of actuation like hydraulic
systems [73] [69], pneumatic systems [7] or shape memory alloys [47] which bring quite
a lot of complications and complexity. Some of a construction has insignificant number
reduction of degrees of freedom they has good force parameters and kinematic behavior
but they are very complex = expensive. [45] [77] [9]

Very good mechanical construction is possible to find in robotics hands like [36] or [51]
but they are not usable in prosthetic because of high weight and actuators are not im-
plemented in palm (unappropriate dimensions). However there are some reasons why to
have a look toward this direction. [39] [70])
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EMG – Acquisition and
Processing – Overview

3

EMG alternatively MES (myoelectrosignal) in commercial field is used in very basic two
channels control or rarely in time proportional controlling. [94] (little bit better than
switch on/off)

There is a lot of papers where different processing and evaluation techniques of EMG
are used. The most of researchers are interested in surface EMG (EMG measured on the
skin – non invasive method) like [22] [62] [83] [50] [16] [3] [23] [64] [60] [52] [79] [75] but
there are some papers talking about usability of intramuscular EMG [28] [53]. In [92],
where control part is based on an EMG motion pattern classifier which combines variable
learning rate (VLR) of neural network with parametric autoregressive (AR) model and
wavelet transform seems to be very close to use as a commercial device.

A comprehensive overview of methods how to control multifunctional prosthetic hands
by processing the electromyographic signal with detailed description of signal conditioning
and preprocessing, feature extraction, dimensionality reduction, pattern recognition and
offline and online learning can be found in [91]. This is really large field of research and
the knowledge of advance artificial intelligence is needed. [26]
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Sensory Systems – Overview 4

Kind of sensory system is even used in commercial prosthesis like [80] or [66]. In this case
it is probably force and partially slip sensor based on piezoelectric principle to add into
prosthesis controlling some autonomy to help keeping of an object in the hand.

The detection of slip is considered as a main value to determine if object is stable in
hand or not. As basic one can be used acoustic (microphone) or optic sensor. [46] Which
are quite sensitive on environment noise. Better alternative is piezoelectric sensor that is
usually integrated together with temperature and force sensor at finger tip. [14] [15] [12]
The force sensor is more significant for robotic arms but in most cases are implemented
in prosthetic hands too. Usually are based on capacitance or strain gauge with possibility
to measure torque. [13] [51] [36] To detect only touch and partially slip there is possible to
use tactile arrays (displays) some time called artificial skin. [43] [9] [6] [5] There are some
systems that use FSR (Force Sensor Resistor) in combination with accelerometer. [71]

There is not possible exactly say which sensor is best but as a very good solution
and implementation can be found in [14] where in finger tip is integrated temperature,
force and slip sensor or in [9] where are used a flexible layer with contact sensors to cover
the hand, triaxial force sensors integrated in the fingertips and a compliant skin with
embedded 3D force microsensors to measure force distribution at the fingertips.
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Inspiration by the Nature
and Mechanical Principle
Elicited

5

This chapter shows all ideas comes from inspiration by the nature. [97], [67]

The layout of muscles and related tendons on physical forearm is on Figure 5.1. (in-
formal picture only) If we consider Muscle Flexor Digitorum Profundus as a one actuator
(in our case DC motor) we need another device such as a divider of force to divide power
toward individual fingers. The nature solve this problem by partial innervation of muscle
toward a particular tendon. So by one muscle is possible to control more tendons. There-
fore assembly of levers were designed to divide the force from one DC motor to the five
fingers. (Figure 5.2)

Figure 5.1: Muscles of Forearm (right side, front view; third layer) [97]

If we continue in an investigation of human hand toward tips of fingers we can find
that each joint is actuated by own tendon (Figure 5.3 – informal picture only) leaded
from different layer of muscles and more over some joints are supported by other muscles
(Figure 5.4 – informal picture only).

It means that we should use for each joint (DIP – distal interphalangeal, PIP –
proximal interphalangeal) one and for some joints (MCP – metacarpophalangeal) more
actuators. Question is if human hand is able to bend each finger in each joint separately
and if it is needed in every day life. On the base of this consideration we can build
up simplified mechanism showed on Figure 5.5. Which have been used at prototype.
(Figure 5.6)
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Figure 5.2: Assembly of Levers

Figure 5.3: Layout of Muscles and Tendons in a Finger [97]

Figure 5.4: Schematic of Muscle Functions and Layout (m. lumbricales (A) and m.
inlerossei (B);A musculi lumbricales; right hand; view from front top – schematic of
coverage m. lumbricalis against metakarpofalange joint and against interfalange joints by
tension behind dorsal aponcurose of finger; side view I-IV m. lumbricalis I-IV;B musculi
interossei; left hand; dorsum side view 1 - 4 mm interossei dorsales 5 - 7 mm interossei
palmares) [97]
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Figure 5.5: Principle of Finger Mechanism

Figure 5.6: Principle of Finger Mechanism – Prototype

Mechanism works this way: A force F is applied by a string which leads through two
sliders (Slider 1, Slider 2). Connection between slider and phalange is realised by springs
(k1, k2, b1, b2 – power rubber). Therefore the first motion generated when the string is
pulled is in the MCP joint. Other joints can be activated only if the slider is under the
appropriate joint. The PIP moves only if Slider 2 is under its (PIP) joint and the DIP
joint moves only if Slider 1 is going under DIP joint.

Duction of fingers is realised by leading a string 1.5 mm beside MCP vertical axe. See
Figure 5.7. System of strings leading around the MCP axes is designed to keep operation
of prosthesis thus that when hand closes the adduction of four fingers is performed and
when the prosthesis opens the fingers do the abduction. Middle finger is without duction
and it is intent to be used for precious pinch grasp.

Figure 5.7: Realization of Duction
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3D model, Simulations and
Optimization of a Grasp

6

The 3D model on the base of ideas mentioned above have been created. With this model
some basic analysis (kinematic, dynamical, structural) were done under very simplified
marginal conditions. In [90] you can find detailed description of all parameters. Figure 6.1
shows, just for an illustration, the behavior of the mechanism. There is a resultant of the
velocity on tips of fingers in a global coordinate system, located in the wrist (Figure 6.2),
during movement from fully opened hand to fully closed. Very fast changes in velocity
(position, acceleration too) are brought up which are caused by mechanism principle
matter and very ideal conditions of simulation. (no friction, gravity, dumping, effects of
rubber glove, environment, ...) so this results give just rough but useful information of
mechanism behavior.

Figure 6.1: Velocity Resultants for Each Tip Point of Fingers

The kinematic simulation showed that proposed angle of opposition of the thumb
against four fingers and applied forces to each finger were not appropriate to keep ball
(100mm diameter) stable in the hand. Therefore optimization (system Pro/Mechanica
- Motion) was used to obtain force value for each finger and sufficient start angle of
opposition of thumb for this type of grasp – grasp of 100mm diameter ball which is
considered as a basic one.

As a goal of optimization was to find a minimal or zero value of resultant virtual joint
between ball and palm located in Point 1 (Figure 6.2) in plain XZ and angle of opposition
of thumb. (Figure 6.3) What correspond with consideration to keep ball stable in given
layout of fingers. Before optimization ball was escaping from the grasp on more opened
side – between thumb and small finger.
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Figure 6.2: Model Composition for Optimization

Parameters of last attempt to optimize this grasp with goal described above are in
Table 6.1.

Parameter Min.Value Initial Value Max. Value Units

Thumb Force -350 -290.1 -230 N
Index F. Force -150 -100.9 -50 N
Middle F. Force -150 -100.2 -50 N
Ring F. Force -150 -99.51 -50 N
Small F. Force -150 -98.95 -50 N
Thumb Angle 1.5 1.932 2.5 rad

Table 6.1: Initial and Allowed Ranges of Parameters

Optimization Convergence Tolerance: 0.1 %.
Maximum Number of Optimization Iterations: 30.
The initial values of parameters were find during some ancestral optimizations at-

tempts.
After three iterations and 53 calls goal/limit function these results are given. (Ta-

ble 6.2)
The value of goal was accepted as a satisfactory value what has been validate by

successful consequential motion simulation. Dimensions of levers (Figure 5.2) – force
layout – were determined on the base of this optimization.

For complete information about 3D model: all fingers are dimensionally same and
Figure 6.4 shows overall dimensions.
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Parameter Optimized Value Ratio

Thumb Force -290N 42.2%
Index F. Force -100N 14.6%
Middle F. Force -99.7N 14.5%
Ring F. Force -99N 14.4%
Small F. Force -98.5N 14.3%
Thumb Angle 1.9rad -
Goal of opt. 0.183N -
Sum of Applied Force 687.2N 100%

Table 6.2: Results of Final Optimization

Figure 6.3: Measurement of Angle of Thumb Opposition
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Figure 6.4: Overall Dimensions of 3D Model



Prototype, Control Scheme
and Sensory System

7

7.1 Prototype

Prototype (Figure 7.1) was designed to verify kinematical principle described above and
for implementation of simplified control system. (Figure 7.2) [95]

Figure 7.1: Prototype

Final design parameters of this device are: Degrees of freedom: 21; Number of DC
motors: 3; Kind of DC motors – main: Como Drills 3Vdc, RE280, gearbox ratio: 1:256,
– thumb: escap MA16 16M 18 208 486 0, – wrist: escap MA16 16C 11 207 365 0

Used materials: Main parts are from alloy of aluminum; bearings and sliders are from
plastics; joint pins and assembly of lever from steel. As a strings have been used fish
wire which has been found as an appropriate solution with regard to dimensionality and
strength.

Dimensions: Approximately rough external dimensions of open hand from dorsal (or
palmar) view are 210x217mm. (Figure 6.4)

Reached parameters: Time to close (close and open): 6s (12s); Force on the tip of
index finger: see Discussion; Force of rude palmar grasp: see Discussion; Weight: 960g;
Cost: somewhere around 150Eur (see Discussion).
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There is probably only one part at Figure 7.1 what need some explanation and it
is “Tensioner”. This is used for compensation of non equality of consumption of string
during closing and opening. For closing less length of string is needed (palmar side)
then for opening (dorsal side). This difference is around 2cm. Using of this complication
bringing device should resolve innovation. (See chapter Innovations of Mechanism and
Control Scheme)

7.2 Control Scheme and Sensory System

Electronic system is realized by a microcontroller (Atmel ATmega 128) and H-bridges for
the drive of the DC motors. This board is able to communicate with a PC via a serial
port so it is able to receive information about recognized grasp by the ANN (artificial
neural network). The overall control scheme to be used for this prosthetic hand is shown
in Figure 7.2 however it was implemented without feedback because sensory system is
designed only (not implemented yet).

Figure 7.2: Control Scheme

Electrodes and Data Acquisition EMG electrodes are made by company Galatea (Rus-
sian production) for prosthesis “Miotea”. These electrodes are single differential. [55] The
MES is by these electrodes full-wave rectified – the absolute value of each data point is
used. One electrode was placed on the frontal side approximately between the musculus
flexor carpi radialis and the musculus palmaris longus and the second electrode was placed
on the dorsal side on the musculus extensor digitorum. (Figure 7.3) The signals from the
electrodes are read by an AD acquisition card (ADLINK PCI -– 9114A — DG) with a
sample rate of 2000Hz. Processing has been performed in Matlab – Data Acquisition
Toolbox where is possible directly use this AD card with standard Matlab commands.

Figure 7.3: Placement of Electrodes
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Feature Extraction and Classification All parts of program (from the data acquisition
to the determination the type of grasp) are realized in Matlab. The threshold value for
the start of the acquire data routine was determined to be 0.8V which is approximately
26% of maximal value of the signal. For data acquisition a 0.1s (200 samples) pretrigger
time is used. The time for acquisition of the data set is 0.75s (750ms). This is quite
longer than is usual but there is still some signal to measure. (Figure 7.4)

For the extraction input vector for the ANN the CWT (continuous wavelet transform)
was used with the second order Gaussian wavelet: (7.1)

Ψ(x) = C2 expx2

(7.1)

, where C2 is such that
∥∥∥Ψ(2)

∥∥∥2
= 1; Ψ(2) is second derivative of Ψ(x). This wavelet (7.1)

was chosen on the basis of the MES character. [54]
For calculation normed wavelet coefficient for erasing phase lag we can use: (7.2)

W (a, b) =

∥∥∥∥∥∥
1√
|a|

Max−a∑
n=−2a

Ψ(n/a)f(n− b)

∥∥∥∥∥∥ (7.2)

, where a = Min, Min+1, ... , Max–1, Max and b = na, na+1, ... , -1, 0. Both formulas
(7.1) and (7.2) are algorithms already implemented in Matlab. In this formula, Min and
Max fix the frequency band extracted from EMG. In the experiments, Min is 6 and Max
is 64.

The spectra summation can be defined as (7.3).

st(b) =
Max∑

a=Min

W (a, b) (7.3)

In this case we get one dimensional row array from spectra summation with 1500
elements. This array was then sub divided into successive groups of 150 elements and the
maximum value in each group was identified. This leaves a row array with ten elements
from each electrode. (Figure 7.4)

Consequently it is made one twenty elements (two electrodes) column array which is
the input vector for the ANN. The ANN is a feed forward back propagation neural network
with three layers. The first layer has 25 neurons with log-sigmoid transfer function (logsig)
the second layer has 15 neurons also with logsig and the output layer has only one neuron
with a linear transfer function (purelin). The ANN is trained for outputs:

• Board palmar grasp

• General crud palmar grasp

• Grasp of spherical subjects

• Rotation in wrist

Two hundred data set was used for training of ANN for each motion. ANN was trained
600 epochs. The Levenberg-Marquardt algorithm (trainlm) learning algorithm was used
with default settings by Matlab. The ANN after training on the first data sets still did not
give good results therefore the ANN was trained for other 100 features and 300 epochs.
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Figure 7.4: Feature Extraction

The current algorithm is: Watching data on Electrode 1, if its value is over the
threshold 750ms data acquisition is started on both electrodes. From this data set CWT
(described above), spectra summation and detection of peaks is performed and a 20
elements column vector for the ANN is constructed. Prompt for expected output is
shown. ANN is simulated and if outputs match the result is sent on the serial port.
(motion starts) Watching values on Electrode 1 is started again. If the results do not
match the ANN output is not sent on serial port and again watching values on Electrode
1 begins.

The success of the ANN in correct recognition of a grasp is dependent on consistent
strength of a contraction as well as on its duration (for each type of grasp). Other
weakness of the proposed control scheme is in detection of peaks. The method used is
only very simple. Only one maximum on the rigid interval division of analysed data is
found and as you can see in Figure 7.4 some of the peaks are overlooked and some values
are too close together (mostly peaks are only locals maxims on the appropriate interval)
which can cause mislead of pattern recognition. The fruitfulness of the recognition of
the desired grasp by the ANN is around 50%. Main disadvantage of this ralization is a
delay. The time between the performed muscle contraction and the start of a motion of
the mechanism is quite long (over one second). The idea of this control scheme is quite
general known [18] however its implementation is unique and it is considered as a best
start step to find out what direction follow in controlling of the hand prostheses. See
chapter Discussion and Conclusions.

For effective and reliable hand it is necessary to implement some sensors. In connection
with this work the first attempt to design sensory system has been done. [78] In way to
maximalize simplicity of whole design, beginning with mechanical design and continuing
with control and sensory scheme, this sensors are necessary and proposed:
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• Slip (touch) sensor on finger tips. (based on piezoelectric principle)

• Touch sensor (flexible layer with contact sensors) in palm and palm side of fingers.
(based on principle of electro active polymers)

Only these sensors are sufficient and even no motor encoders are necessary. Prosthesis in
type of grasp is enough autonomous so for type of grasp only position of thumb is necessary
to set up what can be solved by end switches. So operation of device is as follow: when
position of thumb will be established the closing of hand with small current will start. In
moment of touch detection the motion will stop and only if slipping is generating a signal
the force (current) is going to increase up to its maximum – measurement of the current.
Therefore only touch and slip detection is needed. However to make really effective and
reliable prosthesis the temperature sensor should be added. If the hand should be used as
a robotic device the sensors of position in each joints as well as sensor of force eventually
torque on finger tips should be implemented too. Because any sensor have not been tested
on prototype it can happened that sensors with different type operation principle will be
finally used but the purposes of its implementation will be as given.
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Innovations of the
Mechanism and the Control
Scheme

8

8.1 Innovation of the Mechanism

The low reliability of preliminary prototype and a lot of manufacture difficulties flow into
major innovation of the mechanical principle. (Figure 8.1)

Figure 8.1: New Generation of Mechanical Principle for Fingers

Main difference from first principle is that rotary motion (pulleys) is used instead
translation motion (string, sliders). Operation of this principle is as follow. Main force
F is applied on Pulley 1 (P1) which share shaft with Pulley 2 (P2). Shaft is rigidly
connected with phalange. Connection between P1 and shaft is realized by spiral spring
(clock spring) and between P2 and shaft is free rotary connection. P1 is equipped with
pin which moves in slot in P2. This slot is appropriate angle what is needed for full
movement range of proximal phalange so when pin reaches end of slot P2 is going to
move. Proximal phalange is on the end of its movement and movement of central ph. is
started. This principle is spread over other joint. Pulley 5 is rigidly connected with distal
ph.

Assembly of levers is replaced by system of pulleys. (Figure 8.2)
System consists of five pulleys which are on one shaft and connection between each

pulley and shaft is again realized by spiral spring. If we want absolutely same behavior of
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Figure 8.2: System of Pulleys

this system as behavior of assembly of levers all pulleys should have spiral spring however
probably pulley connected toward main DC motor can be connected rigidly to shaft.

To get appropriate kinematic behavior (similar to human hand) it is “only”dependent
on how will be designed dimensions of all pulleys and length and stiffness of spiral springs.

Equations related are: (source [96] and [27])

Figure 8.3: Spiral Spring [96]

Relation between angle latitude and stress in a spring can be expressed:

ϕ =
F

EJ
lr = 12

Flr

Ebh3
= 2

l

h

σ0

E
[rad] (8.1)

(recalculations to degrees: ϕ◦ = 180
π

ϕ [◦])
Relation between applied force and stress in a spring:

F =
bh2

6

σ0

r
[N ] (8.2)

Equation 8.1 and 8.2 will be used just for tune of stiffness and angle latitude to insure
kinematic properties of device:

k =
M

ϕ
=

Fr

ϕ
=

bh3

12l
E [Ncm rad−1] (8.3)

, so these springs are not force springs but only kinematic one.
Innovation of whole mechanism is narrowly connected with its redesign that includes

the hand to be more anthropomorphic in a shape. The tensioner will be substituted
according new mechanical principle described above. (Figure 8.2) To get appropriate
kinematic behavior of the novel principle (similar to human hand) is “only” dependent on



CHAPTER 8. INNOVATIONS OF THE MECHANISM AND THE CONTROL SCHEME25

how will be designed dimensions of all pulleys, length and stiffness of spiral springs. This
will probably need a new optimization which can be closely connect with optimization
contact forces of the prosthesis. [41] The thumb will get its own motor and after that a
precious pinch grasp (were not implemented yet) will be possible to perform. The con-
struction will need better rigidity if more powerful motors are used and this should make
it comparable with other prosthesis from the view of forces. To enhance a modularity,
produce ability and decrease costs the left and right hand will be possible to assemble
from same basic components thus the similarity of the all fingers will remain and the
parametric model based on kind of biometric dimensions will be used ([63] [1]) to easily
redesign prosthesis for all dimension ranges – from child hood to adult hand size or for
robotic anthropomorphic manipulators.

8.2 Innovation of the Control Scheme

According to Figure 7.2 the preliminary control scheme can be divided into:

• EMG sensing.

• Signal conditioning, preprocessing, feature extraction and dimensionality reduction
part.

• Pattern recognition part.

• Sensory system (internal feedback) part.

Therefore following innovations are proposed. Manufacture of better electrodes and use of
more than two electrodes, probably three or four. [22] [92] In these papers is further more
shown that the wavelet transform is giving most suitable feature extraction results in com-
parison with Mean absolute value (MAV), Mean absolute value slope (MAVLSP), Willi-
son amplitude (WAMP), Variance of the EMG, Zero crossing (ZC), Slope sign changes
(SSC), Waveform length (WL), Frequency ratio (FR), AR model, Cepstrum Analysis,
Gabor transform or short-time Fourier transform (STFT), Wavelet Packet Transform
(WPT). Therefore its alternative discrete wavelet transform (DWT) have to be used to
perform algorithm on real DSP. There are some microconrollers which have DWT already
implemented and from basic investigation it seams that four level decomposition should
be enough. DWT will bring significant sample reduction. Other reduction of the number
of samples and delay of whole controller will bring usage only short time of acquisition
of steady state of EMG – 100ms. Application of an online learning methods for ANN is
not way loosing idea. [62] The structure of the ANN (adjust number of neurons – more
output neurons for better recognition if the grasp was distinguished right) will be changed
and learning algorithms and parameters will be investigated more closely or combination
with other “artificial inteligence”methods like AR or others mentioned before. [92] Inno-
vation of control algorithm could involve summation (integral) of EMG for grasp speed
control and can be defined like: EMG =

∑N
i=1 |EMG(i)|. However sensory (device inter-

nal feedback) system is solved as a separate part its implementation into control scheme
and algorithm is necessary.

It will see in future if there is any reason to use EMG for a controlling. [91] Usage of
signals from residual nerves or brain seems to be better alternative at this time of scientists
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level of knowledge. This as well as feedback and connection toward body is more discussed
in next chapter Suggested Areas of Future Work and Research alternatively in Discussion
on the end of the thesis.



Suggested Areas of a Future
Work and Research

9

Future work should include implementation of all points mentioned in chapter Innovations
of Mechanism and Control Scheme. Other areas mentioned below have to be observed if
valuable human – robotic device can be presented.

9.1 Other Input Signals for Controlling

There are some alternatives how to control robotic devices by the voice [37] or by signals
obtained from the pressure of the foot [10] or some other alternatives of human computer
interfaces are presented [4] [86]. Most of these alternatives are not related to the principle
of natural hand control mechanism so in most cases it is difficult for user to adapt new
device or it is not comfortable to use it.

Residual (Peripheral) Nerves
This alternative seems to be most natural connection of a prosthesis toward residual

limb [20] and there are quite a lot of successful solutions published. [38] [35] [34] [44] Both
direction communication between body and device can be created like in Figure 9.1

Figure 9.1: Block diagram of external and implanted system of the hand grasp neuro-
prosthesis. [38]

Brain
The times when the human brain was outside of man knowledge is over. [57] [48] [82]

[59] Brain machines interfaces can be divided as Figure 9.2 shows.
General overview of cortical neural prosthetics is published in [74]. Some attempts are

done in evaluation of graphic data of brain activity. [56] (functional magnetic resonance
imaging (fMRI) during operating of EMG prosthesis), [87] (modeling and decoding of
motor cortical activity), [76] (classifying of EEG) Some construction of implantable brain
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Figure 9.2: Classification of brain–machine interfaces. Abbreviations: BMI, brain ma-
chine interface; EEG, electroencephalogram; LFP, local field potential; M1, primary mo-
tor cortex; PP, posterior parietal cortex. [48]

electrodes can be found in [33], [40] or [89].To get faster progress in research of BMI (brain-
machine interface) computer simulations are giving satisfactory results. [24] (simulation
of human like controll), [19] (modeling for prototyping) Recent direction is in on-line
adaptation of neuro-prostheses with neuronal evaluation signals because of brain and
synaptic natural adaptations. [72]

Muscle Volume Changes

This is generally called myokinemetric or biomimetic control and can be used to
improve EMG based systems. [31], [2], [42]

9.2 Feedback Toward Body

Feedback toward body which gives user information about state of prosthesis is one from
really advance tasks. In fact that patient vision does not works as natural feedback the
feedback on lower level can be realized by small vibrating (or thermal) board between soft
tissue and residual limb. In case of osseointegration by applying vibrations on integrated
pin. (osseo-perception) On a hi level the feedback can be realized by direct communication
with the human neural system – connections on residual nerves [38] (see Figure 9.1) or
by electrical stimulation[32].
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9.3 Connection Toward Body

Connection of hand prostheses from not only technical view is summarized in [81]. Ba-
sically there are two ways how to connect prosthesis. First one by soft tissue ([68], [25])
and second one by so called osseointegration (integration of steel or ceramic pin directly
into bone) ([61], [65])
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Discussion and Conclusions 10

As a main goal of this work was to verify definitely authentic mechanical principle. Which
is as well main contribution of whole research. The manufacture of the prototype and
application of preliminary control scheme (second goal of the work) leads into major
innovation – creating novel mechanical principle. Last goal of the work was in design of an
applicable sensor system what has been done on satisfactory level too. A lot of improving
suggestions is given as well as complex view on all problems related to prosthetic, and in
detail on prostheses of the hand, areas.

Overall conclusion is that our research at this time is not in state of compare ability of
device with any commercial product in cost or weight as well with any“competitive”device
in force parameters because of low cost prototype solutions. To find other cooperators to
build international multi discipline research team is necessary. [17]

Finally results published in this work are not only theoretical ideas and their usability
can be utilize in prosthetic area as well as in robotics or industrial field.

And definitely on the end let me cite [91] where conclusion about current and future
state of prostheses control has been well expressed. “In the last thirty years, many re-
search efforts have been carried out in the myoelectric control field. Several techniques
have been developed to control multifunctional prosthetic devices, and many of them
showed promising results. Moreover, these techniques could be also applied in other
fields, not only in the control of myoelectric prostheses. However, despite all these ef-
forts, EMG signal analysis seems to be quite limited in the number of possible functions
that can be restored by using a few electrodes. Moreover, the EMG signal cannot provide
any feedback to the user. A possible solution to overcome the limits of the EMG-based
approach could be the realization of an interface between the peripheral nervous sys-
tem (PNS) and the artificial device (i.e., a “natural” neural interface [NI]) to record and
stimulate the PNS in a selective way. Recent developments in the technology of elec-
tronic implants and in the understanding of nerve functions have made it possible to
fabricate selective neural interfaces that work by interchanging information between the
nervous system and computerized artificial instruments. A biocompatible neural inter-
face can restore some sensory feedback to the user by stimulating in an appropriate way
the afferent nerves and can allow motor control of the prosthesis based on a “natural”
ENG-based control. This will be possible by focusing appropriate research efforts on
the technological development of the neural interface and on the characterization of the
PNS afferent signals in response to mechanical and proprioceptive stimuli. When the
patient receives sensory feedback from the stimulation of the afferent nerves, and the
prosthetic device is controlled directly through the efferent nerves, the user will again be
able to “feel” the hand as part of the body. In conclusion, with these considerations in
mind, two solutions for controlling hand prostheses could be envisaged. On the one hand,
EMG-controlled prostheses could represent a “cheap” solution (i.e., low cost and nonin-
vasive) for the restoration (even if partial) of some hand functions. On the other hand,
a multifunctional “cybernetic” hand prosthesis with ENG-based control would be a more
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sophisticated solution. It is worth noting that this situation is already present in the field
of neuroprostheses, where we can find the noninvasive solution -— e.g., the ”Handmaster
System“ which comprises a hand-forearm orthosis containing an array of electrodes con-
nected to a portable electronic microprocessor-controlled unit, and which is designed for
simple and independent positioning by the patient; and the invasive solution —- e.g., the
”Freehand System“, which consists of a pacemaker-like stimulator implanted in the chest,
which sends electrical impulses from an external control/power source through lead wires
to eight electrodes implanted in the muscles of the forearm and hand.”
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Inženýrská mechanika 2005, p. 367–368, 2005.
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List of Abbreviations

3D Three Dimensional
AD Analog – digital
ANN Artificial Neural Network
AR Autoregresive Model
BMI Brain Machine Interface
CWT Continuous Wavelet Transform
DC Direct Current
DIP Distal Interphalangeal
DSP Digital Signal Processor
DWT Discrete Wavelet Transform
EEG Electroencephalogram
EMG Electromyogram
fMRI Functional Magnetic Resonance Imaging
FR Frequency Ratio
FSR Force Sensor Resistor
LFP Local Field Potential
M1 Primary Motor Cortex
MAv Mean Absolute Value
MAVLSP Mean Absolute Value Slope
MCP Metacarpophalangeal
MES Myoelectrosignal
NI Neural Interface
P1 Pulley 1
P2 Pulley 2
PC Personal Computer
PIP Proximal Interphalangeal
PNS Peripheral Nervous System
PP Posterior Parietal Cortex
SSC Slope Sign Changes
STFT Short-time Fourier Transform
VLR Variable Learning Rate
WAMP Willison Amplitude
WL Wavelet Length
WPT Wavelet Packet Transform
ZC Zero Crossing
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