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Abstrakt
Práce se zabývá tvárným lomem, který je výsledkem víceosého kvazi-statického monotón-
ního namáhání doprovázeného rozsáhlými plastickými deformacemi, přičemž pro degradaci
materiálu je uvažován lokální přístup. Ve výpočtech o rozvoji poškození rozhodují použité
mezní podmínky tvárného lomu. Tyto byly teoreticky studovány v úvodu práce a po
výběru vhodné mezní podmínky byl stanoven postup kalibrace. Dále byl rozpracován plán
měření a realizovány zkoušky při pokojové teplotě na slitině hliníku 2024-T351, zahrnu-
jící tah, krut a tlak, pro studium rozvoje poškození a věrohodnou kalibraci vybraného
fenomenologického modelu tvárného porušování, vyjádřeného pomocí lomového přetvoření
a závislého na hydrostatickém tlaku a deviátoru tenzoru napětí. Mezní podmínka tvárného
lomu byla posléze svázána s podmínkou plasticity. Plasticita byla pro zkoumaný materiál
uvažována ve tvaru zohledňujícím i stav třetího invariantu deviátoru tenzoru napětí. Celý
navržený přístup, plně aplikovatelný na víceosé úlohy, byl implementován pomocí uživatel-
ské rutiny do komerčního programu založeného na explicitní variantě metody konečných
prvků. V závěru práce je předložena aplikace navrženého přístupu k modelování tvárného
porušování v podobě verifikace na vybraných zkušebních testech, z níž plynou závěry
a doporučení pro další práci.

Klíčová slova
Tvárné porušování, mechanika poškození kontinua, explicitní metoda konečných prvků,
kumulace poškození, změkčení materiálu, slitina hliníku.





Abstract
This thesis is concerned with ductile fracture, which is a result of multiaxial quasi-static
monotonic loading accompanied with large plastic deformations, while the local approach
is considered for material degradation. In computations, the damage evolution is governed
by used ductile fracture criteria. These were theoretically studied in the introduction, and
the calibration procedure was proposed after the choice of suitable fracture criterion. Next,
the experimental program was designed, and the tests on aluminium alloy 2024-T351,
concerning tension, torsion and compression, were realized at a room temperature for the
investigation of damage accumulation and reliable calibration of chosen phenomenological
ductile fracture criterion, expressed through the fracture strain, and dependent on the
hydrostatic pressure and deviatoric stress tensor. The ductile fracture model was then
coupled with the yield criterion. Plasticity was considered in the form of taking into
account the state of third invariant of deviatoric stress tensor as well for investigated
material. The whole proposed approach that is fully applicable to multiaxial problems was
implemented using user subroutine into the commercial software, based on the explicit
finite element method. In the end, the application of the proposed approach to modelling
of ductile fracture is presented in the form of verification using chosen specimens, resulting
in the conclusions and recommendations for future studies.

Keywords
Ductile fracture, continuum damage mechanics, explicit finite element method, damage
accumulation, material weakening, aluminium alloy.
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1 Introduction

“Science does not exist until it is published.”

Drummond Rennie [90]

1.1 Motivation

The problem of ductile fracture in general has become motivating for engineers since
the Industrial Revolution. With the onset of the industrialization and widespread use of
various structural steels and alloys, the problem of fracture has occurred. Bridges and
buildings have been constructed from structural steels. The aircraft, automotive, marine,
railway and more other engineering fields have started to use metals. It has begun to
be challenging to predict fractures in such sectors, especially where human factors and
casualties have played a role. Finished products, assemblies, machinery, or structures may
be subjected to extreme straining due to accidents, such as train wrecks, traffic collisions,
aviation accidents, ship collisions or failures in nuclear or civil engineering. In such cases,
it is a great task for engineers to predict the ductile fracture reliably.

There is also an amount of forming operations in industrial applications where large
plastic deformations occur. Semi-finished products may be subjected to various shaping
operations such as bending and twisting, or to forming operations such as forward extrusion,
where the fracture is not desirable. On the other hand, material separation processes such
as machining, cutting, or trimming – where violating the material integrity is intentional –
are applied to semi-finished products before those get the required geometry and properties.
Moreover, business competitiveness implies necessity of handling such processes in the
most effective way. Therefore, many approaches to ductile fracture [111, 120, 212], more or
less complex, have been proposed. However, the literature and experiences reveal that the
statement “the more complicated the model, the better the reliability” does not necessarily
apply. It may be stated that the more the model is sophisticated, the more expensive
is the calibration and the more difficult is the application. It makes such models more
academic, and less accessible in industry, so a compromise should be found.

However, it is worth noting that the fracture itself and its using have been as old as
the human race.
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1.2 Background and scope of research
Nowadays, the accurate prediction of ductile fracture has been extensively explored by
many researchers, institutes and industrial companies [54, 88, 99, 179, 202], as described
further. This thesis deals with the ductile fracture in the broader sense and does not
concern the classical fracture mechanics as in [110, 176]. In this case, the concept of ductile
fracture refers to large plastic energy consuming deformations of ductile polycrystalline
metals under monotonic quasi-static loading conditions, as illustrated in Figure 1.1.

strainstrain
increment

fracture
brittle ductile

fractureincrement
stress

stress

Figure 1.1: Different resolution for brittle and ductile fracture, respectively, [138].

Large plastic deformations refers to hundreds of percent in the present study. The
whole problem is solved from the very beginning, when the virgin material is without any
damage, although there may be an initial amount present. The local approach focuses
on a material point where the damage is accumulated. The damage is tracked within
the whole solid subjected to straining until the crack initiates and grows. In the final
stage of the process, there may be material separation into two or more individual pieces.
Moreover, the number of cracks is not limited, and these may occur simultaneously or
subsequently in any part of observed solid.

Many approaches have been developed on how to model the crack initiation and
propagation within Finite Element Method (FEM). The element deletion technique is one
of the most spread in the scope of ductile fracture. This method, where the element that
satisfies certain criterion is deleted, is adopted in this work. Actually, elements are not
physically deleted, but stresses are set to zero, and zero stress and strain increments are
passed for all deleted material points [223]. It may be easily used together with adaptive
remeshing. There is also a nonlocal damage approach, besides the local point of view,
which is based on weighted averaging of certain variable over a spatial neighbourhood of
a material point. It solves the problem of mesh sensitivity and state variable localization
[70, 91, 147, 165]. The next technique may be the node separation method based on
separating nodes of element, in which the fracture criterion is satisfied, and its neighbouring
elements [85, 114, 193]. Physical meaning of this method is clearer in contrast to previous
one. Belitschko and Black [92] laid foundation of eXtended Finite Element Method
(XFEM) on the basis of partition of unity method proposed by Melenk and Babuška [82].
Discontinuities in elements are allowed by enriching the degrees of freedom with special
displacement functions and the method is not dependent on the finite element mesh [223].
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Another approach to ductile fracture may be cohesive zone models [199]. These are
based on a strip-yield model proposed by Barenblatt [29]. Dugdale [32] introduced similar
model concerning the plastic zone ahead of a crack tip. Material behaviour of extended
crack tip is described by the traction-separation law, or cohesive law, and the crack path
has to be assumed or known in advance. Although cohesive elements could be used for all
pairs of nodes [76], it is not practical due to high computational costs. As it is not such
versatile approach as those reviewed in Chapter 4, it will not be described further.

Different discretization methods such as finite cell method may also be used for ductile
fracture prediction [136, 211]. This method combines higher-order methods with fictitious
or embedded domain approach. The original domain is embedded in a larger domain of
a simpler shape, which may be easily meshed by rectangular or hexahedral elements with
high convergence rate. Another family of methods are meshless ones. Smoothed Particle
Hydrodynamics proposed by Gingold and Monaghan [51] is based on particles representing
a given body, of which contributions are computed on the basis of neighbouring particles
within a sphere of influence. It should be noted that the method is not based on discrete
particles colliding with each other in compression and exhibiting a cohesive behaviour in
tension. Instead, it is discretization method of continuum partial differential equations
[223]. Another widespread mesh-free method is Element Free Galerkin introduced by
Belitschko et al. [79]. The method uses nodes having a domain of influence. This
domain does not depend on the nodes arrangement as depicted in Figure 1.2. Shape
functions are formulated by applying the moving least squares approximation [59], while
the approximation function is restricted to the node domain of influence [188].

(a) (b)

Figure 1.2: The domain of influence for: (a) the numerical method with nodal
connectivity where the domains of solid nodes are shared; (b) meshless method [188].

The explicit FEM was used in the present study for advantages when compared to
implicit formulation, which might fail to converge when solving severe discontinuities.
Advantages include better handling of complicated contact conditions, accessibility of
parallelization and computer time saving in case of very large problems [131]. The implicit
code was, among others, used in some calibration processes within Abaqus/Standard.
Vectorized User MATerial (VUMAT) subroutine was used within Abaqus/Explicit when
the explicit integration scheme was used in scope of ductile fracture modelling. Version
6.14 of Abaqus/CAE was used within the present thesis.
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1.3 Objectives of the study
Various ductile fracture models have been developed, as described further, since the second
half of the last century. The main goals may be summarized in the following points:

• To theoretically and experimentally study the multiaxial ductile fracture criteria and
their application in the scope of Continuum Damage Mechanics (CDM). The main
focus deals especially with the experimental program carried out on Aluminium Alloy
(AA) 2024-T351 in order to reliably calibrate chosen continuum damage model.

• To conduct the study of nonlinear damage accumulation and its influence on the
prediction of the ductile fracture. A special attention is paid to the problem of
material weakening and to the estimation of related material constants.

• To discuss the prediction capability and reliability of suggested approaches using
verification on existing fracture tests.
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2 Characterization of the stress state

The characterization of the stress state shall follow the introduction, because some terms
are not used uniformly, consistently, or even correctly.

2.1 Stress state related variables
The stress state is based on three stress invariants using the Cauchy stress tensor σ and
deviatoric stress tensor which states

S = σ + pI, (2.1)

where p is the hydrostatic pressure and I is the identity matrix. Then, the first invariant
of the Cauchy stress tensor is defined as

I1 = tr(σ). (2.2)

Second and third invariants of the deviatoric stress tensor are, respectively,

J2 =
1

2
S : S, (2.3)

J3 = det(S). (2.4)

Using the plastic strain tensor εp, the deviatoric plastic strain may be expressed as

ep = εp − 1

3
tr(εp)I. (2.5)

Assumption of plastic incompressibility, or volume constancy, gives tr(εp) = 0, so the
Equation 2.5 yields in ep = εp, which implies the deviatoric plastic strain tensor is identical
to plastic strain tensor. Then, the equivalent plastic strain increment may be expressed as

˙̄εp =

√
2

3
ėp : ėp, (2.6)

while the instantaneous equivalent plastic strain is defined as

ε̄pl =

√
2

3
ep : ep. (2.7)
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No matter how trivial it seems, it is important not to confuse the cumulative equivalent
plastic strain (Equation 2.6) with instantaneous quantity in Equation 2.7. The equivalent
plastic strain used further in cumulative fashion is used within the damage accumulation.
This is used not only in ductile fracture problems, but also similarly in fatigue [134, 148].

Besides the hydrostatic pressure, the mean stress is also useful and used in description
of the stress state. Using σ1 ≥ σ2 ≥ σ3 as principal stresses, it is defined as

σm = −p =
I1

3
=
σ1 + σ2 + σ3

3
. (2.8)

Von Mises equivalent stress [8] may be used to describe the yield criterion. It takes the
following form

σ̄ =
√

3J2 =

√
3

2
S : S. (2.9)

In the following text, it is suitable to introduce dimensionless pressure dependence
parameter such as the stress triaxiality. The stress triaxiality ranging −∞ ≤ η ≤ ∞ is

η =
σm
σ̄

=
I1

3
√

3J2

. (2.10)

Deviatoric stress state, often called the Lode dependence, may be expressed by more
variables as described further. Lode parameter [13] is defined as follows

µ =
2σ2 − σ1 − σ3

σ1 − σ3

, (2.11)

with range −1 ≤ µ ≤ 1. Lode parameter characterizes position of the second principal
stress σ2 in relation to the first and third principal stresses, σ1 and σ3, respectively. Note
that µ = −1 when σ1 > σ2 = σ3, µ = 0 when σ2 = (σ1 + σ3)/2 and µ = 1 when
σ1 = σ2 > σ3.

The normalized third invariant of deviatoric stress tensor may be used as another
variable for describing the deviatoric stress state as

ξ =
27

2

J3

σ̄3
=

√
27

2

J3

J
3
2
2

, (2.12)

ranging −1 ≤ ξ ≤ 1. The condition of plane stress uniquely gives [111]

ξ = −27

2
η

(
η2 − 1

3

)
. (2.13)

Various angles may be used for the description of Lode dependence. Lode angle and
azimuth angle with ranges 0 ≤ θL ≤ π/3 and −π/6 ≤ θA ≤ π/6, respectively, are

θL =
1

3
arccos(ξ) and θA = −1

3
arcsin(ξ) = arctan

(
µ√
3

)
. (2.14)

Finally, the normalized Lode angle is the one of widely used variables in describing the
Lode dependence. Depending on other given deviatoric stress state parameters, it can be
written as

θ̄ = 1− 6

π
θL = − 6

π
θA = 1− 2

π
arccos(ξ) = − 6

π
arctan

(
µ√
3

)
, (2.15)

and it lies in the range −1 ≤ θ̄ ≤ 1.
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2.2 Geometrical representation of the stress state
The most conventional way of how to geometrically represent the stress state is to use
the Cartesian coordinate system of principal stresses (σ1, σ2, σ3), the so-called Haigh–
Westergaard space. This space might be identically interpreted in cylindrical coordinate
system (r, θL, q) with r as the radius and q as the hydrostatic axis where the principal
stresses are equal. Furthermore, the transformation to spherical coordinate system (r, ϕ, θL)
may be established. These three coordinate systems are depicted in Figure 2.1a.

σ2

σ1

σ3

π plane
θL

r

q

ϕ
O

M

N

M

P N

Q

L

σ1

σ2

σ3

(a) (b)

deviatoric plane

Figure 2.1: Stresses: (a) in Haigh–Westergaard space; (b) on deviatoric plane [120].

The elevation angle in the spherical coordinate system is defined as

ϕ = arccotan
(

3√
2
η

)
. (2.16)

General stress vector
−→
ON in the Cartesian coordinate system can be decomposed into two

vectors. In vector
−−→
OM perpendicular to deviatoric plane, which regards the hydrostatic

part, as

‖
−−→
OM‖ =

√
3

3
I1 =

√
3σm, (2.17)

and vector
−−→
MN in the deviatoric plane regarding the deviatoric part, which reads

‖
−−→
MN‖ =

√
2J2 =

√
2

3
σ̄. (2.18)

Additionally, vectors after the projection onto the deviatoric plane are depicted in Fig. 2.1b.
These may be expressed by using deviatoric stresses as

‖
−−→
MQ‖ =

√
3

2
S1, ‖

−−→
MP‖ =

√
3

2
S2 and ‖

−→
ML‖ =

√
3

2
S3. (2.19)
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Geometrical representation of both Lode and azimuth angles is depicted in Figure 2.2
on a deviatoric plane, also referred as an octahedral plane, or π plane when containing an
origin of Haigh–Westergaard space [156, 163, 168].

σ2

σ1

σ3 = σ1
σ1 = −σ2

σ1 = −σ3

σ1 = σ2

σ2 = −σ3

σ3 = −σ2

σ3

σ3 = −σ1

σ2 = σ3

σ2 = −σ1

θL
+θA

−θA

Figure 2.2: Azimuth and Lode angle on the deviatoric plane [120].

Here follows the summary of relations between described deviatoric stress state variables
in basic loading conditions. Note that ξ = θ̄ = 1, µ = −1, θA = −π/6 and θL = 0 for
axisymmetric tension, ξ = θ̄ = −1, µ = 1, θA = π/6 and θL = π/3 for axisymmetric
compression, ξ = θ̄ = µ = θA = 0 and θL = π/6 for plane strain or generalized shear.

Lode parametr [–]

Normalized Lode angle [–]

Normalized third invariant
of deviatoric stress tensor [–]

−1 −0.5 0 0.5 1

−0.6
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0
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0.6

Normalized third invariant

S
tr
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s
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x
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li
ty

[–
]

Plane strain or generalized shear

Axisymmetric tension

Axisymmetric compression

σ3 = 0

σ2 = 0

σ1 = 0

of deviatoric stress tensor [–]

−1/3

0

S
tr

es
s

tr
ia

x
ia

li
ty

[–
]

−1 0 π/6 1−π/6

1/3

2/3

−2/3

Azimuth angle [rad]

Plane stress

(a) (b)

Figure 2.3: The stress triaxiality dependence: (a) on the normalized third invariant
of deviatoric stress tensor; (b) on various deviatoric stress state variables [212].
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It may be also suitable to illustrate the stress states on the plane of stress triaxiality
and certain deviatoric stress state parameter. In the Figure 2.3a, there are depicted various
loading conditions on the plane of stress triaxiality and the normalized third invariant of
deviatoric stress tensor. There is a geometrical interpretation of relationship between the
stress triaxiality and various deviatoric stress state variables in the Figure 2.3b.

2.3 Loading path proportionality

The loading path is also an important issue in scope of ductile fracture. The radial loading
is one of the premises in case of ductile fracture criteria. Therefore, the averages of state
variables from calibration fracture tests are used.

Radial loading path is derived from a constant slope in the plane of mean and equiva-
lent stresses, respectively, corresponding to constant stress triaxiality. Such path extends
radially from the origin (Fig. 2.4a) and the stress tensor components are increased pro-
portionally with monotonically increasing loading variable along it. So radial loading is
also known as proportional loading. In cases where the loading paths do not have constant
slopes over the entire loading history, these are nonradial or nonproportional (Fig. 2.4b)
[185].

The loading path deviates from proportional, even in the case of smooth cylindrical
specimen beyond the ultimate tensile strength [154]. The problem significantly arises in
the case of universal specimens. Those are specimens reaching different stress states by
changing the loading conditions, such as the so-called butterfly specimen (Figure 2.5a)
inspired by the one designed by Arcan et al. [52]. This specimen – intended for biaxial
loading – is probably one of the most problematic, not only from the nonproportionality
point of view, but also from the complexity of geometry manufacturing. Various geometries
such as with double curvature [113, 128, 213] or just with a flat domain [125, 169] were
proposed.

stress triaxialitymean stress

equivalent
stress

equivalent
strain

non-radialnon-radial

radial

(a) (b)

Figure 2.4: Plane of: (a) mean and equivalent stresses with radial and nonradial
loading paths; (b) stress triaxiality and equivalent strain with nonradial path [185].
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Another noteworthy universal specimen is a tubular one (Figure 2.5b) inspired by
the specimen designed by Lindholm et al. [55] for torsional loading. It may have either
geometry similar to the original one [145, 160, 173] or double notched tubular geometry
[121, 122]. These may be tested under the combination of tension and torsion. The
compression and torsion loading combination has been rare and it was incorporated in
following works [174, 183].

Figure 2.5: Specimen having geometry of a: (a) butterfly; (b) notched tube [242].

It was also reported that problems arise when there is a high strain concentration [213].
Therefore, such geometries as compact tension or three-point bending specimens were
avoided in designing the experimental program.

Nonproportionality in scope of loading paths might lead to discrepancies in calibrating
the models and considerable differences between computations and reality represented by
experiments. Therefore, emphasis was put to design and keep loading paths of calibration
fracture tests as proportional as possible. A final calibrated fracture model may be used
for complex nonproportional loading paths, but there are still some issues to be solved.
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3 Mechanisms of ductile fracture

Physics of ductile crack formation is discussed in this chapter. It has been studied that
the pressure dependence is the key to the crack formation. This dependence was studied,
among others, by Bridgman [35], Oyane [46], Hancock and Mackenzie [49], Hancock and
Brown [63] and later by Bao [115]. The dependence of the fracture strain on the stress
triaxiality is depicted in Figure 3.1 with four highlighted stress triaxiality regions.

−2/3 −1/3 0 1/3 1
0

0.5

1

1.5

Stress triaxiality [–]

F
ra

ct
u
re

st
ra

in
[–

]

1
3 < η <∞

2/3

0 < η ≤ 1
3∞ < η ≤ − 1

3−

− 1
3 < η ≤ 0

Figure 3.1: Fracture strain dependence on the stress triaxiality [68, 197].

Clausing [42] later found out that the ductility is also substantially reduced when the
stress state is changed from axisymmetric tension to plane strain. Wilkins [54] developed
model covering the pressure dependence as well as deviatoric stress dependence, which
accounts for fracture strain decreasing as the shear load increases. Since the Xue–Wierzbicki
model [111] had been developed, it was assumed that the deviatoric stress state plays
a vital role in ductile fracture together with hydrostatic pressure. Possible mechanisms of
ductile fracture in accordance to the stress triaxiality are simply described in the following
paragraphs.

High stress triaxialities (1/3 < η <∞) is the region where the failure is mainly caused
by the void nucleation, growth and coalescence (Figure 3.2a). Voids most often nucleate on
the boundary of the second phase particles which are generally harder than the base metal.
This mechanism might be perfectly observed at notched round bars under tensile loading.
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Intermediate stress triaxialities (0 < η ≤ 1/3) exhibit mixture of stated fracture
mechanisms.

Low stress triaxialities (−1/3 < η ≤ 0) region is probably the least studied one
regarding the crack formation and propagation. Due to upsetting tests, among others, it
is assumed that the failure is caused by the shear mechanism (Figure 3.2b).

No damage and fracture (−∞ < η ≤ −1/3)1 region, the so-called cut-off representing
a threshold of the stress triaxiality below which the damage and fracture does not occur2,
is based on recent experimental observations [98, 105, 109]. Due to results conducted on
the aluminium alloy 2024-T351, the value was estimated as η = −1/3. Recent results show
that this value might goes below that threshold. Khan and Liu [175] conducted the biaxial
compression test in the channel fixture developed by Khan et al. [124] on the same alloy
where the stress triaxiality decreased from −1/3 to −0.495. Tutyshkin et al. [215] obtained
the stress triaxialies ranging from −1/3 to −2/3 in the study of cylindrical specimens
of DC01 steel, aluminium–magnesium alloy and pure copper containing artificial voids.
Kweon [172] studied the damage at negative stress triaxiality in scope of the mesoscale
crystal plasticity based damage model and conducted simulations covering the stress
triaxialities from −0.75 to 0 . Therefore, the genuine cut-off value has not been certain
yet, moreover, it substantially varies with each material.

Figure 3.2: Fractographs illustrating two mechanisms of ductile fracture: (a) void
nucleation, growth and coalescence; (b) shear mechanism (after Bořkovec [133]).

It should be noted that the major research was focused on the high stress triaxialities
in the past. The range of negative stress triaxialities and the cut-off value have been still
the subject of extensive investigations.

1 Based on assumption that the cut-off value lies at η = −1/3.
2 There is an analogy to assuming no fracture in case of −σ1 = −σ2 = −σ3 in scope of brittle fracture.
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4 Overview of existing approaches

Many authors have provided more or less detailed overviews [96, 97, 133, 142, 183], but
there is still no uniform attitude yet. Basic approaches may be classified as follows:

• Phenomenological criteria.

• Continuum damage mechanics.

• Void nucleation, growth and coalescence.

• Porosity based models.

Another well known approach is Forming Limit Diagram (FLD) [33, 39, 132]. However,
it is limited only to sheet metal forming. FLD is defined in the space of major and minor
in-plane strains and it is used to predict the onset of necking. The strain-based FLD is
strongly loading path dependent. An extension of FLD is Fracture Forming Limit Diagram
(FFLD) where there are two in-plane strains at the point of fracture [81, 179]. Typical
FLD and FFLD are shown in Figure 4.1. Another noteworthy fracture model applicable
to thin sheets and extrusions under the plane stress condition is the CrashFEM [99].
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Figure 4.1: FLD and FFLD in the space of major and minor strains [178].



24 4 Overview of existing approaches

4.1 Phenomenological criteria
In the beginnings, phenomenological criteria were developed by engineers who needed
to predict the ductile crack initiation and propagation in bulk or sheet metal forming
processes. These macroscopically based criteria were relatively simple and with limited
usage in the range of stress states in which they were calibrated.

Freudenthal [20] presented energy criterion defining a limiting amount of the plastic
work per unit volume. The expression is integrated until it reaches a critical value which
indicates the onset of fracture as∫ ε̂f

0

σ̄ dε̄p = CF , (4.1)

where CF is one material constant and ε̂f represents the fracture strain for a given loading
path.

Cockcroft and Latham [38] proposed that the crack formation is associated with tensile
stress even in predominantly compressive processes. The model can be expressed by
following expression as∫ ε̂f

0

σ̄
〈σ1

σ̄

〉
dε̄p = CCL. (4.2)

The fraction expresses a non-dimensional stress concentration factor. Variable CCL is one
material constant of this model.

Brozzo et al. [44] modified the criterion proposed by Cockcroft and Latham [38] and
included the dependence on the mean stress through∫ ε̂f

0

2σ1

3(σ1 − σm)
dε̄p = CB, (4.3)

where CB is one material constant.
Oh et al. [53] suggested that it is more reasonable to include just the stress ratio in the

model proposed by Cockroft and Latham [38], so the dimensionless model, as in previous
case, takes form∫ ε̂f

0

〈σ1

σ̄

〉
dε̄p = CMCL, (4.4)

where CMCL is one material constant.
There are multiple other simple criteria containing only one material constant as these

listed above. Those are often called empirical models. Further, the focus will be paid
to more sophisticated ones where the crack initiation is predicted by the accumulated
damage depending on certain weighting function ε̄f (state variables), apart from the model
proposed by Wilkins et al. [54] where the criterion is formulated slightly differently.

Macroscopically, fracture occurs when the damage indicator reaches a critical value,
most often unity. Linear incremental relationship between the damage and equivalent
plastic strain, when the damage parameter ranges from 0 to 1, may be written as

D =

∫ ε̂f

0

1

ε̄f (state variables)
dε̄p. (4.5)
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Damage D = 0 denotes the virgin material without any damage while the material
experiences a complete loss of ductility and failures when D = 1.

Wilkins et al. [54] pointed out that besides the hydrostatic pressure, the deviatoric
stress also enhances the damage. The material fails when the damage D exceeds the
critical damage Dc over the critical distance rc,

D =

∫ ε̂f

0

w1w2 dε̄p = Dc, (4.6)

where both Dc and rc are material constants, w1 is the hydrostatic pressure weighting
function and w2 is the asymmetric strain weighting function, both given as, respectively,

w1 =

(
1

1 + pW1

)W2

, (4.7)

w2 = (2− A)W3 , (4.8)

where W1, . . . ,W3 are material constants and A is the parameter denoting the loading
asymmetry as

A = max

(
S2

S3

,
S2

S1

)
, (4.9)

where S1 ≥ S2 ≥ S3 are principal stress deviators. Model contains five material constants
and does not include the cut-off value.

Johnson and Cook [62] presented the constitutive model considering large strains, high
strain rates and high temperatures as

σ̄ = (AJC +BJC (ε̄p)n) (1 + CJC ln ˙̄εp?)
(
1− TDJCh

)
, (4.10)

where AJC , BJC , CJC and DJC are material constants, ˙̄εp? is the dimensionless equivalent
plastic strain rate, n is the strain hardening exponent and Th is homologous temperature,

˙̄εp? =
˙̄εp
˙̄ε0

and Th =
T − Tr
Tm − Tr

, (4.11)

˙̄ε0 is the reference strain rate (usually 1.0 s−1), T is the temperature, Tr is the room
temperature and Tm is the melting temperature. In Equation 4.10, the term in first bracket
describes the strain hardening, terms in second and third brackets represent the effects of
strain rate and temperature, respectively. Model contains five material constants.

Later, Johnson and Cook [68] also provided the fracture model involving the strain
rate and temperature dependence with following weighting function of damage

ε̄f (η, ˙̄εp?, Th) =
(
N1 +N2eN3η

)
(1 +N4 ln ˙̄εp?) (1 +N5Th) , (4.12)

where N1, . . . , N5 are five material constants. The term in first bracket represents the
pressure dependence, terms in second and third brackets have the same meaning as in
Equation 4.10 described above. The model does not include the cut-off value.
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Bao and Wierzbicki [98, 105] developed new designs of specimens for a wide range
of the stress triaxiality (−1/3 ≤ η ≤ 0.95) and conducted several tests to study the
ductile crack formation. It was found that the fracture locus is more complicated, as
in Figure 4.2, and that the approximation cannot be expressed as a monotonic function
of the stress triaxiality as in Figure 3.1. Three ranges of stress triaxiality with simple
analytical expression for each range were distinguished and the cut-off value at η ≤ −1/3
was assumed. The expressions take form

ε̄f (η) =


B1 (η + 1/3)B2 if − 1/3 < η ≤ 0

B3η
2 −B4η +B5 if 0 < η ≤ 0.4

B6/η if 0.4 < η ≤ ∞
, (4.13)

where B1, . . . , B6 are six material constants. There was also confirmed the importance of
the cut-off value presence in scope of high velocity perforations by using this criterion
[103, 112, 118].
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Figure 4.2: Fracture locus in the space of fracture strain and stress triaxiality [101].

The above findings led to the formation of new criteria which concern, apart from the
pressure dependence, also the deviatoric stress state dependence. Thus, the equivalent
fracture strain is dependent both on the stress triaxiality and on a certain deviatoric stress
state parameter. Then, the fracture locus has been most often expressed as an envelope in
the space of (ε̄f , η, θ̄) (Figure 4.3b).

In the Figure 4.3, magenta lines denote the plane strain or generalized shear, red lines
denote the axisymmetric tension and blue lines denote the axisymmetric compression3.

3 Hereinafter, for interpretation of references to colour, the reader is referred to the electronic version of
this work.
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Figure 4.3: Fracture envelope: (a) of model proposed by Xue [120, 126] in the scope
of CDM; (b) of its typical shape depicted together with the cut-off plane [233].

The simple criteria in integral form mentioned in the initial part of this section (page 24)
may be also expressed in the space mentioned above. The hardening rule has to be chosen
first in case of dimensional criteria such as proposed by Freudenthal [20] or Cockcroft and
Latham [38]. One of the simplest hardening rules is the one proposed by Hollomon [15]

σ̄ = Kε̄n, (4.14)

where K is the strength coefficient and ε̄ is total equivalent strain.
Then, the criteria may be transformed from the space of (σ1, σ2, σ3) to (σ̄, η, µ) by

using following expressions [201]

σ1 = σ̄

(
η +

3− µ
3
√

3 + µ2

)
, (4.15)

σ2 = σ̄

(
η +

2µ

3
√

3 + µ2

)
, (4.16)

σ3 = σ̄

(
η − 3 + µ

3
√

3 + µ2

)
. (4.17)

For simplicity, only the nondimensional criteria were transformed using the previous
procedure.

In case of model proposed by Oh et al. [53], the weighting function of damage is

ε̄f (η, µ) = CMCL

(
η +

3− µ
3
√

3 + µ2

)−1

. (4.18)

It is noteworthy that the criterion is dependent both on the stress triaxiality and Lode
parameter in this form and has the cut-off value as well.
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Finally, the model proposed by Brozzo et al. [44] takes after transformation the
following form

ε̄f (η, µ) = CB

(
2

3
+

2η
√

3 + µ2

3− µ

)−1

. (4.19)

It is also dependent both on the stress triaxiality and Lode parameter and it has got the
cut-off value.

Xue–Wierzbicki model [111] concerned the Lode dependence through the normalized
third invariant of deviatoric stress tensor. The weighting function of damage, symmetric
with respect to the third invariant of deviatoric stress tensor, is expressed as

ε̄f (η, ξ) = C1e−C2η −
(
C1e−C2η − C3e−C4η

) (
1− |ξ|

1
n

)n
, (4.20)

where C1, . . . , C4 are four material constants. There is no cut-off plane4.
Bai and Wierzbicki [135] later postulated the asymmetric fracture envelope, not

symmetric with respect to the normalized Lode angle, with following weighting function

ε̄f
(
η, θ̄
)

=

[
1

2

(
D1e−D2η +D5e−D6η

)
−D3e−D4η

]
θ̄2

+
1

2

(
D1e−D2η −D5e−D6η

)
θ̄ +D3e−D4η, (4.21)

where D1, . . . , D6 are six material constants. Model does not include the cut-off plane.
Extended Mohr–Coulomb criterion [156], based on [1, 6], was expressed through fracture

stress at first. Then, it was transformed to strain based space by using the metal plasticity
with pressure and Lode dependence [135] and Hollomon hardening law to be

ε̄f
(
η, θ̄
)

=

{
K

E2

[1− cη (η − η0)][
csθ +

√
3

2−
√

3
(caxθ − csθ)

{
sec
(π

6
θ̄
)
− 1
}]

[√
1 + E2

1

3
cos
(π

6
θ̄
)

+ E1

{
η +

1

3
sin
(π

6
θ̄
)}]}− 1

n

. (4.22)

Variables E1 and E2 are two material constants of the asymmetric fracture envelope which
have to be calibrated from fracture tests. Apart from strength coefficient and strain
hardening exponent, the rest four constants cη, csθ, caxθ and η0 are related to plasticity.
Model includes the cut-off plane which can be explicitly expressed. If the von Mises yield
criterion is adopted, Equation 4.22 can be rewritten into form

ε̄f
(
η, θ̄
)

=

{
K

E2

[√
1 + E2

1

3
cos
(π

6
θ̄
)

+ E1

{
η +

1

3
sin
(π

6
θ̄
)}]}− 1

n

. (4.23)

4 There is not particular cut-off value but specific plane because the criteria are no longer two dimensional.
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Lou et al. [179] proposed model with dependence on the stress triaxiality and normalized
maximum shear stress. Lou and Huh [194] made an extension considering the stress
triaxiality and Lode dependence. Later, Lou et al. [212] derived modification considering
a changeable cut-off for the stress triaxiality which can be explicitly expressed as well.
Weighting function of damage for this asymmetric fracture envelope is in form

ε̄f (η, µ) = L3

(
2√

3 + µ2

)−L1
(〈

1

1 + CL

(
η +

3− µ
3
√

3 + µ2
+ CL

)〉)−L2

, (4.24)

where L1, . . . , L3 are material constants and parameter CL represents the sensitivity of
the cut-off to the stress triaxiality. So this model has four material constants.

Hosford–Coulomb model [226, 227] is based on Mohr–Coulomb criterion [1, 6] deployed
for fracture. Tresca equivalent stress [2] was substituted by the one proposed by Hosford
[45], so it was also derived in the stress based form at first. After transformation by using
Hollomon hardening law, the asymmetric weighting function of damage reads

ε̄f
(
η, θ̄
)

=

(
K

A2

[(
1

2

[
(f1 − f2)A1 + (f2 − f3)A1 + (f1 − f3)A1

]) 1
A1

+

A3(2η + f1 + f3)

])− 1
n

, (4.25)

where A1, . . . , A3 are three material constants of this cut-off including model and f1, . . . , f3

are normalized Lode angle dependent trigonometric functions given as, respectively,

f1 =
2

3
cos
[π

6

(
1− θ̄

)]
, (4.26)

f2 =
2

3
cos
[π

6

(
3 + θ̄

)]
, (4.27)

f3 = −2

3
cos
[π

6

(
1 + θ̄

)]
. (4.28)

4.2 Continuum damage mechanics

CDM is based on the macroscopic observation of solids. In this case, the constitutive
model is coupled with the damage and those influence each other. The degradation process
and loss of the load carrying area are due to the irreversible process of void nucleation and
growth during straining. This approach represents an alternative to the porosity based
models in a phenomenological way. Damage models are often called coupled, compared
with phenomenological models which are often called uncoupled. It is because in the case
of phenomenological criteria, the damage is influenced by the plasticity but not vice versa.
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Kachanov [28] laid the foundations of continuum damage mechanics in the context of
creep. He assumed the weakening factor w = 1 at the initial moment where there is no
damage and that w = 0 at the moment of rupture. He pointed out that the weakening
factor need not to be scalar and presented the following power law

ẇ = −f(T )

(
σ?

w

)f(t)

, (4.29)

where f(T ) and f(t) are possible functions of temperature and time, respectively, σ? is
the highest tensile stress and whole fraction represents the effective stress. If compressive
stresses were present, the tensile ones were supposed not to be small compared to them.

Rabotnov [34] also dealt with creep and suggested that the matrix material degrades
through damage parameter Ds which is related to the weakening factor through

w = 1−Ds. (4.30)

Thus, the parameter Ds = 0 when there is no damage and Ds = 1 when the material
experiences the loss of load carrying area.

In general, the damage parameter corresponding to reduction of load carrying area
may not necessary to be the same as the damage indicator describing the reduction of
ductility, thus

Ds 6= D. (4.31)

The equivalent matrix stress σM is supposed to be greater than the equivalent stress which
satisfies the load–displacement curve obtained from experiment, therefore it can be written
as

Ds ≤ D. (4.32)

Xue [120] adopted a material constant β as the weakening exponent, implicating

Ds = Dβ. (4.33)

Finally, the requirement from Equation 4.32 is satisfied when β ≥ 1.
Lemaitre [65, 66] developed the concept of effective stress with respect to isotropic

material. The expression for the effective stress with the use of damage parameter Ds is

σ̃ =
σ

1−Ds

. (4.34)

This emphasizes that the presence of voids raises the effective stress. The hypothesis of
strain equivalence was also adopted, so one dimensional linear elasticity involving damage is

ε̃e =
σ̃

E
=

σ

E(1−Ds)
, (4.35)

where ε̃e is the effective elastic strain and E is Young’s modulus. With respect to Ramberg–
Osgood constitutive equation [16], the effective plastic strain for the three dimensional
case reads

ε̃p =

(
σ̃

K

) 1
n

=

(
σ̄

K(1−Ds)

) 1
n

. (4.36)
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Lemaitre further introduced the damage strain energy release rate, similar to the strain
energy release rate or crack driving force in classical fracture mechanics, as follows

−Y =
σ̄2

2E(1−Ds)2

[
2

3
(1 + ν) + 3(1− 2ν)η2

]
, (4.37)

where ν is the Poisson’s ratio. Then, the damage evolution law can be written as

Ḋs =

{
0 if ε̃p < ε̄th

1
1−Ds

(
−Y
Sr

)sr
˙̃εp if ε̃p ≥ ε̄th

, (4.38)

where Sr and sr are temperature and material dependent terms, respectively, and ε̄th is
the damage strain threshold. The fracture occurs when the damage parameter reaches
its critical value Dcr which is assumed to be another material property. So this model
includes four material constants. The stress triaxiality cut-off value was implemented later
[166] as well as the influence of deviatoric stress state [217, 220]. Broumand and Khoei
[195] found Lemaitre’s approach very effective when employed as a non-local together with
the use of XFEM.

Chaboche valuably contributed with clear summarization of the main basic features of
previous continuum damage mechanics approaches and reviewed some practical damage
growth equations [71, 72].

Bonora [84] presented generally nonlinear damage evolution law in the form

dDs = α
(Dcr −D0)

1
α

ln ε̂f − ln ε̄th

[
2

3
(1 + ν) + 3(1− 2ν)η2

]
(Dcr −Ds)

α−1
α

1

ε̃p
dε̃p, (4.39)

where variable α is the exponent of damage and D0 is the initial amount of damage,
often taken equal to zero due to its difficult measurability. Model contains five material
constants. Later, Bonora and Newaz [89] extended the concept to the low cycle fatigue.

The effect of the initial damage introduced on some surface layers, caused for example
by machining process [216] or by blanking process [231], was studied in the scope of
uncoupled models with the use of Finite Element Analysis (FEA).

Børvik et al. [94] provided ductile damage model for penetration and impact related
problems based on constitutive and fracture models proposed by Johnson and Cook [62, 68]
and CDM approach introduced by Lemaitre [66]. This model included the associated flow
rule and effects of strain rate and temperature through following expression

σ̄ = (1−Ds) (AB +BB (ε̃p)n)
(
1 + ˙̃εp?

)CB (
1− TDBh

)
, (4.40)

where AB, BB, CB and DB are material constants and ˙̃εp? is the dimensionless effective
plastic strain rate defined similarly as in original model of Johnson and Cook through

˙̃εp? =
˙̃εp
˙̃ε0
. (4.41)
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This model involves five material constants. Term representing the effect of strain rate
in Equation 4.40 is modified with respect to Camacho and Ortiz [83] to avoid unwanted
effects when ˙̃εp? < 1. Considering this modification, the weighting function of damage,
which does not concern any stress triaxiality cut-off value, can be written as

ε̄f
(
η, ˙̃εp, Th

)
=
(
M1 +M2eM3η

)
(1 + ˙̄εp?)

M4 (1 +M5Th) , (4.42)

where M1, . . . ,M5 are material constants. The damage evolution during straining is

Ḋs =

{
0 if ε̃p < ε̄th

Dcr
1−Ds

1
ε̂f−ε̄th

˙̃εp if ε̃p ≥ ε̄th
. (4.43)

Fracture occurs as Ds reaches critical damage Dcr which is material constant as well, so
the model includes seven material constants.

Saanouni has also been distinctly involved in continuum damage mechanics, following
Lemaitre’s approach, and strongly aimed on practical applicability in metal forming
processes as a prediction of chevron cracks in cold extrusion of cylindrical bar, crack
propagation in the blanking of thin sheet, or thin sheet deformation after the slitting due
to the residual stress [116, 130].

Xue [120, 126] introduced damage plasticity model involving the sensitivity to the
hydrostatic pressure and Lode dependence. Material behaviour is defined by hardening
function σM(ε̄p) following von Mises yield criterion. Then, material deterioration reads

σ̄ = wσM = (1−Ds)σM = (1−Dβ)σM . (4.44)

The nonlinear damage evolution is expressed as follows

D =

∫ ε̂f

0

m

(
ε̄p

ε̄f
(
p, θ̄
))m−1

dε̄p

ε̄f
(
p, θ̄
) . (4.45)

Finally, the weighting function of damage may be expressed as

ε̄f
(
p, θ̄
)

= ε̃f
[
1− q̂ ln

(
1− p

plim

)] [
1 + (1− γ̂)

∣∣θ̄∣∣k̂] , (4.46)

where ε̃f is the uniaxial tensile fracture strain without confining pressure, q̂ is the shape
parameter, plim is the limiting pressure (parameter governing the cut-off), γ̂ is the fracture
strain ratio and k̂ is Lode dependence exponent. The model contains seven material
constants and the typical shape of fracture envelope is show in Figure 4.3a. The pressure
sensitivity, term in the first bracket in Equation 4.46, is based on observations made by
Bridgman [35]. Lode dependence, term in the second bracket in Equation 4.46, was derived
separately on the work of Wilkins et al. [54].

It shall be noted that there is another approach to ductile fracture combining the
phenomenological criteria with continuum damage mechanics. The model is partially
coupled with plasticity to incorporate the post-initiation behaviour [152, 157, 219]. So
it is based on the weakening effect, but rather for dealing with the prediction of crack
propagation than for the weakening itself, because the slant fracture is usually not
computationally predicted by models without incorporating the material weakening [190].
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Figure 4.4: Stress–strain curves for different approaches to ductile fracture.

The problem of crack propagation is caused by finite element size. Generally, the
smaller the length of the element, the easier the crack propagation in slant fracture fashion
is triggered. In case of phenomenological criteria, the most affected elements, where there
is accumulated a critical amount of damage, are deleted. It causes instantaneous formation
of a free surface and drop in force–displacement response. In fact, it should take some
time for the crack to propagate throughout the elements length. This is incorporated
using weakening after crack initiation.

The element can gradually lose its strength (see Figure 4.4) through

σ̄ =


σ̄ if D ≤ Dp

σ̄
(
Dcr−D
Dcr−Dp

)m̄
if Dp < D < Dcr

0 if D = Dcr

, (4.47)

where Dp is damage parameter at the moment of crack initiation within an element and
m̄ is a weakening parameter. These, together with critical damage Dcr in the moment of
element deletion, are additional material constants to arbitrary phenomenological ductile
fracture model and introduce the post-initiation weakening [152].

4.3 Void nucleation, growth and coalescence

Theoretical research of the void nucleation, growth and coalescence (Figure 4.5) has been
mostly performed on the Representative Volume Element (RVE) containing the void. Such
microscopic approach was then used for studying macroscopic behaviour of the complex
material containing voids, second phase particles and inclusions.
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Figure 4.5: Void nucleation, growth and coalescence during the tension [123].

McClintock [40] assumed the material to contain sets of cylindrical holes of elliptical
cross-section. Major and minor directions of the applied stresses were parallel with their
axes. The damage accumulated to unity at fracture through following expression

D =

∫ ε̂f

0

1

lnFf

[ √
3

2(1− n)
sinh

(√
3(1− n)

2

σa + σb
σ̄

)
+

3

4

σa − σb
σ̄

]
dε̄p, (4.48)

where Ff is a relative hole growth factor and the only one material constant of this model.
Variables σa and σb denote applied stresses in major and minor directions, respectively.
The model has a cut-off value when transformed into the space of (ε̄f , η, θ̄) [228].

Rice and Tracey [41] studied the growth of a spherical void and suggested criterion,
which does not include the cut-off value, for a simple tensile remote field as

∫ ε̂f

0

0.283e
√

3
2
η dε̄p = CRT , (4.49)

where CRT is one material constant.
Le Roy et al. [58] followed up on the work of Rice and Tracey [41] and developed it

further, allowing the change of void shape. However, these efforts were rather theoretical.
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RTCL [97] is a criterion combining model proposed by Rice and Tracey [41] for high
stress triaxialities and model proposed by Cockcroft and Latham [38] for intermediate and
low stress triaxialities. The damage, also involving the cut-off value at η = −1/3, reads

D =


0 if η ≤ −1/3∫ ε̂f

0
2

1+η
√

12−27η2

3η+
√

12−27η2
dε̄p if − 1/3 < η < 1/3∫ ε̂f

0
1

1.65
e

3
2
η dε̄p if η ≥ 1/3

. (4.50)

The fracture occurs when the damage reaches its critical value DRTCL which is one material
constant of this model. Here, the model proposed by Rice and Tracey was a modified
version derived by Fischer et al. [78]. The model proposed by Cockcroft and Latham
given here was derived with the use of von Mises yield criterion, assuming the plane stress
state in a certain plane and with neglecting certain shear stress components [97]. The
classification of RTCL as void nucleation, growth and coalescence model is questionable
when the model proposed by Cockcroft and Latham was assumed to be phenomenological.

4.4 Porosity based models
Porosity based models differ from those mentioned above. These stand on similar theoretical
background as previous microscopic approach, but do not accumulate the damage separately
from yielding. Instead, it is assumed that the material is porous containing isolated spherical
or cylindrical voids at microscopic level and the influence of such voids is incorporated in
constitutive framework, instantly affecting the plastic flow. Then, the porosity serves as
such a failure indication.

Gurson [47, 48, 50] laid foundations of the widespread porosity based model and
assumed idealized matrix as a perfectly rigid plastic material obeying the von Mises yield
criterion. The approximate upper bound yield function for volumetrically symmetric
deformations around a single spherical void (see Figure 4.6) can be written as

Φ =

(
σ̄

σM

)2

+ 2fG cosh

(
3

2

σm
σM

)
− f 2

G − 1, (4.51)

where fG is the void volume fraction. The yield function takes a form of von Mises yield
criterion when fG = 0.

x

y

z

Figure 4.6: RVE with a spherical void [207].
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Tvergaard and Needleman [57, 60, 64] provided well-known modification of the model
proposed by Gurson [47, 48, 50], the so-called GTN model, due to predicting the complete
loss of material load carrying capacity at unrealistic level. Then, the approximate yield
function can be rewritten as

Φ =

(
σ̄

σM

)2

+ 2qGTNf
? cosh

(
3

2

σm
σM

)
− (qGTNf

?)2 − 1, (4.52)

where qGTN is a material constant and f ? is void volume function defined as

f ? =

{
fG if fG ≤ fc

fc +
q−1
GTN−fc
fF−fc

(fG − fc) if fG > fc
, (4.53)

where fc is the critical value of void volume fraction and fF is the void volume fraction at
fracture. For f ? = fG and qGTN = 1 the criterion degenerates to form that was proposed
by Gurson [47, 48, 50] (Equation 4.51).

Previous modification was followed by many others and Gurson-like model has been
of interest to many researches [77, 161, 222]. The original GTN model was derived for
volumetrically symmetric deformations and it was shown that Lode dependence needs to
be introduced to improve the predictive capability and accuracy in shear dominant loading
conditions [139, 207, 225].
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5 Experiments

5.1 Aluminium alloy 2024-T351

All experiments were conducted on AA 2024-T351. This Al–Cu–Mg alloy, which was
solution heat treated, stress-relieved stretched and then cold worked, has face-centred
cubic structure [144] and is widely used in aviation and aerospace engineering, among
others, for various components because of its high strength to weight ratio and good fatigue
resistance. It has negligible strain rate sensitivity up to 5000 s−1 [203]. It is commonly
extruded or forged. On the contrary, the welding and soldering are not recommended. This
alloy is also widely used by researches to examine ductile fracture behaviour [98, 175] as
well as fatigue [150]. The chemical composition of the particular supplied alloy is given in
Table 5.1. It was obtained by glow discharge optical emission spectroscopy on Spectrumat
GDS 750. The results are averages from three measurings.

Table 5.1: Chemical composition of AA 2024-T351.

Element Si Fe Cu Mn Mg Cr Zn Ti Ni

Volume [Weight %] 0.07 0.25 4.3 0.52 1.71 0.00 0.01 0.04 0.00

The material was supplied as a cold rolled plate of metal with dimensions 1500 ×
1000× 20mm (Figure 5.1). Then it was cut into 5 pieces (300× 1000× 20mm) along the
shorter side by water jet cutting to facilitate handling and specimen manufacturing. The
aforementioned cutting method was used to prevent the formation of heat affected zones.

rolling direction

transverse direction
20

1500

1000

z

x

y

Figure 5.1: Detailed drawing of supplied plate of aluminium alloy 2024-T351.
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Specimens, taken in two transverse directions x and y, respectively, were polished and
etched for metallographic analysis. The rolling5 and transverse directions, depicted in
Figure 5.1, were estimated from the size and orientation of grains shown in Figure 5.2.

Figure 5.2: Micrograph of cross-section along: (a) x direction; (b) y direction.

Among others, the rolling direction was studied by fractography using scanning elec-
tron microscope, Tescan LYRA3 XMH equipped by Oxford Instruments with Energy
Dispersive X-ray Spectroscopy (EDS) analyser, through secondary and backscattered
electrons. Transcrystalline ductile fracture, or the so-called dimpled rupture, governed
mostly by the void nucleation and growth was observed. There was also brittle fracture of
present intermetallic particles. There was significant banding of intermetallic particles for
post-mortem specimen from the rolling direction (Figure 5.3).

Figure 5.3: Fractograph from the rolling direction.

5 Also called longitudinal direction in the present study.
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Only one moderate banding of intermetallic particles was observed, in the case of
x direction, as depicted in Figure 5.4, which is consistent with assumption that this is the
direction transverse to rolling.

Figure 5.4: Fractograph from the transverse direction.

There was also notable omni-directional particle cracking in case of fracture surface from
transverse direction (Figure 5.5).

Figure 5.5: Fractograph from x direction depicting omni-directional cracked particle.

There was probable presence of following intermetallic phases in microstructure, Al2Cu,
Al2CuMg, Al7Cu2Fe, Al4Cu2Mg8Si7, AlCuFeMnSi and Mg2Si, which is consistent with
elements found by chemical microanalysis using EDS (Figure 5.6).
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Figure 5.6: EDS analysis results for two different spectra.

5.2 Experimental program
In order to obtain the flow curve for description of material plastic flow, as well as to
calibrate the fracture model, there was an experimental program designed and carefully
carried out at a room temperature. There are schematic drawings of chosen specimens
with their basic dimensions in Figure 5.7 and Table 5.2 where there is an outline of the
designed experimental program.

φd0

R
φd0

φd0h

(a) (b) (c) (d)

φdh

R

φd0

Figure 5.7: Schematic drawings of specimen types used in experimental program:
(a) smooth cylindrical; (b) notched cylindrical; (c) notched tubular; (d) cylindrical.

Theoretical values of the initial stress triaxiality for specimens loaded in tension in
Table 5.2 were calculated by using Equation 5.4 derived in the following paragraphs.

While σz is the axial stress, R is the neck radius and d is the actual diameter of the
round bar (Figure 5.8a), Bridgman [35] derived for post-necking phase that

σz
σ̄

= 1 + ln

((
d
2

)2
+ dR− r2

dR

)
. (5.1)
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When the stress distribution in the minimum cross-sectional area of the neck is axially
symmetric, von Mises yield criterion gives [94]

η =
σz
σ̄
− 2

3
. (5.2)

If the Equation 5.2 is inserted into the Equation 5.1, and R and d0 are assumed as the
notch radius and the initial diameter in the notch (Figure 5.8b), respectively, the initial
stress triaxiality of notched cylindrical specimen on the axis, where there is a maximum
value when r = 0, is

η =
1

3
+ ln

(
1 +

d0

4R

)
. (5.3)

Later, the formula was modified for aluminium alloy by using the FEA into form [98]

η =
1

3
+
√

2 ln

(
1 +

d0

4R

)
. (5.4)

Table 5.2: Designed experimental program.

Radial Initial Normal-
Test loading Specimen type stress tri- ized Lode

condition axiality [–] angle [–]

1

Tension

Figure 5.7a, d0 = 6mm 1/3 1
2 Figure 5.7b, d0 = 9mm, R13 0.559 1
3 Figure 5.7b, d0 = 9mm, R6.5 0.754 1
4 Figure 5.7b, d0 = 9mm, R4 0.965 1
5 Figure 5.7c, d0 = 9mm, R4, dh = 7mm

√
3/3 0

6 Torsion Figure 5.7b, d0 = 9mm, R4, dh = 8mm 0 0
7 Compression Figure 5.7e, d0 = 8mm, h = 12mm −1/3 −1

There are depicted theoretical positions of the fracture tests in the space of the stress
triaxiality and normalized third invariant of deviatoric stress tensor in the Figure 5.9.
The geometry of the notched cylindrical specimen with the shallowest notch radius was
designed in order to have approximately the same stress triaxiality as the tensile loaded
notched tube. The remaining two notched cylindrical specimens with sharper notch radii
were designed in order to keep approximately the same interval to each other with respect
to stress triaxiality.

There were also realized experiments on flat plate specimen loaded in tension. Unfor-
tunately, these were not included in the calibration because of problems with dramatic
changing of normalized Lode angle arising with the use of Lode dependent plasticity
(Chapter 9). The whole issue is described in Appendix A.
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Figure 5.8: Dimensions related to: (a) the necking of smooth cylindrical specimen
under tension in z axis; (b) the notched cylindrical specimen under tension in z axis.
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Figure 5.9: Theoretical positions of the fracture tests in the plane of stress states.

5.3 Tensile tests of smooth cylindrical specimens with

discussion on anisotropy

AA 2024-T351 has been assumed as isotropic by many researches [98, 105, 175] as well as
anisotropic [104, 203]. In order to study the degree of anisotropy, there were conducted
5 tensile tests of smooth cylindrical specimens (Figure 5.106) both in rolling and transverse
directions and then the average force–displacement curves were determined (Figure 5.11).

6 Where no roughness is prescribed, the value Ra 3.2 is taken in the present study.
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Figure 5.10: Detailed drawing of the smooth cylindrical specimen with 6mm diameter.

Testing machine Zwick Z250 Allround-Line, tCII, and extensometer Zwick multiXtens
were used for tensile testing under displacement control. To ensure the quasi-static loading,
the test speed was 1mm/min until the yield point when it was smoothly transferred to
2mm/min. The gauge length was 30mm.
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Figure 5.11: Force–displacement: (a) curves for 5 tensile tests both in the rolling and
transverse directions; (b) curves averaged in the rolling and transverse directions.

There is a higher ultimate strength in the y direction (Figure 5.11) which corresponds
to results from metallographic analysis and proves that y is really the rolling direction,
although there is a higher yield stress and ductility in transverse direction. Nevertheless,
this material behaviour corresponds to the one obtained by Bao in compression [98].

There are post-mortem smooth cylindrical specimens from rolling and transverse
directions shown in Figures 5.12 and 5.13, respectively.

Finally, we assumed the material to be isotropic due to obtained results. The anisotropy
was involved neither by means of the plasticity [203] nor the fracture [137, 237] in the
present study as well as by means of no directional distortional hardening [95, 129].
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Figure 5.12: Post-mortem 6mm diameter round bars from the rolling direction.

Figure 5.13: Post-mortem 6mm diameter round bars from the transverse direction.

It should be noted that the Portevin–LeChatelier effect [11] was also apparent in the
transverse direction. The serrations are depicted for two chosen parts of force–displacement
responses in Figure 5.14. This effect was not accounted for further.
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Figure 5.14: Portevin–LeChatelier effect in the transverse direction.
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5.4 Discussion on the crack formation in tensile tests

Xue [120] pointed out that there were different mechanisms of ductile fracture in tensile
tests of smooth cylindrical specimens with 6, 9 and 15mm diameters. In case of 6mm
diameter, there was observed a classic dimpled (cup and cone) fracture. There was a slant
fracture in case of 9mm diameter and finally, there was a mixed slant and cup and cone
mode in case of 15mm diameter.

Here, the slant fracture was observed on smooth cylindrical specimens in rolling direction
(Figure 5.15a) in tensile testing and cup and cone or coexisting fracture mechanisms in
transverse direction (Figures 5.15b and 5.15c).

Figure 5.15: Fracture surface of cylindrical specimen from the: (a) rolling direction
(slant); (b) transverse direction (coexisting mode); (c) transverse direction (dimpled).

Moreover, additional tensile tests were carried out on 3 smooth cylindrical specimens
with 10mm diameter in rolling direction (Figure 5.16) under the same conditions as in
the previous section. There was a slant fracture observed (Figure 5.17) as in the case of
smaller diameter of smooth specimens in rolling direction. Therefore, the size effect is not
an option. More likely, the crack formation in tensile tests is dependent on the longitudinal
or transverse directions so as the Portevin–LeChatelier effect.

Figure 5.16: Detailed drawing of the smooth round specimen with 10mm diameter.
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Figure 5.17: Post-mortem 10mm diameter round specimens from the rolling direction.

Olympus LEXT OLS3100 confocal laser scanning microscope was used in order to
find the angle of fracture surface to applied loading, in the case of specimen from longi-
tudinal direction. Reconstructed fracture surface revealed that it was approximately 45◦
(Figure 5.18), in the plane of maximum shear stress.

Figure 5.18: Reconstructed fracture surface for specimen from the rolling direction.

The presented problem of crack formation might be related to motion of dislocations
on the slip plane as well. Nevertheless, it will not be further developed in this study.
Hereinafter, all experiments will be done within the rolling (longitudinal) direction.
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5.5 Tensile tests of notched cylindrical specimens
Tensile tests of notched cylindrical specimens were carried out to map the pressure
dependence in the case of axisymmetric tension. Three various geometries were used, with
three specimens for each geometry, from the shallow notch to the sharpest one. These 3
specimens had the same dimensions, the same diameter in the minimum cross-sectional
area of the notch, except for the notch radius (Figure 5.19). Again, testing machine Zwick
Z250 Allround-Line, tCII, and extensometer Zwick multiXtens were used for tensile testing
under the displacement control. The test speed was 1mm/min during whole test to ensure
the quasi-static loading. The gauge length was 30mm in all cases.

(a)

(c)

(b)

Figure 5.19: Detailed drawing of notched cylindrical specimen: (a) with d0 = 9mm,
R = 13mm; (b) with d0 = 9mm, R = 6.5mm; (c) with d0 = 9mm, R = 4mm.
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Figure 5.20: Force–displacement responses of notched round bars: (a) for 3 tensile
tests per the notch radius; (b) for the average ones distinguished via the notch radius.
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Force–displacement curves together with the average ones are depicted in Figure 5.20
where the notch sensitivity may be clearly seen.

The post-mortem specimens of all three geometries are shown in Figure 5.21.

Figure 5.21: Post-mortem notched cylindrical specimens: (a) with d0 = 9mm,
R = 13mm; (b) with d0 = 9mm, R = 6.5mm; (c) with d0 = 9mm, R = 4mm.

5.6 Tensile tests of notched tubular specimens

Figure 5.22: Detailed drawing of notched tubular specimen for tensile tests.
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Tensile tests of notched tubular specimens were conducted in order to describe the plane
strain condition. A detailed drawing of notched tubular specimen is given in Figure 5.22.

Zwick Z250 Allround-Line, tCII, and extensometer Zwick multiXtens were used for
tensile testing under the displacement control as well as in previous tensile tests. To ensure
the quasi-static loading, the test speed was 1mm/min during whole test. The gauge length
was 30mm.

Two universal joints7 were employed between upper and lower grips in order to adjust
the perfect alignment of the specimen, with 1mm thick wall to minimize the loading
imperfections. It was in contrast with previous tensile tests, where only one universal joint
was used.

Force–displacement curves together with the average ones are depicted in Figure 5.23.
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Figure 5.23: Force–displacement: (a) responses for 3 tensile tests of notched tubular
specimens; (b) response averaged of all 3 tensile tests of notched tubular specimen.

The post-mortem specimens with present slant fracture are shown in Figure 5.24.

Figure 5.24: Post-mortem notched tubular specimens after tensile tests.

This geometry was alternatively designed instead of flat plate to reliably describe the
plane strain under high stress triaxiality, as mentioned in the end of Section 5.2.

7 Also called Cardan joints.
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5.7 Torsion tests of notched cylindrical specimens
Torsion tests were conducted in order to describe the pure shear condition by using notched
tubular specimen as depicted in Figure 5.25. Two different diameters in the hole (8 and
8.5mm) were drilled in order to minimize introducing residual stresses into the thin wall
in the finalizing of the hole surface. The tubular specimen was chosen despite there being
realized torsion tests of cylindrical specimens [171]. In the case of tube, the fracture
initiation may be aligned with the final separation. This is problematic in the case of the
cylindrical specimen, where there is almost no straining close to the axis and the initiation
moment does not have to be recognised from the torque–twist angle response.

Figure 5.25: Detailed drawing of notched tubular specimen for torsion tests.
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Figure 5.26: Torque–twist angle: (a) curves for 3 torsion tests of notched tubular
specimens; (b) curve averaged of all 3 torsion tests of notched tubular specimens.
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MTS 809 Axial/Torsional Testing System was used. The test speed was 0.001 rad/s.
The twist angle was taken from 646 Hydraulic Collet Grip. It might be better to employ
some gauge such as MTS 632.68F-08 High-Temperature Axial/Torsional Extensometer
with 25mm gauge length but in this case, there was unfortunately not enough space to
mount it on the specimen.

Torque–twist angle responses together with the average one are depicted in Figure 5.26.
Post-mortem specimens are shown in Figure 5.27.

Figure 5.27: Post-mortem notched tubular specimens after torsion tests.

5.8 Upsetting tests of cylindrical specimens

Five upsetting tests of the cylindrical specimen were carried out according to the detailed
drawing in Figure 5.28. The dimensions were designed so that the height to diameter ratio
was 1.5 to prevent problems with small strains during loading.

Figure 5.28: Detailed drawing of the cylinder for upsetting tests.

Instron 8801 testing system with dynamic load cell Instron Dynacell ±100 kN and
Instron Clip-On strain gauge extensometer were used. During the experiments, the test
speed was 1mm/min.

The force–displacement responses together with the averaged one are depicted in
Figure 5.29.
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Figure 5.29: Force–displacement: (a) curves for 5 cylindrical specimens loaded in
compression; (b) curve averaged of all 5 upsetting tests of cylindrical specimens.

The contact surfaces were lubricated with the molybdenum disulfide (MoS2) to eliminate
the friction. Minor barrelling effect of cylinders can be observed (Figure 5.30) which suggests
that there was some amount of friction. The correct value of the friction coefficient had to
be iteratively found by numerical simulations of the test, as described further.

Figure 5.30: Cracked cylindrical specimens after upsetting tests.
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6 Stress and strain relationship

For further work, it is necessary to determine the curve which characterizes the material
behaviour and gives the relationship between deformation and stress in a plastically
deforming solid. Some other basic mechanical properties of AA 2024-T351 were estimated
except for the stress–strain curve. Matrix material was assumed to follow von Mises
yield criterion obeying associative flow rule8, no matter which plasticity is used further.
Nonetheless, it should be assured that the conditions for tensile test of smooth cylindrical
specimen are kept the same in further considerations9. The isotropic hardening (Figure 6.1),
which is not capable to take into account the Bauschinger effect [5], was adopted.

work (or strain)
hardening

increment
stress

st
re

ss

total

plastic elastic

σ2

σ1σ1

σ2

σ3

strain

yield
stress

(a) (b)

plastic work

E

initial yield surface

subsequent yield surface

subsequent yield surface

initial yield surface

Figure 6.1: Isotropic hardening of von Mises yield surface at Haigh–Westergaard
stress space: (a) in three dimensions (σ1, σ2, σ3); (b) in two dimensions (σ1, σ2) [182].

The stress–strain relationship is also important in calibration of fracture model. The
problem may be solved by using some artificial neural network systems with learning
algorithms, due to the coupling effect in scope of continuum damage mechanics, but at
this moment it is still too time consuming [189].

8 Also called associated flow rule.
9 Including the Lode dependence in plasticity.



54 6 Stress and strain relationship

There have been many studies developed for estimating the stress–strain curve [35,
106, 164]. First of all, the average force–displacement curve was used for calculating the
engineering stress–strain curve (Figure 6.3) through

s =
F

S0

and e =
∆l

l0
, (6.1)

where s is the engineering stress, F is the force, S0 is the initial cross-sectional area, e is
the engineering strain, ∆l is the elongation10 and l0 is the gauge length.

Young’s modulus was estimated 72.5GPa using the engineering curve from which the
true stress–strain curve (Figure 6.3) was calculated until the ultimate tensile strength by

σ = s(1 + e) and ε = ln(1 + e), (6.2)

where σ is the true stress and ε is the true strain.
The density was estimated as ρ = 2770 kg/m3 by using measured dimensions and

weight of the reference block of material.
Poisson’s ratio was estimated by using density, Young’s modulus and wave velocity. The

velocity was measured by using Ultrasonic thickness gauge OLYMPUS 38DL PLUS with
contact transducer M110 of 5 MHz. The average value from 5 measuring was v = 6347m/s.
The wave velocity can be expressed as [43]

v =

√
E

ρ

1− ν
(1 + ν)(1− 2ν)

. (6.3)

Poisson’s ratio was estimated as ν = 0.34 after expressing it from previous equation and
solving it within Maple 17.

l0/2l0

d0/2− 0.001

d0/2prescribed half displace-
ments from extensometer

constrained vertical
degrees of freedom

axis of axial symmetry

Figure 6.2: Analysis domain and dimensions of tensile coupon for computations.

10 Also referred as displacement in figures in the present thesis.
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Then, the tensile test was numerically simulated within the implicit code of Abaqus.
Simplified geometry with boundary conditions is depicted in Figure 6.2. Diameter d0 was
considered 5.91mm in this particular case, because there was unfortunately not respected
requirements on tolerance and it could have played a considerable role. Mapped mesh was
created using a 4-node bilinear axisymmetric quadrilateral elements CAX4R with reduced
integration, hourglass control and characteristic size of 0.075mm. Correct deformation of
the specimen was ensured by introducing slight imperfection in the bottom (Figure 6.2).

Hereinafter, the mesh size was based on the study of mesh dependence (convergence)
carried out earlier in scope of ductile fracture [135, 214, 224, 233] and considering the
available hardware11 as well.

The extrapolated curve of equivalent stress against equivalent plastic strain12 was
determined using the true curve in multi-linear form by trial and error method, on the
basis of comparison of force–displacement curves from experiment and computation until
the satisfying match was reached (Figure 6.5).

Then, Swift hardening law was fitted to obtained flow curve by using nonlinear least
square method within the script in MATLAB R2012b. The law takes form [24]

σ̄ = K(ε0 + ε̄p)n, (6.4)

where ε0 is the reference strain. There has been an amount of stress–strain relationships
proposed, as by Hollomon [15] or Voce [18]. Swift hardening rule was chosen due to
containing both the strength coefficient and strain hardening exponent. Furthermore, the
hardening law can be fitted within the plastic deformations and directly used in numerical
simulations requiring the plastic response separately from the elastic one. Fitted material
constants of Swift hardening law are listed in Table 6.1 and the curve plotted with the use
of these constants is depicted in Figure 6.4. It should be noted that the strain hardening
exponent is close to the true strain at ultimate tensile strength [108] which was 0.1642.

Table 6.1: Material constants of Swift hardening law for AA 2024-T351.

Strength Reference Strain hardening
coefficient [MPa] strain [–] exponent [–]

788.60 0.0031 0.1888

Force–displacement curve obtained from numerical simulation by using the fitted flow
curve and the one by using Swift hardening law are compared to the experimentally
obtained one in Figure 6.5.

11 32GB of random access memory and Intel R© CoreTM i7-3770 processor with 3.4GHz frequency.
12 Also called the flow curve.
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7 Damage accumulation

Miner [17] proposed linear cumulative damage rule on the basis of Palmgren hypotheses
[10] of fatigue under variable amplitude loading, nowadays the so-called Palmgren–Miner
rule. Later on, nonlinear damage accumulation was proposed by Marco and Starkey [27],
double linear damage rule by Manson [37], or double damage curve approach by Manson
and Halford [67], depicted in Figure 7.1a.
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Figure 7.1: Damage accumulation in: (a) fatigue [86]; (b) ductile fracture.

Similar approach may be found in ductile fracture related problems. The damage had
been assumed as linear function of equivalent plastic strain in the beginnings and it has
been considered as nonlinear in the course of time. The damage accumulation, stated as
acceleration process analogically to approach of Marco and Starkey [27], which degenerates
into linear function when m = 1 is adopted, can be expressed as [120]

D =

(
ε̄p

ε̄f

)m
. (7.1)

The greater the damage, the more the material weakens. Damage accumulation with
material weakening is illustrated in Figure 7.1b. The case study of using different damage
accumulation is given in Appendix B.
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7.1 Stepwise experiments
Xue [120] proposed to derive the damage exponent using stepwise experiments as later
used by Basu and Benzegra [230] for studies of the loading path dependence. Two tensile
tests of cylindrical specimens (Figure 7.2a) with different stress triaxiality are run until
fracture. Then, a larger specimen is pulled onto prescribed deformation, less than the
one needed for fracture, the test is interrupted and the deformed specimen is machined
into a smaller specimen, inducing different stress triaxiality under tensile loading so that
the loading path is changed (Figure 7.2b). Finally, the smaller specimen is pulled until
fracture.

2

(a)

ε̄p

ε̄f,2

ε̄f,12

ε̄f,1

η2 ηη1

ε̄p,0

(b)

1

Figure 7.2: Stepwise experiment: (a) specimens; (b) nonproportional loading path.

Then, the damage exponent can be determined by integrating the damage along the
nonproportional loading path by using variables defined by Figure 7.2b as

D =

(
ε̄p,0

ε̄f,1

)m
+

(
ε̄f,12

ε̄f,2

)m
−
(
ε̄p,0

ε̄f,2

)m
= 1. (7.2)

Xue [120] estimated the damage exponent m = 2 on the basis of Bridgman’s results [35]
who changed the stress triaxiality not by means of specimen’s geometry but by elevated
hydrostatic pressure in extensive experimental campaign.

Stepwise testing was conducted within the present study as well. A notched cylindrical
specimen with d0 = 9mm and R = 4mm depicted in Figure 5.19c was used for the first
step. A smooth cylindrical specimen with certain imperfection (Figure 7.3) was used in the
second step. The initial imperfection was used in order to ensure the fracture occurrence
in the locus where the root of the notch of previous specimen was.

It should be noted that the evaluation of such experiments yields some error due to
using the total equivalent strain instead of a plastic one. The elastic part of total strain
should be separated. Strains ε̄p,0, ε̄f,1, ε̄f,2 and ε̄f,12 are rather total values than plastic ones
and also uniaxial, because those were calculated from necking of the specimen. Assuming
the volume constancy, total equivalent strain may be related to actual and initial diameter
of the round bar, d and d0, respectively, according to Figure 5.8a through

ε̄ = 2 ln
d0

d
. (7.3)
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Figure 7.3: Smooth cylindrical specimen with initial geometrical imperfection.

If uniform equivalent strain over the minimum cross-sectional area of the neck is assumed,
the fracture strain can be, using df as the diameter after tensile test, expressed as

ε̄f = 2 ln
d0

df
. (7.4)

The experiments were conducted in two levels of prestrain ε̄p,0. There were used always
3 specimens for each level to provide higher reliability. The damage exponent estimations
are summarized in Table 7.1.

Table 7.1: Damage exponents for AA 2024-T351.

ε̄p,0 [–] ε̄f,1 [–] ε̄f,2 [–] ε̄f,12 [–] m [–]

0.055
0.163 0.251

0.239 1.72
0.100 0.244 4.13

There is a huge discrepancy in results so the sensitivity analysis follows. The case of
ε̄p,0 = 0.100 was chosen (see Table 7.1). Then, the influence of ε̄p,0 and ε̄f,12 on the damage
exponent was studied.

The value of prestrain ε̄p,0 may be influenced by choice. Therefore it is desirable to
keep it low compared to ε̄f,1 so as to maintain ε̄f,12 in reasonable range where the damage
exponent does not change dramatically, such as in case when the ε̄f,12 approaches ε̄f,2
(Figure 7.4).

Marini et al. [69] and Tai [74] also conducted extensive stepwise testing. The damage
exponent calculations are given in Appendix C. Anyway, it is apparent that this approach is
highly unstable and sensitive to input data. Therefore, it is not convenient for the damage
exponent calibration in the present form and another technique should be introduced, as
described further.
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Figure 7.4: Sensitivity analysis of damage exponent on: (a) ε̄p,0;(b) ε̄f,12.

7.2 Cyclic loading
Xue [126] presented another approach of estimating the damage exponent on the basis
of low cycle fatigue, where the plastic strain is responsible for the damage as well13 and
obtained m = 1.73 by using the curve of plastic strain amplitude against number of cycles
to fracture of AA 2024-T614 [31]. Xue [134] also obtained m = 2.04 for the same material
and experimental data set in the publication where a unified expression for low cycle
and ultra low cycle fatigue was proposed, but over a different range of number of cycles
to fracture. In addition, there has been apparent endeavour to find a smooth transition
between the monotonic and low cycle loading in ultra low cycle fatigue15 [210].

The so-called Manson–Coffin relationship reads [25, 26]

εp,a = ε′fN
c
f , (7.5)

where εp,a is the plastic strain amplitude, ε′f is the fatigue ductility coefficient, Nf is
number of cycles to fracture and c is the fatigue ductility exponent.

The experimental data after Coffin and Tavernelli [31] were also fitted by Manson–Coffin
relationship here. Nonlinear least square method with Levenberg–Marquardt algorithm
within MATLAB graphical user interface was used. The result is plotted in Figure 7.5 for
ε′f = 0.289 and c = −0.553. Those values are comparable to results presented by Osgood
for AA 2024-T351, ε′f = 0.22 and c = −0.59 [61]. It should be noted that the value of the
fatigue ductility coefficient is close to the fracture strain for monotonic tension [36, 107]
which was 0.2346 in numerical simulation conducted in Chapter 6. Finally, Xue [126]
derived the relationship between damage exponent and fatigue ductility coefficient as

m = −1

c
. (7.6)

Then, the damage exponent is m = 1.81 for c = −0.553 by using the previous equation.

13 As independently investigated by Manson [25] and Coffin [26] in scope of thermal fatigue.
14 Solution heat treated, then artificially aged.
15 Also called extremely low cycle fatigue.
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Figure 7.5: Fit to experiments of 2024-T6 after Coffin and Tavernelli [31].

Another method of the damage exponent estimation is to follow the Young’s modulus
degradation. When Ẽ is actual degraded Young’s modulus, the concept of effective stress
together with strain equivalence hypothesis give [65]

D = 1− Ẽ

E
. (7.7)

Celentano and Chaboche [127] conducted the measurement up to fracture on two steels
which was later done by Tsiloufas and Plaut [180] as well. Ravindran [155] measured
the Young’s modulus degradation by means of cyclic test on aluminium alloy 2024-T316.
Displacements were controlled by cross-head of Instron 8032 servohydraulic fatigue testing
machine and deformations were measured by Dantec Dynamics Q-400 DIC (Digital Image
Correlation) System. Young’s modulus of elasticity gradually decreased from 67.8GPa to
the value of 43.9MPa. It is not possible to determine the ultimate tensile strength for
further examination of Ravindran’s results due to direct measuring of true strain.

Instead, loading/unloading testing was carried out in order to study the damage
evolution here. Three specimens with geometry depicted in Figure 5.10 were loaded in
tension and after each 2% of total engineering strain unloaded and then loaded again.
Testing machine Zwick Z250 Allround-Line, tCII, and Zwick multiXtens extensometer
were used for the testing with the test speed 1mm/min. Representative history of loading
is given in Figure 7.6a. Values of true plastic strain were subtracted from the curves in
Figure 7.6b–d at the moment when the specimens were fully unloaded. Young’s moduli
were estimated by using slopes produced by unloading and repetitive loading and plotted
against values of true plastic strain in Figure 7.7a. Values of damage parameter were
calculated by using Equation 7.7 and plotted against the ratio of true plastic strain
to fracture strain in Figure 7.7b. The fracture strain 0.2346 obtained from numerical
simulation conducted in Chapter 6 was used. This technique is applicable only until the
ultimate tensile strength. Beyond this limit the variables are integrated along the gauge
length whereas local values should have been needed to measure during necking.

16 Solution heat treated, then cold worked.
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Figure 7.6: Loading/unloading in tension: (a) history of loading in time for specimen
number 3; (b) stress–strain response for specimen number 1; (c) stress–strain response
for specimen number 2; (d) stress–strain response for specimen number 3.

Experimentally obtained results exhibit linear trend and therefore the power-based
model in Equation 7.1 is not capable to fit the data properly. The double damage curve
approach introduced by Manson and Halford [67] for cumulative fatigue damage was
revisited and applied to ductile fracture here. The original relationship for fatigue damage
reads

Df =
0.35

(
Nr
Nf

)0.25

1− 0.65
(
Nr
Nf

)0.25

N

Nf

+

1−
0.35

(
Nr
Nf

)0.25

1− 0.65
(
Nr
Nf

)0.25

( N

Nf

)(
Nf
Nr

)0.40

, (7.8)

where Nr is the reference life coefficient and N is the number of cycles.
The first fraction in previous equation, which is repeated before the second term,

represents the slope of the first damage accumulation line in the double linear damage
rule and it is replaced by first material constant q1. The second material constant q2 is
the exponent of the second term, so the reference life coefficient is entirely omitted.
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Replacing the ratio of number of cycles to the number of cycles to failure by the ratio of
equivalent plastic strain to fracture strain gives

Ds = q1
ε̄p

ε̄f
+ (1− q1)

(
ε̄p

ε̄f

)q2
. (7.9)
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Figure 7.7: Material degradation expressed by: (a) measured Young’s modulus;
(b) calculated damage parameter against ratio of true plastic strain to fracture strain.

First of all, the slope of initial linear part of damage accumulation was estimated as
q1 = 0.54 by using the trial and error method. Then, the second material constant was
estimated as q2 = 10 by using the trial and error method again, in order to reasonably
extrapolate the damage accumulation to failure (Figure 7.7b).
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Figure 7.8: Voids: (a) in dual phase steel just before fracture; (b) in AISI 316L
austenitic steel just before fracture; (c) per volume against ratio of true and fracture
strain for AISI 316L by using 3D X-ray tomography (after Fabrègue et al. [198]).
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The presented results are consistent with those obtained by 3D X-ray tomography in
scope of micromechanics where the porosity, or void volume fraction and the void density,
is related to ductile damage [170, 192, 198].

There are depicted voids in specimens in Figure 7.8a–b and void density against ratio
of true strain to fracture strain in Figure 7.8c. It is apparent that the damage does not
accumulate linearly but the damage rate is gradually increasing.

Extending the measurement beyond the onset of plastic instability would have been
possible by employing the DIC or ultrasound, but it seems to be far more complicated.

Nevertheless, it is certain that the process of damage accumulation needs further
investigation, after the plastic instability in particular.

It should be noted that there was also some anelastic behaviour observed in load-
ing/unloading testing, as depicted in Figure 7.9, due to reversible motion of dislocations
in elastic range.
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Figure 7.9: Anelastic behaviour in loading/unloading testing of specimen 3.

Nevertheless, the anelastic behaviour will not be discussed further because it is negligible
in the present point of view.
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8 Material weakening

Material weakening is responsible for irreversible microstructural deterioration. It is also
governing the coupling of plasticity with fracture model. Basing on Equation 4.44, of
which the effect is depicted in Figure 7.1b, and laying the flow curve of matrix equal to
conventional flow curve17, the yield condition may be written as

Φ = σ̄ − (1−Ds)σY = σ̄ − (1−Dβ)σY = 0, (8.1)

where the damage parameter from Equation 7.9 can be written in a rate form as

Ḋs = q1

˙̄εp

ε̄f
+ q2(1− q1)

(
ε̄p

ε̄f

)q2−1 ˙̄εp

ε̄f
. (8.2)

The influence of calibrated double damage curve approach together with simple coupling
(β = 1) is depicted in Figure 8.1 for a tension of the smooth cylindrical specimen until
fracture estimated in Chapter 6. The weakening exponent was set as β = 3 in order to
keep the material behaviour unchanged until the proximity of final rupture, among others,
to allow to realize the calibration as proposed further. The rapid material deterioration in
the end of damage process correspondents to experimental observations and correlates to
development of macrocracks in material, leading to violating the structural integrity.

However, setting the weakening exponent β = 3 itself would led in underestimating the
experimentally obtained force–displacement response. Therefore, there was introduced
fracture strain correction coefficient C raising the actual fracture strain. It was calibrated
as C = 0.12 by the trial and error method until the satisfying match in force–displacement
curve was reached (Figure 8.2). So the increase of fracture strain in case of tension of
the smooth cylindrical specimen is approximately 51%. Moreover, the final part beyond
the ultimate tensile strength exhibited better performance when compared to simulation
with no damage accumulation or material weakening (Figure 6.5). Finally, the damage
evolution can be rewritten in the final integral form as

Ds =

∫ ε̂f

0

q1
dε̄p

C + ε̄f
+

∫ ε̂f

0

q2(1− q1)

(
ε̄p

C + ε̄f

)q2−1 dε̄p

C + ε̄f
. (8.3)

17 The conventional flow curve is in yield function in Equation 8.1 represented by σY which is not used
for description of stress and strain relation in Equation 6.4 where there is σ̄, which might be confusing.
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The simulation of tensile test was performed the same as in Chapter 6 but in explicit
code of Abaqus. VUMAT was used for incorporating the double damage curve (damage
accumulation) and material weakening.
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Figure 8.1: Illustration of material behaviour with incorporation the damage accu-
mulation and material weakening in stress–strain curves of smooth round specimen.
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Figure 8.2: Force–displacement responses of the smooth round specimen after incor-
poration of the damage accumulation, material weakening and correction coefficient.

Gruben et al. [190] used β = 6 and assumed that the plastic work (the area under
stress–strain curve) has to be same for coupled and uncoupled approach. Then, the fracture
strain was increased by 13%. Haltom et al. [200] compared experimentally measured
strains by using a grid to strains measured on the grain level. It was found that grain
based strains were between 25% and 100% higher than those measured by using grid.

Basically, the proposed approach combines advantages of both uncoupled and coupled
ductile fracture models yielding in the approach similar to partially coupled models. Using
the simplicity of calibration procedure of uncoupled models and complexity of coupled
ones, it gives powerful tool for modelling the ductile fracture as illustrated in Chapter 11.



9 Plasticity 67

9 Plasticity

All fracture tests were simulated with the use of von Mises yield criterion using the implicit
code, as described in Chapter 6. But it was found that force–displacement responses
do not match the experiments, so it was necessary to employ more complex plasticity
to better describe the material behaviour. It was important because results of these
simulations were direct inputs into the ductile fracture model calibration procedure and
because the plasticity directly influences the damage accumulation. The fracture strain
may be determined directly by DIC during the experiments in the case of specimens
where the crack initiation is on the surface [158]. The DIC was not employed because
not all specimens have the fracture that initiates on the surface. Instead, the critical
displacement or twist angle were used in order to indicate the crack initiation by means of
sudden decrease of loading. It was assumed that the crack initiation was followed by rapid
crack growth until total separation. Therefore, those phenomena might be considered as
simultaneous. Then, the fracture strain can be obtained from numerical computations
together with evolutions of state variables from the crack initiation loci. This might be
determined on the basis of experimental observation or fractography.

This work does not attempt to give an extensive description of developed yield criteria
but only a brief overview. In the beginnings, Tresca [2] proposed J2 and J3 dependent
plasticity having hexagonal shaped yield locus in a deviatoric plane. Mohr [6] assumed that
the critical shear stress depends also on the normal stress applied on the shearing plane
and not only on maximum shear stress, and generalized Coulomb friction law [1] to form of
a conical yield surface with irregular hexagon shaped yield locus in a deviatoric plane. The
so-called von Mises yield criterion, which has a cylindrical shape in Haigh–Westergaard
space, was first presented by Huber [7] on the basis of shear energy18. It was proposed
by von Mises [8] that yielding occurs as J2 reaches a critical value, hence the frequently
used designation J2 plasticity. Later, Hencky [9] interpreted it as a critical value of elastic
energy of distortion. Drucker and Prager [23] presented I1 and J2 dependent plasticity
having a conical yield surface in scope of soil mechanics. Later, Hosford [45] developed non-
quadratic yield function. Brünig et al. [93] proposed I1, J2 and J3 dependent plasticity
with non-associated flow rule. Besides the fracture model, Bai and Wierzbicki [135]
introduced plasticity dependent on all three stress invariants with deviatoric associated
flow rule, which means that the direction of plastic flow is normal to the yield surface
only in a deviatoric plane. Last but not least, Gao et al. [160] presented the plasticity
dependent on all three stress invariants as well, but with non-associated flow rule.

18 There is actually evidence that Maxwell communicated the idea in a letter to Kelvin in 1856 [80].
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The J2 and J3 dependent plasticity proposed by Kroon and Faleskog [206] was adopted
as it preserves the behaviour of uniaxial axisymmetric tension19 the same as in J2 plasticity
which was used for calibration of flow curve and material weakening, so the assumption
from Chapter 6 was satisfied. It is also able to describe strong Lode dependence like Tresca
yield criterion. Moreover, the yield function is smooth so no singular points on the yield
surface have to be treated although it is possible [56, 140].

The yield function with weakening reads

Φ = σ̄ −
(
1−Dβ

)
σY k, (9.1)

where k is the yield correction function having the form

k = 1− γω
(

1 + ω−a0

ω−a + ω−a0

)a
, (9.2)

where γ, ω0 and a are three material constants and ω is the normalized Lode parameter
[141]

ω = 1− ξ2 = sin2(3θL). (9.3)

The Drucker’s postulate [19, 22, 30] defining the stable material was assumed. It
demands for positive change in plastic work for any quasi-cycle of load

dσ : dεp ≥ 0, (9.4)

which implies that the yield surface must be convex. It also demands for the normality
of the flow rule as described further. Nevertheless, there are some cases when the metal
plasticity was assumed as non-convex [167, 234].

The convexity might be verified on the basis of curvature in polar coordinates

κ =
%2 + 2

(
d%
dθL

)2

− % d2%
dθ2L(

%2 +
(

d%
dθL

)2
) 3

2

, (9.5)

where % is the polar coordinate of the yield surface in the deviatoric plane given as

% =

√
2

3
σY k. (9.6)

Individual derivatives with respect to Lode angle are, respectively, as follows

dk
dθL

= −3γ

(
1 + ω−a0

)a
ω−a0(

ω−a + ω−a0

)a+1 sin(6θL), (9.7)

d2k

dθ2
L

= 9γ

(
1 + ω−a0

)a
ω−a0(

ω−a + ω−a0

)a+1

[
a+ 1

a

ω−a

ω−a + ω−a0

4(1− ω) + 2(2ω − 1)

]
. (9.8)

Material constants of the plasticity were adjusted so as the yield surface was convex
(κ ≥ 0) and exhibited Tresca-like behaviour, yet with round corners. The curvature
acquiring positive values is plotted in Figure 9.1 for constants given in Table 9.1. The yield
surface in the deviatoric plane is depicted for the calibrated set of constants in Figure 9.2.

19 And also the axisymmetric compression which was captured by von Mises plasticity well too.
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Table 9.1: Material constants of Kroon–Faleskog plasticity for AA 2024-T351.

γ [–] ω0 [–] a [–]

0.123 0.18 4

0 π/12 π/6 π/4 π/3
0

0.1

0.2

0.3

0.4

0.5

Lode angle [rad]

C
u

rv
a
tu

re
[M

P
a
−
1
]

Figure 9.1: Calibrated plasticity curvature of the deviatoric plane first sextant.
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Figure 9.2: Initial yield loci at π plane for AA 2024-T351.
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The additive strain decomposition was used for finite deformation kinematics. It can
be written in the rate form as

ε̇ = ε̇e + ε̇p, (9.9)

where ε is the true strain tensor and εe is the elastic strain tensor. Then, the Cauchy
stress tensor can be obtained as

σ = D : εe = D : (ε− εp), (9.10)

where D is the elastic stiffness tensor.
Saint-Venant [3] suggested that principal axes of strain increment are coincident with

axes of principal stresses. Lévy [4] proposed general relationship between the stress and
strain increment which was independently developed also by von Mises [8] as

˙̄ε = λ̇S, (9.11)

where λ is the plastic multiplier. Unfortunately, these equations are applicable only to
material in which elastic strains are zero. Prandtl [12] made extension of Lévy–Mises
equations for plane problems which was carried to complete generality by Reuss [14] as20

˙̄εp = λ̇S. (9.12)

When the associative flow rule or the normality rule is adopted, the yield function is equal
to flow potential. Then, following the method of Lagrange gives

˙̄εp = λ̇
∂Φ

∂σ
, (9.13)

where the plastic multiplier (or Lagrange multiplier) is determined on the basis of consis-
tency condition21 Φ̇ = 0. The loading/unloading conditions defining plastic loading and
elastic unloading, also known as complementary conditions, may be written in Kuhn–Tucker
[21] form as follows

Φ ≤ 0, λ̇ ≥ 0, λ̇Φ = 0. (9.14)

The direction of plastic flow is given by an outer normal to the yield surface as

ñ =
∂Φ

∂σ
=

3

2

S

σ̄
− 3

dk
dξ

k

(
2

3

2

S

σ̄
· 3

2

S

σ̄
− I− ξ 3

2

S

σ̄

)
, (9.15)

which naturally ensures that the stress increment is normal to the yield surface (Figure 9.3a).
The differential term in previous equation is following

dk

dξ
= 2γ

(
1 + ω−a0

)p
ω−a0(

ω−a + ω−a0

)a+1 ξ. (9.16)

20 Those are also known as Prandtl–Reuss equations.
21 Also known as Prager’s consistency condition.
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The loading and unloading criteria are using consistency condition summarized in
Table 9.2 [75, 80]. This is also graphically interpreted in Figure 9.3a [75, 80].

Table 9.2: The loading and unloading criteria [75, 80].

Yield condition Stress increment State

Φ < 0
Initial elastic loading

or unloading

Φ = 0 ñ : dσ < 0
Elastic unloading after

previous yielding
Φ = 0 ñ : dσ = 0 Neutral loading
Φ = 0 ñ : dσ > 0 Plastic loading
Φ > 0 Inadmissible

. .

elastic predictor

plastic
corrector

σ2

σ1σ1

σ2

stress
increment

ñ

dσ

dσ

dσ

(a) (b)

Figure 9.3: The yield surface with schematically illustrated: (a) neutral and plastic
loading and elastic unloading [75, 80]; (b) radial return mapping algorithm [177].

Finally, the plastic multiplier of the J2 and J3 dependent plasticity is

λ̇ =

√
2
3
ε̇p : ε̇p√

1 + 9ω

(
dk
dξ

k

)2
. (9.17)

It simplifies to J2 theory in case of axisymmetry (ω = 0) and generalized shear (ω = 1)
because the denominator of Equation 9.17 goes to unity in such cases.

The time integration procedure was used together with radial return mapping, which
satisfies the Drucker’s postulate (Figure 9.3b) [177], realized according to algorithm
described in [120] and implemented in Abaqus time integration scheme using VUMAT.

Simulations of all fracture tests had to be done in order to gain state variables needed in
the fracture model calibration. These simulations described in the following sections were
done by using the explicit code without any influence of the damage accumulation or the
material weakening. That is why the weakening effect was set up to affect the properties
only in the point close to fracture, so the conditions were similar to the uncoupled approach.
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9.1 Simulation of tension of smooth cylindrical speci-

men

Simulation of the tensile test was performed the same as in Chapters 6 and 8. There is
force–displacement response from computation compared to experiment in Figure 9.4a.
The von Mises plasticity did not differ in comparison to Kroon–Faleskog one as expected.
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Figure 9.4: Tension of smooth specimen: (a) force–displacement responses of different
plasticities compared to experiment; (b) evolution of the equivalent plastic strain.

Rapid growth of equivalent plastic strain rate is evident after the necking (Figure 9.4b),
which was minor in case of smooth specimen. Because of this gradient, results are not
reliable therefore the specimen was omitted from the ductile fracture calibration.

9.2 Simulations of tension of notched cylindrical speci-

mens

All simulations were replicated in the same way as in Chapters 6 and 8, using CAX4R
4-node bilinear axisymmetric quadrilateral elements with characteristic size of 0.075mm,
reduced integration and hourglass control. Boundary conditions were also analogical.

Experimentally obtained force–displacement responses are compared to computationally
obtained ones in Figure 9.5a for both von Mises and Kroon–Faleskog plasticities. It can
be clearly seen that there is almost no difference between two used plasticities, as the
normalized third invariants of the deviatoric stress tensor keep close to unity representing
the axisymmetric stress state on axes of specimens and due to formulation of Kroon–
Faleskog plasticity.

The loci for obtaining state variables were at axes in the notch region where the cracks
initiated. These variables were chosen to be stress triaxiality and normalized third invariant
of deviatoric stress tensor (Figure 9.5b). Hereinafter, history of those variables are not
given for von Mises plasticity but for Kroon–Faleskog one only.
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Figure 9.5: Tensile notched cylindrical specimens: (a) force–displacement responses
from experiments and simulations; (b) evolution of stress triaxialities and normalized
Lode angles during loading obtained by using Kroon–Faleskog plasticity.

It is obvious that introducing the pressure dependence into the plasticity would lead
to improvement in force–displacement responses of tensile notched cylindrical specimens.
It would also improve the responses of plane strain tests while the Lode dependence
would have to be modified as well. On the other hand, it would definitely worsen the
force–displacement response of upsetting test in this particular case because this plasticity
assumes the same behaviour in tension and compression.

9.3 Simulation of tension of notched tubular specimen
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Figure 9.6: Results for tensile notched tubular specimen: (a) force–displacement
responses from simulations and experiment; (b) evolution of stress triaxiality and
normalized Lode angle during loading obtained by using Kroon–Faleskog plasticity.
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This simulation was performed basically the same as in previous cases of notched
cylindrical specimens. The axisymmetric geometry was modelled as the half of specimen
with through hole. At first, this is the worse case scenario than the part with full solid
body and secondly, a fewer number of elements saved computational time.

Force–displacement responses from computations and experiment are compared in
Figure 9.6a.

The locus for obtaining state variables (Figure 9.6b) was approximately in the middle
of the wall thickness at the notch region. It was found exactly as a locus where normalized
Lode angle was close to zero and the stress triaxiality was maximal. The crack was expected
to initiate there, because there is a loss of ductility with increasing stress triaxiality [35, 41]
and also when moving from axial symmetry to plane strain [111, 184]. This is consistent
with results of tension tests of other tubular specimens in literature [208, 221].

9.4 Simulation of torsion test

This is the only case when the computational models were not same for the simulations
concerning von Mises and Kroon–Faleskog plasticities. An axisymmetric case with twist
was used in implicit code, while a three dimensional model was used in case of explicit.

The axisymmetric model including twist for simulation concerning von Mises plasticity
led to huge time saving. It was meshed with a 4-node generalized bilinear axisymmetric
quadrilateral CGAX4R elements with reduced integration, hourglass control, twist and
size of 0.075mm.

The three dimensional model was discretized with C3D8R 8-node linear brick elements
with reduced integration and hourglass control. These had characteristic size of 0.075mm
in the region of the notch and 0.2mm in the upper tubular part.
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Figure 9.7: Results for torsional notched tubular specimen: (a) torque–twist angle
responses from simulations and experiment; (b) evolution of stress triaxiality and
normalized Lode angle during loading obtained by using Kroon–Faleskog plasticity.
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The geometry was modelled as the half with through hole for the same reasons as in
previous case regarding tension of notched tubular specimen. The height of the model was
only 5mm because no extensometer was employed. Additionally, the specimen was designed
so as the whole straining took place only in the region of the notch. Therefore, there was
no need to model larger section of the upper part which also saved some computational
time, especially in the case of three dimensional model. The twist was introduced through
the reference point on the axis to which the degrees of freedom regarding the twist of
upper surface were coupled. The axial displacement and twist of bottom surface were
constrained.

Semi-automatic mass scaling was deployed to target time increment of 1 · 10−7 s to save
computational time. The time increment for most critical elements was approximately
2.7 · 10−9 s when the mass scaling was not accounted for. The kinetic energy was compared
to the internal one in order to ensure there were negligible dynamic effects.

The torque–twist angle responses from simulations compared to experimental obser-
vation are depicted in Figure 9.7a showing very good conformity. It is obvious that the
stiffness of measuring system played the role. On the other hand, it is supposed that it
did not influence results much, considering there were other undetected uncertainties.

The locus for obtaining state variables (Figure 9.7b) was naturally on the outer surface
in the smallest cross-section of the notch. Note the scale of horizontal axis which suggests
that the loading was almost perfectly proportional.

9.5 Simulation of upsetting test

The simulation of upsetting test was performed as an axisymmetric case, again. Specimen
was discretized using CAX4R 4-node bilinear axisymmetric quadrilateral 0.075mm sized
elements with reduced integration and hourglass control. Punches with 8mm radii, of
which the size did not represent a reality, were meshed with 0.075mm RAX2 2-node linear
axisymmetric rigid links.
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Figure 9.8: Upsetting test: (a) force–displacement curves from experiment and
simulations; (b) loading paths given by stress triaxiality and normalized Lode angle.
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The friction coefficient between punches and specimen was identified as 0.05 by trial
and error method until the deformations (bulging or barrelling and visible stick and slip
regions on upper and bottom surfaces) from simulation matched the experiments. The
force–displacement curves from simulation and experiment are depicted in Figure 9.8a.
Similarly as in axisymmetric tension, the Kroon–Faleskog plasticity deviated negligibly
from von Mises yield criterion.

Stress triaxiality and normalized Lode angle (Figure 9.8b) were obtained from the
surface node in the middle of cylinder height. The loading paths show approximate
proportionality corresponding to small amount of friction.

It should be noted that there is some amount of uncertainty compared to tension or
torsion tests, because of determining the friction conditions. This is a problem of all
punching techniques like the small punch test [102, 117], cupping test similar to Erichsen
test [241], Nakazima test22 [204] or Hašek test [159, 205]. But still, it provided a valuable
contribution to the performed experimental program.

22 Also spelled as Nakajima test.
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10 Ductile fracture criterion

The essential part of ductile fracture model is its fracture envelope defined by weighting
function of damage. Besides the fracture strain, stress triaxiality and normalized third
invariant of deviatoric stress tensor are inputs into the ductile fracture calibration. There
are two possible calibration techniques. The first one, which was used in the present thesis,
lies in the averaging of two latter mentioned state variables [146, 151]. The averaging is
based on adopted damage rule. With respect to Equation 8.3, it leads to

ηav =
q1

ε̂f

∫ ε̂f

0

η dε̄p +
q2(1− q1)

ε̂f

∫ ε̂f

0

η

(
ε̄p

ε̂f

)q2−1

dε̄p, (10.1)

ξav =
q1

ε̂f

∫ ε̂f

0

ξ dε̄p +
q2(1− q1)

ε̂f

∫ ε̂f

0

ξ

(
ε̄p

ε̂f

)q2−1

dε̄p. (10.2)

Generally, the weighting function of damage ε̄f(η, ξ) has a certain number of material
constants which may be represented by matrix of material constants G. Then, it is fitted
to discrete points ε̂f (ηav, ξav) by minimizing following target function

min
G

M∑
i=1

[
ε̂fi (ηav, ξav)− ε̄f (ηav, ξav)

]2

, (10.3)

where i is a number of particular fracture test and M is number of all fracture tests. The
disadvantage due to averaging arises when the loading is considerably nonproportional.
That is why there was such an effort to keep experiments as close to proportional loading
as possible. The above approach might be improved by weighting individual deviations by
particular fracture strains [135].

Another approach to ductile fracture calibration defines the minimum of target function
as a damage integrated up to fracture of each test averaged over all tests [153, 209]

min
G

M∑
i=1

(1−Ds,i)
2. (10.4)

The advantage is in eliminating the preliminary averaging. On the other hand, calibration
costs are higher than in previous approach and there is also higher global minimum
uncertainty. Therefore, it is suitable to use it, for example, for final fine tuning of material
constants.
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There are summarized fracture strains from simulations realized in previous chapter
in Table 10.1 according to numbering in Table 5.2, together with state variables, stress
triaxiality and normalized third invariant of deviatoric stress tensor, averaged according to
Equations 10.1 and 10.2. The averaging was done by trapezoidal numerical integration by
using trapz function within MATLAB. Thus, there are 6 points for calibration available,
which is the minimum demanded by sixth parametric criterion, as described further. It
might be noted that all tension, torsion and compression experiments correspond to those
obtained in [98, 111] with minor deviations.

Table 10.1: Fracture strains and averaged state variables from numerical simulations.

Fracture Fracture Average stress Average normalized third
test strain triaxiality invariant of deviatoric

number [–] [–] stress tensor [–]

2 0.2452 0.6019 1.0000
3 0.1761 0.7812 0.9997
4 0.1259 0.9852 0.9993
5 0.1767 0.6607 0.0396
6 0.2743 −0.0033 −0.0149

7 0.3378 −0.3026 −0.9829

The fracture envelope is certainly a crucial part of each fracture criterion. The damage
accumulation and material weakening related constants have been already determined but
these cannot be used in the fracture envelope calibration because they are coupled with
the fracture model, which is yet to be determined. A similar approach was presented by
Erice and Gálvez [214]. The whole procedure may be realized through neural network as
well, when all the constants would be calibrated together [189], but it is not considered
in the present study because of time consumption, as previously stated. So the fracture
model calibration procedure is kept as simple as possible.

The KHPS2 (Kubík Hůlka Petruška Šebek 2) criterion [224], rising from KHPS (Kubík
Hůlka Petruška Šebek) criterion [224], was chosen on the basis of good approximation
ability, which is partly at the expense of material constants amount, and presence of
cut-off in reasonable level. The asymmetric weighting function of damage with respect to
normalized third invariant of deviatoric stress tensor can be written as follows

ε̄f (η, ξ) =

[
1

2

(
G4

〈η + g〉
+

G5

〈η + g〉

)
− G6

〈η + g〉

]
ξ2+

1

2

(
G4

〈η + g〉
− G5

〈η + g〉

)
ξ +

G6

〈η + g〉
, (10.5)

where G1, . . . , G6 are six material constants and g is a parabolic function governing the
cut-off beyond which the damage is not accumulated. It reads

g(ξ) =

(
G3 +

G1 −G3

2
−G2

)
ξ2 +

G1 −G3

2
ξ +G2. (10.6)
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First three constants are additive inverses of cut-off plane distances in stress triaxialities,
particularly G1 at ξ = 1, G2 at ξ = 0 and G3 at ξ = −1. Latter three constants have to
be positive and influence the loci of focuses of equi-axed hyperbolas, particularly G4 at
ξ = 1, G5 at ξ = −1 and G6 at ξ = 0. The semi-axis lengths of hyperbolas are quadratic
functions of normalized third invariant of deviatoric stress tensor.

Figure 10.1: Wrongly calibrated fracture envelope of KHPS2 to fracture tests.

The criterion calibration was realized by MATLAB script. The createOptimProblem
was used to create an optimization problem structure, including initial guess of material
constants, their lower and upper boundaries to ensure the proper ranges and fmincon to
find the minimum of constrained nonlinear multivariable target function defined within
nonlcon. There were two types of constraints applied to cut-off. One ensures that the
cut-off lies in stress triaxiality behind each experiment, so that the fracture envelope is
fitted in the proper range of fracture strains, using

gi =

(
G3 +

G1 −G3

2
−G2

)
ξ2
av,i +

G1 −G3

2
ξav,i +G2, (10.7)

while the following condition −gi − ηav,i > 0 should apply. Without this constraint, some
of experiments might be fitted wrongly to the second part of hyperbolic criterion which
lies in negative fracture strains and which is physically unrealistic23. The situation is
illustrated in Figure 10.1 where the approximation is ordinary overall, but the shape of
fracture envelope is inadmissible24.

23 Analogical problem might arise also in case of Extended Mohr–Coulomb criterion [156], for instance.
On the other hand, it is not often because the criterion is defined by goniometric functions which do
not exhibit sharp curvatures in shape of fracture envelope which also results in presence of cut-off
region in unrealistic levels.

24 Similar problem might arise in case of complex phenomenological criteria without cut-off as well, like
the one proposed by Bai and Wierzbicki [135]. The fracture tests are not fitted directly to negative
fracture strains. The negative fracture strains can occur within remote areas from experimental data
due to high number of material constants and therefore high shape flexibility. Unfortunately, this
phenomenon cannot be solved by the above mentioned constraints.
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The second constraint ensures the convexity of cut-off plane by using curvature in
Cartesian coordinates as

κ̄ =

d2g
dξ2(

1 +
(

dg
dξ

)2
) 3

2

, (10.8)

which must be positive. The derivatives of the cut-off with respect to normalized third
invariant of deviatoric stress tensor are, respectively,

dg
dξ

= (G1 − 2G2 +G3)ξ +
G1 −G3

2
, (10.9)

d2g

dξ2
= G1 − 2G2 +G3. (10.10)

Then, run method from GlobalSearch class was used for finding the global minimum
according to Equation 10.3.

The final set of calibrated constants is given in Table 10.2. Calibrated fracture envelope
with its cut-off plane is depicted in Figure 10.2a where the red line corresponds to
axisymmetric tension condition, the magenta line to plane strain or generalized shear, the
blue line to axisymmetric compression, the black line to plane stress, the red circles to
tensions of notched cylindrical specimens, the magenta diamond to torsion test, the magenta
hexagram to tension of notched tubular specimen and the blue square to compression.

Figure 10.2: Calibrated fracture envelope of KHPS2 criterion in the space of: (a) frac-
ture strain and state variables; (b) principal plastic strains and stress triaxiality.

There are also vertical lines connecting the fracture strains from experiment (computa-
tionally obtained) and fracture envelope in Figure 10.2a, graphically interpreting the least
square errors. Unfortunately, those cannot be seen because the errors were very small.

The envelope is also depicted in the space of principal plastic strains (εI, εII, εIII) and
stress triaxiality, from which it can be easily transformed to stress space and may represent
a limit state analogically to the yield surface (Figure 10.2b).
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Table 10.2: Calibrated material constants of KHPS2 criterion for AA 2024-T351.

G1 [–] G2 [–] G3 [–] G4 [–] G5 [–] G6 [–]

−0.178 1.195 1.189 0.104 0.301 0.327

It is obvious that there is significant Lode dependence from plane strain towards the
axisymmetric tension, while there is almost none towards the axisymmetric compression
(Figure 10.3a). One might see that the position of cut-off at plane strain is similar to one
at axisymmetric compression in negative stress triaxiality, while it slightly exceeds the
zero at axisymmetric tension condition. The convex curvature of cut-off can be seen in
Figure 10.3b.
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Figure 10.3: Calibrated KHPS2 in space of: (a) fracture strain against stress triaxiality;
(b) stress triaxiality against normalized third invariant of deviatoric stress tensor.

There are listed errors calculated as deviations between calibrated fracture envelope
and fracture strains from experiments (obtained computationally in the previous chapter)
in Table 10.3 according to numbering in Table 5.2. Those are directly related to vertical
lines, mentioned in one of previous paragraphs. The percentage errors can be estimated as

εi = 100
|ε̂fi (ηav, ξav)− ε̄

f
i (ηav, ξav)|

ε̂fi (ηav, ξav)
. (10.11)

Generally, the maximum error was 2.4%, so there was very good approximation of
experiments by the KHPS2 criterion. The average error stood approximatelly at 0.9%.

Table 10.3: Errors of calibrated KHPS2 criterion with respect to experiments.

Test number 2 3 4 5 6 7

Error [%] 0.1 2.1 2.4 0.0 0.4 0.1
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Bai and Wierzbicki [228] conducted the same error analysis for several different fracture
criteria with 15 fracture tests carried out on AA 2024-T351 and the average error ranged
between 14 to 43%, excluding the result for Cockroft and Latham with only one material
constant and poor approximation ability. Apart from the stress based analysis, Lou et
al. [212] did the strain based analysis of the presented model with 18 experiments25 on
aluminium alloy 2024-T351 and compared it to similar phenomenological criteria. The
average error was 21% for the proposed model and 21, 19 and 19% for reference criteria.
The strain based error analysis, as in [228], seems to be more reasonable than the one
based on fracture stress as in [175] because of the nature and resolution regarding the
ductile fracture (Figure 1.1).

25 It should be noted that the authors combined experiments executed by various researches. Although
on the same aluminium alloy but there might be changes in microstructure.
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11 Application and verification of

proposed approach

The developed approach was applied to conducted fracture tests to show the prediction
ability and reliability. It is always good to verify what has been calibrated and it should
not be otherwise in the case of ductile fracture models. Three tests have been chosen, one
of each specific stress state, the axisymmetric tension of notched cylindrical specimen,
plane strain tension of notched tubular specimen and axisymmetric compression of cylinder.
Attention was paid to overall description of the fracture in force–displacement responses
as well as in prediction of crack initiation locus and its propagation.

11.1 Fracture at axisymmetric tension

The tensile test of notched cylindrical specimen with R13 notch radius should be closest to
the one of smooth cylindrical specimen, towards which the whole approach was basically
calibrated. Therefore, it should exhibit very good match with experimental observation.
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Figure 11.1: Tensile test of notched cylindrical specimen with R13 notch: (a) particu-
lar force–displacement responses; (b) field of damage parameter after the separation.
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The simulation was replicated in the same way as in Section 9.2 with the difference that
the specimen was not modelled as axisymmetric half, but as axisymmetric whole, so the
crack propagation could be performed without being influenced by boundary conditions.

There is a force–displacement response from computation compared to experimental
one in Figure 11.1a with an excellent match, as expected.

The crack initiated on the axis and propagated horizontally at first. It was followed
by the slant fracture in a final stage (Figure 11.1b). The fracture surface was also swept
to be compared with experiment in detail. Round specimens did not show perfect cup
and cone fracture but still, there was apparent slant fracture in the final stage which is in
good correspondence with computation (Figure 11.2).
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Figure 11.2: Field of damage parameter of one half of notched cylindrical specimen
with R13 notch radius and one half of post-mortem specimen after the tensile test.

11.2 Fracture at plane strain tension
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Figure 11.3: Tensile test of notched tubular specimen: (a) particular force–
displacement responses; (b) field of damage parameter after the specimen separation.
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The tension at plane strain should have produced the slant fracture as in the case of
the notched tube.

The simulation was replicated in the same way as in Section 9.3. The only difference
was modelling the whole axisymmetric specimen, in order to not influence the fracture by
boundary conditions.

There are force–displacement reposes from computation and experiment which are very
close due to employing the Lode dependent plasticity. Only the final fracture was slightly
over predicted as shown in Figure 11.3a.

The crack initiated approximately in the middle of the specimen thickness at the notch
region as assumed already in Section 9.3 during obtaining state variables for calibration
procedure. Then, it propagated horizontally, which is unfortunately in contradiction with
experiments.

11.3 Fracture at axisymmetric compression
In the end, the upsetting test was investigated.

The simulation was replicated as in Section 9.5 but in three dimensional space. The
cylinder was discretized by mapped mesh with 8-node linear bricks C3D8R with reduced
integration, hourglass control and characteristic length size of 0.075mm. The punches
were meshed with R3D4 bilinear rigid quadrilateral 4-node three dimensional elements
with the same size as the cylinder. The semi-automatic mass scaling was also deployed to
target time increment of 1 · 10−7 s while the time increment for most critical elements were
approximately 3.35 · 10−9 s without accounting for mass scaling. The kinetic energy was,
again, checked with respect to internal one to ensure negligible dynamic effects.
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Figure 11.4: Responses of compressed cylinders from simulation and experiments.

There are force–displacement responses from experiments compared to computation in
Figure 11.4. The simulation grossly underestimated the reality, because the initiation was
in the centre of the specimen, whereas the equivalent plastic strain was much higher than
the one on the outer surface (0.7 compared to 0.2) from which the fracture model was
calibrated.
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Xue [149] also reported that there was higher equivalent plastic strain in the centre of
the compressed cylinder but the crack did not initiate there. Instead, it initiated in the
corners of the specimen and propagated diagonally to the centre. Such behaviour was also
observed experimentally [120]. Despite these facts, the fracture model was conventionally
calibrated from the outer surface in the middle of the specimen height as in [98]. It is not
possible to extract state variables from the specimen corners which come into contact with
punches and where the results are distorted. On the other hand, the proposed model was
able to perform a slant fracture as in experiment at least (Figure 11.5).
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(a)

Figure 11.5: Cracked cylindrical specimen after the upsetting test: (a) with field of
damage parameter obtained from numerical simulation; (b) experimentally performed.

The upsetting test has been still widely used for ductile fracture calibration [119, 186,
235], while not many authors provide information about the locus used for obtaining the
state variables needed in calibration. In conclusion, the specimen is not convenient for the
calibration because of problems with obtaining relevant data from the computation.

There are circumstances under which the crack, if any, initiates from the outer surface.
Those correspond to compression of very ductile metals or with dry friction conditions
yielding in high barrelling, which results in nonnegligible tensile circumferential stresses
on the outer surface of cylinder [191, 236]. Then, the crack might even be vertical. In any
event, such cases are tried to be omitted within the calibration of ductile fracture because
of high nonproportionality of the loading.

Finally, it can be also seen how localized the damage parameter was (Figure 11.5).
A similar situation was, of course, in previous cases as well.
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12 Conclusions and future studies

The present thesis dealt with ductile fracture criteria intended for multiaxial loading
and related theory, with extensive experimental testing to support the background and
assumptions of proposed approach, developed respecting extensive literature survey as
well. This approach balances between the coupled and uncoupled criteria trying to pick
the best of both. It is based on the calibration technique of uncoupled phenomenological
models which is easy to conduct. A solution to problems is documented with fitting the
hyperbolic criterion, which may be applied to similar models based either on the same
definition or on combination of goniometric functions. Significance of the plasticity role
was also demonstrated and the implemented complex yield criterion better described the
material behaviour observed in form of experimentally measured responses to loading. The
importance of continuum damage mechanics approach was also reported. Nevertheless, it
leads to some difficulties which have had to be solved.

12.1 Conclusions

The approach was outlined after the careful study of literature. The damage accumulation
could be studied by using stepwise experimenting. Unfortunately, it was revealed that this
was not reliable to prove the nonlinear damage accumulation due to high sensitivity on input
parameters. Therefore, an alternative way in the form of cyclic loading, loading/unloading
more precisely, was carried out. Sequentially, the double damage curve approach and
material weakening related constants were estimated. After calibrating the Kroon–Faleskog
plasticity and KHPS2 phenomenological ductile fracture criterion which were coupled via
the including of the softening effect, the proposed methodology was applied to existing
fracture tests in order to verify them. The overall experimental program counted the
tension of smooth and notched cylindrical and notched tubular specimens, torsion of
notched tubular specimen and compression of cylinder.

First of all, implementing of the Lode dependent plasticity led to some discrepancies
in plane strain tension of plates, associated with nonnegligible change of stress state. This
was mentioned only marginally and should be subjected to further investigation.

Another problem had arisen in compression testing. It was revealed that the upsetting
test of simple cylinder is not suitable for calibration of ductile fracture criteria. It is due to
questionable locus of crack initiation which is complicated by the presence of friction. It is
obvious that the point representing the compression in space of (ε̄f , η, ξ) is not correct.
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It is supported by the location of tensile tests of cylindrical specimens suggesting that
the curve corresponding to ξ = −1 should have been positioned towards higher fracture
strains. Then, the fracture envelope would have formed a more curved shape. Moreover,
it would be convenient to have two experiments on axisymmetric compression condition at
least, even though it is difficult to conduct this reliably.

The approach seems to be promising, but it should be validated by conducting a broader
experimental campaign with more extensive computing, of course.

Finally, it can be concluded that all the outlined goals were fulfilled.

12.2 Future studies
The obtained results imply the connection between monotonic and cyclic loading. The
ultra low cycle fatigue poses together with monotonic loading the space for further study.
There is certainly a smooth transition between these two phenomena. There is definitely
potential in finding a unified approach to those problems, but even if the extension to or
coupling with fatigue might be challenging, it has still seemed to be long term.

The damage accumulation also needs further investigation. This might be realized by
using techniques such as the X-ray microtomography and there is a room for ultrasound
or DIC measurement as well.

Negative stress triaxialities and cut-off region are worthy of future studies. It is
connected with better description of conditions in compression. This might be comprised
by the upsetting of notched cylinder as in Figure 12.1a, cylinder with specific recess
(Figure 12.1b) or other shapes of cylinder as in literature [105, 162, 166]. Then, there
would be more evident locus of ductile fracture initiation. Moreover, more appropriate
stress state and loading history might be reached. Another alternative to describe the
condition at ξ = −1 is in a biaxial tension of a cross-like specimen as in Figure 12.1c.

Figure 12.1: The illustration of: (a) notched cylindrical specimen [87]; (b) cylindrical
specimen with a spherical recess [239]; (c) biaxially loaded cruciform specimen [218].

The probabilistic approach to ductile fracture seems to be very interesting in accounting
for the deviation in identified strains to fracture [238, 240].

Accounting for reversal loading, precompression, pretension or pretorsion, which seem
to play nonnegligible role in ductile fracture [100, 229, 232], might be considered as well.
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Latin symbols

a material constant
A loading asymmetry parameter
A1, . . . , A3 material constants
AB, BB, CB, DB material constants
AJC , BJC , CJC , DJC material constants
B1, . . . , B6 material constants
c fatigue ductility exponent
cη, csθ, caxθ material constants
C fracture strain correction coefficient
C1, . . . , C4 material constants
CB material constant
CCL material constant
CF material constant
CL parameter representing the cut-off value sensitivity
CMCL material constant
CRT material constant
d actual diameter of cylindrical bar
d0 initial diameter of cylindrical bar
df diameter of round bar specimen after fracture test
dh diameter of the hole
D damage parameter related to reduction of ductility
D0 initial amount of damage
D1, . . . , D6 material constants
Dc critical damage
Dcr critical value of damage parameter
Df fatigue damage
Dp damage parameter at the moment of crack initiation
DRTCL critical damage
Ds damage parameter related to reduction of load carrying area
D elastic stiffness tensor
e engineering strain
ep deviatoric plastic strain
E Young’s modulus
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E1, E2 material constants
Ẽ actual degraded Young’s modulus
f ? void volume function
f1, . . . , f3 normalized Lode angle dependent trigonometric functions
fc critical value of void volume fraction
fF void volume fraction at fracture
fG void volume fraction
F force
Ff relative hole growth factor
g parabolic function governing the cut-off
G matrix of material constants
G1, . . . , G6 material constants
h cylinder height
i number of particular fracture test
I identity matrix
I1 first invariant of the Cauchy stress tensor
J2, J3 second and third invariants of the stress deviator, respectively
k yield correction function
k̂ Lode dependence exponent
K strength coefficient
∆l elongation
l0 gauge length
L1, . . . , L3 material constants
m damage exponent
m̄ weakening parameter
M number of all fracture tests
M1, . . . ,M5 material constants
n strain hardening exponent
ñ plastic flow direction
N number of cycles
N1, . . . , N5 material constants
Nf number of cycles to fracture
Nr reference life coefficient
p hydrostatic pressure
plim limiting pressure
q hydrostatic axis where the principal stresses are equal
q̂ shape parameter
q1, q2 material constants
qGTN material constant
r radius in the cylindrical coordinate system
rc critical distance
R notch or neck radius
s engineering stress
sr material dependence parameter
S deviatoric stress
S0 initial cross-sectional area
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S1, S2, S3 first, second and third principal stress deviators, respectively
Sr temperature dependence parameter
t time
T temperature
Th homologous temperature
Tm melting temperature
Tr room temperature
v wave velocity
w weakening factor
w1 hydrostatic pressure weighting function
w2 asymmetric strain weighting function
W1, . . . ,W3 material constants
x, y, z Cartesian or spatial coordinates
Y damage strain energy release rate

Greek symbols

α exponent of damage
β weakening exponent
γ material constant
γ̂ fracture strain ratio
ε error
ε true strain
ε̄ total equivalent strain
ε0 reference strain
εI, εII, εIII first, second and third principal plastic strains, respectively
˙̄ε0 reference strain rate
εe elastic strain
ε̃e effective elastic strain
ε′f fatigue ductility coefficient
ε̄f fracture strain
ε̂f fracture strain for a given loading path
ε̄f,1 fracture strain of specimen number 1
ε̄f,2 fracture strain of specimen number 2
ε̄f,12 fracture strain of specimen 1 after prestraining using specimen 2
ε̃f uniaxial tensile fracture strain without confining pressure
εp plastic strain
ε̃p effective plastic strain
ε̄p cumulative equivalent plastic strain
ε̄pl instantaneous equivalent plastic strain
ε̄p,0 value of prestrain
εp,a plastic strain amplitude
ε̄th damage strain threshold
˙̃εp? dimensionless effective plastic strain rate
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˙̄εp? dimensionless equivalent plastic strain rate
η stress triaxiality
η0 reference value of stress triaxiality
ηav average stress triaxiality
θ̄ normalized Lode angle
θA azimuth angle
θL Lode angle
κ curvature in polar coordinates
κ̄ curvature in Cartesian coordinates
λ plastic multiplier
µ Lode parameter
ν Poisson’s ratio
ξ normalized third invariant of deviatoric stress tensor
ξav average normalized third invariant of deviatoric stress tensor
ρ density
% polar coordinate of the yield surface in the deviatoric plane
σ Cauchy stress tensor
σ̃ effective stress
σ̄ equivalent stress
σ1, σ2, σ3 first, second and third principal stresses, respectively
σa applied stress in major direction
σb applied stress in minor direction
σm mean stress
σM equivalent matrix stress
σz axial stress
σY yield stress
ϕ elevation angle in the spherical coordinate system
Φ yield function
ω normalized Lode parameter
ω0 material constant

Notations
(·) dot product or scalar product or inner product
(:) double dot product or contraction of tensors
−→
( ) vector
| | absolute value
‖ ‖ norm of the vector
〈 〉 Macaulay bracket notation denoting the positive part
˙( ) time derivative
tr( ) trace
det( ) determinant
boldface denotes tensors
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Abbreviations
AA Aluminium Alloy
CDM Continuum Damage Mechanics
DIC Digital Image Correlation
EDS Energy Dispersive X-ray Spectroscopy
FEA Finite Element Analysis
FEM Finite Element Method
FLD Forming Limit Diagram
FFLD Fracture Forming Limit Diagram
GTN Gurson Tvergaard Needleman
KHPS Kubík Hůlka Petruška Šebek
KHPS2 Kubík Hůlka Petruška Šebek 2
RTCL Rice Tracey Cockcroft Latham
RVE Representative Volume Element
VUMAT Vectorized User MATerial
XFEM eXtended Finite Element Method
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A Tensile tests of flat plate specimens

There were conducted 3 tensile tests of flat plate specimens, as depicted in Figure A.1,
which should describe the plane strain under high stress triaxiality26.

Zwick Z250 Allround-Line, tCII, and extensometer Zwick multiXtens were used for
tensile testing under the displacement control. To ensure the quasi-static loading, the test
speed was 1mm/min during the whole test. The gauge length was 22mm.

Figure A.1: Detailed drawing of the flat plate specimen.

Post-mortem specimens are depicted in Figure A.2 where the slant fracture may be
clearly observed and which is consistent with results obtained by Teng [143].

Force–displacement responses from average experiment together with the ones from
simulations are depicted in Figure 9.6a.

26 There were also tested another grooved plate specimens where various stress triaxialities were achieved
by changing the groove radius. Those were designed in order to have the same stress triaxialities as
tensile notched cylindrical specimens with sharper notch radii. Unfortunately, the situation was the
same or worse than in case of flat plate, so only the flat plate specimen is described in detail.
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Figure A.2: Post-mortem flat plate specimens.

Simulations were performed the same as in Chapters 6 and 8. One eighth of geometry
was discretized with C3D8R 8-node linear brick elements with reduced integration, hour-
glass control and characteristic size of 0.075mm across the thickness and 1.25mm along
the width. Semi-automatic mass scaling was employed to target time increment of 1 ·10−7 s,
similarly as previously. The time increment for most critical elements without accounting
for mass scaling was approximately 2.6 · 10−9 s. The kinetic energy was compared to the
internal one so as to ensure that there were negligible dynamic effects.

There are depicted histories of normalized Lode angle for von Mises and Kroon–Faleskog
plasticities in Figure A.3b. It is clear that the Kroon–Faleskog plasticity had tendency
to describe the state as plane stress in contrary to von Mises plasticity and theoretical
value of θ̄ = 0. The initial stress triaxiality is theoretically

√
3/3. Average stress triaxiality

given by von Mises plasticity was 0.5384 and by Kroon–Faleskog plasticity 0.3954.
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Figure A.3: Flat plate specimen: (a) force–displacement responses for simulations
and average experiment; (b) evolutions of normalized Lode angles during loading.

This problem was alo reported by Kroon and Faleskog [206]. The stronger the Lode
dependence of plasticity was, the more the problem was significant. Algarni et al. [234]
presented modification of I1, J2 and J3 dependent plasticity with deviatorically associted
flow rule proposed by Bai and Wierzbicki [135], and the discrepancy in normalized Lode
angle accounted for specimen geometry, which is probably not the case. It might be solved
by using the non-associative flow rule as in [160].
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B Case study of using different

damage accumulation laws

The importance of damage accumulation form arises especially with nonproportional
loading. There is shown the difference between linear and nonlinear damage accumulation
for damage exponents m = 1 and m = 2 of Equation 7.1. Different stress states causes
different fracture strains as in Figure 3.1. If the specimen was loaded under some certain
hydrostatic pressure, which would cause fracture strain 0.3, not until fracture but only
to some level of equivalent plastic strain, 0.15 in this case, and then pulled under the
hydrostatic pressure higher than the previous one, which would cause fracture strain 0.5,
until fracture, it has to be less than 0.5 to satisfy the condition of Equation 7.2. The whole
situation is illustrated in Figure B.1.
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Figure B.1: Damage evolutions plotted with the usage of linear and nonlinear laws.

It is clear that these two cases do not result in the same value of final fracture strain.
While in case of m = 1 the final fracture strain was 0.40, in case of m = 2 the final fracture
strain was approximately 0.46.

It might be crucial to use correct damage evolution law especially within complex
loading paths induced in real industrial applications where the errors due to incorrectly
predicted fracture initiation might distort the solution of whole problem.
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The issue was described using variations in stress triaxiality which have large impact.
Nevertheless, the same conclusion implies to varying the deviatoric stress state, of course.
Therefore, there is not an one to one relationship between fracture strain and average
state variables for nonradial loadings [185].
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C Damage exponent calculations

Here follows the damage exponent calculations derived from stepwise experiments of Marini
et al. [69] and Tai [74]. It exhibits considerable scatter in results (Tables C.1–C.3).

Table C.1: Damage exponents for A508 medium strength steel [69].

ε̄p,0 [–] ε̄f,1 [–] ε̄f,2 [–] ε̄f,12 [–] m [–]
0.3093

0.6172 0.3865

0.4296 3.08
0.3113 0.4305 3.07
0.4365 0.5180 1.89
0.4927 0.5657 1.16

0.3093

0.6172 0.4673

0.4893 3.19
0.4596 0.5593 1.80
0.4748 0.5558 2.30
0.4927 0.5670 2.03

Table C.2: Damage exponents for low carbon steel No. 20 [74].

ε̄p,0 [–] ε̄f,1 [–] ε̄f,2 [–] ε̄f,12 [–] m [–]
0.20 0.75 0.39 0.53 0.66
0.30 1.05 0.57 0.65 1.55
0.38 1.05 0.75 0.85 1.09
0.50 1.15 0.90 1.08 0.37

Table C.3: Damage exponents for low carbon steel A3 [74].

ε̄p,0 [–] ε̄f,1 [–] ε̄f,2 [–] ε̄f,12 [–] m [–]
0.30 1.07 0.58 0.72 0.98
0.40 1.10 0.80 0.95 0.66
0.43 1.10 0.80 0.98 0.51
0.50 1.10 0.80 1.05 0.21
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