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AXIOMATIC DIFFERENTIAL GEOMETRY II-2 –

DIFFERENTIAL FORMS

HIROKAZU NISHIMURA

Abstract. We refurbish our axiomatics of differential geometry introduced in [5].
Then the notion of Euclideaness can naturally be formulated. The principal ob-

jective of this paper is to present an adaptation of our theory of differential forms

developed in [3] to our present axiomatic framework.

1. Introduction

The principal objective of this paper is to replicate our treatment of differential
forms in [3] in the context of our axiomatics on differential geometry in [4]. Try-
ing to achieve this goal, we have realized that our axiomatics there is somewhat
fragile. Therefore, we were forced to refurbish the axiomatics. The main improve-
ment is that prolongations of spaces with respect to Weil algebras can directly be
generalized to those with respect to finitely presented algebras. As is well known,
the prolongation of a space with respect to the Weil algebra k [X] /

(
X2
)

(the Weil
algebra corresponding to first-order infinitesimals) is its tangent bundle. Similarly,
the prolongation of a space with respect to the polynomial algebra k [X1, ..., Xn],
which is not a Weil algebra but surely a finitely presented algebra, is simply the
exponentiation of the space by Rn. Thus, the secondary objective in this paper
is to improve our axiomatics, to which Section 2 is devoted. In particular, the
theorem established in [5] that the tangent space is a module over k, which is
external to the category K, is enhanced to the theorem that the tangent space is
a module over R, which is an object in K.

Section 3 is concerned with Euclidean modules. Our new axiomatics of dif-
ferential geometry enables us to formulate the notion of Euclideaness properly,
in which cartesian closedness and prolongations with respect to polynomial alge-
bras will play a crucial role. In orthodox differential geometry and its extensions
to infinite-dimensional differential geometry, we first study the category of linear
spaces of some kind and smooth mappings, say, the category of Hilbert spaces,
that of Banach spaces, that of Fréchet spaces, that of convenient vector spaces
and so on. We then study the category of manifolds, which are modeled locally
after such linear spaces. Our approach moves in the sheer opposite direction. We
first establish the general theory of microlinear spaces. The theory of Eucliean
modules (i.e., its linear part) is obtained as a special case of this general theory.
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44 H. NISHIMURA

Sections 4 and 5 are merely an adaptation of our treatment of differential forms
in [5] to our present axiomatic framework. Section 4 is devoted to a unique charac-
terization of differential forms, which could be called the fundamental theorem on
differential forms. The characterization and existence of exterior differentiation,
which will be discussed in Section 5, is an easy consequence of this fundamental
theorem.

2. Refurbishing our axiomatics

2.1. The refurbishment

Let k be a commutative ring. We denote by Tk the algebraic theory of k-algebras
in the sense of Lawvere. We denote by FPTk the category of finitely presented
k-algebras. It is well known that Weil algebras over k are finitely presented k-
algebras. We denote by Weilk the category of Weil k-algebras, which is well
known to be left exact. In particular, its terminal object is k itself. A finitely
presented k-algebra A is called pointed if it has a unique maximal ideal m such
that the composition of the canonical morphism

k → A

and the canonical projection

A→ A/m

is an isomorphism. We denote by PFPTk the category of pointed finitely presented
k-algebras. Not only Weil k-algebras but also polynomial k-algebras k[X1, ..., Xn]
lie in PFPTk. Given a left exact category K and a k-algebra object R in K, there
is a canonical functor R⊗· (denoted by R⊗ · in [1]) from the category Weilk to
the category of k-algebra objects and their homomorphisms in K.

Definition 2.1 (DG-category). The present refinement of our original axiomat-
ics in [4] is that we allow not only Weil prolongations but also finitely presented
prolongations. Therefore, given a finitely presented k-algebra A, we are endowed
with a left exact functor TA : K → K preserving cartesian closed structures in the
sense that we have

TA
(
XY

)
=
(
TAX

)Y
(2.1)

for any objects X and Y in K. For any freely generated k-algebra A = k[X1, ..., Xn]
over n generaters X1, ..., Xn, TA = Tk[X1,...,Xn] is required to be simply the expo-
nentiation by Rn, so that we have

Tk[X1,...,Xn]X = XRn (2.2)

for any object X in K. In particular, when n = 0, we have

TkX = X.

Given a finitely presented k-algebra A, it is required that

TAR = R⊗A. (2.3)

Given two finitely presented k-algebra A and B, it is required that

TB ◦TA = TA⊗kB . (2.4)
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Given a morphism ϕ : A→ B in PFPTk, we have a natural transformation

αϕ : TA ⇒ TB

which respects cartesian closed structures, so that we have

αϕ
(
XY

)
= (αϕ (X))

Y
(2.5)

for any objects X and Y in K. It is also required to satisfy

αϕ
(
TCX

)
= TC (αϕ (X)) : TATCX = TC⊗kAX = TA⊗kCX

=TCTAX → TCTBX = TB⊗kCX = TC⊗kBX = TBTCX
(2.6)

for any object C in the category PFPTk. Given two morphisms ϕ : A → B and
ψ : B → C in PFPTk, it is required that

αψ ◦ αϕ = αψ◦ϕ. (2.7)

Given any identity morphism idA : A→ A in PFPTk, it is required that

αidA = idTA . (2.8)

Given a morphism ϕ : A→ B in PFPTk, it is required that

αϕ (R) = R⊗ϕ. (2.9)

Thus our new definition of a DG-category is a quadruple

(K,R,T, α) ,

where

(1) K is a category which is left exact and cartesian closed,
(2) R is a commutative k-algebra object in K,
(3) given an object A in PFPTk, TA : K → K is a left-exact and cartesian-

closed-structure-preserving functor,
(4) given a morphism ϕ : A → B in PFPTk, αϕ : TA ⇒ TB is a natural

transformation,
(5) the quadruple (K,R,T, α) is required to satisfy (2.2)–(2.9) as axioms.

Remark 2.2. As in [4], we have a bifunctor

⊗ : K ×PFPTk → K

with

X ⊗A = TAX

for any object X in K and any object A in PFPTk, and

f ⊗ ϕ = αϕ (Y ) ◦TAf = TBf ◦ αϕ(X)

for any morphism

f : X → Y

in K and any morphism

ϕ : A→ B

in PFPTk.
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Remark 2.3. Given an object A in PFPTk and an object X in K, we write

τA (X) : TAX → X

and

ιA (X) : X → TAX

for

αA→k (X) : TAX → TkX = X

and

αk→A (X) : X = TkX → TAX

respectively, where A→ k and k → A are the canonical morphisms in PFPTk.

It is easy to see that

Proposition 2.4. Let (K,R,T, α) be a DG-category with the category K being
locally cartesian closed and M an object in K. Then

(
K/M,RM ,TM , α

M
)

is
a DG-category but for conditions (2.1) and (2.5), where

(1) K/M is the slice category,
(2) RM is the canonical projection

R×M →M,

(3) given an object

π : E →M

in K and an object A in PFPTk, TA
M (π) is defined to be

T
A

M (π)→M, (2.10)

where T
A

M (π) is obtained as the equalizer of

TAπ : TAE → TAM

and

TAE τA (E)
−−−−→

E π−→M ιA (M)
−−−−→

TAM

and (2.10) is

T
A

M (π)→ TAE τA (E)
−−−−→

E π−→M,

(4) let ϕ : A→ B be a morphism in PFPTk. Since the diagrams

TAE αϕ (E)
−−−−→

TBE

TAπ ↓ ↓ TBπ

TAM
−−−−−→
αϕ (M) TBM

TAE αϕ (E)
−−−−→

TBE

τA (E)↘ ↙ τB (E)
E
π ↓
M

ιA (M)↙ ↘ ιB (M)

TAM
−−−−−→
αϕ (M) TBM
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commute, there is a unique morphism

αMϕ (π) : T
A

M (π)→ T
B

M (π)

in K such that the diagram

T
A

M (π) αMϕ (π)
−−−−→

T
B

M (π)

↓ ↓
TAE

−−−−→
αϕ (E) TBE

commutes.

Definition 2.5 (Local DG-category). A DG-category (K,R,T, α) is called a lo-
cal DG-category if K is locally cartesian closed and

(
K/M,RM ,TM , α

M
)

is a DG-
category for any object M in K.

Remark 2.6. The notion of microlinearity and that of Weil exponentiability
remain the same as those in [4].

In the following, we will consider an arbitrarily chosen local DG-category
(K,R,T, α) with M being a microlinear and Weil exponentiable object in K.

2.2. The duality

We have already explained the duality between the category of Weil algebras in
the real world and the category of infinitesimal objects in the imaginary world.
Namely, we have a contravariant functor D from the category of Weil algebras
to the category of infinitesimal objects and a contravariant functor W from the
category of infinitesimal objects to the category of Weil algebras, both of which
constitute a dual equivalence between the two categories. By way of example,
Dk[X]/(X2) is intended for

D =
{
x ∈ R | x2 = 0

}
while Dk[X,Y ]/(X2,Y 2,XY ) is intended for

D(2) = {(x, y) ∈ D ×D | xy = 0} .

Therefore, we have

WD = k [X] /
(
X2
)

WD(2) = k [X,Y ] /
(
X2, Y 2, XY

)
.

Similarly

Wd∈D 7→(d,0)∈D(2)

stands for the homomorphism of k-algebras from k [X,Y ] /
(
X2, Y 2, XY

)
to k [X]/(

X2
)

assigning the equivalence class of X in k [X] /
(
X2
)

to the equivalence class of

X in [X,Y ] /
(
X2, Y 2, XY

)
and assigning the equivalence class of 0 in k [X] /

(
X2
)

to the equivalence class of Y in [X,Y ] /
(
X2, Y 2, XY

)
.

We can extend contravariant functors D andW so as to yield a dual equivalence
between the category PFPTk and the category of (real or imaginary) carved spaces
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standing for genuinely formal SpecR. By way of example, we have

Dk[Z1,Z2] = R2,

Dk[Z1,Z2,X,Y ]/(X2,Y 2,XY ) = R2 ×D(2),

while
W

d∈D 7→d∈R

stands for the canonical projection

k[X]→ k[X]/(X2)

and
W(r1,r2,d1,d2)∈R2×D(2) 7→r1d1+r2d2∈D

stands for the homomorphism of k-algebras from k [X] /
(
X2
)

to k [Z1, Z2, X, Y ]/(
X2, Y 2, XY

)
assigning the equivalence class of Z1X + Z2Y in k [Z1, Z2, X, Y ]/(

X2, Y 2, XY
)

to the equivalence class of X in k [X] /
(
X2
)
.

2.3. The tangent space

Definition 2.7 (Scalar Multiplication). The exponential transpose of the scalar
multiplication

R× (M ⊗WD)→M ⊗WD

is

idM ⊗W(r,d)∈R×D 7→rd∈D : M ⊗WD →M ⊗WR×D = M ⊗ (WD ⊗kWR)

= (M ⊗WD)⊗WR = (M ⊗WD)
R
.

Now we strengthen one of the main results of [5] into

Theorem 2.8. The canonical projection

τWD
(M) : M ⊗WD →M

is an RM -module in the slice category K/M , where RM is the canonical projection

R×M →M.

Proof. Here we deal only with the statement that the scalar multiplication
distributes over the addition, for which we have to verify that the diagram

R×
(
M ⊗WD(2)

)
→ R× (M ⊗WD)

↓ ↓
M ⊗WD(2) → M ⊗WD

commutes, where the horizontal arrows stand for addition, while the vertical arrows
correspond to scalar multiplication. This follows easily from the commutativity of
the diagram

M ⊗WD(2) idM ⊗Wd∈D 7→(d,d)∈D(2)−−−−−−−−−−−−−−−−−→
M ⊗WD

↓ ↓
M ⊗WR×D(2)

−−−−−−−−−−−−−−−−−−−−−−−−−→
idM ⊗W(r,d)∈R×D 7→(r,d,d)∈R×D(2) M ⊗WR×D

,

where the left vertical arrow is

idM ⊗W(r,d1,d2)∈R×D 7→(rd1,rd2)∈D,
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while the right vertical arrow is

idM ⊗W(r,d)∈R×D 7→rd∈D.

�

3. Euclidean Modules

An R-module in K is an object E in K endowed with a morphism

+E : E× E→ E

intended for addition, and a morphism

·R,E : R× E→ E

intended for scalar multiplication, which are surely subject to the usual axioms of
an R-module depicted diagrammatically. Equivalently, an R-module structure on
an object E in K can be given by a single morphism

ϕ : R× E× E→ E

intended for the morphism

R× E× E ·R,E × idE−−−−−−→
E× E+E−→E,

which is surely subject to some axioms depicted diagrammatically.

Definition 3.1 (Euclidean R-module). An R-module E is called Euclidean
provided that the composition of the exponential transpose

E× E→ ER (3.1)

of

R× E× E = E× R× E idE × ·R,E−−−−−−→
E× E+E−→E

and

αWd∈D 7→d∈R (E) : ER = E⊗WR → E⊗WD

in succession is an isomorphism.

It should be obvious that

Lemma 3.2. The R-module structure of E naturally gives rise to that of EX
for any object X in K in the sense that the exponential transpose

ϕ̃ : E× E→ ER

of the R-module structure

ϕ : R× E× E→ E
on E induces a mapping

(ϕ̃)
X

: EX×EX = (E× E)
X →

(
ER)X =

(
EX
)R

,

which is the exponential transpose of the derived R-module structure

R× EX×EX → EX

on EX .



50 H. NISHIMURA

Proposition 3.3. If E is a Euclidean R-module, then so is EX for any object
X in K.

Proof. We use the same notation as in Lemma 3.2. We have

αW
d∈D 7→d∈R

(
EX
)

=
(
αW

d∈D 7→d∈R
(E)
)X

:
(
EX
)R

=
(
ER)X = (E⊗WR)

X

→ (E⊗WD)
X

= EX ⊗WD.

Since (
αW

d∈D 7→d∈R
(E)
)X
◦ (ϕ̃)

X
=
(
αW

d∈D 7→d∈R
(E) ◦ ϕ̃

)X
,

we are sure that EX is a Euclidean R-module. �

It should be evident that

Lemma 3.4. The R-module structure of E naturally gives rise to that of E⊗W
for any Weil algebra W in the sense that the exponential transpose

ϕ̃ : E× E→ ER

of the R-module structure

ϕ : R× E× E→ E

on E induces a mapping

ϕ̃⊗ idW : (E⊗W )×(E⊗W ) = (E× E)⊗W → ER ⊗W = (E⊗W )
R

,

which is the exponential transpose of the derived R-module structure

R× (E⊗W )×(E⊗W )→ E⊗W

on E⊗W .

Proposition 3.5. If E is a Euclidean R-module, then so is E⊗W for any Weil
algebra W .

Proof. We use the same notation as in Lemma 3.4. We have

αW
d∈D 7→d∈R

(E⊗W ) = αW
d∈D 7→d∈R

(E)⊗ idW : (E⊗W )
R

= (E⊗W )⊗WR

= (E⊗WR)⊗W → (E⊗WD)⊗W = (E⊗W )⊗WD.

Since (
αW

d∈D 7→d∈R
(E)⊗ idW

)
◦ (ϕ̃⊗ idW ) =

(
αW

d∈D 7→d∈R
(E) ◦ ϕ̃

)
⊗ idW ,

we are sure that E⊗W is a Euclidean R-module. �

Remark 3.6. If E is an R-module, then the first projection

π1 : E× E→ E

is naturally an R-module in the slice category K/E.



DIFFERENTIAL FORMS 51

Proposition 3.7. If E is a Euclidean R-module, then the identification of E⊗
WD and E× E in Definition 3.1 together with the commutative diagram

E× E = E⊗WD

π1 ↘ ↙ τWD
(E)

E

allows us to identify the RM -module structure in Theorem 2.8 and that in Remark
3.6.

Proof. (1) First we deal with addition. We have

E⊗WD(2) = (E⊗WD)×M (E⊗WD)

=
(
E
1
×E

2

)
×M

(
E
3
×E

4

)
=E

1,3
×E

2
×E

4

where the numbers under E are given simply for the reader to relate each
occurrence of E on the last line to the appropriate occurrence of E on the
previous line. This isomorphism can be realized by the composition of the
exponential transpose

E× E× E→ ER×R (3.2)

of

R
1
× R

2
× E

3
×E

4
×E

5
= E

3
×R

1
×E

4
×R

2
× E

5
idE × ·R,E × ·R,E−−−−−−−−−−−→

E× E× E

idE ×+E−−−−−−→E× E+E−→E

and

αW(d1,d2)∈D(2)7→(d1,d2)∈R×R (E) : ER×R = E⊗WR×R → E⊗WD(2)

in succession, where the numbers under R and E are intended for the
reader to easily relate their occurrences on the first line to those on the
second line. Therefore, the commutativity of the diagrams

E× E× E → ER×R = E⊗WR×R
idE ×+E ↓ ↓ idE ⊗Wr∈R 7→(r,r)∈R×R

E× E → ER = E⊗WR

ER×R = E⊗WR×R → E⊗WD(2)

idE ⊗Wr∈R7→(r,r)∈R×R ↓ ↓ idE ⊗Wd∈D 7→(d,d)∈D(2)

ER = E⊗WR → E⊗WD

,

with the morphism

E× E× E→ ER×R

being that in (3.2), the morphism

E× E→ ER

being that in (3.1), the moriphism

ER×R = E⊗WR×R → E⊗WD(2)
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being the morphism

idE ⊗W(d1,d2)∈D(2) 7→(d1,d2)∈R×R

and the morphism

ER = E⊗WR → E⊗WD

being the morphism

idE ⊗Wd∈D 7→d∈R

implies the commutativity of the diagram

E× E× E = E⊗WD(2)

idE ×+E ↓ ↓ idE ⊗Wd∈D 7→(d,d)∈D(2)

E× E = E⊗WD

.

This is nothing else but the gist of the desired statement.
(2) Now we deal with scalar multiplication. The commutativity of the dia-

grams

E× E → ER = E⊗WR
↓ ↓ idE ⊗W(r1,r2)∈R×R7→r1r2∈R

(E× E)
R → ER×R = E⊗WR×R

ER = E⊗WR → E⊗WD

idE ⊗W(r1,r2)∈R×R 7→r1r2∈R ↓ ↓ idE ⊗W(d,r)∈D×R 7→dr∈D
ER×R = E⊗WR×R → E⊗WD×R = (E⊗WD)

R

with the left vertical arrow in the first diagram

E× E→ (E× E)
R

being the exponential transpose of

R× E× E = E× R× E idE × ·R,E−−−−−−→
E× E (3.3)

the upper horizontal arrow

E× E→ ER

in the first diagram being that in (3.1), the lower horizontal arrow

(E× E)
R → ER×R = E⊗WR×R

in the first diagram being that in (3.1) exponentiated by R, the upper
horizontal arrow

ER = E⊗WR → E⊗WD

in the second diagram being

idE ⊗Wd∈D 7→d∈R

and the lower horizontal arrow

ER×R = E⊗WR×R → E⊗WD×R = (E⊗WD)
R

in the second diagram being

idE ⊗W(d,r)∈D×R7→(d,r)∈R×R
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implies the commutativity of the diagram

E× E = E⊗WD

↓ ↓
(E× E)

R
= (E⊗WD)

R
,

which is the exponential transpose of the commutative diagram

R× E× E = R× (E⊗WD)
↓ ↓

E× E = E⊗WD

with the left vertical arrow being that in (3.3) and the right vertical arrow
being the scalar multiplication in Definition 2.7. This is nothing else but
the gist of the desired statement.

�

It should be apparent that

Lemma 3.8. The diagram

WD(2)W(d1,d2)∈D2 7→(d1,d1d2)∈D(2)−−−−−−−−−−−−−−−−−−−→
WD2

Wd∈D 7→(0,0)∈D2

−−−−−−−−−−−→−−−−−−−−−−−→
Wd∈D 7→(0,d)∈D2

WD

is a limit diagram in the category Weilk.

Theorem 3.9. The RM -module

τWD
(M) : M ⊗WD →M

is Euclidean with respect to the DG-category
(
K/M,RM ,TM , α

M
)
.

Proof. By Lemma 3.8 we have the limit diagram

M ⊗WD(2) idM ⊗W(d1,d2)∈D2 7→(d1,d1d2)∈D(2)−−−−−−−−−−−−−−−−−−−−−−−−−→

M ⊗WD2

idM ⊗Wd∈D 7→(0,0)∈D2

−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−→
idM ⊗Wd∈D 7→(0,d)∈D2

M ⊗WD.

Therefore, we have

M ⊗WD(2) = T
WD

M (τWD
(M)) ,

while we have

M ⊗WD(2) = (M ⊗WD)×M (M ⊗WD) .

Therefore, the desired conclusion follows. �

4. Differential forms

Let E be a Euclidean R-module which is microlinear and Weil exponentiable.

Definition 4.1 (Differential forms with values in E). We denote by Ωn(M ;E)
the intersection of all the following equalizers:
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(1) the equalizer of the exponential transpose

EM⊗WDn → ER×(M⊗WDn )

of the composition of

EM⊗WDn × (R× (M ⊗WDn)) idEM⊗WDn ×
(
·
i

)R
M⊗WDn−−−−−−−−−−−−−−−−−−→

EM⊗WDn × (M ⊗WDn)

and

EM⊗WDn × (M ⊗WDn) ev−→E
in succession and the exponential transpose

EM⊗WDn → ER×(M⊗WDn )

of the composition of

EM⊗WDn × (R× (M ⊗WDn))

=R×
(
EM⊗WDn × (M ⊗WDn)

)
idR × ev−−−−−→R× E

and the scalar multiplication

R× E ·RE−→
E

in succession, where i ranges over the natural numbers from 1 to n, and
the exponential transpose of(

·
i

)R
M⊗WDn

: R× (M ⊗WDn)→M ⊗WDn

is

αW(a,d1,...,dn)∈R×Dn→(d1,...,adi,...,dn)∈Dn
(M)

:M ⊗WDn → (M ⊗WDn)
R

= (M ⊗WDn)⊗WR

=M ⊗WDn×R = M ⊗WR×Dn ,

(2) the equalizer of the exponential transpose

EM⊗WDn → EM⊗WDn

of the composition of

EM⊗WDn × (M ⊗WDn) idEM⊗WDn × (·σ)M⊗WDn−−−−−−−−−−−−−−−−−−→
EM⊗WDn × (M ⊗WDn)

and

EM⊗WDn × (M ⊗WDn) ev−→E
in succession and the exponential transpose

EM⊗WDn → EM⊗WDn

of the composition of

EM⊗WDn × (M ⊗WDn) ev−→E

and

E (εσ) E−−−→
E
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in succession, where σ ranges over all the permutations of the set {1, ..., n},
εσ is the signature of σ, (εσ) E is the scalar multiplication by εσ, and

(·σ)M⊗WDn
: M ⊗WDn →M ⊗WDn

is

αW
(d1,...,dn)∈Dn→(dσ(1),...,dσ(n))∈Dn

(M) .

Definition 4.2 (Infinitesimal integration of differential forms). We define a
morphism ∫ n

M,E
: (M ⊗WDn)× Ωn(M ;E)→ E

in K to be the composition of

idM⊗WDn
×iΩn(M ;E)→EM⊗WDn : (M⊗WDn)×Ωn(M ;E)→ (M ⊗WDn)×EM⊗WDn

and

ev : (M ⊗WDn)× EM⊗WDn → E
in succession, where

iΩn(M ;E)→EM⊗WDn : Ωn(M ;E)→ EM⊗WDn

is the canonical injection.

Remark 4.3. We should point out that the orthodox definition of the infinitesi-
mal integration of differential forms in synthetic differential geometry, such as seen
in Chapter 4 of [2], is unnecessarily decorated with redundant fringes. Therein, it
is defined as a mapping

(M ⊗WDn)× Ωn(M ;E)→ E⊗WDn ,

where the mapping factors through the canonical injection

hom (E⊗WDn)→ E⊗WDn

with hom (E⊗WDn) being the homogeneous subobject of E⊗WDn . Since

hom (E⊗WDn)

is canonically isomorphic to E, such an unnecessarily decoration is to be averted.

It is trivial to see that

Proposition 4.4. The morphism∫ n

M,E
: (M ⊗WDn)× Ωn(M ;E)→ E

satisfies the following properties:

(1) the composition of morphisms(
·
i

)R
M⊗WDn

× idΩn(M ;E) : R× (M ⊗WDn)×Ωn(M ;E)→ (M ⊗WDn)×Ωn(M ;E)

and ∫ n

M,E
: (M ⊗WDn)× Ωn(M ;E)→ E
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in succession is equal to the composition of morphisms

idR ×
∫ n

M,E
: R× (M ⊗WDn)× Ωn(M ;E)→ R× E

and

·RE : R× E → E
in succession,

(2) the composition of morphisms

(·σ)M⊗WDn
× idΩn(M ;E) : (M ⊗WDn)× Ωn(M ;E)→ (M ⊗WDn)× Ωn(M ;E)

and ∫ n

M,E
: (M ⊗WDn)× Ωn(M ;E)→ E

in succession is equal to the composition of morphisms∫ n

M,E
: (M ⊗WDn)× Ωn(M ;E)→ E

and

E (εσ)E⊗WDn−−−−−−−→
E

in succession.

As could have been expected, we have

Theorem 4.5 (The fundamental theorem on differential forms). Given an ob-
ject X in K and a morphism

ϕ : (M ⊗WDn)×X → E⊗WDn , (4.1)

if the morphism (4.1) satisfies the two conditions in Proposition 4.4 with Ωn(M ;E)
replaced by X and

∫ n
M,E replaced by ϕ, then there exists a unique morphism

ϕ̂ : X → Ωn(M ;E)

such that ϕ is equal to the composition of morphisms

idM⊗WDn
× ϕ̂ : (M ⊗WDn)×X → (M ⊗WDn)× Ωn(M ;E)

and ∫ n

M,E
: (M ⊗WDn)× Ωn(M ;E)→ E

in succession.

Proof. The theorem follows rather directly from the universal construction of
Ωn(M ;E). Take the exponential transpose

ϕ̃ : X → (E⊗WDn)
M⊗WDn

of (4.1), which factors, by the two conditions on ϕ, into a morphism

ϕ̂ : X → Ωn(M ;E)

followed by the canonical monomorphism

Ωn(M ;E)→ EM⊗WDn .
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It is not difficult to see that the above ϕ̂ is the desired unique morphism in the
theorem. The details can safely be left to the reader. �

5. The exterior differentiation

Definition 5.1. Given natural numbers n, i with 1 ≤ i ≤ n + 1, we define
a morphism (∫ n

M,E

)
i

: (M ⊗WDn+1)× Ωn(M ;E)→ E

in K to be

(M ⊗WDn+1)× Ωn(M ;E)(
idM ⊗W(d1,...,dn+1)∈Dn+1 7→(d1,...,di−1,di+1,...,dn+1,di)∈Dn+1

)
× idΩn(M ;E)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗WDn+1)× Ωn(M ;E)

= (M ⊗WDn+1)× (Ωn(M ;E)⊗ k)

idM⊗WDn+1 ×
(
idΩn(M ;E) ⊗

(
k → k[X]/

(
X2
)

=WD

))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗WDn+1)× (Ωn(M ;E)⊗WD)

= ((M ⊗WDn)⊗WD)× (Ωn(M ;E)⊗WD)

= ((M ⊗WDn)× Ωn(M ;E))⊗WD∫ n

M,E
⊗idWD

−−−−−−−−→
E⊗WD

=E⊗ E→ E,
where the last morphism

E⊗ E→ E
is the second projection, and

k → k[X]/
(
X2
)

=WD

is the canonical morphism.

Notation 5.2. We denote by(
∂n+1
i

)
M⊗WDn+1

the morphism

idM ⊗W(d1,...,dn+1)∈Dn+1 7→(d1,...,di−1,di+1,...,dn+1,di)∈Dn+1 .

In order to establish the fundamental theorem on exterior differentiation, we
need the following two lemmas:

Lemma 5.3. The composition of morphisms(
·
j

)R

M⊗WDn

×idΩn(M ;E) : R×(M ⊗WDn+1)×Ωn(M ;E)→ (M ⊗WDn+1)×Ωn(M ;E)

and (∫ n

M,E

)
i

: (M ⊗WDn+1)× Ωn(M ;E)→ E
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in succession is equal to the composition of morphisms

idR ×
(∫ n

M,E

)
i

: R× (M ⊗WDn+1)× Ωn(M ;E)→ R× E

and

·RE : R× E → E

in succession.

Proof. For j < i, it is easy to see that

(
∂n+1
i

)
M⊗WDn+1

◦
(
·
j

)R

M⊗WDn+1

=

((
·
j

)R

M⊗WDn

⊗ idWD

)
◦
(

idR ×
(
∂n+1
i

)
M⊗WDn+1

)
,

while, for j > i, it is also easy to see that

(
∂n+1
i

)
M⊗WDn+1

◦
(
·
j

)R

M⊗WDn+1

=

((
·

j−1

)R

M⊗WDn

⊗ idWD

)
◦
(

idR ×
(
∂n+1
i

)
M⊗WDn+1

)
.

Therefore, for j 6= i, (∫ n

M,E

)
i

◦

((
·
j

)R

M⊗WDn+1

× idΩn(M ;E)

)

=
(
·RE
)
◦

(
idR ×

(∫ n

M,E

)
i

)
follows directly. It remains to be shown that(∫ n

M,E

)
i

◦
((
·
i

)R
M⊗WDn+1

× idΩn(M ;E)

)
=
(
·RE
)
◦

(
idR ×

(∫ n

M,E

)
i

)
,

which follows readily from(
∂n+1
i

)
M⊗WDn+1

◦
(
·
i

)R
M⊗WDn+1

=

(
·

n+1

)R

M⊗WDn+1

◦
(
∂n+1
i

)
M⊗WDn+1

.

�
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Lemma 5.4. Given a permutation σ of {1, ..., n+ 1}, we have(
n+1∑
i=1

(−1)i+1

(∫ n

M,E

)
i

)
◦
(

(·σ)M⊗WDn+1
× idΩn(M ;E)

)
=εσ

n+1∑
i=1

(−1)i+1

(∫ n

M,E

)
i

.

Proof. We notice that(
∂n+1
i

)
M⊗WDn+1

◦ (·σ)M⊗WDn+1

=
(

idM ⊗W(δσi )
Dn

)(
·δ
σ
i

)
M⊗WDn+1

◦
(
∂n+1
σ−1(i)

)
M⊗WDn+1

,

where δσi is the permutation of {1, ..., n} with

δσi (j) = σ (j) in case of j < σ−1(i) and σ (j) < i;

δσi (j) = σ (j + 1) in case of j = σ−1(i) and σ (j) < i;

δσi (j) = σ (j)− 1 in case of j < σ−1(i) and σ (j) = i;

δσi (j) = σ (j + 1)− 1 in case of j = σ−1(i) and σ (j) = i.

We notice also that (∫ n

M,E

)
◦
((
·δ
σ
i

)
M⊗WDn

× idΩn(M ;E)

)
=εδσi

∫ n

M,E

and

εδσi = (−1)σ
−1(i)−iεσ.

Therefore the desired statement follows. �

Theorem 5.5 (The fundamental theorem on exterior differentiation). There
exists a unique morphism

dn : Ωn(M ;E)→ Ωn+1(M ;E)

in K such that the the composition of morphisms

idM⊗WDn+1 × dn : (M ⊗WDn+1)× Ωn(M ;E)→ (M ⊗WDn+1)× Ωn+1(M ;E)

and ∫ n+1

M,E
: (M ⊗WDn+1)× Ωn+1(M ;E)→ E

is equal to the morphism

n+1∑
i=1

(−1)i+1

(∫ n

M,E

)
i

: (M ⊗WDn+1)× Ωn(M ;E)→ E.

Proof. This follows easily from Lemmas 5.3 and 5.4 and Theorem 4.5. �
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