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Abstract: Numerical Laplace inversions are essential to use when the analytical manipulations of 

the Laplace transform tables are not possible to apply, and this becomes more and more difficult 

for applications with higher number of variables. In this paper we describe three methods for 2D 

numerical inverse Laplace transforms and analyse the methods as for their accuracy and calculation 

efficiency by implementing them in the Matlab environment. The relative and absolute errors for 

three different testing functions with previously known originals are presented in a comparative ta-

ble for the selected points, and the 3D resulting plots for the inversion of a test function are dis-

played. 

Keywords: Numerical inversion, two-dimensional Laplace transform, test functions, Matlab lan-

guage, 3D plot. 

 

NOMENCLATURE 

-   is the time domain function 

-   is the Laplace domain function 

-   is time and   represents space (distance) 

-   is the complex frequency variable 

-   is distance from the imaginary axis 

-    is the real part  

-    is the imaginary part 

-    and    are real numbers 

-   is a positive constant 

-   is the period of the Fourier series func-

tion, sec. 

 

-      is the maximum time interval, sec. 

-   is the number of terms; positive integer. 

-     ,     are the residues of approximating 

the exponential kernel 

-         are the poles of approximating the 

exponential kernel 

- FFT is fast Fourier transform 

-    are sampling periods in the original 

time domain 

-    is the frequency step 
-    is the desired relative error 

 

 

1. INTRODUCTION 

Two-dimensional numerical inverse Laplace transforms (2D-NILTs) arise in electrical engineering 

related fields for applications that require solution of partial differential equations with two varia-

bles. Such applications are those defining transients in linear distributed-parameter systems, e.g. 

solving telegrapher equations, obtaining voltage, current distributions in the original time domain 

[1, 2], or more sophisticated such as that concerning slightly nonlinear systems described by sec-

ond-order Voltera series expansion [3]. In this paper three inversion methods are described, these 

methods are based on using Fourier series techniques or the Padé approximation. These methods 

have proved to give good results and to be relatively universal for a wide range of applications [4]. 

Each method has different free parameters which could be optimized for higher accuracy results. 

The three methods in the next section are introduced in the following order, the first method is the 
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2D NILT based on Fourier series representation by Moorthy [4]. The second method is the 2D 

NILT by Singhal, Vlach and Vlach [5], and the third method is the accelerated 2D-FFT NILT by 

Brančik [6]. The numerical methods start with the main 2D inverse Laplace transform formula de-

scribed as the two-fold Bromwich integral namely, 
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   ∫ ∫  (     ) 
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where   and   are generally any independent variables, but due to our interest in engineering relat-

ed applications, we consider them to be time and space variables respectively. The Laplace variable 

is defined as       .  

 

2. 2D NUMERICAL INVERSE LAPLACE TRANSFORM METHODS 

2.1. 2D NILT BASED ON FOURIER SERIES REPRESENTATION 

The method was developed by M. Moorthy in[4], it is an expansion of a 1D method based on a rep-

resentation of the inverse transform by Fourier series, which was introduced by Dubner and Abate 

[7]. The inversion formula consists of a combination of two infinite sums and a double infinite sum 

and is listed as follows, 
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where the   annotations are functions with different approximations of    and    and the   are dif-

ferent sinusoidal functions. For the detailed derivation and annotations the reader is advised to 

check reference [4].  

For the derivation of the final formula the following assumptions were considered, 

| (   )|            ,     (4)  

 and the Laplace domain of the function  (     ) is analytic for   {  }     and   {  }    . 

To obtain an optimum choice of the parameters used, an error analysis done in [4] suggests that the 

choice of    and     to be larger than    and    respectively; for example by first choosing    
  , then [4],  

      
 

  
  (
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      (     )
) ,      (5) 

to choose the  parameter T , after considering        , and after running different tests the au-

thor suggests the choice of                   [4].   

 

2.2. 2D NILT ROPOSED BY SINGHAL, J. VLACH, AND M. VLACH 

In this 2D numerical inversion method the algorithm is an expansion of a 1D NILT based on the 

Zakian numerical scheme[5, 8]. The inversion technique uses the Padé approximation and the re-

sidual theorem. The formulae is described as follows [5], 
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        are the poles of the rational Padé approximation, shown as follows [5], 
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where          , and          . 

Tests performed on the method show that the method performs well especially for sufficiently 

smooth functions. In the tables and figures following in the paper the method is denoted as 

“Singhal-2D NILT”. 

 

2.3. ACCELERATED 2D FFT-BASED NILT 

In this numerical procedure described in [6] the inversion is based on fast Fourier transform algo-

rithms  FFT. Basically, the method uses the sum of two-dimensional complex Fourier series calcu-

lated by FFT algorithms. Furthermore, the ε-algorithm of Wynn is combined into the method to 

further give a higher accuracy and improvement to the result. Following in the text the term FFT-ε-

2D NILT will be used to refer to this method.  

The basic inversion algorithm namely is [6], 
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where  ̃       ̃(         ) , is the discrete form of the approximate formula. The symbols used 

are given as follows [6], 
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where    
  

    
 ,       , the discrete points given as    

      , and              . 

The error analysis in [6], provides us with the ideal choice of    , that is to say by choosing    as 

the desired relative error then the choice of    can be given as, 

      
  

  
  

  

 
      .     (12) 

The parameter   is introduced as a free parameter, such that the infinite sums in (8) are calculated 

up to     terms; choosing       has shown to give good results, the terms above   are inte-

grated into the ε-algorithm for higher accuracy. Generally, the ε-algorithm is considered as a non-

linear algorithm used to speed up the convergence of the series and it is equivalent to a rational 

Padé approximation. The ε-algorithm is known to give good results when applied to power series; 

this is possible in the current case, since with some mathematical manipulations the complex Fou-

rier series becomes as such a power series. In [6] the ε-algorithm diagram is shown with the de-

tailed description of its application to the numerical method.  
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3. 2D NILT METHODS ACCURACY TESTS 

After describing the 2D NILT methods and their inversion algorithms, here the absolute errors and 

relative errors for test functions with previously known originals are examined on the methods de-

scribed in this paper. 

The three methods were implemented by using the universal mathematical language Matlab and the 

test functions used here have been endorsed to be used as smooth test functions in both variables 

[4, 5]. The first test function in the Laplace domain with its known original is listed as follows, 

  (     )  
 

(    )(    )
 ,     (13) 

  (   )          ,     (14) 

The absolute errors and relative errors are calculated at the specific point (   )  (   ), the results 

are listed in an ascending order starting with the method of higher accuracy in Table 1, bellow. 

2D NILT method Absolute error Relative error 

FFT-ε-2D NILT                          

Singhal-2D NILT                       

Moorthy-2D NILT                      

 

Table 1: Accuracy tests for 2D NILT, function 1 

 

 The second function to be tested is described as, 

  (     )  
 

(    ) (    ) (       )
 ,     (15) 

  (   )  {
  (    )    

  (    )    
 ,     (16) 

In Table 2, the absolute and relative errors are shown in an ascending order for the inversion meth-

ods tested on   (   ) at (   )  (   ). 

2D NILT method Absolute error Relative error 

FFT_ε-2D NILT                          

Moorthy-2D NILT                      

Singhal-2D NILT                       

 

Table 2: Accuracy tests for 2D NILT, function 2 

 

The results shown in the tables above have the FFT-ε-2DNILT method with the relatively highest 

accuracy among the three methods tested with an accuracy improvement in average of about 2 or-
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ders. In Table 3, the different parameters used to implement the results of the methods are listed for 

each method respectively [4-6]. 

 

2D NILT Method Parameters used to test the functions 

FFT_ε-2D NILT                   . Same values for both functions. 

Moorthy-2D NILT 
             For function1,                 . 

For function2,                        . 

Singhal-2D NILT          . Same values for both functions used. 

 

Table 3: Parameters used for different NILT methods 

 

The results of inverting function 1, with the three 2D NILT methods are shown as 3D plot results in 

Figure 1. The 3D plots were determined through a grid of 256x256. 

 
 

 

Figure 1: Results of the inverted function 1 with different NILTs and the known original 
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4. CONCLUSION 

Three methods for 2D NILTs are described, implemented and compared in the paper. The NILT 

methods presented are devised based on using Fourier series techniques or Padé approximations 

which are classified as methods with good performance. The accuracy of the methods is empha-

sized by testing them with two functions that have previously known originals. We have pro-

grammed the methods and implemented them by using the universal mathematical language 

Matlab, and the results were shown in two tables and presented with the 3D plots of the inverted 

test function. The work is currently continued further by testing more methods with a larger num-

ber of functions of interest in electrical engineering along with the absolute error 3D plots and with 

further application of the methods on continuous space-time systems. 
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