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Abstract: The rapid development in DNA sequencing techniques brings completely new possibili-

ties into metagenomics research. No longer is the whole metagenome sequencing an issue. On the 

other hand, this progress lies new demands on bioinformatics tools indented to process this kind of 

data. Unlike the amplicon based sequencing where every sequence represents a particular gene, the 

whole metagenome sequencing produce sequences that are random pieces of genomes in the meta-

genome. Therefore, the reference database for identification of these sequences cannot be used. 

Here, we present fast feature selection based on genomic signal processing for alignment-free clas-

sification of sequences in the metagenome. 
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1. INTRODUCTION 

According to estimates, the number of cells belonging to microorganisms located in a human body 

exceeds the number of human cells in a ratio of 10 to 1. Although most of these organisms do not 

cause any harm to the body, not inconsiderable part of them is associated with the occurrence of 

dangerous diseases and antibiotic resistance. Accurate and rapid identification of these organisms is 

therefore fundamental in the research of diseases for fast deployment of appropriate treatment and 

therefore in saving of human lives [1]. In the research of farm animals, it can help prevent signifi-

cant economic losses through preventing diseases of entire herds. 

The rapid development of DNA sequencing techniques is dramatically changing the way in which 

metagenomic research is conducted, i.e. research of the genomes of different organisms found in 

the common environment. Such studies are nowadays closely associated with the use of advanced 

bioinformatics techniques for processing biological sequences [2]. Compared to two metagenomic 

studies published in 2006, thousands of studies are produced in these days. Thus, continuous de-

velopment of new and faster bioinformatics tools that will be able to handle this amount of data is 

necessary [3].Older but still used metagenomic approach stands on targeted amplicon sequencing 

of one selected representative gene [4]. Sequence identification is then performed by comparing the 

sequences against the reference database and data can be visualized using the dimensionality reduc-

tion techniques, usually analysis of principal co-ordinates (PCoA) using UniFrac metric [5,6]. The 

current trend, however, lies in shotgun sequencing of the entire metagenome. Unfortunately this 

approach brings several issues. Firstly, using this approach, one is not able to identify the sequenc-

es directly, because they represent different parts of the genome, for which there is still no com-

plete reference database. Secondly, the number of sequences prevents sufficient comparison against 

a reference database even with the heuristic algorithm BLAST [7,8]. 

Current bioinformatics methods for metagenomic data processing are based on fast classification of 

sequences into clusters that represent the different types of organisms and whose subsequent identi-

fication is no longer an issue. However, there are several different approaches. The simplest of 

them use locally sensitive hash function and compare the two sequences locally by particular 
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words, so called k-mers [9,10]. Advanced techniques are based on a selection of different feature 

vectors. In such cases the classification of metagenomic data is normally carried out using cluster-

ing techniques [11]. It is assumed that individual clusters will contain the feature vectors derived 

from the same organism and the overall architecture of the clusters will give us information about 

taxonomic diversity of studied species. Unfortunately, current techniques for creating such a specif-

ic feature vector are based only on the character processing techniques and are therefore very lim-

ited. On the other hand, a large selection of techniques to generate a sufficiently specific vector can 

be provided by a progressively evolving discipline of bioinformatics called genomic signal pro-

cessing [12]. As it has been already deduced, phase signals are species specific and can be used for 

example for a sequence alignment [13] or comparison of species even after a massive downsam-

pling [14]. Here, we present reconstruction of species specific feature vector based on combination 

of slopes of several different phase signal representations of genomic data. 

2. MATERIALS AND METHODS 

2.1. TEST DATASET 

In order to test the proposed method, we created 3 test dataset containing 2,500 sequences each, de-

rived from 5 different organisms representing 4 different bacterial species. The whole genome se-

quences were obtained from Genbank database at NCBI (http://www.ncbi.nlm.nih.gov/genbank/), 

see summary in Table 1. Sequencing reads were simulated as random fragments derived from 

complete genome sequences and 500 reads were generated from every genome. A half of the se-

quences were further modified as reverse complementary to better represent real sequencing data. 

Moreover, 3 dataset according to length of reads (500 nt, 1,000 nt and 5,000 nt) were prepared to 

examine the influence of read length on the succession of classification and to represent data from 

next-generation sequencing (NGS) as well as third-generation (TGS) sequencing platforms. 

Table 1: Summary of organisms used for test dataset 

species organism accession no. 

E. coli Escherichia coli UTI89 NC_007946.1 

E. coli Escherichia coli str. ’clone D i14’ NC_017652.1 

C. C. ruddii Candidatus Carsonella ruddii PV NC_008512.1 

G. obscurus Geodermatophilus obscurus DSM 43160 NC_013757.1 

R. prowazekii Rickettsia prowazekii str. Dachau NC_017051.1 

2.2. SIGNAL REPRESENTATION 

Although we have already proved the cumulated phase signal representing purine-pyrimidines (R-

Y) and strong-week (S-W) ratio to be species specific, this feature was examined only on a large 

(whole genome) scale [15]. To examine the features on a smaller (reads) scale, we decided to use 

all 3 possibilities in which nucleotides {A, C, G, T} are assigned phases {π/4, -3π/4, 3π/4, -π/4} to 

present R-Y and S-W, {3π/4, -3π/4, π/4, -π/4} to present R-Y and amino-keto (M-K), {3π/4, -3π/4, 

-π/4, π/4} to present S-W and M-K. Moreover, we examined both, cumulated phase signals repre-

senting cumulative sum of nucleotides along sequences as well as unwrapped phase representing 

transition and transversions along sequences [16]. 

For every read, all 6 signals (3 cumulated phase and 3 unwrapped phase signals) were reconstruct-

ed and their slopes were computed. A feature vectors representing reads were constructed using 

those 6 values representing the slopes. 

2.3. CLUSTERING AND STATISTICS 

Feature vectors were clustered using Ward’s hierarchical clustering technique with utilization of 

Euclidean metric. The resulting clusters were compared to real taxonomy and statistics for each or-

ganism in form of sensitivity (sensitivity=TP/(TP+FN)), specificity (specificity=TN/(TN+FP)), 
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precision (precision = TP/(TP+FP)) and accuracy (accuracy = (TP+TN)/(TP+FN+FP+FN)) were 

computed. 

3. RESULTS AND DISCUSSION 

Firstly, we reduced the feature vectors by omitting the signals of unwrapped phases representing S-

W and M-K. This kind of signals is identical to unwrapped phase representing R-Y and M-K from 

its definition and therefore it does not bring any additional information. 

Secondly, by computing the above mentioned statistics for particular signal representations, the 

slope of cumulated phase signals representing R-Y and S-W were found to be unable to distinguish 

different species. Therefore, we omitted also this feature from the vector. The example of cumulat-

ed phase signals with (S-W and M-K) and without (R-Y and S-W) discriminative information is 

shown in Figure 1. 

 

Figure 1: Cumulated phase signals for randomly selected sequences from the test dataset presenting a) 

S-W and M-K information b) R-Y and S-W information 

The resulting vectors containing 4 slopes were further analyzed by hierarchical clustering and the 

resulting clusters were used for statistics evaluation. The tree reconstructed from feature vectors de-

rived from 5,000 nt long sequences is presented in Figure 2. There are 4 evident clusters represent-

ing 4 species. 

 

Figure 2: The tree reconstructed from the feature vectors using Ward method and Euclidean metric 

The cluster containing E. coli vectors is larger because two organisms for this species were includ-

ed in the test dataset. Only a small number of sequences were misclassified as shown below. How-

ever, the longer the sequences are, the higher amount of information they contain. Although 5,000 
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nt long reads are typical for TGS, we tried to test if the method works for NGS data too. Therefore, 

we repeated the analysis with shorter reads, typical for NGS. The results of classification are sum-

marized in Table 2 and Table 3. 

Table 2: The results of classification (sensitivity and specificity) 

Organism 
500 nt 1000 nt 5000 nt 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

E. coli 98,28 94,64 99,78 93,63 99,90 99,60 

C. C.ruddii 75,00 98,14 97,45 97,98 100,00 99,21 

G. obscurus 99,80 99,60 99,40 99,95 100,00 100,00 

R. prowazekii 74,29 92,08 77,67 99,31 95,78 99,95 

Average 86,84 96,12 93,58 97,72 98,92 99,69 

 

Table 3: The results of classification (precision and accuracy) 

Organism 
500 nt 1000 nt 5000 nt 

Precision Accuracy Precision Accuracy Precision Accuracy 

E. coli 91,60 96,00 89,80 95,84 99,40 99,72 

C. C.ruddii 93,00 92,40 91,80 97,88 96,80 99,36 

G. obscurus 98,40 99,64 99,80 99,84 100,00 100,00 

R. prowazekii 67,60 88,84 97,40 93,88 99,80 99,08 

Average 87,65 94,22 94,70 96,86 99,00 99,54 

 

The results show that the method is very successful for TGS data classification, however, it is also 

applicable on NGS data with satisfactory results. The main advantage of the method over the cur-

rent techniques is its low computational complexity. While the most of current techniques suffer 

from quadratic complexity and the fastest of them are no better than O(n log n) [17], our method is 

computationally very efficient, based only on basic mathematical operations. In combination with 

recently published algorithm TwisterTries for hierarchical clustering [18], the whole pipeline would 

be only O(n). 

4. CONCLUSION 

A new method for classification of metagenomic data without prior alignment to a reference data-

base is introduced in this paper. Unlike the current techniques, our approach relies fully on ge-

nomic signal processing making it computationally very efficient. The sequences are first trans-

formed into 4 different phase signal representations and then the feature vector using the slopes of 

the signals is reconstructed. The only computationally demanding part remains in final vector clus-

tering. However, this part can be updated with recently published algorithm for hierarchical cluster-

ing with only linear complexity. Such a method fully meets the current needs when millions of se-

quences are produced during every sequencing run. We demonstrated our method to work not only 

on TGS data, but also on currently most widely used NGS. 
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