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INTRUSION DETECTION IN NETWORK TRAFFIC

DISERTAČNÍ PRÁCE
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Abstrakt
Tato práce se zabývá problematikou anomální detekce síťových útoků s využitím technik
strojového učení. Nejdříve jsou prezentovány state-of-the-art datové kolekce určené pro
ověření funkčnosti systémů detekce útoků a také práce, které používají statistickou analýzu
a techniky strojového učení pro nalezení síťových útoků. V další části práce je prezentován
návrh vlastní kolekce metrik nazývaných Advanced Security Network Metrics (ASNM), který
je součástí konceptuálního automatického systému pro detekci průniků (AIPS). Dále jsou
navrženy a diskutovány dva různé přístupy k obfuskaci – tunelování a modifikace síťových
charakteristik – sloužících pro úpravu provádění útoků. Experimenty ukazují, že použité
obfuskace jsou schopny předejít odhalení útoků pomocí klasifikátoru využívajícího metriky
ASNM. Na druhé straně zahrnutí těchto obfuskací do trénovacího procesu klasifikátoru může
zlepšit jeho detekční schopnosti. Práce také prezentuje alternativní pohled na obfuskační
techniky modifikující síťové charakteristiky a demonstruje jejich použití jako aproximaci
síťového normalizéru založenou na vhodných trénovacích datech.

Abstract
The thesis deals with anomaly based network intrusion detection which utilize machine
learning approaches. First, state-of-the-art datasets intended for evaluation of intrusion
detection systems are described as well as the related works employing statistical analysis
and machine learning techniques for network intrusion detection. In the next part, origi-
nal feature set, Advanced Security Network Metrics (ASNM) is presented, which is part of
conceptual automated network intrusion detection system, AIPS. Then, tunneling obfusca-
tion techniques as well as non-payload-based ones are proposed to apply as modifications of
network attack execution. Experiments reveal that utilized obfuscations are able to avoid
attack detection by supervised classifier using ASNM features, and their utilization can
strengthen the detection performance of the classifier by including them into the training
process of the classifier. The work also presents an alternative view on the non-payload-
based obfuscation techniques, and demonstrates how they may be employed as a training
data driven approximation of network traffic normalizer.
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Chapter 1

Introduction

These days, network security is one of the most critical things that the corporations and
organizations have to handle. More and more attacks are executed into the professionally
secured corporate networks or into private networks and stations. New threats are emerging
everyday and lots of old threats remain current. The impact of a successfully performed
network attack can be very crucial, either in commercial or personal network environments.
Network attack can cause huge financial and economical loss in the most of cases.

Many of actual network attacks detection systems are based on well known signatures
of known network attack types. Signature based systems are very fast and they can provide
very low false positive rate which favors them to be widely used. On the other hand, these
systems cannot detect zero-day attacks and they may also have high false negative rate
– representing successful evasion of target machines. Signature based systems are often
bypassed by application layer obfustation techniques like substitutions, code transpositions,
code compression, inserting of meaningless instructions, etc.

If the signature based system is deployed as a network device analyzing network traf-
fic, then it is often facing the fact that useful content of the network flow is encrypted,
and therefore it cannot detect potential threats. Because of this, there is a considerable
interest in development of a novel detection methods. These methods are based on new
features for description of network flow with intention to early identify emerging security
incidents, rapidly detect infections within internal networks and instantaneously prevent
forming attacks. Discussed methods are part of Network Behavioral Anomaly Detection
(NBAD) intended for intrusion detection, which may be also referred to as Anomaly De-
tection Systems (ADS). NBAD tries to approach detection of network attacks by utilizing
packets’ headers and communication behavior, not the content of packets. NBAD has lot of
advantages, but on the other hand, some of these systems based on flow feature extraction
do not use enough quality and quantity features to perform classification decision. The de-
cisions made by these systems are in many cases coarse-grained, and thus often not correct.
Therefore, further research is needed to improve the detection capabilities of the NBAD
systems.

1.1 Motivation

The most of the previous and current research on the field of network attacks detection and
traffic classification utilizing machine learning techniques presents various methods pursued
in their performance in contrast of lacking operational deployment of such systems [172].

5



These methods employ diverse machine learning algorithms and data mining techniques
to examine and analyze some dataset without concerning how such dataset was collected
and network traffic simulation performed. There are several reasons why such systems are
not deployed in the real traffic environment (over-learned classifiers, polymorphism and
metamorphism of the network malware, different characteristics of the zero-day attacks,
etc.). All such systems can suffer from occurrence of some misclassified data which has very
high costs. A legitimate communication may be classified as an attack in false positive case,
and therefore a denial of legitimate service usage occurs. A malicious communication may
be classified as legitimate one in false negative case, and thus an evasion occurs. Both cases
are very critical. Therefore, general guidelines prefer to consider NBAD alerts with only
some level of uncertainty, and rather to inspect detected threats by human expert.

Basic principles of NBAD open possibilities of an attacker to evade NBAD detection by
using various obfuscation techniques. The motivation of my work is to learn the NBAD
detection engine of being aware of various obfuscated network attacks’ behavior, and thus
moving forward the machine learning based network anomaly intrusion detection to its
maximal potential use.

Aforementioned thoughts and facts bring me to consideration of making malicious traffic
simulation as divergent as possible. I suppose to use diverse obfuscation techniques of
network attacks, causing classifiers trained without knowledge of these modifications, be
unable to provide acceptable response. Then, providing of supposed data modifications to
a training phase of classifiers can strengthen their detection capabilities. In the other words,
I want to prepare NBAD classifiers for occurrence of various obfuscation techniques which
an attacker may exploit for evasion of NBAD.

1.2 Goal of the Thesis

The main goal of my thesis is to evaluate and improve properties of previously designed
NBAD system called Automated Intrusion Prevention System (AIPS) and its detection
features, respectively. The method of evaluation will not only include experiments with de-
signed network features and optimization of machine learning techniques, but also, will take
advantage of using various network layer based obfuscation techniques. The latter method
approaches improvement of AIPS performance by aiming on divergence of training data,
which is accomplished by obfuscation techniques. These obfuscation techniques are utilized
in order to strengthen precision and recall of detection models of AIPS. The obfuscation
techniques which I use in my research are based on non-payload-based network layer modifi-
cations of connection-oriented communications as well as tunneling network traffic through
different protocol.

The next goal of the thesis is to provide an alternative view on the utilization of non-
payload-based obfuscations. I will show how network traffic normalizer, which is usually
prone to state holding and CPU overload attacks, can be omitted in considered NBAD sys-
tem thanks to enough training data divergence achieved by proposed obfuscations. Thus,
non-payload-based network traffic obfuscation techniques will be utilized as technique de-
noted as training data driven approximation of a network traffic normalizer, resulting into
eliminating of current issues inherent to network traffic normalization.
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1.3 Structure of the Thesis

Chapter 2 will discuss traditional and actual principles of network attacks detection and
will present the taxonomy of intrusion detection methods. Chapter 3 will formally define
IDS prediction task and then state definitions of prediction approaches employed through
the thesis. It will also define performance measures utilized for binominal and multi-class
prediction as well as the proposed way of their estimation in cross validation method. Chap-
ter 4 will concern machine learning based intrusion detection systems as well as network
traffic classification ones. It will also describe datasets utilized for evaluation of Intrusion
Detection Systems (IDS), and finally provide overview of obfuscation and evasion approaches
in ADS and IDS, supplemented by several prevention techniques against obfuscations and
evasions. Chapter 5 will describe full concept of statistical and behavioral based system for
anomaly intrusion detection – AIPS – which was developed under a project of Faculty of
Information Technology in Brno. Also, my particular contributions, primarily residing in
the design and the definition of the system’s features denoted as Advanced Security Network
Metrics (ASNM), will be discussed. The chapter will describe extraction process of ASNM
and also formally define mathematical methods utilized for computation of the ASNM fea-
tures. Chapter 6 will aim at the performance evaluation of the ASNM features, which is also
result of my contributions to the project. Independently of mentioned project, the chapter
will propose performance improvement of the detection by ASNM features and a super-
vised classifier, resulting into two categories of proposed obfuscation techniques. The first
category of obfuscation techniques – called tunneling obfuscation – will be described and
evaluated in Chapter 7, while the second category – called non-payload-based obfuscations
– will be closely specified and evaluated in Chaper 8. The last part – Chapter 9 – will
conclude the thesis and summarize the research contributions.
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Chapter 2

Taxonomy of Network Intrusion
Detection

According to [12], there are two basic types of network attacks detection. The first type
represents signature matching and the second type is based on anomaly detection. Another
newer kind of network attack detection are honeypot systems. The principles of each cat-
egory together with their categorization are discussed in the current chapter. The most of
further information about signature and anomaly based systems is gained from the technical
report [12] and from the paper [103].

2.1 Signature Based Detection

The decision is performed according to a model of malicious process and attack’s trace on
a compromised system in the area of signature based detection. Signature based detectors
are trying to detect the presence of malicious activity, regardless of the normal commu-
nication in the background. This fact puts strict requirements on the model of intrusion
detection [12], which has to contain very precisely defined details of signatures. All the sys-
tems in this category are explicitly programmed and there is no learning at run time. These
systems are divided into several categories: state model, expert, chain-based and rule-based.

Systems with State Model

These systems represent an attack as a set of states, where each of them must occur to
declare an attack occurence. These states are represented by time series models.

This category can be further divided into two subcategories – state transition based
and systems based on Petri Nets [120]. The states in the state transition systems have to
form a sequence, which when executed, attack happens. The second subclass – Petri Nets
systems can contain general structure of the state transition graph.

Expert Systems

Expert systems utilize predefined rules which represents attacks signatures. These systems
very often need to meet a set of rules in order to declare attack detection. The problem with
these systems is a long execution time of analysis due to the frequent usage of executive
mechanisms [12].
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String Matching Systems

Systems based on string matching operate by very simple substrings comparison in the text
being transmitted between systems. This method is not flexible but easy to understand and
can use the existing very effective algorithms for text strings searching.

Rule Based Systems

Rule based systems are similar to some simple expert systems, but they are faster. Rules
have declarative character. Often it is necessary to optimize the various rules, for exam-
ple transformation of complex expression into a tree representation, which is effectively
evaluated with elimination of certain subterms [64].

2.2 Anomaly Based Detection

Another term which describes network anomaly based system is Network Behavior Anomaly
Detection (NBAD) [103]. NBAD is an integral part of network behavior analysis (NBA),
which offers security in addition to that provided by traditional anti-threat applications such
as firewalls, intrusion detection systems, anti-virus software and spyware-detection software.
NBAD often requires several sensors to create a good snapshot of a network and requires
benchmarking and baselining to determine the nominal amount of a segment’s traffic [198].

Anomaly detection does not monitor known characteristics of attacks which are signs
of their occurrence, but it observes abnormalities in network traffic. Construction of such
a detector needs to form a conclusion – what is the normal behavior of the observed body and
the abnormal one. The paper [103] suggest classification of anomaly detection approaches
based on employed methods into two groups: learning-based methods and specification-based
methods. The technical report [12] proposes classification of anomaly detection systems into
two categories: self-learning systems and programmable systems. Both of categorizations will
be closely described in the following text.

2.2.1 Taxonomy by Axelsson

This taxonomy of anomaly based intrusion detection systems was proposed in 2000 by
Stefan Axelsson in technical report “Intrusion detection systems: A survey and taxonomy”
[12]. It is based on the way, how intrusion detection systems obtain information neccessary
to perform detection or decision.

Self-learning Systems

The task of these systems is to learn from long-term observation of network traffic and to
build a model of the operation and ongoing processes in the network traffic. We divide
these systems according to their approach to time repeatability. They can either take it
into account or omit it. The first group (repeatable) uses techniques like Markov deci-
sion processes [111] or neural networks [175], which can more trustworthy represent real
communication [12].

The second group (unrepeatible) uses stochastic models. They can operate in the mode
when they follow the normal network traffic and create model rules of normal communication
or they can operate in detection mode, which monitor the compliance with these rules. The
system will be alarmed if there occur weak consensus evaluated by weighting. Another
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way they operate is in collecting of descriptive statistics of network traffic into profiles and
building vectors of distances for examined traffic and profile. The system will be alarmed
when the distance is large enough.

Programmable Systems

This variant require the programmer to teach the detection system certain anomaly events.
Thus the user provides expert knowledge to the system. These systems are divided into those
based on descriptive statistics and those implicitly denial. The systems based on descriptive
statistics collect parameters and system information like the number of failed login attempts,
the number of network connections, the number of commands with an error return code.
The main idea of implicitly denial system is to put the system’s state circumstances into
harmless mode and consider all deviations from this mode as attacks. There is possible to
see the correspondence with the implicitly deny security policy [12].

2.2.2 Taxonomy by Lim

This taxonomy of anomaly based intrusion detection systems was proposed in 2008 by Shu
Yun Lim et al. in article “Network Anomaly Detection System: The State of Art of Network
Behavioral Analysis” [103]. The authors mention anomaly detection algorithms are quite
diverse in nature, and thus may fit into more than one category. Their classification attempts
to find the most suitable category for all existing anomaly detection algorithms up to 2008.
They also expressed a sentiment that their taxonomy is expected to continuously evolve
before achieving a solid maturity for its implementation. All the approaches that concern
the behavioral model construction are presented in Figure 2.1.

Figure 2.1: Taxonomy of anomaly detector’s behavioral model [103]

2.2.2.1 Learned Model

In this category, an anomaly detection model must be trained on the specific network or host
which is monitored. The training of the model utilizes observed behavior of the particular
system and then, machine learning techniques are used to create a profile of such normal
behaviors. In the stage of creating an anomaly detection model, rule-based, model-based,
and statistical-based approaches have been adopted to create the baseline profiles.
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Rule-based

Rule-based systems which are used in anomaly detection characterize the normal be-
havior of users, networks and/or computer systems by a set of rules. These predefined rules
typically look for the high-level state change patterns observed in the audit data compared
to predefined state change of penetration scenarios. An example of this subcategory is an
expert system which represents the system’s state by knowledge base (consisting of a fact
base) and a rule base.

Model-based

Model-based behavioral intrusion detection attempts to model intrusions at a higher level
of abstraction alike rule-based ones which simply attempts to bind audit records to expert
rules. A model-based anomaly detector tries to restrict execution to a pre-computed model
of expected behavior.

Researchers often use different types of models to characterize the normal behavior of
the monitored system. In the model-based approaches, anomalies are detected as deviations
from the model that represents the normal behavior. Examples of this sub-category can be
considered data mining, neural networks, pattern matching, etc., utilized to build predictive
models.

Statistical-based

Statistical-based anomaly detection was for the first time discussed by Denning and Neu-
mann in 1985 [51]. The anomaly detector observes the activity of subjects and generates
profiles representing their behavior. These profiles are designed to use a little memory to
store their internal state, and to be efficient in updating because every profile may po-
tentially be updated for every audit record. With processing of audit records, the system
periodically generates a quantitative measure of the normal profile.

The well-known techniques of statistics can often be applied for this category as well.
For example, data points that lie beyond a multiple of the standard deviation on either side
of the mean might be considered anomalous. Another example can be the integral value of
the absolute difference of two functions over time which might also be used as an indicator of
the deviation of one function with respect to the other. There are more statistical techniques
like Bayesian statistics, Co-variance matrices and Chi-square statistics [200] which might be
used for the profiling of an anomaly detection. Nevertheless, statistical approaches have their
disadvantages as statistical measures are insensitive to the order of occurrence of events.
It is also difficult to determine a threshold above which an anomaly should be considered
intrusive. Imprecise thresholds usually lead to either false positive or false negative cases.

2.2.2.2 Specification Model

The specification approach depends more on human observation and expertise than on
mathematics. It was for the first time utilized by C. Ko et al. [91] in 1997. It uses a logic-
based description of expected behavior to construct a base model. This specification-based
anomaly detection system monitors multiple system elements, ranging from application to
network traffic. The current category contains three approaches to specification of anomaly
detection model: protocol-based, state-based and transaction-based specifications.

11



Protocol-based

Protocol anomaly detectors build models of TCP/IP protocols using their specifications
[101]. Disadvantage of previously discussed statistical anomaly detection resides in inherent
inability to create a model of normal network traffic statistics. Anomaly detection on the
level of protocol is much easier because protocols are well defined and a model representing
the normal behavior can be created with higher accuracy.

E. Lemonnier in his paper [101] uses protocol anomaly filter in order to analyze specific
protocol and then model the normal usage of a specific protocol. This technique can be
considered as a filter looking for protocol misuse. The protocols are usually described by
rules which are specified in their official descriptions like RFCs or can be observed from
practical usage of some proprietary protocols. Therefore, any use of a protocol outside of
defined area can be considered as a protocol anomaly. In comparison with signature filters,
the protocol-based filters do not need update of rules and has as long lifetime as the protocol
they are modeling.

State-based

Many protocol anomaly detectors are built as state machines [165]. The reason of this
fact is that all connection oriented protocols have a state, therefore, certain events must
take place at certain time. Each state corresponds to a particular situation, e.g. a server
waiting for a response from client. The transitions between the states describe the correct
and expected changes between states.

As exemplar representative of this category is work of Z. Shan et al. [205] who use
network state based model approach to describe intrusion. The work uses finite automata
theory for state modeling and the authors are able to detect unknown attacks as well as
known ones.

Transaction-based

Transactions are a well known concept which originates from the field of database man-
agement systems and now, are widely applied in other environments such as distributed
systems. The definition of transaction is utilized to specify desired action and sequences of
actions. The definition makes the transaction an integral part of security policies.

The first time when transactional based approach was used, authors R. Buschkes et al.
[26] make detection of anomalies based on the definition of correct transactional behavior
of normal traffic. In contrast to classical database and other transactional systems R.
Buschkes et al. do not enforce the distinct transactions to be executed according to the
ACID properties (Atomicity, Consistency, Isolation, Durability). Instead, they monitor the
system only for any potential conflicts.
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2.3 Honeypots Based Detection

The information value obtainable from the network traffic by IDS/IPS systems is still in-
creasing. The number of used application layer protocols of TCP/IP1 model, which use
encryption, is increasing too. IDS and IPS systems also suffer by high false positive rate,
which reduce the potential of their usage [12].

Honeypot is a resource, which should be attacked and compromised. The honeypot is
monitored in detail. In other words, the value of the honeypot is in its unauthorized use,
which can generate large amount of information. Monitoring data entering and leaving the
honeypot allows us to obtain information that is not provided by IDS/IPS. For example,
keystrokes during an interactive session can be monitored even with active encryption to
protect network traffic. To detect malicious behavior of known attacks it is necessary to
know its signatures for IDS/IPS and they often fail in detecting existing attacks that changed
their behavior. Another advantage of honeypots is the fact, that they are able to detect the
vulnerabilities that have not been discovered yet.

Since the honeypot has no production value, any attempt to establish a connection to
it is considered suspicious. Forensic analysis of data collected by honeypots is less prone
to false positive unlike IDS/IPS, because most of the data collected by these systems are
directly collected during real attacks. Another advantage of honeypots is that they can run
on any operating system and any services.

High-interactive honeypot represents a real system, that the attacker can interact with.
In contrast of it stands low-interactive honeypot which simulates only some parts of the sys-
tem (eg. network model). High-interactive honeypot can be compromised and may allow
an attacker to gain full access to its system and use the honeypot system to perform other
network attacks. Low-interactive honeypots simulate only services which cannot be used to
gain full access to the system. Low-interactive honeypots are more limited, but their advan-
tage represents obtaining information on the higher layer (eg. learn about network scanning
activities or worms). They can also be used to analyze the behavior of spammers. Neither
of these approaches is superior to another. Each has its advantages and disadvantages.

We distinguish between the physical and virtual honeypots. Physical honeypot is a real
machine on the network that has its own IP address. Virtual honeypot is simulated using
a different machine.

The important factor in obtaining information about network attacks and network scan-
ning is the number of deployed honeypots, which affects the quality and quantity of collected
data. A good example is monitoring of worms activities based on HTTP2. These worms can
be identified only in the case of complete TCP 3-way handshake and transmission of attacks
payload. Therefore the honeypot, which does not emulate vulnerable web service, cannot
collect this information. The more honeypots are deployed, the more likely will be one of
them attacked by worms [138]. The following information concerning the categorization of
honeypots and their descriptions will be taken from [138].

2.3.1 High-interactive Honeypots

High-interactive honeypot is a conventional computer system, for example computer, router
or switch. This system is not dedicated for any conventional use. It also does not have
any regular active users. Therefore it has no unusual processes and does not generate

1URL: https://www.ietf.org/rfc/rfc793.txt.
2URL: http://tools.ietf.org/html/rfc2616.
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any network traffic (except vulnerable services and the operations associated with them).
These assumptions are taken into account during attacks detection. Every interaction with
a honeypot is suspicious and potentially harmful. Therefore, all network traffic incoming to
honeypots is logged to files for later analysis.

It is possible to connect several honeypots into the network called honeynet. Honeynet
usually consists of several different types of honeypots, which have different platforms and
operating systems. This distribution allows independent and simultaneous collection of data
on different types of attacks. Therefore, it is usually possible to study deeply the information
about the attacks and obtain qualitative results about the behavior of attackers. One of
the key elements of honeynet is honeywall. Honeywall is a network device operating at the
link layer model of TCP/IP model, which bridges honeywall from the rest of the network.
This device reduces the risk to other stations in the network and allows to capture data
for analysis. All inbound and outbound traffic must pass a honeywall. The information is
collected using various methods like passive monitoring tools, IDS notifications, firewalls
logs, etc. Attackers’ activities are managed at the network layer of the TCP/IP model and
all outgoing connections are filtered using IPS and connection limiters.

One of the problems of high-interactive honeypots are higher maintenance demands.
Honeypot should be heavily monitored and the information about the activity inside should
always be available. A full analysis of realized incidents can take hours or even days until the
moment, we can fully understand what the attacker intended to achieve. High-interactive
honeypots can be fully compromised because they run on real operating systems. The
attacker can interact with real services and real system, which allows us to capture extensive
information related to posed threats. It is possible to capture exploit content3, monitor
keystrokes, detect used tools and uncover attackers motives. One of disadvantages of high-
interactive honeypots is the fact, an attacker can potentially control the entire operating
system and through it can cause potential risk of production systems in the network. The
main disadvantage of high-interactive honeypots are their demands on computing resources,
problems with scaling and deploying in the real network conditions [12].

2.3.2 Low-interactive Honeypots

Low-interactive honeypots emulate services, network model or other aspects of the real sys-
tem in contrast to the previous category. They allow an attacker limited interaction with
the target system and they help to obtain quantitative information about the attacks. For
example, an emulated HTTP server may implement only a subset of the HTTP specifi-
cation. The interaction with the attacker is implemented at sufficient level to confuse the
attacker or an automated tool performing attack, which may look for a specific file needed to
compromise the system. The advantage of low-interactive honeypots is their simple mainte-
nance. To start up operation of low-interactive honeypots is enough to run its application.
Collecting of data is automatic. These data may represents information about network
worm propagations or scans of open services. The installation of this type of honeypot is
generally easier: we need only to install and configure the tool.

Low-interactive honeypots can be primarily used for the collection of statistical data and
for gathering of high-level information about the patterns used in the attacks (signatures).
They can be used as an IDS – as they provide early warning of the attacks presence. Even
they can be used for decoying attackers from production machinery of a corporate network.
Their further use is dedicated to detect worms and to learn about ongoing attacks. High-

3Code exploiting vulnerabilities of the service for malicious purposes.
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interactive honeypots as well as low-interactive honeypots can be used to create a network
called honeynet.

The attacker is unable to gain full control over the system, since he does not interact
with the real service. Low-interactive honeypots provide a fully controllable and monitorable
environment. Therefore, any risk associated with the possibility of breaking into a system
where honeypot run is decreased [12].

2.3.3 Physical Honeypots

Another possible division of honeypots distinguishes between physical and virtual honeypots.
A physical honeypot is running on a physical machine. Honeypot running on a physical
machine often implies a high interaction and thus it allows complete compromise of target
system. This category of honeypots is typically difficult to install and maintain. Deploying
of large honeypots number in the corporate network is exhaustive to physical resources,
therefore it is preferable to introduce virtual honeypots [12].

2.3.4 Virtual Honeypots

The main advantage of using virtual honeypot type is scalability and ease of maintenance.
There can coexists several honeypots on the same physical machine. This approach is
lightweighted in comparation with physical honeypots. Instead of physical machine deploy-
ment acting like a honeypot, multiple machines, that represent individual honeypots, can
be deployed. This sollution leads to easier maintainability and lower physical demands.
Usually, there can be used virtualization tools like VMware4, USL5, VirtualBox6, QEMU7

The main aspect which is necessary to take into account is the fact, that a virtual honey-
pot is simulated by another machine responsible for forwarding network traffic intended for
honeypot and traffic generated by the honeypot [12].

2.3.5 Argos

Argos is a new tool that falls under the category of virtual high-interactive shadow hon-
eypots [8]. It has been developed by researchers at the Vrije Universiteit Amsterdam in
the Netherlands. This tool is capable of detecting zero-day attacks. It uses a technique
called dynamic taint analysis [122] to monitor honeypots. At first, all data received over
the network are marked as tainted. The use of these marked data is then tracked within
the memory of honeypot’s system. Once the flow of executing program is influenced by
tainted data (eg. using instruction JUMP), Argos will detect it and generates an imprint
of memory representing the current state of memory during attack.

Compared with other virtual honeypots, Argos represents a slightly different approach.
Instead of pure implementation of the virtual machine, Argos detaily monitors it and tries
to detect the moment in time when exploit has successfully compromised virtual machine.

Argos is designed over QEMU emulator which uses technique of dynamic translation.
However, the performance is lower comparing to other virtualization tools. Argos adds the
possibility of dynamic tainted data analysis to the QEMU emulator [12].

4URL: http://www.vmware.com/.
5URL: http://user-mode-linux.sourceforge.net/.
6URL: https://www.virtualbox.org/.
7URL: http://wiki.qemu.org/Main_Page.
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Dynamic Analysis of Tainted Data

Dynamic analysis of tainted data is the core of Argos. This technique is based on the
observation of the program’s flow and its influence by attacker. This can be achieved by
underrun or overflow of program’s buffer. The attacker sends a specially-formed text string
that overwrites sensitive memory locations and these data will affect the program’s flow –
for example a jump to memory location, where the attackers program is located. At that
moment, dynamic analysis starts, which detects illegal use of tainted data. All external
inputs of the program are marked as tainted and during the dynamic analysis are tainted
variables monitored and controlled [12].

The main idea of dynamic tainted analysis method described in [204] is to examine
manipulations with tainted values by malicious code. Tainted analysis uses tainting of
sensitive data and return values from critical calls to track the propagation and see whether
something malicious is happening. Each byte of returned value from system calls is given
a unique label and all tainted memory is logged to keep track of assigning labels for memory
location at a specific time.
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Chapter 3

Data Mining in Intrusion Detection

Considering the taxonomy of network intrusion detection techniques described in Chapter 2,
we decided to aim at specific category of network intrusion detection. According to tax-
onomy by Lim [103] (see Section 2.2.2), our research is relevant to model-based behavioral
network intrusion detection and it utilizes data mining techniques. From the perspective of
Axelsson’s taxonomy [12] (see Section 2.2.1), our research belongs to group of programmable
systems which require expert knowledge (ground truth) provided by the user or by another
resource of expert knowledge. In the terms of data mining, this approach is called supervised
machine learning which was for the first time described by Breiman and Ihaka in 1984 [24].

This chapter describes the principles and methods of data mining applicable in the area
of intrusion detection. At first, prediction task of intrusion detection is defined. Then, we
describe several prediction approaches based on machine learning, which will be utilized
in our experiments performed in latter chapters as well as in some of state-of-the-art ap-
proaches. Later, we formally define performance measures of intrusion detection systems
according to well known relations. Finally, we infer two ways of interpretation the multi-
class confusion matrices and formally derive estimations of performance measures for k-fold
cross validation method which will be employed in our further experiments.

3.1 IDS Prediction Task

Referencing to [92], let X = V × Y be the space of labeled samples,1 where V represents
the space of unlabeled samples and Y represents the space of possible labels (ground truth).
Let Dtr = {x1, x2, . . . , xn} be a training dataset consisting of n labeled samples, where
xi = (vi ∈ V, yi ∈ Y ). Consider classifier C which maps unlabeled sample v ∈ V to a label
y ∈ Y :

y = C(v), (3.1)

and learning algorithm A which maps the given dataset D to a classifier C:

C = A(D). (3.2)

The notation ypredict = A(Dtr, v) denotes the label assigned to an unlabeled sample v by the
classifier C build by learning algorithm A on the dataset Dtr. Now, all extracted features

1A sample refers to the vector of features extracted over a connection.
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of the connection k can be used as input for the trained IDS classifier C which predicts the
target label:

ypredict = A
(
Dtr, f(k)

)
, (3.3)

where

ypredict ∈ {Intrusion,Legitimate}, (3.4)

for the case of binominal IDS classifier distinguishing only between intrusive and legitimate
communications or

ypredict ∈

{
n⋃
i=1

Intrusioni

}⋃{
m⋃
j=1

Legitimatej

}
, (3.5)

for the case of multi-class IDS classifier distinguishing among subclasses of intrusive com-
munications as well as legitimate ones.

3.2 Prediction Approaches

In the current section, we describe and define three representatives of prediction approaches
in supervised machine learning, which can be employed for the purpose of intrusion detection
having available ground truth about a training dataset. Namely, these approaches are
posterior probability based Naive Bayes classifier, followed by maximum margin classifier of
SVM, and finally hierarchical classifier – Decision Tree.

3.2.1 Naive Bayes Classifier

As the most of our experiments in the following chapters will utilize Naive Bayes classifier,
now we thoroughly describe theory behind it, starting by derivation of probability rules,
following by definition of Bayes theorem and maximum a-posteriori classifier utilizing it.
Then, we describe naive approach of handling input variables for definition of naive Bayes
model followed by construction of Naive Bayes classifier. Finally we describe handling
of continuous data by univariate and multivariate Gaussian distributions. The following
definitions are primarily taken from book [17].

Probability Rules and Bayes’ Theorem

Firstly, we derive the rules of probability, considering two discrete random variables X and
Y . We will suppose that X can take any of the values xi where i = {1, . . . ,M}, and Y can
take the values yj where j = {1, . . . , L}. Next, we consider a total of N trials in which we
sample both of the variables X and Y , and let the number of such trials in which X = xi
and Y = yj be nij . Also, let the number of trials in which X takes xi be denoted by ci,
and similarly let the number of trials in which Y takes value yj be denoted by rj . Then,
the probability that X will take the value xi and Y will take the value yj can be written as
p(X = xi, Y = yj) and is called the joint probability of X = xi and Y = yj . It is given
by the number of trials for which X = xi and Y = yj , and hence

p(X = xi, Y = yj) =
nij
N
. (3.6)
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Here we implicitly consider the limit N → ∞. The probability that X takes the value xi
irrespective of the value of Y can be written as p(X = xi) and is given by the fraction of
the total number of trials whose values of X are equal to xi, so that

p(X = xi) =
ci
N
. (3.7)

Also, ci can be formulated as ci =
∑

j nij and therefore, from 3.6 and 3.7 we have

p(X = xi) =

L∑
j=1

p(X = xi, Y = yj), (3.8)

which is the sum rule of probability. Note that p(X = xi) is sometimes called the
marginal probability, because it is obtained by marginalizing – summing out the other
variables (in this case Y ).

If we consider only those instances for which X = xi, then the fraction of such instances
for which Y = yj is written as p(Y = yj |X = xi) and is called the conditional probability
of Y = yj with given X = xi. The conditional probability is defined as

p(Y = yj |X = xi) =
nij
ci
. (3.9)

Then, from 3.6, 3.7 and 3.9, we can derive the following relationship

p(X = xi, Y = yj) =
nij
N

=
nij
ci
· ci
N

= p(Y = yj |X = xi)p(X = xi),
(3.10)

which is the product rule of probability. We can write fundamental rules of probability
theory in compact notation:

sum rulesum rulesum rule p(X) =
∑
Y

p(X,Y ), (3.11)

product ruleproduct ruleproduct rule p(X,Y ) = p(Y |X)p(X). (3.12)

Here p(X,Y ) is a joint probability, p(Y |X) is a conditional probability and p(X) is a marginal
probability.

From the product rule, together with the symmetry property p(X,Y ) = p(Y,X), we
obtain the following relationship between conditional probabilities

p(Y |X) =
p(X|Y )p(Y )

p(X)
, (3.13)

which is called Bayes’ theorem.

Maximum A-posteriori Classifier

The Bayes’ theorem can be utilized in both inferring and decision stages of the classification
problem, whose purpose is to make decisions. Suppose we have an input vector xxx together
with corresponding vector ttt of target class labels. The joint probability distribution p(x, t)
provides a complete summary of uncertainty associated with these variables. Determination
of p(x, t) from a set of training data is example of inference stage of the classification.
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For simplicity consider two classes Ck = {C1, C2} and unseen input vector xxx which needs
to be classified. We are interested in the probabilities of the two classes, which are given by
p(Ck|xxx). Using Bayes’ theorem, these probabilities can be expressed in the form

p(Ck|xxx) =
p(xxx|Ck)p(Ck)

p(xxx)
. (3.14)

Note that any of the quantities appearing in the Bayes’ theorem can be obtained from
the joint distribution p(xxx,Ck) by either marginalizing or conditioning with respect to the
appropriate variables. We can now interpret p(Ck) as the prior probability of class Ck, and
p(Ck|xxx) as the corresponding posterior probability. Our aim is to minimize the chance of
assigning xxx to the wrong class, and thus intuitively we will choose the class having the higher
posterior probability. Therefore, we will refer to this approach as Maximum A-posteriori
Classifier (MAC). MAC minimizes the misclassification rate for each input xxx.

We need a rule that assigns each value of xxx to one of the available classes. Such a rule
will divide the input space into regions Rk called decision regions, one for each class, such
that all points in Rk are assigned to class Ck. The boundaries between decision regions are
called decision boundaries or decision surfaces. Each decision region needs to be contiguous
but can comprise some number of disjoint regions. A mistake occurs when an input vector
belonging into class C1 is assigned to C2 or vice versa. The probability of this happening is
given by

pmistake = p(xxx ∈ R1, C2) + p(xxx ∈ R2, C1)

=

∫
R1

p(xxx,C2)dx+

∫
R2

p(xxx,C1)dx.
(3.15)

To minimize pmistake we should ensure that each xxx is assigned to class which has smaller
value of integrand in 3.15. Thus, if p(xxx,C1) > p(xxx,C2) for a given value of xxx then we should
assign it to class C1. From the product rule of probability we have p(xxx,Ck) = p(Ck|xxx)p(xxx).
Because the factor p(xxx) is common to both terms we can restate this result by saying that
the minimum probability of making a mistake is obtained if each value of xxx is assigned to
the class for which the posterior probability p(Ck|xxx) is largest.

For the general case of K classes, it is easier to maximize the probability of being correct,
which is given by

pcorrect =
K∑
k=1

p(xxx ∈ Rk, Ck)

=

K∑
k=1

∫
Rk

p(xxx,Ck)dx,

(3.16)

which is maximized when the regions Rk are chosen such that each xxx is assigned to the class
for which p(xxx,Ck) is largest. Again, using the product rule p(xxx,Ck) = p(Ck|xxx)p(xxx) and the
fact that factor of p(xxx) is common to all terms, we see that each xxx is assigned to the class
having the largest posterior probability p(Ck|xxx).

Combining Models – Naive Bayes Model

For more complex applications, we may wish to break the problem into a number of smaller
subproblems each of which can be tackled by a separate module. Rather than combine
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all heterogeneous input information into one huge input space, it may be more effective to
built one system (model) per each input information (feature). All models give us posterior
probabilities for the classes and we can combine the outputs systematically using the rules
of probability. One simple way to do this is to assume that, for each class separately, the
distributions of inputs for all input features are independent, so that

p(x1, . . . , xn|Ck) = p(x1|Ck) · p(x2|Ck) · . . . · p(xn|Ck)

=

n∏
i=1

p(xi|Ck).
(3.17)

This is an example of conditional independence property, because the independence holds
when the distribution is conditioned on the class Ck. Then, posterior probability, considering
all input features, is given by

p(Ck|x1, . . . , xn) ∝ (Ck, x1, . . . , xn)

∝ p(x1, . . . , xn|Ck)p(Ck)
∝ p(Ck) · p(x1|Ck) · p(x2|Ck) · . . . · p(xn|Ck)

∝ p(Ck)

n∏
i=1

p(xi|Ck)

∝ 1

p(Ck)

n∏
i=1

p(Ck|xi).

(3.18)

Thus we need the class prior probabilities p(Ck), which can be estimated from fractions of
data points in each class. Then, we need to normalize the resulting posterior probabilities so
they sum to one. The particular conditional independence assumption (3.17) is an example
of the Naive Bayes model.

Constructing Naive Bayes Classifier from a Probability Model

The Naive Bayes classifier combines the previous model with a decision rule. Common rule
is to maximize probability of being correct, as we already described in this subsection. This
rule is known as maximum a posteriori decision rule (MAP). The corresponding classifier –
Naive Bayes classifier – is the function which assigns a class label y = Ck as follows:

y = argmax
k∈{1,...,K}

p(Ck)

n∏
i=1

p(xi|Ck). (3.19)

Continuous Data

A class prior probability may be assumed by calculating an estimate for the class probability
from the training set – i.e., (prior probability for a given class) = (number of samples in the
class) / (total number of samples). To estimate the parameters of a feature’s distribution,
we have to assume a distribution, and thus consider parametric model, or generate non-
parametric models for the features from the training set [85].

The typical example of parametric model is Gaussian Naive Bayes model. When dealing
with continuous data, a typical assumption is that the continuous values associated with
each class are distributed according to a Gaussian (Normal) distribution. Suppose the
training data contain a continuous attribute x. We first segment the data by the class, and
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Figure 3.1: Univariate Gaussian distribution

then compute the mean and variance of x for each class. Let µc be the mean of the values
in x associated with class c, and let σc2 be the variance of the values in x associated with
the class c. Then, probability distribution of x given a class c is defined by

ℵ(x|µ, σc2) =
1√

2πσc2
e
− (x−µc)2

2σ2c . (3.20)

Note that square root of the variance, given by σ, is called the standard deviation. Figure 3.1
shows the plot of the univariate Gaussian distribution with mean µ and standard deviation
σ. We can see that 95% of values fall into range 〈−2σ,+2σ〉 and 99.7% fall into interval
sliced by ±3σ. From the form of (3.20) we can see that Gaussian distribution satisfies

ℵ(x|µ, σ2) > 0. (3.21)

Also it is straightforward to show that the Gaussian distribution is normalized, so that∫ ∞
−∞
ℵ(x|µ, σ2) dx = 1. (3.22)

Therefore, (3.20) satisfies the two requirements for valid probability density. The estimations
of parameters µ and σ2 are performed per each class of input dataset, so that we consider
only items of particular class Dc ⊂ D, where Tc = |Dc|:

µc =
1

Tc

Tc∑
i=1

xi , (3.23)

σ2
c =

1

Tc

Tc∑
i=1

(xi − µc)2. (3.24)

In the following definitions we will not consider class of input dataset items. We are also
interested in the Gaussian distribution defined over a D-dimensional vector xxx of continuous
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variables, which is given by

ℵ(xxx|µµµ,ΣΣΣ) =
1√

(2π)D|ΣΣΣ|
e−

1
2

(xxx−µµµ)TΣΣΣ−1(xxx−µµµ), (3.25)

where the D-dimensional vector µµµ is called the mean, the D × D matrix ΣΣΣ is called the
covariance, and |ΣΣΣ| denotes the determinant of ΣΣΣ. Note that by bold notation we refer to
vectors or matrices. Now suppose that we have a dataset of observations D = {xixixi | xixixi =
(x1, . . . , xN )T }, where each item represents N observations of N scalar variables. We con-
sider that data points are drawn independently from the same Gaussian distribution. We
know that a joint probability of two independent events is given by the product of the
marginal probabilities for each event separately. Therefore, we can write the probability of
the dataset, given µ and σ2, in the form

p(xxx|µ, σ2) =

N∏
n=1

ℵ(xn|µ, σ2). (3.26)

When viewed as a function of µ and σ2, we interpret it as likelihood function of approx-
imation of input dataset by Gaussian distribution. Now we determine the parameters of
Gaussian distribution by maximizing the likelihood function (3.26). Maximizing rewritten
function (3.26) considering (3.20) with respect to µ, we obtain the maximum likelihood
solution given by

µML =
1

N

N∑
n=1

xn, (3.27)

which is the sample mean. Similarly maximizing that function with respect to σ2, we obtain
the maximum likelihood solution for the variance in the form

σ2
ML =

1

N

N∑
n=1

(xn − µML)2, (3.28)

which is the sample variance.
Now we will consider class of input dataset items and will represent multivariate Gaussian

distribution as Gaussian Mixture Model (GMM). The likelihood function of the GMM has
following form

p(xxx) =
K∑
k=1

p(xxx|ck) p(ck) =
K∑
k=1

ℵ(xxx|µckµckµck ,ΣckΣckΣck) p(ck). (3.29)

The maximum likelihood solutions of the function with respect to µµµ and ΣΣΣ are defined per
each class c as follows:

µcµcµc =
1

Tc

Tc∑
i=1

xcix
c
ix
c
i , (3.30)

ΣcΣcΣc =
1

Tc

Tc∑
i=1

(xcix
c
ix
c
i −µcµcµc)(xcix

c
ix
c
i −µcµcµc)T , (3.31)

where Tc represents size of the class.
Another common technique for handling continuous values is to use binning for dis-

cretization of the feature values. However, the discretization may throw away discriminative
information [65].
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3.2.2 Support Vector Machines

All the following definitions related to Support Vector Machines (SVM) were taken from
[17]. SVM became popular in some years ago for solving problems in classification, regression
as well as detection. An important property of SVM is that determination of the model
parameters corresponds to a convex optimization problem, and thus any local solution is
also a global optimum.

Kernel Function

First, we define kernel function which will be later utilized in other definitions. The kernel
function is given by the relation

k(xxx,x′x′x′) = φ(xxx)Tφ(x′x′x′), (3.32)

where xxx represents r-dimensional input feature space and the function φ(xxx) represents fixed
nonlinear feature space mapping into the space with the different number of dimensions.
From this definition, we can see that the kernel function is symmetric, and thus k(xxx,x′x′x′) =
k(x′x′x′,xxx). The kernel concept was introduced into the field of pattern recognition by Aizerman
et al. in 1964 [2]. Although neglected for many years, it was re-introduced into machine
learning in the context of large margin classifiers by Boser et al. in 1992 [22], which gives
rise to the technique of SVM.

Maximum Margin Classifier

We begin by discussion about two-class classification problem using linear models of the
form

y(x) = wwwTφ(x) + b, (3.33)

where φ denotes a fixed feature-space transformation and parameter b denotes explicit bias.
The training dataset comprises N input vectors x1, . . . , xN , with corresponding target values
t1, . . . , tN where tn ∈ {−1, 1} for n = 1, . . . , N and new data points x are classified according
to the sign of y(x). Now, we will assume that the training dataset is linearly separable in
feature space, so that by definition there exits at least one choice of parameters www and b
such that a function of the form (3.33) satisfies y(xn) > 0 for points having tn = +1 and
y(xn) < 0 for points having tn = −1, so that tny(xn) > 0 for all training data points.
SVM approaches the problem of separation of classes through the concept of margin which
is defined to be the smallest distance between the decision boundary (hyperplane) and any
of the samples, as illustrated in Figure 3.2. In SVM the decision boundary is chosen to be
the one for which the margin is maximized. The perpendicular distance of a point x from
a hyperplane defined by y(x) = 0 where y(x) takes the form (3.33) is given by |y(x)|/||www||.
Furthermore, we are only interested in solutions for which all data points are correctly
classified, so that tny(xn) > 0 for all n. Thus, the distance of a point xn to the decision
surface is given by

tny(xn)

||w||
=
tn(wTφ(xn) + b)

||w||
. (3.34)

The margin is given by the perpendicular distance to the closest point xn from the dataset,
and aim to optimize the parameters www and b in order to maximize this distance. Therefore,
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Figure 3.2: The concept of margin in SVM

the maximum margin solution is found by solving

arg max
www,b

{
1

||w||
min
n

[
tn(wwwTφ(xn) + b)

]}
, (3.35)

where we have taken factor 1/||w|| outside the optimization over n because www does not
depend on n. Direct solution of this problem would be very complex, and so we convert it
into equivalent problem that is much more easier to solve. To this we note, that if we make
the rescaling www → κwww and b → κb, then the distance from any point xn to the decision
surface, given by tny(xn)/||www|| is unchanged. We can use this freedom to set

tn(wwwTφ(xn) + b) = 1 (3.36)

for the point that is closest to the decision surface. Therefore, all data points will satisfy
the constrains

tn(wwwTφ(xn) + b) ≥ 1, n = 1, . . . , N. (3.37)

This is known as the canonical representation of the hyperplane. Constraints are said to
be active for the points which holds equality (3.36), and for the reminder are said to be
inactive. By definition, there will always be at least one active constraint, because there will
always be a closest point, and once the margin has been maximized there will be at least
two active constraints. The optimization problem then simply requires that we maximize
||w||−1, which is equivalent to minimizing ||w||2, and thus we have to solve the optimization
problem

arg min
www,b

1

2
||w||2 (3.38)

as subject to the constraints given by (3.37). This is an example of quadratic programming
problem in which we are trying to minimize a quadratic function as subject to a set of linear
inequality constrains. It appears that the bias parameter has disappeared from optimization,
however, it is determined implicitly by the constraints (3.37). The constraints require that
changes to ||w|| are compensated by changes to b.
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In order to solve this constrained optimization problem, we introduce Lagrange multipli-
ers an ≥ 0, with one multiplier an for each of the constraints in 3.37, giving the Lagrangian
function

L(www, b,aaa) =
1

2
||w||2 −

N∑
n=1

{
tn(wwwTφ(xn) + b)− 1

}
, (3.39)

where aaa = (a1, . . . , aN )T . Setting the derivatives of L(www, b,aaa) with respect to www and b equal
to zero, we obtain the following two conditions

w =
N∑
n=1

antnφ(xn), (3.40)

0 =
N∑
n=1

antn. (3.41)

Eliminating www and b from L(www, b,aaa) using these conditions gives the dual representation of
the maximum margin problem in which we maximize

L̃(aaa) =

N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm) (3.42)

with respect of aaa as subject to the constraints

an ≥ 0, n = 1, . . . , N, (3.43)
N∑
n=1

antn = 0. (3.44)

Here the kernel function is defined by k(x, x′) = φ(x)Tφ(x′). Again, this takes the form of
a quadratic programming problem in which we optimize a quadratic function of a as subject
to a set of inequality constraints. The solution to a quadratic programming problem in M
variables in general has computional complexity O(M3). Regarding dual formulation, we
have turned the original optimization problem, which involved minimizing (3.38) over M
variables into the dual problem (3.42), which has N variables. For a fixed set of basis
functions whose number M is smaller than the number N of data points, the move to dual
problem may appear disadvantageous. However, it allows the model to be reformulated
using kernels, and therefore the maximum margin classifier can be applied efficiently to
feature space whose dimensionality exceeds the number of data points, including infinite
feature spaces. The kernel formulation also makes clear the role of the constraint that the
Lagrangian function L̃(aaa) is bounded below, giving the rise to a well defined optimization
problem.

In order to classify new data points using the trained model, we evaluate the sign of y(x)
defined by (3.33). This can be expressed in terms of the parameters {an} and the kernel
function by substituting for www using (3.40) to give

y(x) =

N∑
n=1

antnk(x, xn) + b. (3.45)
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Figure 3.3: Support vectors with decision and margin boundaries

Constrained optimization of this form satisfies the Karush-Kuhn-Tucker (KKT) conditions,
which in this case require the following three properties to be held:

an ≥ 0, (3.46)
tny(xn)− 1 ≥ 0, (3.47)

an{ tny(xn)− 1} = 0. (3.48)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for which an = 0
will not appear in the sum in (3.45) and hence plays no role in making predictions for
new data points. The remaining data points are called support vectors, and because they
satisfy tny(xn) = 1, they correspond to point that lay on the maximum margin hyperplane in
feature space, as illustrated in Figure 3.3 by data points laying on dashed lines.This property
is central to practical applicability of SVM. Once, the model is trained, a significant amount
of data points can be discarded and only support vectors retain. Having solved quadratic
programming problem and found a value for aaa, we can then determine the value of the
threshold parameter b by noting that any support vector xn satisfies tny(xn) = 1. Using
(3.45) get us with

tn

(∑
m∈S

amtmk(xn, xm) + b

)
= 1, (3.49)

where S denotes the set of indices of the support vectors. Although, we can solve this
equation for b using arbitrarily chosen support vecotr xn, a numerically more stable solution
is obtained by first multiplying by tn, making use of t2n = 1. And then averaging these
equations over all support vectors and solving for b to give

b =
1

NS

∑
n∈S

(
tn −

∑
m∈S

amtmk(xn, xm)

)
, (3.50)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum margin clas-

sifier in terms of the minimization of an error function, with a simple quadratic regularizer,
in the form

N∑
n=1

E∞(y(xn)tn − 1) + λ||w||2, (3.51)
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where E∞(z) is a function that is zero if z ≥ 0 and ∞ otherwise. Also E∞(z) ensures
that the constraints (3.37) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

The Figure 3.3 also shows the example of the classification by SVM. Although, the
dataset is not linearly separable in the two-dimensional data space x, it is linearly separable
in the nonlinear feature space defined implicitly by the nonlinear kernel function. Thus, the
training data points are perfectly separated in the original data space.

Overlapping Class Distributions

So far, we have assumed that the training data points are linearly separable in the feature
space φ(x). The resulting SVM will give exact separation of the training data in the original
input space x, although the corresponding decision boundary will be nonlinear. However in
practice, the class-conditional distributions may overlap, in which case exact separation of
the training data can lead to poor generalization.

Therefore, we need a way of allowing the SVM to misclassify some of training data
points. From (3.51) we see that in the case of separable classes, we implicitly used an error
function that gave infinite error if a data point was misclassified and zero error if it was
correctly classified. Then, we optimized the model parameters to maximize the margin.
Now, we modify this approach so that data points are allowed to be on the ’wrong side’
of the margin boundary, but with a penalty which increases with the distance from that
boundary. For subsequent optimization problem it is convenient to make this penalty linear
function of the distance. To do this, we introduce slack variables, ξn ≥ 0 where n = 1, . . . , N ,
with one slack variable for each training data point. These are defined by ξn = 0 for data
points that are on or inside the correct margin boundary and ξn = |tn − y(xn)| for other
points. Thus, the data point that is on the decision boundary y(xn) = 0 will have ξn = 1,
and points with ξn ≥ 1 will be misclassified. The exact classification constraints (3.37) are
then replaced with

tny(xn) ≥ 1− ξn, n = 1, . . . , N (3.52)

in which the slack variables are constraint to satisfy ξn ≥ 0. Data point for which ξn = 0
are correctly classified and are either on the margin or on the correct of the margin. Points
for which 0 < ξn ≥ 1 lie inside the margin, but on the correct side of the decision boundary,
and those data points for which ξn > 1 lie on the wrong side of the decision boundary and
are misclassified. This is sometimes described as relaxing the hard margin constraint to give
a soft margin and allows some of the training data points to be misclassified. Note that
while slack variables allow overlapping class distributions, this concept is still sensitive to
outliers because the penalty for misclassification increases linearly with value of ξ.

Our goal is now to maximize the margin while softly penalizing points that lie on the
wrong side of the margin boundary. Therefore, we minimize

C
N∑
n=1

ξn +
1

2
||w||2, (3.53)

where the parameter C > 0 controls the trade-off between the slack variable penalty and the
margin. Because any point that is misclassified has ξn > 1, it follows that

∑
n ξn is an upper

bound on the number of misclassified points. The parameter C is therefore analogous to
the inverse of regularization coefficient because it controls the trade-off between minimizing
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training errors and controlling model complexity. Now, we minimize (3.53) as subject to
the constraints (3.52) as well as ξn ≥ 0. The corresponding Lagrangian function is given by

L(www, b,aaa) =
1

2
||w||2 + C

N∑
n=1

ξn −
N∑
n=1

an{tny(xn)− 1 + ξn} −
N∑
n=1

µnξn, (3.54)

where {an ≥ 0} and {µn ≥ 0} are Lagrangian multipliers. The corresponding set of KKT
conditions are given by

an ≥ 0, (3.55)
tny(xn)− 1 + ξn ≥ 0, (3.56)

an(tny(xn)− 1 + ξn) = 0, (3.57)
µn ≥ 0, (3.58)
ξn ≥ 0, (3.59)

µnξn = 0, (3.60)

where n = 1, . . . , N . Now, we need to optimize www, b, and {ξn} making use of the definition
(3.33) of y(x) to give

∂L

∂w
= 0 ⇒ www =

N∑
n=1

antnφ(xn), (3.61)

∂L

∂b
= 0 ⇒ 0 =

N∑
n=1

antn, (3.62)

∂L

∂ξn
= 0 ⇒ an = C − µn. (3.63)

Using optimized results to eliminate www, b and {ξn} from the Lagrangian function, we obtain
the dual Lagrangian function in the form

L̃(aaa) =
N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm), (3.64)

which is identical to separable case, except the constrain are different. We note that an ≥ 0
is required because these are Lagrangian multipliers. Furthermore, (3.63) and µn ≥ 0 implies
an ≤ C. Therefore, we minimize (3.64) with respect to the dual variables {an} as subject
to

0 ≤ an ≤ C, (3.65)
N∑
n=1

antn = 0 (3.66)

for n = 1, . . . , N , where (3.65) are known as box constraints. This represents a quadratic
programming problem. As before, a subset of the data points may have an = 0, in which
case they do not contribute to the predictive model (3.45). The remaining data points
constitute the support vectors. The points have an > 0 and hence from (3.57) must satisfy

tny(xn) = 1− ξn. (3.67)
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If an > C, then (3.63) implies that µn > 0, which from (3.60) requires ξn = 0 and thus
such points lie on the margin. Points with an = C can lie inside the margin and can either
be correctly classified if ξn ≤ 1 or misclassified if ξn > 1. To determine the parameter b
in (3.33), we note that those support vectors for which 0 < an < C have ξn = 0 so that
tny(xn) = 1 and hence will satisfy

tn

(∑
m∈S

amtmk(xn, xm) + b

)
= 1. (3.68)

A numerically stable solution is obtained by averaging to give

b =
1

NM

∑
n∈M

(
tn −

∑
m∈S

amtmk(xn, xm)

)
, (3.69)

whereM denotes the set of indices of data points having 0 < an < C.

Multiclass SVMs

The SVM is fundamentally a two-class classifier. However, in practice, we often have to deal
with problems involving K > 2 classes. Therefore, various methods have been proposed for
combining multiple two-class SVMs in order to build a multiclass classifier.

One commonly used approach is to construct K separate SVMs, in which the k-th
model yk(x) is trained using the data from class Ck as the positive examples and the
data from the remaining K − 1 classes as the negative examples, which is known as one-
versus-the-rest approach [188]. However, using the decisions of the individual classifiers
can lead to inconsistent results in which an input data point is assigned to multiple classes
simultaneously. This problem is sometimes addressed by making predictions for new inputs
xxx using

y(xxx) = max
k

yk(x). (3.70)

Unfortunately, this heuristic approach suffers from the problem that different classifiers were
trained on different training data, and thus there is no guarantee that real valued quantities
yk(x) for different classifiers will have appropriate scales. Another problem of the one-versus-
the-rest approach is that the training sets are imbalanced. A variant of one-versus-the-rest
classifier was proposed by Lee et al. [100] who modify the target values so that the positive
class has target +1 and the negative class has target −1/(K − 1).

Another approach is to train K(K − 1)/2 different 2-class SVMs on all possible pair of
classes, and then to classify test points according to which class has the highest number of
’votes’. This approach is sometimes called one-versus-one. Again, this can lead to ambi-
guities in the resulting classification. Also, for large K this approach requires significantly
more training time than the one-versus-the-rest approach. Similarly, to evaluate test points,
more computation is required.

The latter problem can be alleviated by organizing the pairwise classifiers into a directed
acyclic graph, which is called DAGSVM [135]. For K classes, the DAGSVM has a total of
K(K − 1)/2 classifiers, and to classify a new test point only K − 1 pairwise classifiers
need to be evaluated, with the particular classifiers used depending on which path through
the graph is traversed. A different approach to multiclass classification, based on error-
correcting output codes, was developed by Dietterich et al. in the paper [54] and applied

30



to SVMs by Allwein et al. [6]. It can be viewed as a generalization of the voting scheme
of the one-versus-one approach in which more general partitions of the classes are used to
train the individual classifiers. The K classes are represented as particular sets of responses
from the two-class classifiers chosen, and together with a suitable decoding scheme, this
gives robustness to errors and to ambiguity in the outputs of the individual classifiers.
Although, the application of SVMs to multiclass classification problems remain an open
issue, in practice the one-versus-the-rest approach is widely used in spite of its ad-hoc
formulation and its practical limitations.

3.2.3 Decision Tree

All the following definitions related to Decision Tree are taken from the book [7]. Decision
Tree is a data structure implementing the divide-and-conquer strategy. It is an nonpara-
metric method which can be utilized for both classification and regression, however in the
context of this work, we will consider only classification variant of Decision Tree. In non-
parametric estimation, we divide the input space into local regions, which are defined by
a distance measure like the Euclidean norm, and for each input, the corresponding local
model is computed from the training data in that region.

More formally, Decision Tree is a hierarchical model for supervised machine learning
where the local region is identified in a sequence of recursive splits in a small number of
steps. Decision Tree is composed of internal decision nodes and terminal leaves. An example
of Decision Tree together with corresponding dataset is depicted in Figure 3.4, where ovals
denote decision nodes and squares denote leaves. Each decision node m implements a test
function fm(x) with discrete output labeling the branches. Given an input at each node,
a test is evaluated and one of the branches is taken depending on the output. This process
starts at the root and is repeated recursively until a leaf node is hit. At this point, the value
associated with the leaf constitutes the output.

Decision Tree is also a nonparametric model in the sense that we do not assume any para-
metric form of the class densities. Each fm(x) defines a discriminant in the d-dimensional
input space dividing it into smaller regions which are further subdivided, as we take the path
from the root down. fm(x) is a simple function and when written down as a tree, a complex
function is broken down into a series of simple decisions. Different Decision Tree methods
assume different models for fm(x), and the model class defines the shape of the discriminant
and the shape of the regions. Each leaf node has associated output label, which in the case
of classification is the class code (in the case of regression it is numeric value). A leaf node
defines a localized region in the input space where instances falling in this region have the
same labels in classification (or very similar numeric outputs in regression). The boundaries
of the regions are defined by the discriminants which are coded into the internal nodes along
the path from the root to the leaf node. The hierarchical placement of the decisions allows
a fast localization of the region covering an input. For example, in the case if the decisions
are binary, then in the best case each decision eliminates half of the cases. If there are b
regions, then in the best case, the correct region can be found in log2 b decisions.

Univariate Decision Tree

In each internal node of the Univariate Decision Tree, the test uses only one of the input
dimensions. If an input dimension xj is discrete, taking one of n possible values, then the
decision node checks the value of xj and takes the corresponding branch, which is imple-
mentation of a n-way split. The decision node has discrete branches, and thus a numeric
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Figure 3.4: Example of dataset and corresponding Decision Tree

input should be discretized. If xj is numeric ordinal (ordered), the best test is a comparison

fm(x) : xj > wm0, (3.71)

where wm0 is a suitably chosen threshold value. The decision node divides the input space
into two regions: Lm = {x|xj > wm0} and Rm = {x|xj ≤ wm0}, which is called a binary
split. Successive decision nodes on the path from the root to a leaf further divide these
regions into two using other attributes, and thus generating splits orthogonal to each other.
The leaf nodes defines hyperrectangles in the input space, which are depicted in Figure 3.4.

Tree induction is the construction of the tree given a training set of samples. For a given
training set of samples, there exists many trees that code it with no error. We are interested
in finding the smallest one among them, where tree size is measured as the number of
nodes in the tree and the complexity of the decision nodes. Finding the smallest tree is
NP-complete problem [141], and thus we are forced to use local search procedures based on
heuristics which give reasonable trees in reasonable time.

Tree learning algorithms are greedy and, at each step, starting at the root with the
complete training data, we look for the best split. This splits the training data into two or
n parts, depending on whether the chosen attribute is numeric or discrete. We then continue
splitting recursively with the corresponding subset until we do not need to split anymore,
at which point a leaf node is created and labeled.

Classification Trees

Classification Tree represents application of Decision Tree for classification purpose. In this
case, the goodness of the split is quantified by an impurity measure. A split is pure, if for
all branches after the split, all the instances choosing the branch belong to the same class.
Let us say for node m, Nm is the number of training instances reaching node m. It is N
for the case of the root node. N i

m of Nm belongs to class Ci, with
∑

iN
i
m = Nm. Given an

instance reaching node m, the estimate of probability of class Ci is

P (Ci|x,m) ≡ pim =
N i
m

Nm
. (3.72)
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Figure 3.5: Entropy function for a two class problem

Node m is pure if pim for all i are either 0 or 1. It is 0 if none of the instances reaching node
m are of class Ci, and it is 1 if all such instances are of class Ci. If the slit is pure, we do
not need to split anymore and can add a leaf node labeled with the class for which pim is
1. One possible function for measuring impurity is entropy [141] (see Figure 3.5), which is
defined as

Im = −
K∑
i=1

pim log2p
i
m, (3.73)

where 0 log2 0 ≡ 0.However, the entropy is not the only possible measure. For a two-class
problem where p1 = p and p2 = 1 − p, φ(p, 1 − p) is a nonnegative function measuring the
impurity of a split if it satisfies the following properties [52]:

• φ
(

1
2 ,

1
2

)
≥ φ(p, 1− p), for any p ∈ [0, 1],

• φ(0, 1) = φ(1, 0) = 0,

• φ(p, 1− p) is increasing in p ∈
[
0, 1

2

]
and decreasing in p ∈

[
1
2 , 1
]
.

Examples of functions measuring impurity for two classes problem are following:

1. Entropy

φ(p, 1− p) = −p log2 p− (1− p) log2(1− p). (3.74)

Note that Equation (3.73) is generalization for K > 2 classes.

2. Gini index [23]

φ(p, 1− p) = 2p(1− p). (3.75)
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3. Misclassification error

φ(p, 1− p) = 1−max(p, 1− p). (3.76)

These can be generalized to K > 2 classes, and the misclassification error can be generalized
to minimum risk given a loss function. The results of the research showed that there is not
a significant difference among these three measures [7].

If node m is not pure, then the instances should be split to decrease impurity. How-
ever, there are multiple possible attributes which can be used for splitting. For a numeric
attribute, multiple split positions are possible. Among all, we are looking for the split that
minimizes impurity after the split, as we want to generate the smallest tree. If the sub-
sets after the split are closer to pure, then fewer splits will be needed afterward. However,
we should note that this is local optimum and there is no guarantee that we will find the
smallest Decision Tree.

Let us say at node m, Nmj of Nm take branch j; these are xt for which the test fm(xt)
returns the outcome j. For a discrete attribute with n values, there are n outcomes, while for
a numeric attribute there are two outcomes (n = 2), in either case satisfying

∑n
j=1 Nmj =

Nm. N i
mj of Nmj belong to class Ci:

∑K
i=1 N i

mj = Nmj . Similarly,
∑n

j=1 N i
mj = N i

m.
Given node m whose test returns the outcome j, the estimate for the probability of class Ci
is following

P (Ci|x,m, j) ≡ pimj =
N i
mj

Nmj
(3.77)

and the total impurity after the split is given by

Im = −
n∑
j=1

Nmj

Nm

K∑
i=1

pimj log2 p
i
mj . (3.78)

In the case of a numeric attribute, to be able to calculate pimj using Equation (3.71), we
also need to know wm0 for that node. Although, there are Nm−1 possible wm0 between Nm

data points, we do not need to calculate test for all points. It is enough to test, for example,
at halfway between the points with the highest and the lowest value. Also, note that the
best split is always between adjacent points belonging to different classes. Therefore, we try
them and the best in terms of purity is taken for the purity of the attribute. In the case of
the discrete attribute, no such iteration is necessary.

So for all attributes, discrete and numeric, and for a numeric attribute for all split
positions, we calculate the impurity and choose the one which has the minimum entropy
– measured e.g. by Equation (3.78). Then, tree construction continues recursively and
in parallel for all the branches which are not pure, until are all pure. This is a basis for
the Classification and Regression Tree (CART) algorithm [23], ID3 algorithm [141] and
its extension C4.5 [142]. The pseudo code of the algorithm producing Classification Tree
instances is depicted in Algorithm 1 and Algorithm 2. At each step of the tree construction,
we choose the split which causes the largest decrease in impurity. It is represented by the
difference between the impurity of data reaching node m – Equation (3.73) – and the total
entropy of data reaching its branches after the split – Equation (3.78).
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Algorithm 1: Function for splitting of attribute
1 Function SplitAttribute(X ) begin
2 minEntropy = MAX
3 for all attributes i = 1, . . . , d do
4 if (xi is discrete with n values) then
5 Split X into X1, . . . ,Xn by xi
6 e = SplitEntropy(X1, . . . ,Xn) /* Equation (3.78) */
7 if (e < minEntropy) then
8 minEntropy = e
9 bestf = i

10 end if
11 else

/* xi is numeric */
12 for all possible splits do
13 Split X into X1,X2 on xi
14 e = SplitEntropy(X1,X2)
15 if (e < minEntropy) then
16 minEntropy = e
17 bestf = i
18 end if
19 end for
20 end if
21 end for
22 end

Algorithm 2: Construction of Classification Tree
1 Function GenerateTree(X ) begin
2 if (NodeEntropy(X < θI) then /* Equation (3.73) */

3 Create leaf labeled by majority class in X
4 Return
5 end if

6 i = SplitAttribute(X )
7 for each branch of xi do
8 Find Xi falling into branch
9 GenerateTree(Xi)

10 end for
11 end

Multivariate Trees

In the case of univariate tree, only one input dimension is used at a split, however in the
case of multivariate tree, all input dimensions can be used for splitting, and thus it is more
general. In the context of this thesis, we will consider only univariate trees, as we will aim
at analysis of single attributes primarily, where can help a lot univariate Decision Tree.
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3.3 Performance Measures

The current section defines performance measures utilized in data mining which are adapted
onto the domain of intrusion detection. There are described measures assuming prediction
of input records into two classes – intrusive and legitimate – as well as prediction into more
classes specifying particular subclass of intrusion or legitimate traffic. The interpretation of
performance measures will be depicted by utilization of confusion matrices having specified
format, which will be respected in data mining experiments performed in later chapters.
Next, we formally define k-fold cross validation of a classifier which is employed as estimation
of defined performance measures. The following definitions of performance measures are
aimed at performance evaluation of IDSs regardless of whether they are based on signature
or anomaly intrusion detection.

3.3.1 Binominal Prediction

Usually, true positive rate (TPR) and false positive rate (FPR) are used for performance
measurement of binominal prediction, while positive representatives (P) denote intrusions
and negative ones (N) denote legitimate traffic records. TPR – also known as detection
rate (DR) or sensitivity or recall – is defined as the number of correctly predicted intrusion
records divided by the total number of intrusion records (3.79). FPR – also known as
fall-out or false alarm rate (FAR) – is defined as the number of normal records that are
incorrectly predicted as intrusions divided by the total number of normal records (3.80).
The true negative rate (TNR) – also known as specificity – is defined as the number of
normal records that are correctly predicted divided by the total number of normal records
(3.81). The positive predictive value (PPV) – also known as the precision – is defined as
the number of correctly predicted intrusion records divided by the number of all records
that are predicted as intrusions (3.82). The false discovery rate (FDR) is defined as the
number of normal records that are incorrectly predicted as intrusions divided by the total
number of records which are predicted as intrusions (3.83). The negative predictive value
(NPV) is defined as the number of normal records that are correctly predicted divided by
the number of records that are predicted as normal (3.84). The following equations depict
these measures:

Recall = TPR =
TP

P
=

TP

TP + FN
, (3.79)

Fall -out = FPR =
FP

N
=

FP

FP + TN
, (3.80)

Specificity = TNR =
TN

N
=

TN

FP + TN
= 1− FPR, (3.81)

Precision = PPV =
TP

TP + FP
, (3.82)

FDR =
FP

FP + TP
= 1− PPV, (3.83)

NPV =
TN

TN + FN
, (3.84)

where TP, TN, FP, FN are the numbers of true positives, true negatives, false positives and
false negatives, respectively. FPR and TNR measures have inverse relationship, therefore
we will consider only TNR measure. The same fact is present in the case of FDR and
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PPV, therefore we will consider only PPV measure. The accuracy of binominal prediction
is defined as

AccuracyB =
TP + TN

TP + TN + FP + FN
=

TP + TN

P +N
. (3.85)

Another commonly used measure is F-measure which is defined in the following equa-
tion [171]:

F -measureβ ∼ Fβ =
(β2 + 1)×Recall × Precision
β2 × Precision+Recall

. (3.86)

The F-measure is evenly balanced when β = 1. It favors recall when β > 1, and precision
when β < 1. Because in intrusion detection problem are both cases – correct prediction
of intrusions as well as legitimate traffic – equally important, we utilized β = 1 in our
performance measurements, and therefore the F-measure is computed by formula

F1 =
2×Recall × Precision
Precision+Recall

. (3.87)

Figure 3.6 shows 3D plot for F-measure for β = 1, while other two examples of F-measure
for β = 0.5 and β = 2 are shown in Appendix A.

The definition of confusion matrix intended for displaying of binominal prediction results
is depicted in Table 3.1. Note that we will refer both TNR and TPR as recall of associated
class. Similarly, we will refer to NPV and PPV as precision of particular class.

Figure 3.6: F-measure for β = 1
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AccuracyB
True Class Precision

Negative Positive

Predicted Class Negative TN FN NPV
Positive FP TP PPV

Recall TNR TPR F1

Table 3.1: The definition of confusion matrix for binominal prediction

3.3.2 Multi-class Prediction

We have adapted performance measures of binominal prediction for the purpose of multi-
class prediction which will be utilized in our experiments predicting subclass of intrusion
as well as legitimate traffic. Therefore, following definitions will not distinguish between
intrusion and legitimate classes, as it will be let on the interpretation of each class by
human being.

Suppose having classes C0, . . . , Cn where n ∈ ℵ1. Then, we define the precision, recall
and F-measure for class Ci as

Precision(Ci) = PPV (Ci) =
TP (Ci)

TP (Ci) + FP (Ci)
, (3.88)

Recall(Ci) = TPR(Ci) =
TP (Ci)

|Ci|
=

TP (Ci)

TP (Ci) + FN(Ci)
, (3.89)

F -measure(Ci) ∼ F1(Ci) =
2×Recall(Ci)× Precision(Ci)

Precision(Ci) +Recall(Ci)
, (3.90)

where class Ci represents positive records and classes
(⋃n

j=0Cj

)
\ Ci represent negative

ones. The accuracy of multi-class prediction is defined by the following formula:

AccuracyP =

n∑
i=0

TP (Ci)

n∑
i=0

TP (Ci) +
n∑
i=0

FN(Ci)

=

=

n∑
i=0

TP (Ci)

n∑
i=0

(TP (Ci) + FN(Ci))

,

(3.91)

where n ∈ ℵ1 and the number of classes is equal to n+ 1.
The confusion matrix for multi-class prediction is shown in Table 3.2 which considers

definitions (3.88), (3.89), (3.90) and (3.91). We remark that depicted multi-class confusion
matrix distinguish only between true positives and false negatives from the Ci perspective,
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for i ∈ (0, . . . , n). True positives of all classes lay on the main diagonal of the confusion
matrix. False negatives lay on all remaining positions and are interpreted vertically. Thus,

FN(Ci) =

n−1∑
j=0

FN j(Ci). (3.92)

AccuracyP True Class
PPV (Ci)PPV (Ci)PPV (Ci) F1(Ci)F1(Ci)F1(Ci)C0C0C0 C1C1C1 · · · CnCnCn

Predicted
Class

C0C0C0 TP (C0)TP (C0)TP (C0) FN0(C1) · · · FN0(Cn) PPV (C0) F1 (C0 )

C1C1C1 FN0(C0) TP (C1)TP (C1)TP (C1) ... FN1(Cn) PPV (C1) F1 (C1 )

... ... · · · . . .
...

...
...

CnCnCn FNn-1 (C0) FNn-1 (C1) · · · TP (Cn)TP (Cn)TP (Cn) PPV (Cn) F1 (Cn)

Recall(Ci)Recall(Ci)Recall(Ci) TPR(C0) TPR(C1) · · · TPR(Cn)

Table 3.2: The definition of confusion matrix for multi-class prediction

Another interpretation of multi-class confusion matrix, considering only Ck class as
positive, says other entries than TP (Ck) and FN(Ck) are considered as TN(Ck) in the case
they are classified as non-Ck class and FP (Ck) in the case they are incorrectly classified
as Ck class, respectively. This interpretation is depicted in Table 3.3 which is equivalent to
confusion matrix from Table 3.2.

AccuracyP True Class
PPV (Ci)PPV (Ci)PPV (Ci) F1(Ci)F1(Ci)F1(Ci)C0C0C0 CkCkCk · · · CnCnCn

Predicted
Class

C0C0C0 TN0
0 (Ck) FN0(Ck) · · · TN0

n-1 (Ck) PPV (C0) F1 (C0 )

CkCkCk FP0(Ck) TP (Ck)TP (Ck)TP (Ck)
... FPn-1 (Ck) PPV (Ck) F1 (Ck )

... ... · · · . . .
...

...
...

CnCnCn TNn-1
0 (Ck) FNn-1 (Ck) · · · TNn-1

n-1 (Ck) PPV (Cn) F1 (Cn)

Recall(Ci)Recall(Ci)Recall(Ci) TPR(C0) TPR(Ck) · · · TPR(Cn)

Table 3.3: The alternative definition of confusion matrix for multi-class prediction

Note that following sums depict some relations in the current multi-class confusion matrix:

TN(Ck) =
n−1∑
j=0

n−1∑
h=0

TNh
j (Ck), (3.93)

FN(Ck) =

n−1∑
h=0

FNh(Ck), (3.94)

FP (Ck) =
n−1∑
j=0

FPj(Ck), (3.95)

where indexes h and j iterate trough rows and columns of confusion matrix, respectively.
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3.3.3 K-fold Cross Validation of a Classifier

The k-fold cross validation [92] splits dataset D containing n samples into k mutually ex-
clusive subsets (the folds) D = {D1, D2, . . . , Dk} having approximately equal sizes. The
classifier is trained and tested k times, whereas each time t ∈ {1, 2, . . . , k} is trained on
D \Dt and tested on Dt. Consider definitions (3.1), (3.2), (3.3) and (3.4) from Subsection
3.1 with Dtr symbol replaced by symbol D. The cross validation estimate of accuracy rep-
resents the total number of correct predictions, divided by the number of samples in the
dataset – n. Consider Dt being the test set which includes samples xi = (vi, yi), then the
k-cross validation estimate of accuracy and recall are defined as

Accuracy =
1

n

k∑
t=1

∑
(vi,yi)∈Dt

δ2

(
A(D \Dt, vi), yi

)
, (3.96)

Recall(y) =
1

ny

k∑
t=1

∑
(vi,yi)∈Dt

δ3

(
A(D \Dt, vi), yi, y

)
, (3.97)

where δ2(a, b) = 1 if a = b and 0 otherwise; δ3(a, b, c) = 1 if a = b = c and 0 otherwise;
ny represents the number of samples in D labeled as y. Analogously, estimates of precision
and F1-measure are defined as

Precision(y) =
1

k

k∑
t=1

∑
(vi,yi)∈Dt

δ3

(
A(D \Dt, vi), yi, y

)
∑

(vi,yi)∈Dt

[
δ3

(
A(D \Dt, vi), yi, y

)
+ δ̂3

(
A(D \Dt, vi), yi, y

)] , (3.98)

F1 -measure(y) =
2×Recall(y)× Precision(y)

Precision(y) +Recall(y)
, (3.99)

where δ̂3(a, b, c) = 1 if a = c ∧ a 6= b (false positives) and 0 otherwise. These measures are
dependent on the distribution into folds as well as on the number of samples in each class
of a dataset.
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Chapter 4

State of the Art

The related work discussed in this chapter is not limited only to supervised machine learning
in network intrusion detection, however approaches to the unsupervised machine learning are
described here, too. The problem of machine learning based network intrusion detection is
supplemented by several network traffic classification approaches which we consider related
as well. These two problems are very similar from the view of supervised prediction, which
considers the same input features to perform traffic type classification or attack detection
with potential attack type distinction.

At first, we describe data mining task in network intrusion detection and principles of
buffer overflow attacks as the cause of network intrusions. Then, various datasets utilized
for IDS evaluation purposes will be discussed and categorized. Next, classification of net-
work anomaly intrusion detection approaches, according to input data they work with, is
proposed. Later, relevant network anomaly intrusion detection and network traffic classifi-
cation approaches are introduced. Finally, related work which is relevant to network attack
obfuscations as well as evasion of IDS is discussed, whereby an emphasis is put on various
obfuscation techniques.

4.1 Data Mining Task in Intrusion Detection

Data mining represents relatively new approach for the area of intrusion detection. Data
mining was defined by Grossman et al. in the paper [62] as semi-automatic discovery of
patterns, associations, changes, anomalies, rules, and statistically significant structures and
events in a data. Today, many different types of data mining algorithms exist which include
classification, link analysis, clustering, association, rule abduction, deviation analysis and
sequence analysis. By using the data mining algorithms, it is possible to extract knowl-
edge from large datasets, analyse them and integrate it into a trained intrusion detection
model. This approach considers the intrusion detection as data analysis process, whereas the
signature and anomaly based approaches represent knowledge engineering processes [134].

Subcategory of intrusion detection approaches utilizing machine learning, is network
based one. Figure 4.1 depicts data mining approach of building network anomaly intrusion
detection models [98].
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Figure 4.1: Data mining approach of building intrusion detection models [134]

First, raw data is converted into ASCII format of network packets information, which
is next processed into connection level information. These connection level records contain
features like service, duration, size etc. Data mining algorithms are applied to this data
to create models of intrusion detectors. Many of the state-of-the-art approaches aim at
optimization of models or feature set, and do not care how training dataset was collected.
Optimization of feature set is represented by evaluation feedback in the figure. In our thesis,
we primarily aim at different kind of optimization which resides in obtaining and providing
specific training data for feature extraction, and thus for model training too. In Figure 4.1,
this kind of optimization is represented by training data feedback.

4.2 Buffer Overflow Flaws as a Cause of Intrusions

Buffer overflow (BO) attacks exploiting the network vulnerabilities continue to be the one
of the most dangerous threats in the domain of information security. Figure 4.2 shows
increasing number of vulnerabilities prone to buffer errors and Figure 4.3 shows the ratio
of buffer-error vulnerabilities to total vulnerabilities per year [125]. This class of attacks
forms non-negligible portion of all security attacks simply because BO vulnerabilities are
very easy to perform [25, 82, 126].

Buffer Overflow Attacks & Vulnerabilities

The following information related to BO vulnerabilities and attacks were primarily taken
from [42]. BO attacks dominate in the class of remote penetration attacks because a BO
vulnerability presents for the attackers exactly what they need: the ability to inject and
execute an attack code. The injected attack code runs with the privileges of the vulnerable
application and allows the attacker to bootstrap whatever other functionality in order to
control the compromised PC. The goal of the BO attack is to subvert the function of
a program in a way that the attacker can take control of that program, and if a program
is running under user with sufficient privilege, then adjacent host can be controlled as well.
In order to achieve this goal, the attacker must achieve two sub-goals:
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Figure 4.2: The number of vulnerabilities with buffer errors per year
(generated at [125] on 21st of June 2016 )

1. arrange suitable code to be available in the program’s address space,

2. force the program to jump to that code, with suitable parameters loaded into the
registers and memory.

There are two ways of arranging the attack code to be in victim program’s address space:
inject it or use suitable existing code if it is present. In the case of injecting, the attacker
provides the string as the input of the program, which stores it into a buffer. Actually, the
string contains native CPU instructions of victim host’s platform. The attacker does not
need to overflow any buffer to do this. The buffer can be located anywhere on the stack, the
heap or the static data area. In the case that suitable code is already in program’s code,
the attacker only need to parametrize this code by argument specifying e.g. shell command,
and then ensure jumping of process control flow to this code.

Forcing the program to jump on attacker’s code can be done by overflowing a buffer
which has weak or non-existent boundary checking. By overflowing the buffer, the attacker
can overwrite the program state with (almost) arbitrary sequence of bytes, resulting into
bypassing program logic of the victim. This is referred to as corrupting the program state.
The distinguishing factor among BO attacks is a kind of corrupted state as well as the
location of corrupted state in the memory, which can be divided into three categories:

• activation record – whenever is a function called, it pushes activation record, which
is also known as the stack frame. The stack frame contains, among other things, the
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Figure 4.3: Ratio of vulnerabilities with buffer errors per year
(generated at [125] on 21st of June 2016 )

return address of the function, which is loaded into instruction pointer register of the
CPU when function finishes, and further program jumps onto that address. Attacks
which corrupt activation record of a function, and thus return address, overflow local
variables of a function. The attacker then forces the program to jump on attack code,
when victim function returns. This kind of buffer overflow is called stack smashing
attack [126, 41, 169],

• pointer on a function – it can be allowed anywhere on the stack, heap, area of the
static data, so the attacker only need to find suitable vulnerable buffer near a function
pointer and overflow it in order to change the value of a pointer. Later, when the
program makes the call to this function pointer, it will instead jump into the attacker’s
desired location,

• long jump buffer – contains address of the code as well as state of the process
and serves for recovering process state by calling longjmp function which returns pro-
cess control on the address set by setjmp function, and recovers state of the process.
Alike function pointers, long jump buffers can be allocated anywhere, so the attacker
only needs to find adjacent vulnerable buffer and overflow its content by desired ad-
dress. Note that this is the C language specific category, as C includes specific check-
point/rollback system called setjmp/longjmp, which is the equivalent to the concept
of exception handling mechanism [104] of newer programming languages than C.
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Combining Code Injection and Control Flow Corruption

The simplest and the most common form of BO attack combines an injection technique
with activation record corruption in single string. In this case, the attacker locates local
vulnerable variable of a function, feeds it with large string containing executable code and
simultaneously changes return address of the activation record [126].

The injection and corruption do not have to necessarily happen in one step. The attacker
can inject code into one buffer without overflowing it, and overflow a different buffer to
corrupt a code pointer. This often happens when vulnerable buffer has boundary checking
but performs it in wrong way, so the buffer can be overflowed up to certain number of bytes.

The next combination of injection with corruption happens in the case when the attacker
is trying to use present code, which is necessary to parametrize, instead of injecting his
own code. An example is the function exec(param) in libc, where attacker need to modify
parameter param in order to execute desired system’s utility, e.g. /bin/sh.

The Defense against Buffer Overflow

Several approaches for defending against BO vulnerabilities and attacks exist. The first
one is to write correct code, which is often impossible due to human factor, and can be
expensive and time consuming in the case of utilization of tools for static and dynamic
analysis. The next option is to make storage areas of buffer non-executable, which prevents
the attacker from injecting malicious code. But, as attacker does not need to necessarily
insert his own code and may exploit existing one, this method has limitations which allow
existence of vulnerabilities. Another option is to perform checking of array boundaries
on each access to array, which could be accomplished by compiler, and thus it is called
direct compiler approach. Although, this method completely eliminates BO vulnerabilities,
it imposes substantial costs. The indirect compiler approach performs integrity checks on
code pointers before dereferencing them. While, indirect compiler approach does not make
BO attacks impossible, it stops the most of BO attacks, and the attacks that it does not
stop are difficult to create. The newest method of almost completely alleviating the BO
attacks is memory randomization [184]. However, successful performing of BO attack is not
impossible, but requires a large number of attempts.

4.3 IDS Evaluation Datasets

In this section, we summarize basic properties and characteristics of public IDS evaluation
datasets. We propose partition of datasets into two categories. The first one represents
datasets containing raw network dumps and the second one represents datasets containing
high level features extracted upon underlying network dumps as well as upon any other
relevant resources of data. These two categories are closely discussed in the following sub-
sections.

4.3.1 Datasets Consisting of Network Data

Datasets, from the category of datasets, consisting of network data for evaluation of intrusion
detection methods has one property in common – they contain network data dumps with
optional data serving for labeling purpose. No high level features extracted upon network
and host data is available. This fact make the category more challenging than the category
of datasets consisting of high level features.
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The first 4 representatives of this category are large collections of datasets and are
referred to as projects – MWS [68], PREDICT [137], CAIDA [27], NETRESEC [121]. The
following 4 examples of the category represent just one specific collection of network data
and are referred to as datasets – DARPA [50], CCRC [110], CDX [164], CONTIAGO [39].

Project MWS

The MWS Datasets are a collection of various types of datasets that are designed for use in
anti-malware research [68]. Authors assumed three types of researchers, when they collected
the first version of the datasets: a) highly-professional on malware analysis; b) packet
analysis expert such as intrusion detection; c) entry level researcher who is unfamiliar with
malware analysis and / or packet analysis.

The authors have shared a summary of the MWS Datasets in Japanese [4, 69, 70, 71, 87]
which covers three phases of attacks:

• 1) probing,

• 2) infection,

• 3) malware activities after infection.

These three phases of attacks with associated MWS collections and analysis methods are
shown in Figure 4.4.

Cyber Clean Center (CCC) dataset consists of a malware sample, honeypot packet trace,
and malware collection log. The dataset was collected from server-side, high-interaction
honeypots operated by the CCC in a distributed manner. Over a hundred of honeypots
gathered attacks and collected malware through multiple ISPs. These honeypots were based
on Windows 2000 and Windows XP SP1 virtual machines.

The MARS (Malware / Minimal-attack Analysis Result Set) [114], is a set of dynamic
and static analysis data for the malware samples of the CCC dataset 2008, 2009, and 2010.
One part of the metadata contains the hash digest, file name, file size, file type, detection
method name, and timestamp of the anti-virus software, as well as the version of the anti-
virus software with regards to a particular malware sample. The next is a reference list of
each analysis result file with its analysis time stamp and tool information.

Figure 4.4: Attack phases of malware applicable to the MWS Datasets [68]
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Drive-by Download Data by Marionette (D3M) dataset is a set of packet traces collected
from the web client based high-interaction honeypot system – Marionette [3, 5], which is
based on Internet Explorer with several vulnerable plugins, such as Adobe Reader, Flash
Player, WinZip, QuickTime and Java. The datasets contain packet traces for the two
periods: at infection and after infection.

The IIJ MITF dataset is collected by server-side, low interaction honeypots based on
the open source honeypot – Dionaea [55]. This dataset contains attack communication and
malware collection logs from a hundred honeypots between July 2011 and April 2012 in
order to discover the trends of bot and bot nets. Deployments of honeypots were realized
at one ISP.

The PRACTICE dataset (associated to Proactive Response Against Cyber-attacks
Through International Collaborative Exchange) contains the packet traces obtained dur-
ing long-term dynamic analysis of five malware samples (Zbot , SpyEye , etc.) and their
metadata. The associated project’s approach focuses on the long-term network activity of
malware, using dynamic analysis system [9] connected to the Internet. The analysis period
of the dataset is one week in the middle of May 2013.

The FFRI dataset focuses on the internal activities that occurred at a host by influence
of malware and are generated by dynamic analysis systems – Cuckoo sandbox [63] and FFR
yarai Analyzer Professional [59].

The NICTER darknet dataset is a set of packet traces collected since April 2011 to
2014 using the darknet monitoring system – NICTER [81]. The packet traces contain scan
packets to explore the reachable hosts by worms and researchers, backscatter packets caused
by source IP address spoofing, distributed reflection denial of service (DRDoS) attacks using
DNS and NTP, etc. A featured difference between this dataset and others is the ability
for researchers to access past and real-time data using the NONSTOP [180], Platform as
a Service (PaaS) environment, which provides an isolated environment where users can
remotely access and analyze various information resources of security related data.

From the perspective of network intrusion detection evaluation and current category
of datasets consisting of network data, we consider as related following datasets of MWS:
PRACTICE, D3M, CCC. As a source of expert knowledge in network intrusion detection
problem could be used following datasets of MWS: FFRI, IIJ MITF, D3M, CCC.

Project PREDICT

Protected Repository for the Defense of Infrastructure Against Cyber Threats (PREDICT)
[137] shares 430 datasets in 14 categories contributed by several data providers. Researchers
in the USA and other selected countries are approved for creating accounts and accessing
the repository. PREDICT provides sharing approval mechanism which distinguishes 5 data
classes: a) Unrestricted (click-through agreement); b) Quasi-Restricted (click-through agree-
ment); c) Unrestricted Non-Commercial (click-through agreement); d) Quasi-Restricted
Non-Commercial (click-through agreement); and e) Restricted (formal written agreement is
necessary).

From the all 14 categories, just three of them are relevant to the network intrusion
detection and could be used for evaluation purposes:

• Blackhole Address Space Data – is collected by monitoring routed but unused
IP address space that does not host any networked devices. Systems that monitor
such unoccupied address space have a variety of names, including darkspace, darknets,
network telescopes, blackhole monitors, sinkholes, and background radiation monitors.
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Packets observed in the darkspace can originate from a wide range of security-related
events, such as scanning in search of vulnerable targets, backscatter from spoofed
denial-of-service attacks, automated spread of Internet worms or viruses, etc. The
related subcategory of this category is UCSD Archived Network Telescope Data. The
archived files are in PCAP format. Source IP addresses are not anonymized.

• IP Packet Headers – these datasets are comprised of headers of network data,
containing information such as anonymized source and destination IP addresses and
other IP and transport header fields. No packets’ content is included. Depending on
the specific dataset, this category of data can be used for characterization of typical
internet traffic, or of traffic anomalies such as distributed denial of service attacks,
port scans, or worm outbreaks.

• Synthetically Generated Data – are generated by capturing information from
a synthetic environment, where benign user activity and malicious attacks are emu-
lated by computer programs. In this category, full network packets as well as firewall
logs, application logs, and malicious attacks are available, without any risk of com-
promising the privacy of real people. In this category, one can know and document
complete “ground truth,” i.e., which traffic is benign and which traffic is malicious.
Therefore, this category is well suited for evaluation of NIDS systems.

Notice, that IDS and Firewall Data category contains large collection of logs submitted
in a standard format but generated from a diverse set of hardware and software systems. It
does not contain any PCAP files, therefore it could not be used for IDS evaluation purpose.
If we would consider categorization of datasets from 4.3.1, then emphasized datasets of
PREDICT would represent probing and infection categories.

Project CAIDA

Center for Applied Internet Data Analysis (CAIDA) [27] collects several different network
data types at geographically and topologically diverse locations, and makes this data avail-
able to the research community while preserving the privacy of individuals and organizations
who donate data or network access.

The CAIDA datasets are dived into three categories which reflect collection status:

• A) Ongoing – the data collection for such dataset is still active and has continuing,
regularly scheduled collections,

• B) One-time snapshot – the dataset comes from a single collection event that only
occurred once. Future events will have a different dataset names,

• C) Complete – a formerly ongoing data collection that is finished, and will not be
resumed.

From the network security and intrusion detection perspective, CAIDA includes datasets
containing e.g. DDoS attacks [28, 31], botnet traffic [49], dumps of various well known
worms (Conficker [29], Code-Red [30], Witty [32]). These datasets could be utilized for
evaluation of intrusion detection approaches after little analysis followed by labeling if it
is not available. If we would consider categorization of datasets from 4.3.1, then CAIDA
would represents probing and infections categories.
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Project NETRESEC

Network Forensics and Network Security Monitoring (NETRESEC) [121] is independent
software vendor with focus on the network security field. Netresec specializes in software for
network forensics and analysis of network traffic. It additionally maintains a comprehensive
list of publicly available PCAP files which can be used for evaluation of intrusion detection
approaches as well.

The datasets are divided into six categories:

• A) Cyber Defence Exercises – this category includes network traffic from exercises
and competitions, such as Cyber Defense Exercises and red-team/blue-team competi-
tions.

• B) Capture the Flag Competitions – it contains files from capture-the-flag (CTF)
competitions and challenges.

• C) Malware Traffic – it contains pcap files of captured malware traffic from honey-
pots, sandboxes or real world intrusions.

• D) Network Forensics – Network forensics training, challenges and contests.

• E) SCADA/ICS Network Captures - files with attacks against Industrial Control
Systems; files captured at Industrial Control System Village (4SIC, CTF, DEF CON
22).

• F) Uncategorized PCAP Repositories – various captures which often represents
data for intrusion detection purposes.

If we would consider categorization of datasets from 4.3.1, then NETRESEC datasets would
represent probing and infection categories.

DARPA 1998 and 1999 Datasets

The Cyber Systems and Technology Group [50] (formerly the DARPA Intrusion Detection
Evaluation Group) of MIT Lincoln Laboratory, under Defense Advanced Research Projects
Agency (DARPA ITO) and Air Force Research Laboratory (AFRL/SNHS) sponsorship,
has collected and distributed the first standard corpora for evaluation of computer network
intrusion detection systems. They have also coordinated, with the Air Force Research
Laboratory, the first formal, repeatable, and statistically significant evaluations of intrusion
detection systems. These evaluation efforts have been carried out in 1998 and 1999.

There were collected two datasets DARPA 1998 and 1999 which were intended for sta-
tistically significant evaluations of intrusion detection systems. Later, there were released
three datasets marked as DARPA 2000 which address specific network scenarios.

According to [186] DARPA dataset contains all traffic generated by software that is not
publicly available and hence it is not possible to determine how accurate the background
traffic inserted into the evaluation is. Also evaluation criteria do not account for system
resources used, ease of use, or what type of system it is. If we would consider categorization of
datasets from 4.3.1, then DARPA datasets would represent probing and infection categories.
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CCRC 2006 Dataset

The authors F. Massicotte et al. developed a framework for automatic evaluation of intrusion
detection systems in their paper [110] as well they collected example dataset consisted of
many of network attack simulations. Moreover, the authors made the dataset publicly
available for IDS research community and can be obtained by sending emails to authors.
We denote this dataset as CCRC 2006, because the main author was, at the time of article
was written, an employee of Canada Communication Research Center in Ottawa.

The dataset is specific to signature-based, network intrusion detection systems and con-
tains only well known attacks, without background traffic. The purpose of the dataset is
testing and evaluation of the detection accuracy of IDS in the case of successful and failed
attack attempts. The paper also reports an initial evaluation of the framework on two
well-known IDS, namely SORT [160] and Bro [133].

The results are encouraging as the authors are able to automatically generate a large,
properly documented dataset which showed itself to be able automatically test and evaluate
intrusion detection systems. Notice, that the framework also contains mutation layer which
is able to perform various L2 and L3 protocol based obfuscations using tools Fragroute [174]
and Whisker [140]. If we would consider categorization of datasets from 4.3.1, then CCRC
2006 dataset would represent infection category.

CDX 2009 Dataset

The CDX 2009 dataset [164] was created during network warfare competition, in which
one of the goal was to generate labeled dataset. By labeled dataset authors mean TCP
dump traces of all simulated communications and SORT [160] log with information about
occurrences of intrusions and other security incidents. It contains data capture by NSA,
data capture outside of west point network border (in TCP dump format) and SNORT
intrusion prevention log as relevant sources for any experiments. Network infrastructure
contained 4 servers with 4 vulnerable services (one per each server). These services with IP
addresses of their hosted servers are described in Table 4.1. The expert knowledge of the
dataset is provided by SNORT tool in the standard exported log format of the SNORT.

Service OS Internal IP External IP

Postfix Email FreeBSD 7.204.241.161 10.1.60.25
Apache Web Server Fedora 10 154.241.88.201 10.1.60.187

OpenFire Chat FreeBSD 180.242.137.181 10.1.60.73
BIND DNS FreeBSD 65.190.233.37 10.1.60.5

Table 4.1: List of CDX 2009 vulnerable servers

If we would consider categorization of datasets from 4.3.1, then CDX 2009 dataset would
represent probing and infection categories.

Contagio Dataset

Contagio dataset [39] contains collection of PCAP files from malware analysis. The authors
collected several malicious and exploit PCAPs (almost 1000) from various public sources and
stated the references on original providers or authors. The collection is irregularly updated
with new PCAP files. PCAPs in Contagio dataset include implicit expert knowledge about
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occurrence of malware/exploit and therefore, is useful for IDS and signature testing and
development, general education, and malware identification.

If we would consider categorization of datasets from 4.3.1, then Contagio dataset would
represent infection and malware activities categories.

4.3.2 Datasets Consisting of High Level Features

The category of datasets consisting of high level features contains representatives which
were built upon network traffic dumps as well as upon any other data originating from
host machines. It does not contain any raw network traffic dumps. This category can be
interpreted as preprocessed version of the former category and optionally may include other
data than ones originating from network traffic. Considering the fact that datasets are
preprocessed and might be built upon manifold input data, we can a priori designate it as
less challenging in prediction task than former category, and also as enabling testing IDSs
to provide more plausible and precise results.

The current category of datasets contains 5 representatives - KDD Cup ’99 [187], NSL
KDD ’99 [181], Moore’s 2005 [119], Kyoto 2006+ [173] and OptiFilter 2014 [163].

KDD Cup ’99

In 1999, KDD Cup ’99 [187] dataset was created and is based on the DARPA 1998 dataset of
network dumps. It has been used for evaluating of new intrusion detection methods based on
analyzing of features extracted from network traffic and host machines. The training dataset
consists of approximately 4,9 mil. single connection vectors from seven weeks of network
traffic, each labeled as either normal or attack, containing 41 features per connection record
(see Appendix B for full list of features). Similarly, the two weeks of testing data yielded
around two million connection records. The datasets contain a total number of 24 training
attack types, with an additional 14 types in the testing dataset.

The simulated attacks fall into four main categories [187, 181]:

• Denial of Service Attack (DOS): is an attack in which the attacker makes some
computing or memory resource too busy or too full to handle legitimate requests, or
denies legitimate users access to a machine, e.g. syn flood,

• Remote to Local Attack (R2L): occurs when an attacker who has the ability to
send packets to a machine over a network but who does not have an account on that
machine exploits some vulnerability to gain local access as a user of that machine, e.g.
guessing password, remote buffer overflow attacks,

• User to Root Attack (U2R): is a class of attacks where the attacker starts out with
access to a normal user account on the system (perhaps gained by sniffing passwords,
a dictionary attack or social engineering) and then, is able to exploit some vulnerability
to gain superuser access to the system, e.g. various local buffer overflow attacks,

• Probing: is an attempt to gather information about a network of computers for
the purpose of circumventing its security controls, e.g. port scanning for vulnerable
services.
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The features of the KDD ’99 dataset are, according to [187], divided into three categories:

• A) basic features of individual TCP connections. This category encapsulates all the
attributes that can be extracted from a TCP/IP connections. Most of the features
lead to an implicit delay in detection. For full list of features of this category see
Appendix B.1.

• B) content features within a connection suggested by domain knowledge. Unlike
most of the DoS and Probing attacks, the R2L and U2R attacks cannot be described by
any intrusion frequent sequential pattern. This is because the DoS and Probing attacks
involve many connections to some hosts in a very short period of time, however, the
R2L and U2R attacks are embedded in the data portions of the packets associated with
single connection. In order to detect these kinds of attacks, we need some features
which would be able to look for suspicious behavior in the data portion, e.g. the
number of failed login attempts. These features are called content features because
extract payload of the packet regardless of whether it is ciphered or no and therefore,
have to be extracted at host machines. For full list of features of this category see
Appendix B.2.

• C) traffic features computed using a two-second time window interval (see Ap-
pendix B.3). This category of traffic features, moreover, contains two subcategories of
features [177]:

– 1) same host features – examine only the connections in the past two seconds
that have the same destination host as the current connection, and calculate
statistics related to protocol behavior, service, etc,

– 2) same service features – examine only the connections in the past two seconds
that have the same service as the current connection.

The same host and same service features are together called time-based traffic features
of the connection records.

The paper [177] criticize time based features of the connection records which are computed
using time window of 2 seconds. There exists several slow probing that scan host in using
a much larger time interval than 2 seconds. Rather than using a time window of 2 seconds,
the authors of [177] used a connection window of 100 connections, and constructed a mirror
set of host-based traffic features replacing original time-based traffic features.

The dataset is criticized mainly because it does not seem to be similar to traffic in real
networks, and also there are some critiques of attack taxonomies and performance issues.
Since then, many researches have proposed new measures to overcome existing deficiencies
of KDD Cup ’99 dataset.

NSL KDD ’99

Deficiencies of the KDD Cup 99 dataset were discused in [181]. The main deficiency of
orginal dataset are redundant replicated entries (78% in training set and 75% in testing
set). The next deficiency is non-uniform distribution of target classes resulting into very
poor results achived by classification models, which use neural networks or SVM1.

1Support Vector Machines. URL: http://www.support-vector.net/.
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The original dataset was modified, reduced an repaired into proposed NSL KDD ’99
dataset. Training dataset contains about 130 thousands of entries and testing about 23
thousands. In NSL KDD ’99 dataset are data sorted into original 24 classes as well as into 2
classes – legitimate communication or attack. Complete NSL KDD ’99 dataset is available
at [182].

Moore’s 2005

The 2005 Moore datasets [119] are intended to aid in the assessment of network traffic clas-
sification. A number of datasets are described; each dataset consists of a number of objects
and each object is described by a group of features (also referred to as discriminators).
Leveraged by a quantity of hand-classified data, each object within each dataset represents
a single flow of TCP packets between client and server. Features for each object consist
of processed input data by discriminators extraction functions and these features serves as
the input to probabilistic classification techniques. Input data is obtained by Architecture
of a Network Monitor designed in [116]. There are accessible public perl scripts2 which
performs TCP connection extraction and next they perform computation of discriminators
from input data in TCP dump format.

In contrast to previously described KDD datasets, the Moore’s dataset is based purely
on network traffic dumps and there is not leveraged any information from host machines
during extraction of the features.

Kyoto 2006+

The authors J. Song et al. in their paper [173] realized in 2011, that the only widely used
dataset intended for evaluation of intrusion detection systems – KDD Cup ’99, was more
than 10 years deprecated these days and could not reflect current network situations and the
latest attack trends. Therefore, they presented new evaluation dataset, called Kyoto 2006+,
built on the 3 years of real traffic data (since Nov. 2006 to Aug. 2009) which were obtained
from diverse types of honeypots. Furthermore, the authors provided detailed analysis results
of honeypot data and shared their experiences in order to make security researchers able to
get insights into the trends of latest cyber security attacks and the Internet situations.

The total number of honeypots used during collecting dataset, is 348 including two
black hole sensors with 318 unused IP addresses. The most of honeypots were rebooted
and restored original HDD image immediately after a malicious packet was observed. For
inspection of captured traffic, the authors use three independent security SW: SNS7160
IDS system [179], Clam AntiVirus software [35] and Ashula [10] which is dedicated for
shellcode detection purpose. Since April 1st 2010, the authors have deployed another IDS
– SNORT [160].

The overall data distribution of the dataset is depicted in Table 4.2. During the obser-
vation period, there were over 50 millions of normal sessions and over 43 millions of attack
sessions. The authors regarded all traffic data captured from their honeypots as attack data
and all traffic data captured at their legitimate mail and DNS server as normal data. Also,
among the attack sessions, there were observed over 425 thousands of sessions which were
related to unknown attacks, because they did not trigger any IDS alerts, but they contained
shellcodes detected by Ashula. There also occurred several situations, when IDS failed to

2URL: http://www.cl.cam.ac.uk/research/srg/netos/brasil/downloads/index.html.
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Number of Sessions Avg. Number of Sessions per Day

Total 93,076,270 93,638
Normal 50,033,015 50,335

Known attack 42,617,536 42,874
Unknown attack 425,719 428

Table 4.2: Data distribution of Kyoto 2006+ dataset [173]

detect known attacks, i.e., false negative, but ratio of the failure was negligibly small. There
was leveraged Bro IDS tool [133] for conversion of raw traffic data into session data.

The Kyoto 2006+ dataset consists of 14 statistical features derived from KDD Cup ’99
dataset as well as 10 additional features which can be used for further analysis and evaluation
of NIDSs. The reason why authors extracted just the 14 statistical features is that among
the original 41 features of the KDD Cup 99 dataset [187] there exist substantially redundant
and insignificant features, and also many of the KDD Cup ’99 features are content based
which makes them impossible to extract them by NIDS which do not use without domain
knowledge. Therefore, content based features are kind of features which are not suitable for
network based intrusion detection systems. The 14 features adopted from KDD Cup ’99 are
depicted in Appendix C.1.

Additionally, to above mentioned statistical features, the authors extracted additional
10 features which may enable them to investigate more effectively what kinds of attacks
happened on their networks. Some of these features (the first four ones) reflects “ground
thruth” and therefore can be considered as expert knowledge and should not be included
into machine learning process as regular attributes, but special ones which represents la-
bels of records. The list of additional features with their descriptions is depicted in the
Appendix C.2. Kyoto 2006+ dataset is available to the public at [94].

OptiFilter 2014 – Persistent Dataset Generation

The authors Salem et al. proposed OptiFilter [163] – a framework which efficiently con-
structs connection vectors from online data flow. The framework collects network packets
and host events continuously in real-time and parses them to a queue of dynamic windows,
then it generates connection vectors accordingly. Datasets generated by the framework can
be leveraged for evaluation of intrusion detection models.

OptiFilter handles ARP, ICMP, IP/TCP and IP/UDP protocols. Moreover, it utilizes
a finite state machine on TCP and UDP connections to constantly monitor their state until
a connection is closed or a certain condition is satisfied. As capturing method for network
data, TCP dump tool [183] is utilized.

All host based features are collected using SNMP traps, a mechanism which allows
systems to send messages to a trap receiver. Regarding Windows systems, the authors
utilize the Windows Management Instrumentation (WMI) that is able to filter events and
send them as SNMP traps via WMI-SNMP-Provider. In contrast, the Linux systems utilize
syslog daemon to generate SNMP traps using the NetSNMP agent.

The extracted features of OptiFilter framework are influenced by KDD Cup 99 [187] and
Kyoto 2006 [173] datasets and consit of three categories:
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• Network based features – timestamp, source and destination IPs with ports, pro-
tocol type, service, transferred source Bytes, flags describing connection state (calcu-
lation from BRO [133]), the number of fragmentation errors.

• Traffic features – the features are statistical and get derived from the basic features.
They are divided into two types, time-based traffic features and connection-based
traffic features, which are distinguished and treated differently by OptiFilter. The
former type is calculated based on a dynamic time window, e.g. the last 5 seconds,
while the latter type is calculated on a configurable connection window, e.g. the last
1000 connections. Instances of this group are not self explanatory and not described
in the original paper.

• Content features – the features are obtained directly from monitored host using
SNMP. Instances are: the number of failed login attempts, indication of successful
login, indication of obtaining root shell.

For the evaluation purpose, the authors selected 17 common services: ftp, ssh, telnet, smtp,
smb, nfs, xmpp, http, ntp, dhcp, syslog, snmp, rdp, IMAP, pop3, rsync. But, it is not clear
whether SecMonet – the dataset they generated – contains any malicious traffic. Experi-
ments evaluating performance of supervised classifiers also include KDD Cup 99 dataset.
Therefore, the result dataset of this work is KDD Cup 99 enriched by SecMonet probably
containing only legitimate traffic.

4.4 Machine Learning in Anomaly Intrusion Detection

This section discusses research performed in the field of anomaly intrusion detection and
machine learning. We distinguish two categories of anomaly intrusion detection approaches
utilizing machine learning according to a type of input data they work with:

• A) the first category represents general anomaly intrusion detection techniques
which intake all possible data sources including host-based features as well as network-
based ones. We will discuss several examples of this category – [1, 79, 84, 90, 93, 108,
136] (see Section 4.4.1). This category of anomaly intrusion detection techniques can
be considered as adjacent to the category of datasets consisting of high level features
(see Section 4.3.2),

• B) the second category represents pure network anomaly intrusion detection
techniques which assume only the features extracted from network traffic. We will
discuss several examples of this category – [16, 88, 95, 99, 102, 134, 167] (see Section
4.4.2). Similarly, it can be considered as adjacent to the category of datasets consisting
of network traffic dumps (see Section 4.3.1).

The former category is more spread as it works with high amount of input information
having enough entropy to perform adequate decisions. Therefore, it can provide low false
positive rate and high precision. But on the other hand, this category is more complicated
to deploy in real world because of various OS platforms and versions. Also, it could be
considered as subject to privacy issues, as its instances may analyze e.g. deciphered packet
payload, system calls sequences, running processes, established network connections etc.

The second category is more challenging, as its input data is limited to only network traf-
fic features – offering lower information entropy than former category. Our current research
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is related to the second category and can be referred to as machine learning based network
anomaly intrusion detection. The following subsections will discuss several examples of each
proposed category.

4.4.1 General Anomaly Intrusion Detection Techniques

The category of general anomaly intrusion detection techniques contains several examples
with their brief description and achieved results. The examples include supervised as well
as unsupervised machine learning approaches to anomaly intrusion detection. Note that all
presented state-of-the-art approaches are ordered by the year they were published, starting
from the earliest one.

Intrusion Detection with Unlabeled Data Using Clustering

The authors of the paper [136] present an intrusion detection algorithm, which is based on
unsupervised anomaly detection. This algorithm takes as inputs a set of unlabeled data and
attempts to find intrusions within the data. After these intrusions are detected, training
of misuse detection algorithm or a traditional anomaly detection algorithm is applied on
the data. The approach of the paper clusters the data instances together into clusters
using a simple distance-based metric, which is referred as single-linkage clustering. This
clustering is performed on unlabeled data, requiring only feature vectors without labels to
be presented. Once the data is clustered, all of the instances that appear in small clusters are
labeled as anomalies. Both the training and testing was done using different subsets of KDD
Cup 99 dataset [187]. The authors utilized 10-fold cross validation method for performance
evaluation. On average, the detection rate around 40% − 55% with a 1.3% − 2.3% false
positive rate was achieved.

Bayesian Networks for Intrusion Detection

The authors of the paper [93] present a method for performing Bayesian classification of
input events intended for intrusion detection. There was improved the naive threshold-based
schemes traditionally used to combine model outputs by employing Bayesian networks. This
allows the authors to naturally incorporate model confidence and dependencies between
models into the event classification process.

The evaluation of the scheme was performed on MIT Lincoln Labs 1999 dataset which
contained network traffic dumps as well as information about system call sequences. The
experimental results show that a significant reduction of false alerts was achieved. When
all attacks in testing dataset were detected, the Bayesian event classification reports only
half as many false alerts as the traditional approach, based on the same model outputs.
The resulting ROC graph comparing threshold-based method with Bayesian Networks is
depicted in Figure 4.5.

Octopus-IIDS

The authors Mafra et al. presents an anomaly intrusion detection system Octopus-IIDS,
which is based on the behavior of network traffic and performs analysis and classification of
messages [108]. Two machine learning techniques are applied for the detection of anomalies
– Kohonen Neural Network (KNN) and SVM. These techniques are used in sequence in
order to improve an accuracy of the system. The system is able to identify known and new
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Figure 4.5: ROC curves for Bayesian Networks and threshold method

attacks in real-time. The evaluation of Octopus-IIDS is performed on KDD Cup ’99 dataset
together with simulated data for normal traffic, which were generated without the presence
of fragmented packets, disordered packets, etc. Thus, the authors consider 4 attack classes
(DoS, Probe, R2L and U2R) and one class for normal traffic. The comparison of detection
rates by Octopus-IIDS and some of state-of-the-art anomaly intrusion detection systems
is shown in Table 4.3. According to the comparison, the Octopus-IIDS outperforms other
anomaly intrusion detection approaches.

Anomaly
Intrusion
Detector

Average
Detection

Rate

Max.
Deviation

Anomalous Payload-based IDS [20] 58.80% 41.20%
HPCANN [105] 77.49% 22.53%

MADAM ID [97] 77.97% 17.97%
Multi-level Hybrid Classifier [199] 89.19% 22.52%

Octopus-IIDS [108] 97.40% 8.57%

Table 4.3: Octopus-IIDS and state-of-the-art intrusion detectors [108]

Moreover, authors perform an analysis of the features utilized for classification of input
data, and define which of them are important for each class of attack. Note that the results
of this paper are limited to drawbacks of KDD Cup ’99 dataset.

Self Organizing Map Artificial Neural Network

Ibrahim et al. analyze the performance of unsupervised machine learning-based anomaly
intrusion detection system, which is instantiated by Self Organization Map (SOM) Artificial
Neural Network (ANN) [79]. The system employs SOM ANN for detection and separation of
normal traffic from the malicious one. Proposed IDS is validated on detection of anomalies
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in KDD Cup ’99 and NSL-KDD datasets and the results show that SOM ANN achieved
92.37% accuracy with KDD Cup ’99 dataset, and 75.49% accuracy in the case of NSL KDD
Cup ’99 dataset.

Holistic Network Defense

Ji Jenny et al. in the paper [84] presents a hybrid network-host monitoring strategy, which
fuses data from both the network and the host to recognize malware infections. The thesis
focuses on three categories: normal, scanning, and infected. The network-host sensor fusion
is accomplished by extracting 248 features from network traffic using the public available
discriminators extraction tools of A. Moore [119] (see Appendix E). The next part of infor-
mation is obtained from host using text mining, looking at the frequency of the 500 most
common strings and analyzing them as word vectors. Improvements to detection perfor-
mance are made by synergistically fusing network features obtained from IP packet flows
and host features obtained from text mining. In addition, the thesis compares three differ-
ent machine learning algorithms and updates the script required to obtain network features.
The results of hybrid method outperformed host only classification by 31.7% and network
only classification by 25% in classification accuracy.

Host features were obtained using memory dump utility win32dd3 and Microsoft Sys-
Internals Suite [162] on active target servers of the CDX 2009 [164] competition mentioned
above. Three classification techniques were employed in the thesis: LVQ, SOM and SVM.
The best performance was achived by SVM (the 2nd by SOM and 3rd by LVQ). Using the
host only features there was achieved an accuracy of 76%; network only features achieved
87% and the hybrid approach achieved an accuracy of 98.4%.

Combination of Random Tree and Naive Bayes Decision Tree

The authors Kevric et al. developed a combining classifier model utilizing tree-based algo-
rithms for network intrusion detection [90]. The NSL-KDD dataset [181], a much improved
version of the original KDD Cup ’99 dataset [187], was used for evaluation of the perfor-
mance. The task of the detection algorithm was to classify whether the incoming network
connection in normal or an attack, based on 41 features describing every pattern of network
traffic. The detection accuracy of 89.24% was achieved using the combination of random
tree and Naive Bayes Tree algorithms based on the sum rule scheme, outperforming the in-
dividual random tree algorithm. According to the authors, this result represents the highest
result achieved so far using the complete NSL-KDD dataset. Therefore, combining classifier
approach based on the sum rule scheme can yield better results than individual classifiers.
The main limitation of this work is utilization of old NSL-KDD dataset.

SSAD – Semi-supervised Statistical Approach for ADS

The paper [1] proposes a two-stage Semi-supervised Statistical approach for Network Anomaly
Detection called SSAD. The first stage of SSAD aims to build a probabilistic model of normal
instances and measures any deviation that exceeds an established threshold. This threshold
is deduced from a regularized discriminant function of maximum likelihood. The purpose
of the second stage is to reduce False Alarm Rate (FAR) through an iterative process that
reclassifies anomaly cluster from the first stage, using a similarity distance and dispersion

3URL: http://www.debuggingexperts.com/win32dd–memory-imaging.
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rate of anomaly cluster. The authors of the paper evaluated a performance of proposed
approach on the well-known intrusion detection dataset NSL-KDD [181] and Kyoto 2006+
[173]. The experiments compare proposed approach to the Naive Bayes classifier, and the
results show that SSAD outperforms the Naive Bayes model in terms of detection rate and
false positive rate.

4.4.2 Network Anomaly Intrusion Detection Techniques

The category of network anomaly intrusion detection techniques contains several examples
with their brief description and achieved results if they are present. The examples include
supervised as well as unsupervised machine learning approaches to network anomaly intru-
sion detection. Note that all presented state-of-the-art approaches are ordered by the year
they were published, starting from the earliest one.

Rule Induction Algorithm and Connection Features

One of the first approaches which utilize machine learning for network anomaly intrusion
detection is described in the paper [99]. The authors also apply machine learning for analysis
of system calls in the another part of the paper, however, it is not relevant to the current
category of intrusion detection techniques. The connection level features are utilized in order
to describe properties and characteristics of particular connection and later are utilized as
the input for the Rule Induction algorithm designed in the paper [37]. The feature set
consists of start time, duration, participating hosts, ports, the statistics of the connection
(e.g., bytes sent in each direction, resent rate, etc.), protocol (TCP or UDP), and flag
(’normal’ or one of the recorded connection/termination errors). However, the performance
of the proposed framework was improved by including more features covering:

• examination of all connections in the past n seconds, and counting the number of:
connection establishment errors (e.g., ’connection rejected’), all other types of errors
(e.g., ’disconnected’), connections to designated system services (e.g., ftp), connections
to user applications, and connections to the same service as the current connection

• calculation of the per-connection average duration and data bytes (on both directions)
of all connections for the past n seconds, and the same averages of connections to the
same service.

Proposed framework consists of classification, association rules which can be used to con-
struct detection models. The experiments on network TCP dump [183] data shown promis-
ing results of classification models in detecting of anomalies, which was evaluated by 5-fold
cross validation method. The accuracy of the detection models depends on sufficient training
data and the correct feature set.

ADAM

Audit Data Analysis and Mining (ADAM) [16] has been designed and implemented as an
anomaly detection system, but using a module that classifies the suspicious events into false
alarms or real attacks. ADAM is unique in two ways. First, ADAM uses data mining
to build a customizable profile of rules of normal behavior, and then a classifier sifts the
suspicious activities, classifying them into real attacks and false alarms. Secondly, ADAM
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is designed to be used on-line (in real-time), which is achieved by using incremental mining
algorithms that use a sliding window of time to find suspicious events.

ADAM uses a combination of association rules, mining and classification to discover
attacks in a TCP dump [183] audit trail. First, ADAM builds a repository of normal
frequent sets of items that hold during attack-free periods. It does so by mining data
that is known to be free of attacks. Secondly, ADAM runs a sliding-window as on-line
algorithm that finds frequent itemsets in the last D connections and compares them with
those stored in the normal itemset repository, discarding those that are deemed normal.
With the rest, ADAM uses a classifier which has been previously trained to classify the
suspicious connections as a known type of attack, an unknown type or a false alarm.

The performance of ADAM was evaluated on DARPA ’99 dataset [50] and it achieved
overall accuracy of circa 45% for DOS attack detection and accuracy of 28% for Probe
detection, while in the case of U2R and U2L detection, it achieved 0% accuracy.

Comparison of Unsupervised Anomaly Detection Methods

Several anomaly detection schemes for detecting network intrusions are proposed in the
paper [95], and are based on unsupervised machine learning techniques. To support appli-
cability of anomaly detection schemes, a procedure for extracting useful statistical content
based and temporal features from network traffic is also implemented, while features are
inspired by KDD Cup 99 ones [187].

The list of unsupervised machine learning techniques compared in the paper includes:
the Nearest Neighbor approach (NN), the Mahalanobis-based approach, the local outlier
factor (LOF) scheme and the unsupervised SVM approach.

Experimental results performed on DARPA 98 dataset [50] indicate that the most suc-
cessful anomaly detection techniques were able to achieve the detection rate of 74% for
attacks involving multiple connections and detection rate of 56% for more complex single
connection attacks, while keeping the false alarm rate at 2%. If the false alarm rate is
increased to 4%, then detection rate reaches 89% for bursty attacks and 100% for single-
connection attacks. Computed ROC curves depicted in Figure 4.6 indicate that the most
promising technique for detecting single connection intrusions in DARPA ’98 data is the
LOF approach. The LOF technique showed also great promise in detecting novel intrusions
in real network data and during the few months it had been successful in automatically
identifying several novel intrusions at the University of Minnesota.

Genetic Algorithm for Network Intrusion Detection

The authors of the paper [102] discuss a methodology of applying Genetic Algorithm into the
area of network intrusion detection. Unlike other implementations of the same problem, this
implementation considers both temporal and spatial information of network connections in
encoding the network connection information into the rules of IDS. Then, Genetic Algorithm
can be used to evolve simple rules for network traffic which will be able to differentiate
normal network connections from anomalous connections. This is helpful for identification
of complex anomalous behaviors. A rule includes particular features together with their
acceptable ranges. Features utilized in this work are derived from the headers of network
traffic as well as from simple statistics. They include: IP addresses, port, duration of
connection, the number of sent bytes, the number of received bytes and flag indicating
correct termination of a connection. Note that the focus of the work is pointed on the
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Figure 4.6: ROC curves for single connection attacks

TCP/IP network protocols. The proposed method was evaluated on DARPA ’99 dataset
[50], however, the authors do not discuss resulting performance.

IDS using Decision Trees and SVM

Peddabachigari et al. in their paper [134] investigate and evaluate the Decision Tree classifier
as an intrusion detection mechanism. They compare it with SVM4. Intrusion detectors based
on Decision Tree and SVM were tested using benchmark 1998 DARPA intrusion detection
dataset. The authors achieved better overall performance by Decision Tree than by SVM.

Authors used four attacks classes of DARPA 1998 dataset [50] and one class for legiti-
mate communications. To compare Decision Tree performance with SVM which is a binary
classifier, they used binary Decision Tree classifier although it is capable of handling a 5-class
classification problem. They constructed five different classifiers for SVM and for Decision
Tree methods. The data is partitioned into the two classes of “Normal” and “Attack” pat-
terns where Attack is the collection of four classes of attacks (Probe, DOS, U2R, and R2L).
The objective is to separate normal and attack patterns. Input dataset was divided into
training data with 5092 records and testing with 6890 records. Obtained results are show
in Table 4.4.

Class Decision Tree SVM

Normal 99.64% 99.64%
Probe 99.86% 98.57%
DOS 96.83% 99.78%
U2R 68.00% 40.00%
R2L 84.19% 34.00%

Table 4.4: Performance Comparison of Decision Tree with SVM [134]

4Support Vector Machines.
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APAN

Advanced Probabilistic Approach for Network Intrusion Forecasting and Detection (APAN)
described in [167] is a novel probabilistic approach which proposes utilization of Markov
chain for probabilistic modeling of abnormal events in network systems.

First, to define the network states, K-means clustering is performed and then the authors
introduce the concept of an outlier factor. Based on the defined states, the degree of
abnormality of the incoming data is stochastically measured in real-time. The performance
of the proposed approach is evaluated through experiments using the well-known DARPA
2000 dataset and further analyzed.

The main objective of APAN is to describe the state of the network with its probability
and then to decide the abnormality of the network on the basis of this probability. APAN is
composed of three main phases: in the first phase, the network states, including the outlying
state, are newly defined. Based on these states, the state transition probability matrix and
the initial probability distribution of the Markov model is built in the next phase. In the
third phase, the chance of abnormal activity for online data is stochastically computed in
real-time.

The proposed approach achieved high detection performance while representing the level
of attacks in stages. In particular, this approach is shown to be very robust to training
datasets and to the number of states in the Markov model.

Adaptive NIDS with Hybrid Approach

Karthick et al. describe an adaptive network intrusion detection system in their paper [88],
which utilize a two stage architecture. In the first stage, a probabilistic classifier is employed
in order to detect potential anomalies in the network traffic. In the second stage, a Hidden
Markov Model (HMM) is applied to narrow down the potential attack IP addresses. The
HMM is proposed to profile TCP based communication channel for intrusions. Any normal
TCP connection has three phases during its lifetime, i.e., connection establishment, data
transmission and connection termination phase. There is an inherent sequential nature in
such mode of communication and makes it convenient for authors to model them using
HMM, which can leverage this nature of TCP traffic.

The goal of the work is to implement suitable model which can function effectively in
real-time. When implementing pure HMM as a real-time system, it turns into two pitfalls.
The first drawback comes out from the fact, that HMM needs to keep track of all incoming
addresses, and thus spoofed IP addresses can cause exhaustion of resources of a server. The
second limitation of real-time implementation is the fact, that pure HMM solution needs
complete TCP flows, however in practice, there is no way of telling when connection ends,
and thus HMM cannot make real-time detection. The solution for this problem would be
storing of all packets, which would also potentially cause resource exhaustion of a server.
Note that author evaluate their HMM approach on DARPA dataset and achieved high
detection rate of suspicious IP addresses (97.1%) in the case of 9 states of HMM.

Therefore, the authors propose hybrid model combining their HMM with Naive Bayes
approach designed in [190]. The hybrid model employs Naive Bayes for online learning and
HMM for offline one. The online model monitors incoming traffic and flag traffic blocks that
are suspicious. The offline model is fed with the traffic flagged by online model. HMM then
performs source separation for the connections present in the flagged traffic and classifies the
connections as either attack or normal. The output of the offline model is update of firewall
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rule, which prohibits incoming connections from source IP addresses with suspicious traffic
characteristics. The proposed hybrid model also performed well in detecting intrusions on
mixture of DARPA [50] and CAIDA [27] datasets. 100% detection rate was achieved in
hybrid model case which also utilized 9 states of HMM.

4.4.3 Critique of Machine Learning in Network Intrusion Detection

Sommer et al. [172] examine the surprising imbalance between the extensive amount of
research on machine learning-based anomaly detection pursued in the academic intrusion
detection community, versus the lack of operational deployments of such systems. They
claim that the task of finding attacks is fundamentally different from other tasks, making
it significantly difficult for the intrusion detection community to employ machine learning
effectively. They support this claim by identifying challenges particular to network intrusion
detection and then, they provide a set of guidelines meant to strengthen future research on
anomaly detection.

However, machine learning methods can be employed in the area of anomaly intrusion
detection, which inherently imposes certain level of false positive rate. Therefore, anomaly
intrusion detection techniques can be exploited in combination with other intrusion detection
approaches, for providing more information about occurred incidents and potentially help
in forensic analysis.

4.5 Machine Learning in Network Traffic Classification

The section describes various network traffic classification approaches leveraging machine
learning and it states references to input testing datasets and achieved results if these are
present at original sources. Note that all presented state-of-the-art approaches are ordered
by the year they were published, starting from the earliest one.

Flow Clustering Using Machine Learning Techniques

McGregor et al. in [112] identify traffic with similar observable properties by applying an
untrained classifier to the problem. The untrained classifier identifies classes of traffic having
similar properties, but does not directly assist in understanding what or why applications
have been grouped in this way. Authors are left to guess the precise type of each applica-
tion without content-derived information. This work demonstrated that the properties of
network traffic, using features on a per-flow basis, allow some differentiation to be inferred.
Each class includes a relatively large number of network-based applications, but the au-
thors were never able to establish this method as anything more than a property-grouping
technique. The authors of this work provide a useful contribution by illustrating that (unsu-
pervised) machine learning is plausible, but achieved results are not comparable with other
methods like [11].

Bayesian Classifier with Kernel Distribution

In the report [118] of A. Moore, previously mentioned discriminators (see 4.3.2) were applied
onto Moore’s 2005 datasets and internet traffic classification was performed. During classifi-
cation, applications with similar behavioral and statistical traits were classified into the same
class. The Naive Bayesian classifier was used in the algorithm, where the Bayes formula
was utilized in order to calculate posterior probability of a testing sample and selected the
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class with the highest probability as the classification result. A total of about 200 features
(discriminators) of a network flow were used to train the model and a kernel-based function
was utilized to estimate the distribution function. The total accuracy achieved about 95%
in the dimension of flow number being correctly classified and 84% in the dimension of flow
size.

Discriminators extraction method in conjunction with classifier model can be used to
detect network intrusions in the case of having ground truth for training data of the classifier.
The authors leveraged hand made ground truth of traffic classes and in many cases they
used port numbers.

Bayesian Neural Networks for Internet Traffic Classification

Authors of paper [11] demonstrate functionality of Bayesian framework using a neural net-
work model that allows identification of traffic without using any port or host (Internet
protocol address) information. This represents the same situation as faced when attempt-
ing to classify anonymized traffic. There is illustrated classification process operating as an
offline tool, as in the auditing of forensic work.

Classification accuracy which authors achieved reach over 99% when training and testing
on homogeneous traffic from the same site on the same day.

Experiments which were realized in a more realistic situations achieved classification
accuracy of 95% in the training on one day of traffic from one site and testing on traffic
from that site for a day, eight months later. Authors proclaims significantly higher results
than in the case of naive Bayesian approach adopted in [118]. The next contribution of
this work is finding, that small number of features carry high significance regardless of the
classification scheme. Authors also show, that there is some overlap in features of high
importance to either method.

There are described experiments with preclassified data described originally in [117],
which were obtained by high-performance network monitor described in [116]. This data,
also used in [118], consists of descriptions of Internet traffic that have been manually classi-
fied. Hand-classification of two distinct days of data for an active Internet facility provides
the input for sets of the training and testing phases. The data was provided as a set of flows
taken from two distinct days, where each day consisted of ten sets of classified transport
control protocol (TCP) traffic flows with each object described by its membership class and
a set of features.

Network Traffic Classification Based on Improved DAG-SVM

Given error accumulation in traditional Directed Acyclic Graph Support Vector Machine
(DAG-SVM) algorithm, the authors Hao et al. propose an improved of DAG-SVM classi-
fication method using two different possibility metrics in their paper [67]. Differing from
traditional DAG-SVM, the improved DAG-SVM algorithm eliminates one class only under
the condition of the classification error probability is less than threshold. The results of
the experiment show that in comparison to traditional DAG-SVM, the both methods pro-
posed in this paper have higher classification accuracy with acceptable time cost. Improved
DAG-SVM based on distance has a better performance than improved DAG-SVM based on
decision function. All the experiments were performed on the Moore dataset [119].
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Expectation Maximization & Internet Traffic Classification

The traditional Expectation Maximization (EM) algorithm suffer from the disadvantage of
sensitivity to initial value, and thus often converges to local optimum values. Therefore, the
authors Liu and Hu et al. of the paper [106] propose a new improved EM algorithm based on
the q-DAEM method. The improvement of the algorithm resides in application of the EM
algorithm to generate a constrained matrix, then combine the constrained matrix with the q-
DAEM algorithm to reduce the search range, and thus a better Gaussian mixture model can
be derived from this algorithm. The algorithm is validated on the Moore datasets [119] for
evaluation, and the experimental results show that this method improved the EM algorithm
and outperforms its performance measures like precision and overall accuracy.

4.6 Obfuscation and Evasion Approaches in ADS and IDS

This section describes various approaches related to obfuscation of network protocols as well
as obfuscation of payload and application behavior of network attacks. These obfuscations
can be utilized as attempts evading the detection by network anomaly detection systems, by
intrusion detection systems and partially by firewalls. In several cases, such attempts may
be successful and cause evasion of ADS or IDS. We divide obfuscation (potentially evasion)
approaches into four categories:

• Tunneling obfuscations – the first category of obfuscations deals with tunneling
of one protocol in another one (see Section 4.6.1). From the perspective of TCP/IP
stack, it leverages application layer for tunneling.

• Application layer obfuscations – the second category covers modifications of packet
payload by various mutations and morphism of application level behavior of malicious
attacks (see Section 4.6.2). From the perspective of TCP/IP stack, it exploits appli-
cation layer for payload-based modifications.

• Obfuscations of network protocols and characteristics – the third category
aims on modification of network protocol packet exchanges as well as on modification
of network traffic characteristics (see Section 4.6.3). From the perspective of TCP/IP
stack, the category exploits network and transport layer.

• Combinations of application layer and network protocol obfuscations – the
last category considers combinations of the previous two categories (see Section 4.6.4).
From the perspective of TCP/IP stack, the category exploits network, transport and
application layer.

Instances belonging into each category will be further described, and moreover, several
techniques intended for detection and defence of some obfuscation techniques will also be
discussed.

4.6.1 Tunneling Obfuscations

One of the most spread kind of obfuscation is payload tunnel. Payload tunnel is covert
channel that tunnel one protocol in the payload of another protocol. One of the purposes of
such channel is circumventing firewalls that limit outgoing traffic to few allowed application
protocols. A variety of tools exist for tunneling over application protocols that are often
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not blocked, such as ICMP [48, 176, 203] or HTTP [57, 96, 131]. Some of the papers
related to obfuscation by covert channels were revealed in the survey of covert channels and
countermeasures in computer network protocols collected in the year 2007 [202] by authors
Zander S. et al.

Tunnel Hunter

Dusi et al. presented a mechanism called Tunnel Hunter, which can successfully identify
protocols tunneled inside tunneling protocols such as HTTP, DNS and SSH [56]. Tunnel
Hunter performs statistical analysis of simple IP level flow features (i.e., packets sizes, inter-
arrival time and packet order). The technique suffers from the problem of sensitivity to
packet-size and timing value manipulation.

Tunneling over ICMP

One of the first approaches for tunneling protocols over ICMP was Loki, which tunneled
data in the payload of ICMP echo messages [48]. Zelenchuk implemented an indirect IP
over ICMP tunnel [203]. The covert sender sends echo request packets to a bounce host
with spoofed source address (set to the address of the covert receiver) and the covert data
encoded in the payload. The bounce host then sends echo replies to the covert receiver with
the same payload as in the requests.

Sohn et al. [170] used the SVM-based approach to evaluate the accuracy of detecting
covert channels embedded in ICMP echo packets and achieved classification accuracy of up
to 99% when training a classifier on normal and abnormal packets.

Tunneling over HTTP

Another popular method is to tunnel protocols over HTTP. Padgett developed a tool that
tunnels SSH through HTTP proxies [131]. Dyatlov and LeBoutillier implemented tools for
tunneling UDP and TCP over HTTP [57, 96].

The authors Crotti et al. in their paper [43] proposed application of a statistically-based
traffic classification technique to detect tunneled protocols inside of HTTP by the analysis
of inter-arrival time, size and order of the packets crossing a gateway. They describe the
technique which effectively enhance application level gateways and firewalls, helping to
better apply network security policies on such tunneled traffic.

Pack et al. [130] proposed detecting HTTP tunnels by using behavior profiles of traffic
flows. Behavior profiles are based on a number of metrics such as the average packet size,
ratio of small and large packets, change of packet size patterns, total number of packets sent
and received, and connection duration. If the behavior of a flow under observation deviates
from the normal HTTP behavior profile it is likely to be an HTTP tunnel.

The Web Tap’s [21] focus is aimed at detecting attempts to send significant amounts of
information via HTTP tunnels to rogue web servers from within firewalled internal network.
A related goal of Web Tap is to help in detection of spyware programs, which often send
out personal data to servers using HTTP transactions and may open up security holes in
the network. Based on the analysis of HTTP traffic over a training period, the authors
use filters to help in detection of anomalies in outbound HTTP traffic using metrics such
as request regularity, bandwidth usage, inter-request delay time, and transaction size. The
Web Tap can be evaded by the adversary by monitoring and analysis of users outbound
traffic and then mimic the access patterns of a legitimate site.
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Tunneling over IMAP

Magnus Lundström implemented a tool that can establish a bi-directional tunnel over the
exchange of emails [107]. In principle, it is necessary to have one mail box on the blocked
(internal) network, and an account on an outside internet-connected system.

4.6.2 Application Layer Obfuscations

The category of application layer obfuscations performs modifications of networks attacks
solely at the application layer of the TCP/IP stack, and thus is also referred to as category
of payload-based obfuscations. It may include e.g. morphing, encrypting or mimicry of
attack’s code contained in payload of packets.

Polymorphic Blending Attacks

The authors Fogla et al. realize the obfuscation of network attacks by proposing a new
class of polymorphic attacks, called polymorphic blending attacks (PBA) [61], which can
effectively evade byte frequency-based network anomaly IDS. The attacks carefully match
the statistics of the mutated attack instances to the normal profiles. They demonstrate
the efficiency of PBA attacks on PAYL. In the next paper [60] they show that in general,
generating a PBA that optimally matches the normal traffic profile is a hard problem (NP-
complete), but can be reduced to SAT or ILP problems. They present a formal framework
for PBA attacks and also propose a technique to improve the performance of an IDS against
PBAs.

Mimicry Attacks

The authors Wagner D. et al. [192] introduced the notion of a mimicry attack which can
cloak the attacks behavior to avoid detection of IDS by generating usual system calls into
system calls sequence of an attack. Also, the authors develop a theoretical framework for
evaluating the security of an IDS against mimicry attacks.

Whiskers

The next work dealing with payload-based evasion is described in [140] and presents a tool
called Whisker. The author aims at anti-intrusion detection tactics by performing mutations
of the HTTP request in a way that the web server is able to understand the request, but
intrusion detection systems can be confused. The principles of Whisker can also be applied
to other protocols than HTTP.

Mutant Exploits

Vigna et al. [189] proposed a framework generating exploit mutations to change the ap-
pearance of a malicious payload, which bypasses detection of network intrusion detection.
The proposed framework was evaluated on two well-known signature based NIDSs – SORT
[160] and RealSecure [158].

Malware Morphism

The paper [201] explores the malware obfuscation techniques such as dead-code insertion,
register reassignment, subroutine reordering, instruction substitution, code transposition
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and code integration, which have been mainly used by polymorphic and metamorphic mal-
wares to evade signature based scanners (antivirus). Among polymorphic and metamorphic
malware, the paper also reviews encrypted and oligomorphic malware.

4.6.3 Obfuscations of Network Protocols and Characteristics

The previous two categories of methods can evade payload-based NIDS systems primarily
by morphing (or encrypting) the payload, but do not need to be efficient against network
ADS. Network ADSs are the most sensitive on the morphing at the network and transport
layers of the TCP/IP stack. The following techniques and tools are primary dealing with
such modification of network traffic as well as with evasion of intrusion detectors by such
modifications. Also, this category can be referred to as non-payload-based obfuscations, as
its principles does not modify the payload of the packet and thus application layer content.

Advanced Evasion Techniques

Stonesoft found evasion techniques that extend earlier research to include a new set of
techniques and combinations of the prior techniques [19]. Together, these Advanced Evasion
Techniques (AETs) prey upon protocol weaknesses and the permissive nature of network-
based communication, exponentially increasing the number of evasions that can bypass even
the most up-to-date IPS technologies.

The AET evasions mostly build on well-known principles of de-synchronizing detection
systems relying on the network view of the traffic, from the perspective of the target host.
TCP/IP protocol suite used on the Internet and the vast majority of all computer networks,
is based on the requirements from RFC 791 [83] which was written in 1981. Among other
things, the RFC says: “In general, an implementation must be conservative in its sending
behavior, and liberal in its receiving behavior” Although, an implementation must be careful
to send well-formed datagrams, but must accept any datagram that it can interpret. That
means there will be multiple ways to form messages that will be interpreted identically
by the receiving host. While this permissive stance was intended to make interoperability
between systems as reliable as possible, simultaneously paved the way for a number of
attacks and ways to hide those and other attacks from a detection. As different operating
systems and applications behave in different ways when receiving packets, the destination
host application may see something quite different than what was in the network traffic.

Evasion possibilities have been found on IP and transport layers (TCP, UDP) of TCP/IP
stack as well as on application layer protocols, including but not limited to SMB and RPC
protocols. The representative examples of methods leveraged in AET are TCP segmentation
and IP fragmentation.

Protocol Obfuscations Inhibiting Statistical Analysis

The paper [74] shows how obfuscated application layer protocols, such as BitTorrent’s MSE
[36] or Skype [115], can be identified by an analysis of statistically measurable properties
of TCP and UDP sessions. The authors depict that many of the analyzed protocols have
statistically measurable properties in payload data, flow behavior, or both. Based on their
insight, they propose a few techniques for improving protocol obfuscation which inhibits
traffic identification by statistical analysis. These techniques include better obfuscation of
payload data and flow properties as well as hiding inside tunnels of well-known protocols.
The purpose of this work is not to provide more effective intrusion classification of NBAD

68



systems, but rather to provide feedback to protocol creators who want to contribute on the
network neutrality of the Internet.

Realtime Classification for Encrypted and Obfuscated Traffic

Bar-Yanai et al. presented a method for real-time classification of encrypted traffic [13].
The proposed statistical classifier is based on a hybrid combination of k-means and k-
nearest neighbor geometrical classifiers and is shown to be very robust, even to obfuscated
traffic such as Skype and encrypted BitTorrent. The statistical feature set is composed of
17 parameters based on packet and payload byte counts, packet sizes and packet rates for
each direction.

Fragroute

Fragroute [174] is a tool which was written to test intrusion detection systems by using
simple ruleset language enabling interception and modification of egress traffic with mini-
mal support for randomized or probabilistic behavior. It can intercept, modify, and rewrite
egress traffic destined for a specified host and contains a simple ruleset language to delay,
duplicate, drop, fragment, overlap, print, reorder, segment, source-route of all outbound
packets with minimal support for randomized or probabilistic behavior. Fragroute imple-
ments three classes of attacks – insertion, evasion, and denial of service which were described
in paper [139].

AGENT

A common way to elude a signature-based NIDS is to transform an attack instance that the
NIDS recognizes into another instance that it misses. For example, to avoid matching the
attack payload to a NIDS signature, attackers split the payload into several TCP packets
or hide it between benign messages. The authors of the paper [161] derive different attack
instances from each other using simple transformations as TCP fragmentation, TCP permu-
tation, TCP retransmission, FTP padding etc. Then, these transformations are modeled as
inference rules in a natural-deduction system. Starting from an exemplary attack instance,
the authors use an inference engine to automatically generate all possible instances derived
by a set of rules. The result is a simple tool capable of both generating attack instances
for NIDS testing dataset as well as determining whether a given sequence of packets is an
attack. In several testing phases using different sets of rules, the proposed tool exposed
serious vulnerabilities in SORT [160]. Attackers acquainted with these vulnerabilities would
have been able to construct instances that elude SNORT for any TCP-based attack, any
Web-CGI attack, and any attack whose signature is a certain type of regular expression.

Protocol Scrubbing

Watson et al. [193] proposed a method called Protocol Scrubbing which represents active
mechanisms for transparent removing of network attacks from protocol layers in order to
allow passive IDS systems to operate correctly against evasion techniques.

Network Normalizers as Defence for Protocol Obfuscations

In order to answer non-payload-based evasions of NIDS, the concept of network traffic nor-
malizer was introduced by Handley et al. [66]. The authors proposed the implementation
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of normalizer called norm. Norm performs normalizations of ambiguities in the TCP traffic
stream which can be seen by NIDS. However, introducing a network normalization brought
problems related to platform dependent semantic of network ambiguities interpretation as
well as throughput reduction. These problems lead Shankar et al. [166] to introduce the con-
cept and implementation of Active Mapping, which eliminates them with minimal runtime
cost by building profiles of the network topology including the TCP/IP policies of hosts on
the network. A NIDS may then use the host profiles to disambiguate the interpretation of
the network traffic on a per-host basis. Because of the shortcomings of network normalizers,
their usage in a network can result in side-effects and can even be prone to various attacks,
e.g. state holding, and CPU overload [53, 132, 168].

4.6.4 Combinations of Obfuscations

Evasions based on modifications at each of the application, transport and network layers
of the TCP/IP stack are described in papers [33, 86]. Cheng et al. [33] described general
evasion techniques and examined the detection performance of signature based NIDS when
performing mutation of known attacks. Juan et al. described NIDS evaluation framework
called idsprobe [86] which takes original network traces, creates several altered traces based
on predefined transformation profiles, then runs NIDS against generated traces and evaluates
feedback of the detection regarding different evasion scenarios.
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Chapter 5

Automated Intrusion Prevention
System

The Automated Intrusion Prevention System (AIPS) is conceptual and practical model of
Network Behavioral Anomaly Detection (NBAD) system intended for intrusion detection.1

AIPS was developed at the Faculty of Information Technology in Brno within research plan
of the Security-Oriented Research in Information (MSM0021630528). The project related
with the AIPS system had four main participants: Maroš Barabas, Michal Drozd, Petr
Chmelař and Ivan Homoliak (me). I participated the project since 2010 until its successful
completion in 2013.

Schematic model of original AIPS concept is illustrated in Figure 5.1. The model consists
of five parts: Honeypots, Communication extractor, Metrics extractor, Dataset and Intru-
sion Detection and Prevention System (IDPS). My responsibility in the project involved the
design and implementation of Connection Extractor and Metrics Extractor components as
well as experiments with machine learning based classification models of IDPS component.
The full concept of the AIPS system is described in Section 5.1, while my particular con-
tributions to the design and definition of the system’s features are described in Section 5.2
and Section 5.3.

5.1 Full Concept

The schematic model of AIPS system, illustrated in Figure 5.1, considers expert knowledge
(ground truth), which helps to identify the real attack execution. The expert knowledge is
provided by the shadow honeypot system [8] Argos, which is based on the dynamic tainted
data analysis technique of the process memory [122]. By the nature of this technique, the
honeypot can recognize only buffer overflow attacks. Network data capture is performed by
tcpdump utility [183] listening on network interfaces of the honeypots. Data captured by
tcpdump are passed to Communication extractor component, which groups related packets
into connection objects. Next, Advanced Security Network Metrics (ASNM) [76] feature
extraction is performed by Metrics extractor component, which receives connection objects
from Communication extractor. This process involves statistical and behavioral analysis of
packet header fields, which is the most time-consuming part of the AIPS framework. Then,
values of ASNM features extracted above communication objects are stored in database as
ASNM records. The database is represented by Dataset component in schematic model [75].

1The term NBAD can be interchangeably referred to as Anomaly Detection System (ADS) too.
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Figure 5.1: Model of the AIPS system [14]

Another part of the AIPS model is the IDPS component, which utilize ASNM records of all
analyzed communications to train its classification model and analyze new traffic occurred
in a network. Using accurate and actual classification model, it is supposed to detect
already known and also new (zero day) network buffer overflow attacks, which in many
cases exhibit similar behavioral characteristics as training data. IDPS can detect attacks
on all stations in monitored network. AIPS framework should have more honeypots with
divergent operating systems and services installed [14]. Note that honeypots are supposed
to include vulnerable services as well as ones with not already known vulnerabilities in order
to strengthen detection of zero-day buffer overflow attacks.

Successfull experiments were performed with the architecture of the AIPS system and
there were defined 112 features divided into five categories according to their nature: statis-
tic, dynamic, distribution, localization and behavioral [15]. The AIPS framework is restricted
to perform only TCP communications analysis.

The next aspect of AIPS system is that it considers the context of analyzed connection,
which represents previous and actual time bounded communications having the same source
and destination IP addresses. Thus, the context of an analyzed TCP connection object
represents communication log between pairs of source and destination machines, and will
be formally defined later.

5.1.1 Methods for Gathering Expert Knowledge

Expert knowledge of connection records is designed to be provided by shadow honeypots.
But in fact, it does not matter how is expert knowledge provided. Therefore, the concept of
the system is extendable by various expert knowledge sources, e.g. SNORT log, audit log,
hand-made labeling, custom one.

In the current scheme of AIPS, if an attacker performs an attack on vulnerable service of
a target system and he causes a buffer overflow attack, then consequences of his activity are
detected and logged thanks to involvement of honeypots. The communication entry (ob-
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tained by tcpdump) and attack packet are passed to Communication extractor component
where these data are processed. The result of this process is passed to Metrics extractor
component, which creates a set of ASNM features and stores it with expert knowledge into
database. The set of ASNM features with the expert knowledge is then used to actualize
detection model of IDPS component by repetitive learning [75].

Similar process, as described above for malicious communication cases, is necessary to
perform for legitimate communication cases in order to endeavour of balanced amount of
training data for both classes. Also, the classification model of the AIPS framework needs
to have enough amount of training data for both classes. Therefore, the training should be
performed on all attack entries and representative set of legitimate communication entries.
Note that in practice are legitimate communications entries present in much greater amount
than attack communications entries.

5.1.2 Principle of Detection

IDPS component analyzes all network traffic from SPAN port of border network device.
Traffic is consequently grouped to form TCP communication objects using functionality
of Connection extractor. Every distinguished TCP communication object is analyzed by
Metrics extractor component, which extract all defined and allowed features associated with
a TCP communication object. Next, extracted features of a TCP communication object
are classified by previously trained classification model of IDPS component [75]. According
to the settings, the filtering decision is made for analyzed TCP communication or there is
generated detection alert message indicating possible occurrence of intrusion.

5.1.3 The Second Generation

In the experiments performed in [15], we found several limitations of the original idea and
some parts of the architecture were changed. We extended the ASNM dataset to 167
features2 containing approximately 4000 parameters. The main goals of this version are

• to design the architecture of detection framework that will enhance the overall network
security level with the ability to learn new behaviors of attacks without intervention
of human by using the expert knowledge from Honeypot (or similar) systems,

• to find the most suitable set of features that will successfully describe the behavior
of attacks in the network traffic and will significantly increase the detection rate and
lower the false positive rate.

The conceptual schema of the next AIPS version [15] is illustrated in Figure 5.2. It includes
the AIPS Network Detector (AIPS ND) working as a network probe capable of detecting
intrusions using a knowledge base from the AIPS Attack Processor (AIPS AP). Further,
the schema includes the Intrusion Detection and Prevention system (IDPS) for a real-time
detection/prevention of attacks and a database (DB) for storing data and signatures (not
included in the scheme).

2Later, ASNM set was extended to 195 features in 2014.
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Figure 5.2: AIPS network architecture [15]

The last (optional) part of the AIPS architecture is a group of highly interactive Honeypot
systems which are used to create expert knowledge of detected attacks. The knowledge
is sent to AIPS AP where the knowledge base is concentrated. The AIPS AP is also
responsible for learning the artificial intelligence of the AIPS ND. The AIPS ND works
as a network probe capable of detecting intrusions using a knowledge base from the AIPS
AP. The mirrored traffic (from a backbone router/firewall) is captured by a tcpdump probe
and separated to individual flows. All individual connections are extracted from the pre-
processed traffic flow and further processed to create a vector of ASNM features.

The architecture of the framework is designed by modular principles to allow the flex-
ibility of exchanging or enhancing each part of framework model to cover all potential use
cases. The part with deployed honeypots is designed to be either a regular instance of the
honeypot system or a part of real operating system within a DMZ (demilitarized zone) as
a service. There were performed experiments with Windows XP, Windows 2000 and Linux
systems, all with successful deployment and successful detection of tested buffer overflow at-
tacks. PostgreSQL database was utilized for interaction between the parts of the framework.
The use of database also fastened the processes working with high amount of data [15].

5.2 ASNM Extraction with Context Analysis

Features used in AIPS system are formally specified and extraction of them can be generally
performed for each TCP network connection. We can interpret the specification of ASNM
feature set as extended protocol NetFlow [34] but describing more than statistical properties
of network communications. The ASNM features specification includes statistical, dynami-
cal, localization and especially behavioral properties of network communication [15]. Some
of defined features consider context of an analyzed connection [76] which will be defined and
described later.
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5.2.1 Definitions of Packet and Connection

The method of our approach [76] is based on the extraction of various types of properties
from each analyzed TCP connection. We suppose having all packets set P :

P = {pi}, i ∈ {1, . . . , N}, (5.1)

where N represents all packets count. The identification of each packet is represented by
its index i. A packet pppi can be expressed as a tuple:

pppi = (t, size, ethsrc, ethdst, ipoff , ipttl, ipp, ipsum, ipsrc, ipdst, ipdscp, tcpsport, tcpdport, tcpsum,

tcpseq, tcpack, tcpoff , tcpflags, tcpwin, tcpurp, data).

Symbols used in the packet tuple as well as their origin from TCP/IP stack are described in
Table 5.1. The notation B∗ denotes the iteration of the set B containing all possible byte
values.

Symbol Description
t ∈ <+

0 Relative time of the packet capture (L1).

size ∈ ℵ Size of the whole Ethernet frame including Ethernet
header (L1).

ethsrc ∈ {0, . . . , 248 − 1} Source MAC address of the frame (L2, Ethernet).
ethdst ∈ {0, . . . , 248 − 1} Destination MAC address of the frame (L2, Ethernet).
ipoff ∈ {0, . . . , 213 − 1} Offset field (L3, IPv4).
ipttl ∈ {0, . . . , 28 − 1} Time to live field (L3, IPv4).
ipp ∈ {0, . . . , 28 − 1} Protocol field (L3, IPv4).

ipsum ∈ {0, . . . , 216 − 1} Checksum of the header (L3, IPv4).
ipsrc ∈ {0, . . . , 232 − 1} Source IP address of the packet (L3, IPv4).
ipdst ∈ {0, . . . , 232 − 1} Destination IP address of the packet (L3, IPv4).
ipdscp ∈ {0, . . . , 28 − 1} Differentiated services code point field (L3, IPv4).

tcpsport ∈ {0, . . . , 216 − 1} Source port of the packet (L4, TCP).
tcpdport ∈ {0, . . . , 216 − 1} Destination port of the packet (L4, TCP).
tcpsum ∈ {0, . . . , 216 − 1} Checksum of the header (L4, TCP).
tcpseq ∈ {0, . . . , 232 − 1} Sequence number of the packet (L4, TCP).
tcpack ∈ {0, . . . , 232 − 1} Acknowledgment number of the packet (L4, TCP).
tcpoff ∈ {0, . . . , 28 − 1} Offset and reserved fields together (L4, TCP).
tcpflags ∈ {0, . . . , 28 − 1} Control bits (L4, TCP).
tcpwin ∈ {0, . . . , 216 − 1} Window field (L4, TCP).
tcpurp ∈ {0, . . . , 216 − 1} Urgent pointer field (L4, TCP).

data ∈ B∗ = {0, . . . , 28 − 1}∗ Payload of the packet (L7).

Table 5.1: Symbols of the packet tuple

TCP connection ccc is represented by tuple:

ccc = (ts, te, pc, ps, ipc, ips, Pc, Ps).

The interpretation of the symbols used in the tuple is briefly described in Table 5.2.
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Symbol Description
ts ∈ <+ Timestamp of the connection’s start.
te ∈ <+ Timestamp of the connection’s end.

pc ∈ {0, . . . , 216 − 1} Port of the client within the TCP connection.
ps ∈ {0, . . . , 216 − 1} Port of the server within the TCP connection.
ipc ∈ {0, . . . , 232 − 1} IPv4 address of the client.
ips ∈ {0, . . . , 232 − 1} IPv4 address of the server.

Pc ⊂ P Set of packets sent by client to server.
Ps ⊂ P Set of packets sent by server to client.

Table 5.2: Symbols of the TCP connection tuple

The source part of a TCP connection is the one which initiate a connection (usually
referred to as a client side) and the destination part is the opposite part of the connection
(usually referred to as a server side). The set of all packets can be interpreted also as a set
of all TCP connections C = {c1, . . . , cM}, where M is count of TCP connections, which we
can identify in the P , and N is the count of all packets in set P . The minimum number
of packets, which is necessary to identify a TCP connection, is three. These three packets
serve for establishment of a TCP connection according to TCP specification and they must
contain the same IP addresses (ips, ipd), ports (ps, pd) and fields tcpseq, tcpack corresponding
to a three way handshake specification stated in RFC 793.3 Therefore, the number of all
TCP connections identified in P is M ≤ N/3.

5.2.2 Context Definition

Considering analyzed TCP connection ck, we define a sliding window swswsw of length τ as a set
of TCP connections Wk which are delimited by ± τ

2 :

swswsw(ccck, τ) = Wk ⊆ C,
Wk = {cccj},

(5.2)

where all cccj must satisfy following statements:

cccj [ts] > ccck[ts]−
τ

2
,

cccj [te] < ccck[ts] +
τ

2
.

(5.3)

The next fact about each particular TCP connection ccck is an unambiguous association of it
to particular sliding window Wk. We can interpret the start time ts of the TCP connection
ccck as a center of the sliding window Wk. Then, we can denote a shift of the sliding window
∆(Wj) which is defined by start time differences of two consecutive TCP connections in C:

∆(Wj) = cccj+1[ts]− cccj [ts],
j ∈ {1, . . ., |C| − 1}.

(5.4)

Next, we define the context Kk of the TCP connection ck, which is a set of all connections
in a particular sliding window Wk excluding analyzed TCP connection ccck:

3URL http://www.ietf.org/rfc/rfc793.txt, page 30.
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Kk = {ccc1, . . . , cccn} = {Wk \ ccck}. (5.5)

Defined terms are shown in Figure 5.3. The x axis displays time and the y axis represents
TCP connections which are shown in the order of their occurrences. Packets are represented
by small squares and TCP connections are represented by a rectangular boundary of par-
ticular packets. A bold line and font is used for depicting an analyzed TCP connection ccck,
which has an associated sliding window Wk and context Kk. TCP connections, which are
part of the sliding windowWk, are drawn by full line boundary and TCP connections, which
are not part of this sliding window, are drawn by a dashed line boundary.

Figure 5.3: Sliding window and context of the first analyzed TCP connection ccck [76]

5.2.3 ASNM Feature Extraction

At this time, we can express the ASNM characteristics of a connection by features. The
feature extraction process is defined as a function which maps a connection ccck with its
context Kk = swswsw(ccck, τ) (and other optional arguments) into feature space F :

f(ccck,Kk, arg1, . . . , argn) 7→ F,

F = (F1, F2, . . . , Fn),
(5.6)

where n represents the number of defined features. Each feature fi, generating feature space
Fi, is defined as a function which maps the connection ccck with its context Kk (and other
optional arguments) into feature space Fi:

fi(ccck,Kk, arg1, . . . , argn) 7→ Fi, i ∈ {1, . . . , n}, (5.7)
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and each element of codomain Fi is defined as

e = (e0, . . . ,en), n ∈ ℵ0,

ei ∈ ℵ | ei ∈ < | ei ∈ Γ+, i ∈ {0, . . . , n},
Γ = {a− z,A− Z, 0− 9},

(5.8)

where Γ+ denotes positive iteration of the set Γ. It should be noted that stream property
of network flow is omitted and replaced by final set notation for the purpose of simplified
explanation. Notice that optional arguments of fi can represent various parameters of
functions performing specific feature extraction, e.g. a direction of a TCP connection, order
and type of polynomial, thresholds of the data size or packet count, etc.

5.2.4 Description of ASNM Features

All features were defined in order to describe properties, process and behavior of network
attacks or legitimate TCP connections. By using these features we are able to identify
an attack with a high probability. For the purpose of the best representation of the TCP
connections we use 195 features as a vector describing anomaly characteristics of a commu-
nication. These 195 features are in many cases, a result of reasonable parametrization of
base feature functions. Types of our feature sets are depicted in Table 5.3 together with
the number of them in each category. We decided to determine the naming of categories of
features according to their principles, not according to static data representation. The list
of original proposed features with regard to the categorization, is introduced in my Master’s
thesis [75].

ASNM
Category Count

Statistical 77
Dynamic 33

Localization 8
Distributed 34
Behavioral 43

Table 5.3: Distribution of ASNM features

Statistical Features

In this category of proposed features, statistical properties of TCP connections are identified.
All packets of the TCP connection are considered in order to determine count, mode, median,
mean, standard deviation, ratios of some header fields of packets or the packets themselves.
This category of features partially uses a time representation of packets occurrences contrary
to the dynamic category definition. Therefore, it includes particularly dynamic properties
of the analyzed TCP connection, but without any context of it. Most of the features in this
category also distinguish inbound and outbound packets of analyzed TCP connection. In
total, 77 statistical features were defined. See Appendix D.1 for listing of statistical features
with brief description.
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Dynamic Features

Dynamic features were defined in order to examine dynamic properties of the analyzed TCP
connection and transfer channel such as speed or error rate. These properties can be real
or simulated. Eighteen of the features consider the context of an analyzed TCP connection.
The difference between some of the statistical and dynamic features from a dynamic view can
be demonstrated on two instances of the same TCP connection, which performs the same
packet transfers, but in different context conditions and with different packet retrasmitions
and attempts to start or finish the TCP connection. There were 33 dynamic features defined
in total. Many of them distinguish between inbound and outbound direction of the packets
and consider statistical properties of the packets and their sizes as mentioned in statistical
features. See Appendix D.4 for listing of dynamic features with brief description.

Localization Features

The principal character of localization features category is that it contains static properties
of the TCP connection. These properties represent the localization of participating machines
and their ports used for communication. In some features localization is expressed indirectly
by a flag, which distinguishes whether participating machines lie in a local network or
not. Features included in this category do not consider the context of the analyzed TCP
connection, but they distinguish a direction of the analyzed TCP connection. We defined
8 localization features. See Appendix D.2 for listing of localization features with brief
description.

Distributed Features

The characteristic property of distributed features category is the fact that they distribute
packets or their lengths to a fixed number of intervals per unit time specified by a logarithmic
scale (1s, 4s, 8s, 32s, 64s). A logarithmic scale of fixed time intervals was proposed because
of a better performance of used classification methods. The next principal property of
this category is vector representation. All these features are supposed to work within the
context of an analyzed TCP connection. Altogether, we defined 34 features in this category
which are a result of parametrization of 2 functions, which accepts parameters as unit time,
threshold, direction and the context of an analyzed TCP connection. See Appendix D.3 for
listing of distributed features with brief description.

Behavioral Features

Behavioral features are a set of features based on the description of the properties directly
associated with TCP connection behavior. Examples include legal or illegal connection
closing, polynomial approximation of packet lengths in a time domain or in an index of
occurrence domain, count of new TCP flows after starting an analyzed TCP connection,
coefficients of Fourier series in a trigonometric representation with distinguished direction
of an analyzed TCP connection etc. We defined 43 behavioral features. Most of them use
the direction of the analyzed TCP connection and six of them consider the context. See
Appendix D.5 for listing of behavioral features with brief description.
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5.3 Mathematical Background of ASNM Features

This section will define mathematical and algorithmic background behind the computation
of ASNM features and will not consider definition of packet and connection described in
the previous section, but rather explain all the definitions in general terms. The only
fact related to packet and connection objects is that all the features are computed above
single connection object which may contain the variable number of packets depending on
connection instance. Therefore, computed features have to produce the output with constant
size in order to enable mutual comparison of various connection instances.

For the purpose of all the following definitions, we will suppose having a dataset of
size N :

xxx = (x0, . . . , xn), (5.9)

where N = n+ 1, together with corresponding observations of the values of y, denoted as

yyy = (y0, . . . , yn). (5.10)

Note that this section considers the indexation of the dataset starting from zero. At first,
functions of descriptive statistics will be defined, followed by approximation by polynomi-
als, Fast Fourier Transformation (FFT) method, and finally computation of products with
Gaussian curves.

5.3.1 Functions of Descriptive Statistics

Descriptive statistics is a discipline dealing with quantitative description of the main features
of a collection of information [109]. It aims to summarize samples, rather than use the data
to learn about the population which is represented by data samples.

Commonly used measures for describing a dataset are measures of central tendency
and measures of variability (dispersion). Measures of central tendency include the mean,
median and mode, while measures of variability include the standard deviation, variance, the
minimum and maximum values of the variables [194] among others. In the current work,
we utilize following measures of descriptive statistics: mean, median, mode, minimum,
maximum and standard deviation. These measures assume only set xxx for their definition.
We consider definitions of the minimum and the maximum values as implicit and will not
be explicitly described. The definition of arithmetic mean is formulated as follows:

x =
x0 + x1 + . . .+ xn

N
=

1

N

n∑
i=0

xi . (5.11)

It represents the sum of the dataset values divided by the size of the dataset. Note that
features in this work utilize only arithmetic mean.

Median is defined as the value which separates the higher half of a data samples from
the lower half ones. Median of dataset of observations xxx can be obtained by sorting the
observations from the lowest value to the highest one, and then picking the middle value.
In the case of odd number of observations, the situation is straightforward and median is
directly picked. However, in the case of the even number of observations, the median is
computed as a mean of two middle values [109]. The principal advantage of the median over
the mean in describing dataset in a way which is resilient to extremely large or extremely
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Algorithm 3: Computation of median
Input: xxx = (x0, . . . , xn)
Output: median of xxx

1: xoxoxo = Sort(xxx)
2: if (N % 2 == 1) then
3: median = xoxoxon/2
4: else
5: median = xoxoxobn/2c + xoxoxon/2+1

2
6: end if

small values. The pseudo code for computation of median value is depicted in Algorithm 3.

The variance is the expectation of the squared deviation of a random variable from its
mean in probability theory and statistics, however, in the descriptive statistics its meaning
can be reformulated and stands for squared deviation of an observation of a dataset from
the mean value of a dataset. The variance is defined by the following equation:

σ2 =
1

N

[
(x0 − x)2 + (x1 − x)2 . . . − (xn − x)2

]
=

1

N

n∑
i=1

(
xi − x

)2

.

(5.12)

Standard deviation is a measure that is utilized to quantify the amount of variation
or dispersion in a set of data values [18]. And thus, standard deviation is defined as a square
root of the variance:

σ =

√√√√ 1

N

n∑
i=1

(
xi − x

)2

. (5.13)

A useful property of the standard deviation is that, unlike the variance, it is expressed in
the same units as the data.

Mode is defined as the most common value obtained in a set of observations. A dataset
with a single mode is said to be unimodal. A dataset with more than one mode is said to
be bimodal, trimodal, etc., or in general, multimodal [197]. The pseudo code for computa-
tion of mode value primary aimed at unimodal datasets is shown in Algorithm 4. Note
that Map() is constructor for dictionary data type mapping integer keys to integer values,
and assuming default values of each newly added item as zero. Also, note that function
FindKeyWithMaxV al() returns the lowest key, which stores the maximum value in the
case of more keys containing maximum as their values. The ASNM features utilizing mode
for their computation assume the lowest modus value.

5.3.2 Approximation by Polynomials

Input datasets of variable size can be approximated by polynomials which produce the out-
put with constant size. The following information regarding approximation of polynomials
by the least sum-of-square method are primarily taken from [58], revised and filled from [17].
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Algorithm 4: Computation of mode
Input: xxx = (x0, . . . , xn)
Output: mode of xxx

1: countsMap = new Map(<int>, <int>)
2: for (i = 0; i <= n; i++) do
3: countsMap[xi] += 1
4: end for
5: keyMax = FindKeyWithMaxVal(countsMap)
6: mode = countsMap[keyMax]

Assume functions ϕ0(x), ϕ1(x), . . . , ϕm(x) which are defined as follows

ϕ0(x) = y(x) = 1

ϕ1(x) = y(x) = x

ϕ2(x) = y(x) = x2

...
ϕm(x) = y(x) = xm.

(5.14)

In particular, we can fit the observations yyy of input data values xxx by polynomial function
of the form

Pm(x,ccc) = y(x,ccc) = c0ϕ0(x) + c1ϕ1(x) + . . .+ cmϕm(x)

=
m∑
j=0

cjϕj(x).
(5.15)

Note that although Pm(x,ccc) is nonlinear function of x, it is a linear function of the coeffi-
cients ccc. Functions which are linear in unknown parameters are called linear models [17].

The values of the coefficients are determined by fitting the polynomial to the input
data. This can be done by minimizing an error function that measures the misfit between
the function Pm(x,ccc), for any given value c, and the input dataset. One simple choice of
error function, which is widely used, is given by the sum of the squares of the errors between
the predictions Pm(xi, ccc) for each data point xi and the corresponding observed values yi,
so that we minimize

E(ccc) =
n∑
i=0

(
yi − Pm(x,ccc)

)2

. (5.16)

E(ccc) is non negative quantity that would be zero if, and only if, the function Pm(x,ccc) passes
exactly through each input data point.

We can solve the curve fitting problem by choosing the value of ccc for which E(ccc) is as
small as possible. Because the error function is the quadratic function of the coefficients ccc,
its derivatives with respect to the coefficients will be linear in the elements of ccc. Therefore,
the minimization of the error function has a unique solution, denoted by c∗c∗c∗ [17]. The error
function

E(ccc) =

n∑
i=0

(
yi − c0ϕ0(xi)− c1ϕ1(xi)− . . .− cmϕm(xi)

)2

(5.17)

82



is minimal in the point c∗c∗c∗ = (c0, . . . , cm), for which are partial derivatives of E(ccc) with
respect to ccc equal to zero:

∂(E(ccc))

∂cj
=
∂

∂cj

[
n∑
i=0

(yi − c0ϕ0(xi)− c1ϕ1(xi)− . . .− cmϕm(xi))
2

]
= 0, (5.18)

where j = 0, . . . ,m. After derivation, we get

n∑
i=0

2(yi − c0ϕ0(xi)− c1ϕ1(xi)− . . .− cmϕm(xi))(−ϕj(xi)) = 0, (5.19)

for j = 0, . . . ,m. Then, we divide equations by −2 and partition to the particular sums:

n∑
i=0

yiϕj(xi)−
n∑
i=0

c0ϕ0(xi)ϕj(xi)− . . .−
n∑
i=0

cmϕm(xi)ϕj(xi) = 0, (5.20)

for j = 0, . . . ,m. We can detach particular coefficients ck from each sum and by simple
arrangement we get normal equations for unknown variables c0, . . . , cm:

c0

n∑
i=0

ϕ0(xi)ϕj(xi) + . . .+ cm

n∑
i=0

ϕm(xi)ϕj(xi) =

n∑
i=0

yiϕj(xi), j = 0, . . . ,m. (5.21)

The corresponding system of equations is then specified in the following way:

c0

n∑
i=0

ϕ2
0(xi) + c1

n∑
i=0

ϕ1(xi)ϕ0(xi) + . . .+ cm

n∑
i=0

ϕm(xi)ϕ0(xi) =
n∑
i=0

yiϕ0(xi)

c0

n∑
i=0

ϕ0(xi)ϕ1(xi) + c1

n∑
i=0

ϕ2
1(xi) + . . .+ cm

n∑
i=0

ϕm(xi)ϕ1(xi) =
n∑
i=0

yiϕ1(xi)

. . .
...

c0

n∑
i=0

ϕ0(xi)ϕm(xi) + c1

n∑
i=0

ϕ1(xi)ϕm(xi) + . . .+ cm

n∑
i=0

ϕ2
m(xi) =

n∑
i=0

yiϕm(xi)

(5.22)

The solution of this system of equations represents coefficients c∗c∗c∗ of the polynomial curve
Pm(x,ccc) which approximate the input dataset.

5.3.3 Fourier Transformation

At first, we will define continuous Fourier transformation, then generalize it to discrete
function and denote it as Discrete Fourier Transformation (DFT), and finally discuss Fast
Fourier Transformation (FFT) as optimization step of DFT. The purpose of DFT is to
convert a finite sequence of equally spaced samples into the list of coefficients of complex
exponential curves, ordered by their frequencies. In other words, DFT converts values of
sampled function from its original domain into the frequency domain, and vice versa for the
case of inverse DFT.
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Continuous and Discrete Fourier Transformation

The continuous Fourier transformation [195] is defined as

f(ν) = Ft[f(t)](ν)

=

∫ ∞
−∞

f(t)e−2πiνtdt.
(5.23)

Now consider generalization to the case of a discrete function f(t) → f(tk) by letting
fk ≡ f(tk) ≡ yk, where tk ≡ k∆, for k = 0, . . . , N − 1. This enable us to define discrete
Fourier transformation Fn = Fk

[
{fk}N−1

k=0

]
(n) as

Fn =
N−1∑
k=0

fk e
−2πin k

N . (5.24)

Note that that input samples may be complex numbers (in practice, usually real numbers),
and the output coefficients are complex numbers as well. The frequencies of the output
complex exponential curves are integer multiples of a fundamental frequency, whose cor-
responding period is given by the length of the input dataset. The inverse Fast Fourier
transformation fk = F−1

n

[
{Fn}N−1

n=0

]
(k) is defined as

fk =
1

N

N−1∑
n=0

Fn e
2πik n

N . (5.25)

The DFT is an invertible, linear transformation

F : CN → CN , (5.26)

where C denotes the vectors of complex numbers. Therefore, N-dimensional complex vector
has a DFT and IDFT which are as well N-dimensional complex vectors. The time complexity
of computing the DFT or IDFT is O(n2), which is undesirable especially in the cases of huge
input dataset.

Fast Fourier Transformation

As a response to the high time complexity of the DFT algortihm, performance improvement
was designed by Cooley and Tukey [40] in 1965. However, the principles of the critical
factorization step of FFT [196] can be traced to Gauss’ unpublished work in 1805 when he
needed it to interpolate the orbit of asteroids Pallas and Juno from sample observations [72].
The FFT algorithm reduces time complexity of the DFT from O(N2) to O(N log2(N)).

A DFT can be computed using an FFT by means of the Danielson-Lanczos lemma if
the number of points N is a power of two. If the number of points N is not a power of
two, a transformation can be performed on sets of points corresponding to the prime factors
of N which is slightly degraded in speed. Fast Fourier transformation algorithms generally
fall into two classes: decimation in time, and decimation in frequency. The Cooley-Tukey
FFT algorithm [40] first rearranges the input elements in bit-reversed order, then builds the
output transformation (decimation in time). The basic idea is to break up a transformation

84



of length N into two transformations of length N/2 using the identity

N−1∑
n=0

yn e
−2πin k

N =

N/2−1∑
n=0

y2n e
−2πi(2n) k

N +

N/2−1∑
n=0

y2n+1 e
−2πi(2n+1) k

N

=

N/2−1∑
n=0

yevenn e−2πink/N
2 + e−2πi k

N

N/2−1∑
n=0

yoddn e−2πink/N
2 ,

(5.27)

which is sometimes called the Danielson-Lanczos lemma [196].

5.3.4 Products with Gaussian Curves

First, we define algorithm of Gaussian function, which is parametrized by mean µ, variance
σ2 and input value x, for which it returns functional value. The pseudo code of the Gaussian
function’s value computation is shown in Algorithm 5.

Algorithm 5: Gaussian function’s value computation
1 Function GaussFn(µ, σ2, x) begin

2 return 1√
2πσ2

e−
(x−µ)2

2σ2

3 end

Now, we can compute the normalized sum of products of input data specified by yyy
and one Gaussian function. The corresponding pseudo code for computation of this sum
of products is shown in Algorithm 6 as dedicated function which takes yyy as input. Note

Algorithm 6: The sum of normalized products of yyy and one Gaussian function
1 Function NormalizedProductFn(yyy) begin
2 if (N % 2 == 1) then
3 µ = N

2

4 else
5 µ = N + 1

2 − 1

6 end if
7 σ2 =

(
N − 1

6

)2
8 product = 0
9 for (i = 0; i <= n; i++) do

10 product += yi × GaussFn(µ, σ2, yi)

11 end for
12 return product / N
13 end

that this function takes as the input yyy values, while it assumes that xxx values are implicitly
specified by the index of items in yyy. Thus, xxx is omitted in the computation. Firstly, mean
and variance are computed using index domain of yyy. The computation of variance is not
precise due to computational efficiency of the function as well as for the purpose of our
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Algorithm 7: Normalized products of yyy and k Gaussian functions
Input: k, yyy
Output: k products of sliced yyy and k Gaussian curves

1 products = new List(<int>)
2 for (i = 0; i < k; i++) do
3 products.append(0.0)
4 end for

/* Allow at least 3 packets per product */
5 if (3× k > N − 1) then
6 return products
7 end if

8 for (i = 0; i < k; i++) do

9 startIndex =
⌊
i× N−1

k+1

⌋
10 endIndex =

⌊
(i+ 2)× N−1

k+1

⌋
/* Handle end index alignment */

11 if (endIndex >= N || endIndex == N - 2) then
12 endIndex = N - 1
13 end if

/* Compute single normalized sum of products */
14 productsi = NormalizedProductFn(ystartIndex, . . . , yendIndex)
15 end for

algorithm, it is not necessary to precisely compute it. µ and σ2 are then used as parameters
of Gaussian function, which is called in the cycle as part of a product computation. When
all products are summed, final sum of products is normalized by size of the input data.

After the computation of the normalized sum of products of input dataset with one
Gaussian curve, we can generalize this computation for more Gaussian curves and output
more products. The pseudo code which splits the input dataset into k folds and then
computes the sum of products for each fold separately, is depicted in Algorithm 7. First,
list of k products is initialized and each of them is set to zero. Then, constraint for enough
input packet is executed. If it is not passed, then the algorithm return zero products.
When constraint is passed, we can compute the i − th sum of products in each iteration
of the cycle by calling the NormalizedProductsFn() function with required (ordered) sub-
set of input dataset y. Note that the computation of products with Gaussian functions
may overlap each other by few packets. Also note that this algorithm as well as function
NormalizedProductFn does not perform sorting of input dataset, instead assumes that
observations of values yyy are sorted according to required key implicitly, and thus consider
ordered data type of yyy.
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Chapter 6

Evaluation of ASNM Features

This chapter describes various data mining experiments with ASNM features of AIPS and
with several machine learning based classifiers. A number of features with interesting value
density distribution are highlighted. The first experiments utilize custom dataset which
was captured in laboratory conditions by manual simulations of network buffer overflow
attacks. Latter experiments utilize publicly available dataset CDX 2009 [164]. The most of
the input data for the experiments described and performed in this chapter were obtained
during my participation in the AIPS project, however presented outcomes are the results of
my particular contribution.

6.1 Master’s Project on Detection of Zero-day Attacks

The first experiments with AIPS and ASNM features are presented in my Master’s project
Metrics for intrusion detection in network traffic [75], which proposes network security fea-
tures as well as their categorization. The project implements the feature extraction process
and presents OOP model of implemented tools. It describes functionality of implemented
tools, input processing, configuration settings, features generation and several data mining
experiments.

The input data collection considered in the project was obtained by performing of net-
work buffer overflow attacks on vulnerable network services deployed on high interactive hon-
eypot Argos [8], which was the contribution of my colleague, Maroš Barabas. We leveraged
exploits and functionality of Metasploit framework [113] serving for penetration purposes.
Exploitation of network services was performed in laboratory conditions, and therefore this
work also discusses advantages and disadvantages of laboratory conditions. The collected
dataset contains 12 buffer overflow attacks and 173 legitimate communication records.

Collected network traffic was passed as input to Connection Extractor and outgoing
connection records were then analyzed by Metrics Extractor which produced ASNM features’
records. Later, the work presents analysis of experiments and results obtained by utilization
of RapidMiner [157] tool on collected feature records. Gaussian kernel density estimation
method provided by Naive Bayes classifier component of RapidMiner was utilized for the
purpose of value density estimation of particular features. This method represents non-
parametric estimation of feature distribution.

We identified 45 features, which achieved interesting value density distribution of input
records considering class membership distinguishing between malicious and legitimate com-
munications. The identifiers of these features correspond to the list of ASNM features in
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Apendix D and are enumerated in the following listing:

• CorClosed – correctly closed connection.

• Distributed features – InPkt32s10i[2], InPkt32s10i[5], InPkt64s10i[1], InPkt-
64s20iTr1KB[0], InPkt64s20iTr1KB[1], OutPkt1s10i[1], OutPkt1s20iTr4KB[4],
OutPkt32s10i[2], OutPkt64s20iTr1KB[1], OutPkt64s20iTr1KB[2], OutPktLen4s-
10i[0], OutPkt64s20iTr2KB[1], OutPktLen4s10i[2] and OutPktLen8s10i[3].

• Statistical features – MeanPktLenSrc, SigPktLenSrc, SumPktLenSrc, RatInOutPkt,
CntNondPktIn – representing average length of outbound packets, standard deviation
of outbound packet lengths, the sum of outbound packet lengths, ratio of outbound
to inbound packets and count of non-data inbound packets, respectively.

• Dynamic features – CntResendPktsIn, SigTdiff2PktsIn – representing the number
of resend inbound packets and standard deviation of time intervals between pairs of
consecutive inbound packets, respectively.

• Features approximating discrete slope of communications by polynomials – PolyInd-
3ordOut[0], PolyInd3ordOut[2], PolyInd3ordOut[3] and PolyInd8ordIn[7].

• Features approximating communications by Fourier series – FourGonAngleOut[14],
FourGonAngleOut[1], FourGonAngleOut[3], FourGonAngleOut[8], FourGonModul-
Out[0], FourGonModulOut[1], FourGonModulOut[2], FourGonModulOut[4], Four-
GonAngleIn[7], FourGonmodulIn[3] and FourGonModulIn[5].

• Normalized products of packet lengths with Gaussian curves – GaussProds2Out[1],
GaussProds4In[0], GaussProds4Out[0], GaussProds4Out[2], GaussProds8All[7],
gaussProds8Out[2], GaussProds8Out[3] and GaussProds8Out[7].

Three representative examples of interesting values density distributions were selected from
above mentioned list:

• SigTdiff2PktsIn – standard deviation of time differences of packets’ occurrences in
input direction, which is illustrated in Figure 6.1. The red color represents values of
the feature in malicious communication cases and blue color in legitimate ones.
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Figure 6.1: Standard deviation of packet IAT in inbound traffic [75]
(SigTdiff2PktsIn)

• PolyInd3ordOut[3] – progress of output communication approximated by polynomial
of the 3rd order, which is illustrated in Figure 6.2. The interpretation of colors is the
same as in the previous case. Note that the feature represents the 4th coefficient of
the approximation.

Figure 6.2: Approximation of inbound communication by polynomial of 3 order [75]
(PolyInd3ordOut[3])
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Figure 6.3: Indication of correctly closed connection [75]
(CorClosed)

• CorClosed – indication of correctly closed TCP connection, which is illustrated in
Figure 6.3. The interpretation of colors has the same meaning as in the previous cases.

6.1.1 Classification Models

The next experiments of the project are aimed at classification of TCP communications with
use of the subset of the original feature set. These features were manually selected accord-
ing to several criterias e.g. value density analysis and Forward Features Selection (FFS)
experiments; and they correspond to the listing of 45 features enumerated in aforemen-
tioned rows. The experiments were carried out using three classification models: Support
Vector Machines, Naive Bayes Classifier and Decision Tree. Data preprocessing techniques
including discretization of attributes into specified number of bins and principal component
analysis method were utilized. Also, experiment enabling stratified sampling method in-
cluded into the training process was performed and showed to be successful. Therefore, we
leveraged stratified sampling method in other experiments as well. All the experiments were
performed using 5-fold cross validation method. Summary of the results achieved by vari-
ous classifiers with dedicated adjustments is shown in Table 6.1, which horizontally orders
approaches according to classification accuracy.
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Legit.
Recall 97.69% 94.22% 97.11% 88.44% 87.28% 80.92%

Precision 97.13% 99.39% 94.38% 98.71% 99.34% 100.00%
F1F1F1-measure 97.41% 96.73% 95.72% 93.29% 92.92% 89.45%

Attacks
Recall 58.33% 91.67% 16.16% 83.33% 91.67% 100.00%

Precision 63.64% 52.38% 28.57% 33.33% 33.33% 26.67%
F1F1F1-measure 60.87% 66.66% 20.64% 47.61% 48.88% 42.10%

Average Recall 78.01% 92.95% 56.63% 85.88% 89.47% 90.46%
Overall Accuracy 95.14% 94.06% 91.92% 88.10% 87.57% 82.17%

Table 6.1: Summary of classification results [75]

The only method which was able to correctly predict all the attack instances was SVM.
But on the other hand, it suffered from low recall of legitimate traffic class. However, it was
not even possible to alleviate this phenomenon by adjusting penalty parameter of the SVM
classifier. The best recall of legitimate class was achieved by the Decision Tree model, and
thus this fact mostly influenced the overall classification accuracy. Although, in this case
we were able to correctly predict only circa half of the attacks. The trade-off between these
two models represents Naive Bayes Classifier with attribute discretization, which was able
to correctly predict more than 90% of legitimate communications as well as attack ones,
and therefore achieved the best average recall of the classes. Confusion matrices related to
this section are placed in Appendix F.1.

6.2 Advanced Experiments with BO Attacks

Master’s thesis, described in the previous section, was used as the base for latter experi-
ments which were performed on the same input dataset as in Section 6.1, but with improved
approaches to settings of classification methods and optimizations. We realized that distri-
bution of records in our dataset is not optimal, but we had not available another dataset for
repeating the experiments. Therefore, we slightly alleviate impact of low number of attack
instances in our dataset by adjusting cross validation method to utilize only 3-fold cross
validations (instead of 5 from the previous section). Also, statistically significant amount
of validations performed with each model was performed employing various selections of in-
stances into particular folds of cross validation method. Therefore, the performance results
were expected to be more representative than the ones from Section 6.1.

In order to find optimal parameters of each classification method, we used grid combi-
nation components of mining tool. We found rough values at first, and then, we tried to
optimize them by lower scales. We have also experimented with data preprocessing phase:
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Legit.
Recall 99.42% 98.27% 98.84% 98.27% 86.13% 85.55%

Precision 96.09% 94.97% 94.48% 94.97% 93.13% 93.08%
F1F1F1-measure 97.73% 96.59% 96.61% 96.59% 89.49% 89.16%

Attacks
Recall 41.67% 25.00% 16.67% 25.00% 8.33% 8.33%

Precision 83.33% 50.00% 50.00% 50.00% 4.00% 3.85%
F1F1F1-measure 55.56% 39.58% 25.00% 39.58% 5.41% 5.26%

Average Recall 70.54% 61.63% 57.76% 61.63% 47.23% 46.94%
Overall Accuracy 95.68% 93.51% 93.51% 93.51% 81.08% 80.54%

Table 6.2: Summary of the results per classification method [15]

we used discretization of ordinal attributes and principal component analysis method for
finding principal attributes. Results of these experiments are shown in Table 6.2, where the
methods are horizontally ordered by classification accuracy [15].

From the perspective of average recall and classification accuracy, we achieved the best
results by the SVM method. Note that SVM utilized radial kernel in comparison to neural
kernel of SVM in experiments from Section 6.1. Also, Decision Tree and Naive Bayes
achieved interesting results likewise the previous section.

We also compared classification models by ROC method. Considering neutral bias,
the best configuration of TPR and FPR were achieved by SVM method, however Naive
Bayes also contained one interesting configuration for TPR equal to 0.65. ROC diagram
with neutral bias is depicted in Figure 6.4. Note that comparing of ROC ran above cross
validation method, and thus generated certain variability, which was amplified by non-
optimal dataset distribution. The variability of the performance results are shown in the
figure by line-adjacent transparent areas.

All experiments were performed in laboratory conditions, therefore some differences
from real environment might influence the results. Laboratory conditions of experiments
may differ mainly in context-dependent features, where the context was generated only by
two laboratory hosts (the attack machine and the vulnerable one). Also, several features
depend on transmission time of packets in the analyzed traffic. In a real traffic, more nodes
are present along the route between the attacker and the detector, and also this path can be
dynamically selected according to actual network conditions, but in laboratory conditions
these parameters are constant. Other influence may relate to TCP retransmission of packets.
Also note that distribution and size of our testing dataset was not optimal, and therefore the
results presented in the current section and the previous one are considered as preliminary.
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Figure 6.4: ROC diagram comparing classifiers [15]

6.3 Experiments with CDX 2009 Dataset

As our previous results were dependent on our own dataset with the low number of attack
instances and also legitimate ones, we were encouraged to test the detection properties
of ASNM features on another dataset as well as we would like to compare performance
of ASNM with another similar approach applicable in NBAD. Therefore, we searched for
similar set of features like ASNM, and found features which are called discriminators and
are proposed by Andrew Moore et al. in their paper [119].

The performance of our behavioral ASNM features was evaluated in our paper [76] which
compares them with discriminators of A. Moore. The authors of the paper consider only
TCP connections to perform extraction of discriminators in the same way as we do. So,
there were equivalent conditions for performance comparison between our suggested features
and discriminators suggested in the above mentioned work. 248 discriminators are defined in
[119], including all particular items of vector types. Unlike their research we considered the
whole particular vector metric as one in the ASNM definition. In the work of A. Moore, each
TCP flow is described by three modes according to packet transmissions: idle, interactive
and bulk. Many discriminators use these three modes as their input. The authors do not
mention any explicit categorization of defined discriminators, however, the only possible
categorization can implicitly follow from a direction of the TCP flow. We also performed
a similarity analysis of discriminators and ASNM features definition, and discovered that
there are approximately 20% of discriminators principally similar or the same as ASNM
features. Unique properties of discriminators’ definitions include, for example, the using of
quartiles for a statistical analysis, analysis of selective acknowledgment of TCP, a number
of window probe indication, pushed or duplicate packets etc.

Later, we performed comparative data mining experiments of ASNM and discriminators
on CDX 2009 dataset [164], which contains SNORT log as source of ground truth. It was
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discovered that the SNORT log can be associated only with data capture outside of the West
Point network border and only with significant differences of timestamps – approximately
930 days. We did not find any association between the SNORT log and data capture
performed by the National Security Agency. We focused only on buffer overflow attacks
found in a log from SNORT IDS and a match with the packets contained in the West Point
network border capture was performed. It should be noted that buffer overflow attacks were
performed only on two services – Postfix Email and Apache Web Server. An example of the
buffer overflow SNORT log entry:

[**] [124:4:1] (smtp) Attempted specific command
buffer overflow: HELO, 2320 chars [**]
[Priority: 3]
11/09-14:22:25.794792
10.2.195.251:2792 -> 7.204.241.161:25
TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:2360
***AP*** Seq: 0x68750738 Ack: 0x24941B59
Win: 0xFDC0 TcpLen: 20.

We used IP addresses (5th row), ports (5th row), time of occurrence (4th row), TCP
sequence and acknowledgment numbers (7th row) as information to match the SNORT log
entries with particular TCP connections identified in TCP dump traces.

Despite all efforts, there were exactly 44 buffer overflow attacks matched out of all 65,
and these identified attacks were used as ground truth for the data mining process. In order
to correctly match SNORT entries, it was necessary to remap IP addresses of the internal
to external network because a SNORT detection was realized in the internal network and
TCP dump data capture contains entries from outside the IP address space. Buffer overflow
attacks, which were matched with data capture, have their content only in two TCP dump
files: 2009-04-21-07-47-35.dmp, 2009-04-21-07- 47-35.dmp2. Due to the enormous count of
all packets (approximately 4 millions) in all dump files, only two files were considered which
contained 1 538 182 packets. We also noticed that network data density was increased in the
time when attacks were performed. Consequently, we made another reduction of packets,
which filters enough temporal neighborhood of attacks occurrences. In the result, 204 953
packets for the next phases of our experiments were used.

The whole process of ASNM features and discriminators extraction with data mining
comparison is illustrated in Figure 6.5. There are four segments and data flow direction from
top to bottom depicted in the figure. Empty boxes represent data as input or output of
some processes and filled ovals represent working components which perform some action.
A working component takes input data and outputs output data. The upper segment
represents the input of the whole experiment process and includes input data files: CDX
2009 TCP dump files and CDX 2009 SNORT log file. The CDX 2009 TCP dump files
are the mutual input of both extraction processes. The input of ground truth (CDX 2009
SNORT log file) is directly provided to the feature extraction process and is indirectly
bounded to extracted discriminators after the end of ASNM extraction process. The left
segment contains phases of discriminators extraction and the right segment contains the
ASNM feature extraction process with expert knowledge processing.
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Figure 6.5: The Process of feature extraction and assessment [76]

ASNM Feature Extraction Process

The feature extraction process of the right segment includes a process described in Sec-
tion 5.2. An all packets set P is represented by the input of CDX 2009 TCP dump files,
which are imported into the database by a DB importer component. Next, an active com-
ponent Connection extractor performs the identification of all TCP connections set C in all
packet set P. The extraction of TCP connections was followed by expert knowledge informa-
tion processing, which means matching of extracted TCP connections with parsed SNORT
log information. If a match occurred, the TCP connection is labeled as an attack by the
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Attacks labeling component. Then, ASNM features extraction is performed for each TCP
connection in C by the Metrics extractor component and the results of this step are ASNM
features values for each TCP connection object in CSV file. It should be noted that the
ASNM feature extraction process is independent of expert knowledge information.

Discriminators Extraction Process

The input of this process is the same as in the ASNM feature extraction process. The
component Flows creator performs the identification of TCP connections by netdude tool1

and it creates a TCP dump file for each identified TCP connection. These TCP dump files
are used as an input for Discriminator generator component, which performs extraction of
discriminators for each identified TCP connection. This component performs equivalent
operation as Metrics extractor component in the process of ASNM feature extraction. It
generates discriminators meta files which contain intermediate results of discriminators val-
ues. These meta files are processed and joined by the ARFF&CSV creator component into
a CSV file. After this step, the attack TCP connections are labeled, which is performed by
the the Attack labeling component.

Mining & Assessment Process

This process is depicted in the lower part of figure 6.5. Before this process takes place, it is
necessary to make an intersection between output CSV files of ASNM features and discrim-
inators extraction processes, which is performed by the CSV entries intersector component.
At the output of this step there are ASNM features and discriminators of the same TCP
connections objects, so there are equivalent conditions for the data mining process. Two
intersected CSV files with an equal number of entries are used as the input of the Mining
tool component and output consists of classification accuracy and other results suitable for
comparison. It should be noted that we found 5 771 TCP connections by our TCP con-
nections extractor and 63 859 TCP connections by the TCP demultiplexer from netdude
framework which is used by discriminators extraction. The main reason of it is the fact
that in ASNM, we consider only established TCP connections because only an established
TCP connection can perform a buffer overflow attack, in contrast to discriminators. The
intersection of ASNM features and discriminators outputs contains 5 758 objects and 44 of
them represent attacks. The intersected CSV files were used in the data mining process, and
thus, there were adjusted the same conditions for both ASNM features and discriminators
outputs containing the same TCP connections records.

Thirteen established TCP connections were not found by the TCP demultiplexer which is
utilized by Flows creator of discriminators extraction process. The discrimination extraction
was performed using a source code available from the author’s web2. The whole process of
discriminators extraction itself was not described in [119], so we deduced it from a source
code and README instructions. It was also necessary to debug some functionality of
provided tools. During the preparation for discriminators extraction, there occurred some
compatibility issues caused by old versions of dependencies. We finally used Linux Fedora
4 as the most suitable operating system for the necessary operation.

1URL: http://netdude.sourceforge.net/.
2URL: http://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers /sigmetrics/index.html
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Figure 6.6: List of features sorted by overall accuracy (over 99.43%)

6.3.1 Results of the Experiments

We analyzed joined outputs of ASNM features and discriminators extraction processes by
the RapidMiner3 tool. Our training model used the Naive Bayes classifier with kernel
functions for estimation of density distribution, which is considered as non-parametric es-
timation method. A stratified sampling with 5-cross fold validation for every experiment
was performed. At first, we focused only on the accuracy evaluation of particular ASNM
features and discriminators. Therefore, this experiment was adjusted for maximal classifi-
cation accuracy of input data. In Figure 6.6 the best ASNM features and discriminators
(over 99.43% overall accuracy) are shown, sorted by the overall accuracy. The names of
discriminators consist of a number and label defined in [119], which are also enumerated

3URL: http://rapid-i.com/content/view/181/190/lang,en/.
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in Appendix E. The names of ASNM features are defined in [75] and also their updated
version is available in Appendix D. The names of polynomial approximation features con-
sist of 5 parts: polynomial metric label, method of approximation (indexes or time), order
of polynomial, direction and coefficient index. Fourier coefficient features’ names consist of
the Fourier coefficient metric label, the goniometric representation, the angle or the module,
the direction and the coefficient index. Gaussian products features’ names are a compound
of the Gaussian metric label, the number of Gaussian curves, the direction and the product
index (e.g. PolyInd5OrdOut[1]).

We can see that the best classification accuracy for the ASNM features set was achieved
by several polynomial approximation features. In most of these cases we achieved better
results by the output direction (client to server), but we were also able to achieve interesting
results with the input direction (server to client). A good performance was also achieved by
normalized products with Gaussian curves as well as by Fast Fourier Transformation (FFT).
The relevance in the case of standard deviation of packets length in the output direction
(SigPktLenOut) is also presented.

In the set of discriminators, the best results were achieved by an average segment size
discriminator in the direction from client to server (85/avg_segm_size_a_b). It could be
caused by the fact that the exploit’s payload contains a huge amount of data necessary
to perform buffer overflow in application and these data is segmented. Another interesting
designated discriminator is the variance of bytes count in Ethernet as well as IP datagram in
the destination direction (159/var_data_wire_ab and 166/var_data_ip_a_b). This dis-
criminator is equivalent to average standard deviation metric of packet length in the output
direction and brings nearly equivalent results. Also, the average window advertisement in
the input direction (94/avg_win_adv_b_a) holds relevant information potentially useful
in the process of classification.

Accuracy is highly dependent on training samples parsed from captured network traffic.
The training and testing samples may be biased towards a certain class of traffic. For
example, valid communication (according to the separation to valid and attack connections)
represents a large majority of the samples in the testing dataset (approximately 99.24%).
The reason to the high classification capability of fewer features is that classification of
buffer overflow attacks was highly predictable due to the size of data in segmented packets,
which caused the overflow and the nature of a valid communication with a small number of
segmented packets.

Comparison of ASNM and Discriminators

Next, the Forward Feature Selection (FFS) method was utilized in order to select the most
relevant features per each input CSV file (ASNM features and discriminators). FFS started
to run with an empty set of features and in each iteration added a new feature contributing
by the best improvement of average recall of all classes. The average recall of all classes was
computed using the underlying 5-fold cross validation method employing the Naive Bayes
classifier. Also, FFS accepted one iteration without improvement as we wanted to avoid the
selection process becoming stuck in local extremes. The maximal number of selected features
was limited to 20, however, it was not necessary. In the case of ASNM, average recall of
all classes equal to 92.04% was achieved. The associated confusion matrix is depicted in
Table 6.3. Relevant ASNM features selected by FFS method are enumerated and briefly
described in the following listing, where the order of features corresponds to the order of
their selection by FFS:
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Classification Accuracy: True Class Precision
99.86% ±0.07 Legit. Flows Attacks

Predicted
Class

Legit. Flows 5726 7 99.88%
Attacks 1 37 97.37%
Recall 99.98% 84.09% F1 = 90.24%

Table 6.3: FFS on ASNM features and Naive Bayes classifier

• PolyInd3ordOut[0] – approximation of outbound communication (from client to
server) by polynomial of 3rd order in the index domain of packet occurrences. The
feature represents the 1st coefficient of the approximation,

• PolyInd3ordOut[3] – the same as the previous one, but the feature represents the
4th coefficient of the approximation,

• PolyInd8ordOut[6] – the same as the previous ones, but the feature represents the
7th coefficient of the approximation,

• InPkt1s10i[7] – lengths of inbound packets occurred in the first second of a connec-
tion which are distributed into 10 intervals. The feature represents totaled inbound
packet lengths of the 8th interval,

• InPkt1s10i[0] – the same as the previous one, but it represents the 1st interval,

• InPkt1s10i[1] – the same as the previous one, but it represents the 2nd interval,

• GaussProds8All[7] – normalized products of all packet sizes with 8 Gaussian curves.
The feature represents a product of the 8th slice of packets with a Gaussian function
which fits to the interval of the packets’ slice.

Regarding disciminators, average recall of classes equal to 99.94% was achieved, and
associated final confusion matrix, obtained by FFS, is depicted in Table 6.4. The following

Classification Accuracy: True Class Precision
99.94% ±0.04 Legit. Flows Attacks

Predicted
Class

Legit. Flows 5707 0 100.00%
Attacks 7 44 86.27%
Recall 99.88% 100.00% F1 = 92.62%

Table 6.4: FFS on discriminators of A. Moore and Naive Bayes classifier

listings enumerates and describes discriminator features selected by FFS method:

• 99/ttl_stream_length_a_b – the theoretical stream length, which is calculated as
the difference between the sequence numbers of the SYN and FIN packets, giving the
length of the data stream seen,

• 95/initial_window-bytes_a_b – the total number of bytes sent in the initial window
i.e., the number of bytes seen in the initial flight of data before receiving the first ACK
packet from the other endpoint,
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• 209/time_since_last_connection – time elapsed since the last connection between
client and server hosts,

• 87/max_win_adv_a_b – if the connection is using window scaling, this is the maximum
window-scaled advertisement seen in the connection,

• 159/var_data_wire_a_b – variance of bytes in the Ethernet packet,

• 64/FIN_pkts_sent_b_a – the number of all the packets seen with the FIN bit set in
the direction from server to client,

• 238/FFT_a_b_#10 – FFT of packet IAT in outbound direction,

• 100/ttl_stream_length_b_a – the same as the 99/ttl_stream_length_a_b, but
considering inbound direction,

• 8/max_IAT – the maximum inter-arrival time of packets considering both directions of
a communication,

• 3/min_IAT – the minimum inter-arrival time of packets considering both directions of
a communication,

• 4/q1_IAT – the first quartile of inter-arrival time of packets considering both directions
of a communication,

• 248/FFT_b_a_#10 – FFT of packet IAT in inbound direction.

The order of the features in the listing correspondents to the order of the selection by FFS.
Later, we merged ASNM and discriminator features together, and executed FFS on merged
feature set. Average recall of classes equal to 99.99% was achieved, and associated confusion
matrix is depicted in Table 6.5. The features selected by FFS method are enumerated in

Classification Accuracy: True Class Precision
99.98% ±0.03 Legit. Flows Attacks

Predicted
Class

Legit. Flows 5713 0 100.00%
Attacks 1 44 97.78%
Recall 99.98% 100.00% F1 = 98.87%

Table 6.5: FFS on merged ASNM and discriminator features

the following listing, which orders them to the order of selection by FFS:

• 99/ttl_stream_length_a_b – described in the previous listing,

• 95/initial_window-bytes_a_b – described in the previous listing,

• FourGonModulIn[5] – FFT of all packet sizes. The feature represents the angle of the
6th coefficient of the FFT in goniometric representation,

• PolyInd13ordIn[9] – approximation of inbound communication by polynomial of
13th order in the index domain of packet occurrences. The feature represents the 10th
coefficient of the approximation,
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• InPkt4s10i[8] – lengths of inbound packets occurred in the first 4 seconds of a con-
nection which are distributed into 10 intervals. The feature represents totaled inbound
packet lengths of the 9th interval,

• InPkt1s10i[1] – the same as the previous one, but computed above the first second
of a connection. The feature represents totaled inbound packet lengths of the 2nd
interval,

• InPkt1s10i[0] – the same as the previous one, but it represents totaled inbound
packet lengths of the 1st interval,

• 248/FFT_b_a_#10 – described in the previous listing.

The performance results of the ASNM and discriminator features validated on CDX
2009 dataset were very similar, however, discriminators achieved better average recall as
well as F1-measure, while classification accuracy was almost the same in both cases. Note
that in the case of discriminators, 12 features were selected, while in the case of ASNM, FFS
picked only 7 features. On the other hand, when we merged both feature sets, the results
outperforming performances of individual feature sets were achieved, and selected features
contained representatives from both feature sets.

Comparison of Classifiers

Finally, we measured a performance of various binominal classification models with the
input compound of values of just ASNM features obtained in the first FFS experiment of
the previous section. All the current experiments utilized 5-fold cross validation method,
and thus they had equivalent conditions for performance comparison. At first, we evaluated
performance of the Decision Tree classifier, which utilized gini index as selection criterion
for splitting of attributes. The adjacent confusion matrix is depicted in Table 6.6.Next,

Classification Accuracy: True Class Precision
99.71% ±0.07 Legit. Flows Attacks

Predicted
Class

Legit. Flows 5721 11 99.81%
Attacks 6 33 84.62%
Recall 99.90% 75.00% F1 = 79.52%

Table 6.6: Performance of the Decision Tree classifier

we evaluated performance of the SVM classifier which utilized radial basis function as non-
linear kernel function. The best results were achieved with cost parameter equal to zero.
Adjacent confusion matrix is depicted in Table 6.7.

Additionally, we ran FFS with 5-fold cross validation on Decision Tree classifier and
achieved average recall of 95.42% and accuracy equal to 99.86%. The associated confusion
matrix and the model of the classifier is shown in Appendix F.2.1. The reason why we do
not run FFS on SVM classifier model is high time complexity of the FFS combined with
the SVM classifier.

At the summary, we emphasize that the best performance results were achieved by the
Naive Bayes classifier (see Table 6.3). Moreover, the Naive Bayes classifier is the fastest
method among utilized ones. These facts led us to primarily utilize Naive Bayes classifier
in our further experiments.
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Classification Accuracy: True Class Precision
99.81% ±0.06 Legit. Flows Attacks

Predicted
Class

Legit. Flows 5726 10 99.83%
Attacks 1 34 97.4%
Recall 99.98% 77.27% F1 = 86.07%

Table 6.7: Performance of the SVM classifier

Finally, all the classification models were compared by ROC method. Considering neu-
tral bias, the most interesting configuration of classifier was achieved by Naive Bayes clas-
sifier. ROC diagram with neutral bias is depicted in Figure 6.7. Note that comparing of
ROC ran above cross validation method, and thus generated certain variability, which is
shown by line-adjacent transparent areas. In this case, the variability of ROC results was
more moderate than in the case of ROC experiments in Section 6.2.

Figure 6.7: ROC diagram comparing classifiers

6.4 Performance Improvement of AIPS

The datasets utilized in our previous experiments were not generated by using any obfusca-
tion techniques, therefore, new challenge for evaluation and comparative study of AIPS ADS
arise. Respecting the main goal of this thesis – evaluation and performance improvement of
IDS utilizing NBAD principles for detection of network attacks – we aim at weaknesses of
the ASNM features in the following two chapters.
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The principal technique which will be used to improve performance of AIPS is the idea
of evading detection capability of the system’s ASNM features. Because ASNM features
are primarily based on behavioral and statistical analysis, which often use time and index
slope of a connection and analysis of payload size distribution, there can arise question
of breaching detection capability of AIPS. The most of the ASNM detection features use
information gathered from L3 and L4 layers of packet headers. If such information would be
intentionally modified, then it might influence the detection capability of ASNM in negative
way. On the other hand, such modifications could be included into the training process of
the classifier and might help in further detection of similar modified intrusions evading ADS
detection.

6.4.1 Assumption I – Undetected Evasion

Consider a supervised classifier trained by ASNM features extracted from captured TCP
dumps of legitimate and malicious traffic and with use of the ground truth. Now, such
classifier should be able to detect malicious intrusive traffic which has similar statistical and
behavioral properties like training data. But, if we craft the properties of previously known
intrusion, then the classifier will be less likely to detect it and undetected evasion may occur.

6.4.2 Assumption II – Learning from Feedback

Consider a supervised classifier trained on network intrusions and legitimate traffic utilizing
a number of obfuscation techniques which modify statistical and behavioral properties of
a communication. If we perform network intrusion with the crafted properties, then such
classifier will be more likely to detect the attack in contrast to situation when it is not
trained with inclusion of obfuscated malicious network traffic.

6.4.3 Proposed Obfuscation Techniques

We propose several obfuscation techniques in order to verify designated assumptions. Pro-
posed obfuscation techniques are divided into two categories:

• A) tunneling obfuscation

– the first one represents tunneling obfuscation technique which is based on tunnel-
ing a network communication through HTTP and HTTPS protocols, and therefore,
enables us to modify the statistical and behavioral properties of a communication
representing a network attack,

• B) non-payload-based network obfuscations

– the second one represents various non-packet-payload-based network obfuscation
techniques. At the abstract level, non-payload-based obfuscation techniques represent
the modifications of various statistical and behavioral properties of network traffic.
At the lower level, this category of obfuscation techniques is based on modification of
several properties at L3 and L4 layers of TCP/IP reference network model. Proposed
examples include the following ideas:

– spreading out packets in time,

– segmentation & fragmentation,

– changing of packet order,
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– simulation of unreliable network channel,

– packet loss,

– duplication of packets,

– combinations of these techniques are suggested for use as well.

These two categories of obfuscation techniques will be closely analyzed in the two following
chapters. The experiments investigating properties of tunneling obfuscations will be per-
formed in Chapter 7, while the experiments investigating potential of non-payload-based
obfuscation techniques will be presented in Chapter 8.
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Chapter 7

Tunneling Obfuscation Technique

This chapter aims to examine the detection properties of ADS validated on obfuscated net-
work buffer overflow attacks. In this chapter, ADS is represented by ASNM features and
a supervised classifier. The current obfuscation is performed by tunneling malicious net-
work intrusions in HTTP and HTTPS protocols with the intention of simulating the usual
legitimate characteristics of the HTTP traffic’s flow. These protocols wrap a malicious com-
munication between an attacker situated outside of an intranet and a callback located inside
of an intranet. Exploitation of services is performed in a virtual network environment by
using network traffic modifications simulating real network conditions. Captured data is
examined by NIDSs SNORT and SURICATA as well as by the ASNM network features and
a supervised classifier. The next purpose of this chapter is to describe characteristics of tun-
neled network buffer overflow attacks in contrast with characteristics of directly simulated
attacks. Note that tunneling obfuscation modules presented in this chapter were originally
designed by my colleague Daniel Ovšonka in his Master’s thesis [129], and later we employed
it for experiments with ASNM which are published in our papers [77] and [78].

7.1 Method Description

This section formally describes data exchanges over network channel followed by explana-
tion of tunneling obfuscation which aim to modify the behavioral characteristics of intrusive
communication in a way of having different characteristics from original malicious commu-
nication.

Consider a session of a protocol at the application layer of the TCP/IP stack which
serves for data transfer between the parts of client/server based application. The data is
transferred in both directions one by one in succession:

C.delivers(dC [1], S),

S.delivers(dS [1], C),

...
C.delivers(dC [q], S),

S.delivers(dS [q], C),

(7.1)

where C, S, q, delivers, dC [i] and dS [i] denote the client, the server, the number of data
exchanges of the session, the method of delivering data from client to server (and vice versa),
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i−th sentence of application protocol’s data passed from client to server where i ∈ {1, . . . , q}
and vice versa, respectively.

The interpretation of the previous application data exchanges between client and server
can be formulated, considering the TCP/IP stack up to the transport layer, by connection
k which is constrained to connection oriented protocol TCP at L4, internet protocol IPv41

at L3 and Ethernet protocol at L2 layers of the TCP/IP stack. The TCP connection k is
represented by the tuple k = (ts, te, pc, ps, ipc, ips, Pc, Ps). Consider interpretation of tuple
symbols from Table 5.2. Sets Pc and Ps contain a number of packets, where each of them can
be interpreted by the packet tuple p = (t, size, ethsrc, ethdst, ipoff , ipttl, ipp, ipsum, ipsrc,
ipdst, ipdscp tcpsport, tcpdport, tcpsum, tcpseq, tcpack, tcpoff , tcpflags, tcpwin, tcpurp, data).
Symbols stated in the packet tuple were described in Table 5.1.

7.1.1 Definition of Tunneling Obfuscation

Consider feature extraction process of ASNM described in Section 5.2, and for simplicity, do
not consider context of an analyzed connection nor optional arguments of feature extraction
functions. Assume connection ka representing an intrusive communication executed without
any obfuscation. Then, ka can be represented by ADS features

f(ka) 7→ F a = (F a1 , F a2 , . . . , F
a
n ) (7.2)

which are delivered to the previously trained classifier C. Assume that C can correctly
predict the target label as an intrusive one, because its knowledge base is derived from
training datasetDtr containing intrusive connections having similar (or the same) behavioral
characteristics.

Now, consider connection k′a which represents intrusive communication ka executed by
employment of tunneling obfuscation. The tunneling obfuscation modifies Pc and Ps packet
sets of the original connection ka by wrapping each original packet into new one. The
wrapping may cause fragmentation of IP packets, and thus it can also modify the number of
packets in both packet sets Pc and Ps. Also, the obfuscation modifies IP addresses (ipc, ips)
and ports (pc, ps) of the original connection. Symbols of the packet tuple whose values are
sensitive to the obfuscation include all defined fields, as tunneling obfuscation creates new
TCP/IP stack with unique values of L2, L3, L4 headers as well as new content of application
layer data. All these modifications, especially modifications of Pc and Ps of the connection
ka, cause alteration of the original ADS features’ values F a to new ones. Thus, ADS features
extracted over k′a are represented by

f(k′a) 7→ F a
′

= (F a
′

1 , F a
′

2 , . . . , F
a′
n ) (7.3)

and have different values than features F a of the connection ka. Therefore, we assume
that the probability of a correct prediction of k′a-connection’s features F a

′ by the previously
assumed classifier C is lower than in the case of connection ka. Also, we assume that
classifier C ′ trained by learning algorithm A on training dataset D′tr, containing obfuscated
intrusion instances, will be able to correctly predict higher number of unknown obfuscated
intrusions than classifier C. These assumptions will be evaluated and analyzed later.

1Our description and experiments are related to only IPv4 traffic, as we assume that substantial behav-
ioral characteristics of IPv4 and IPv6 traffic are very similar.
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Figure 7.1: Scheme of testing virtual network architecture

7.2 Tunneling Obfuscation System

The obfuscation of malicious communications was created with the aim of similarity maxi-
mization of obfuscated network intrusions and real network traffic. The major requirement
on the obfuscated traffic is obfuscation’s transparency for upper network layers. Based on
these requirements, the Hyper Text Transfer Protocol (HTTP) and HTTP Secure (HTTPS)
protocols were selected as carrying protocols for our tunneling obfuscation infrastructure.
Thus, our tunneling obfuscation is based on the encapsulation of network traffic into stan-
dard HTTP or HTTPS packets. This makes the obfuscated network data hard to detect by
classic signature based approaches, and as we will show, even by anomaly detection meth-
ods. Another reason why these protocols are selected is because they are heavily spread
in nearly all computer networks, and thus usually not blocked by firewalls, which gives us
a high probability of obfuscated malicious communications not to be dropped or disclosed.

In our approach, we assume a private network connected to an outer network through
the gateway which performs Network Address Translation (NAT) and is monitored by IDS
as well as by ADS systems. Our testing virtual network architecture is shown in Figure 7.1.
The left side of the picture represents the outer network with the legitimate user and the
attacker. The private network with vulnerable machines and previously exploited machine
are illustrated on the right side of the figure. In the middle of the figure is situated the
gateway which interconnects inner and outer networks.The gateway is running on Debian
Linux with a 2.6.32-5-686 kernel. The attacker’s station and the exploited machine are
running on Ubuntu Linux with a 3.11.0-12 kernel. The Windows server is running on the
Windows 2000 with SP4 and the Linux server is running on the Red Hat Linux with a 2.4.7-
10 kernel.

The obfuscation system is divided into two separate modules. The first one – called
Callback, is deployed in the internal network, while the second one – called Fake HTTP
Server, acts as the remote HTTP server and is deployed anywhere in a public network.
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7.2.1 Callback Module

The Callback module acts as a proxy because the main function of this module is to translate
incoming encapsulated communications, restore their original content and then distribute
the communication into the internal network. The Callback module also forges IP addresses
inside of processed packets, thus the responses of internal network can be caught by exploited
machine. The caught packets are then encapsulated and sent as a callback message to the
external Fake HTTP Server machine.

The installation of the Callback module into the internal network has to be done by
the exploitation of a target machine laying at the internal network without detection by
IDS or ADS system. The successful deployment of the callback module mostly depends on
privilege escalation of a host machine. It can be performed by various approaches e.g. an
attacker can use an infected website which exploits hosts browser and consequently installs
a backdoor to a victim. Another way of the backdoor deployment can be executed by a user
who installs it as a part of useful application from an untrusted source (trojan horse). A
host machine can be also exploited directly in the case it has exposed open port to public
network which is bounded to a vulnerable application. When the attacker gains access to
a host machine, the Callback module can be deployed on it. For the simplicity, we did not
simulate any of these options, and instead, we assumed the Callback module was previously
installed in an internal network.

7.2.2 Fake HTTP Server Module

The Fake HTTP Server module of the obfuscation system waits for a connection from the
Callback module. When the connection is established, all traffic affected by obfuscation is
tunneled through the carrying protocol. Tunneled traffic is processed on low system level
making it transparent to higher network layers. Therefore, communicating entities cannot
notice the data is tunneled and they do not need to process obfuscated data. This module
represents the main logic of the system because it has to apply advanced filters to all traffic
and select only relevant packets for further processing by tunneling obfuscation methods.

7.2.3 Communication between Callback and Attacker

A connection is initiated from the Callback module when a request is generated. Request
also contains encapsulated meta-data to identify the Callback module at Fake HTTP Server
and it can contain data gathered from internal network, e.g. response from another host in
private network. The attacker encapsulates data ready for obfuscation into carrying protocol
and sends them to the Callback module as a standard web-server response. The Callback
module restores encapsulated data and distributes them into private network. Also, the
Callback module catches the responses from internal network, encapsulates them and sends
them back to the Fake HTTP Server.

7.2.4 Implementation Notes

All obfuscation routines are implemented at a lower network level. Transmitted encapsulated
packets are bypassed using standard iptables with custom dynamic rules. Dynamic rules
depend on a character of obfuscated communication, therefore it is important not to process
all packets due to performance impact on host system. Next, packets are processed through
the libnetfilter_queue library which allows us to move packet processing from kernel
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space to user space. The packets affected by obfuscation are encapsulated here or restored
from carrying packets before they reach the kernel space for regular processing. This solution
is transparent for upper network layers and the host kernel cannot detect whether packets
are modified or not. The solution is also protocol independent and no other configuration
of host system is necessary.

7.3 Collection of Malicious and Legitimate Traffic

We have created a set of scenarios simulating malicious and legitimate network traffic in
our virtual network environment. Scenarios representing legitimate traffic were performed
manually because of adding some human factor and diversity to data, and furthermore, we
wanted to reach maximal authenticity of user’s behavior. Other relevant legitimate traffic
was collected from campus network and further annonymized.

For the purpose of malicious network traffic simulation, we utilized Metaspolit frame-
work [113] as well as some widespread public exploits. The selection of network attacks was
aimed at high impact of their possible consequences on attacked machine, and thus could be
considered as intrusions. Another selection criterion was the fact, that such intrusions are
easily detectable by classic NIDSs, and therefore, we could easily demonstrate functionality
of our obfuscation system on signature-based approaches too.

All generated network traffic was dumped and saved on the gateway node because it pro-
cessed all transmitted packets of our scenarios. Packets were dumped using the Wireshark
tool [38] directly from a software network bridge interface which interconnected internal and
external networks. Data obtained here served as the input for further pre-processing and
data mining experiments.

7.3.1 Vulnerabilities

Four vulnerabilities were exploited – two against a Linux based machine and the next two
against a Windows based one. These machines correspond to the PC stations in the right
segment of Figure 7.1. Each attack exploited well-known vulnerability whose exploitation
led to full privilege escalation, thus the attacker could get the root’s permissions. The details
about each vulnerability and its exploitation are briefly described in the following listing,
where Common Vulnerabilities and Exposures (CVE) IDs [123] with Common Vulnerability
Scoring System (CVSS) [124] values are shown in square brackets:

• Apache web server with mod_ssl plugin 2.8.6
[CVE-2002-0082: 7.5] – this attack exploits buffer overflow vulnerability in mod_ssl
plugin of the Apache web server. The plugin does not properly initializes memory
in the i2d_SSL_SESSION function, which allows remote attacker to exploit a buffer
overflow vulnerability in order to execute arbitrary code via a large client certificate
which is signed by trusted Certificate Authority (CA), which produces a large serial-
ized session [44]. This allows remote code execution and modification of any file on
compromised system [152]. The vulnerable versions of plugin are in range 2.7.1-2.8.6.

• BadBlue web server 2.72b
[CVE-2007-6377: 7.5] – the second attack exploits a stack-based buffer overflow vul-
nerability in PassThru functionality of ext.dll in BadBlue 2.72b and earlier [144].
In the attack performing phase, the special crafted packet with a long header is sent
which leads to an overflow of processing buffer [47]
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• Microsoft DCOM RPC
[CVE-2003-0352: 7.5] – the third attack exploits vulnerability in Microsoft Windows
DCOM Remote Procedure Call (DCOM RPC) service of Microsoft Windows NT 4.0,
2000 (up to Service Pack 4), Server 2003 and XP [46]. This vulnerability allows
a remote attacker to execute an arbitrary code based on buffer overflow in DCOM
interface. The vulnerability was originally found by the Last Stage of Delirium re-
search group and has been widely exploited since then [153]. The vulnerability is well
documented and it was used, for example, by Blaster worm.

• Samba service 2.2.7
[CVE-2003-0201: 10.0] – the last attack exploits buffer overflow vulnerability in call_
trans2open function in trans2.c of Samba 2.2.x before 2.2.8a, 2.0.10, earlier versions
than 2.0.x and Samba-TNG before 0.3.2 [45]. This vulnerability allows a remote
attacker to execute an arbitrary code. In our case public exploit was used which sends
malformed packets to a remote server in batches [154]. Packets differ in a one shell-
code address only because the return address depends on versions of Samba and host
operating systems.

7.3.2 Real Network Conditions

For the purpose of simulating real network conditions, we executed each malicious and legit-
imate network communication four times in four different network traffic modifications. Our
network traffic modifications should improve the relevance of further experiments’ outputs
and make our synthetic data looking more similar to real network traffic. We used a different
configuration of virtual network environment for each network traffic modification. Network
traffic modification differ in the alteration degree of the traffic on the gateway node and are
divided into four categories:

(a) The first category represents reference output without any modification to configura-
tion. All experiments ran on the same host machine to minimize deviations among
different tests.

(b) The second category is dedicated to simulate traffic shaping. Therefore, all packets
were forwarded with higher time delays. For this purpose, the special gateway machine
with limited processor’s performance was used. This machine was also fully loaded to
emulate slower packets processing than in the first scenario.

(c) The third category is supposed to simulate traffic policing when some of packets were
dropped during the processing on the network gateway node. In this case, a custom
packet dropper was used on the gateway node and 25% of packets were dropped,
resulting in output which contains re-transmitted packets.

(d) The fourth category represents transmission on an unreliable network channel, thus
25% of packets were corrupted during processing on the network gateway node.

7.3.3 Collected Dataset

The class distribution of our collected dataset is depicted in Table 7.1. The table contains
connection entries created from network traffic dumps which were collected during our sce-
narios representing malicious and legitimate network traffic. Notice, the table also includes
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Network Service Count of TCP Connections

Legitimate Direct
Attacks

Obfuscated
Attacks

Summary

Apache 38 102 61 201
BadBlue 95 4 10 109

DCOM RPC 4 4 8 16
Samba 15 20 8 43

Other Traffic 25 n/a n/a 25

Summary 177 130 87 394

Table 7.1: Testing dataset distribution

connection entries created from network dumps captured at campus network. We found
out that high amount of network traffic collected in campus network was malicious. There-
fore, all legitimate traffic representatives captured in campus network were filtered through
SNORT and SURICATA NIDSs in order to eliminate occurrence of known network attacks
in legitimate traffic class. The dataset contains similar number of legitimate traffic repre-
sentatives as attack ones, which is not common in real network traffic but was the result of
filtering legitimate traffic.

7.4 Detection by Signature Based NIDSs

We performed detection by signature-based NIDSs as we wanted to analyze their response
to our proposed obfuscation technique. In 2014, at the time of writing our papers [77, 78],
we performed detection by the most current version of SNORT (with standard rule set),
and inspected the results. Later, in 2016, we repeated NIDS detection by SNORT and
SURICATA (through VirusTotal API) resulting into different detection properties. The
following two subsections state the results of both NIDS analysis.

7.4.1 Detection by SNORT in 2014

For the purposes of signature-based network intrusion detection, we employed SNORT 2.9.4
utilizing rules with version of snapshot 2940. There were replayed few instances of direct
attacks (non-obfuscated) on previously described vulnerable services and SNORT inspected
them. In the result, SNORT detected all attacks instances except the attack on the Apache
web service. In this case, the communication was encrypted, and thus SNORT’s signatures
could not be matched in the payload of packets. SNORT alert messages captured during
replay of direct attacks are listed below:

• BadBlue:

ET SHELLCODE Rothenburg Shellcode
INDICATOR-SHELLCODE x86 OS agnostic fnstenv

geteip dword xor decoder
http_inspect: LONG HEADER
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• DCOM RPC:

ET SHELLCODE Rothenburg Shellcode
INDICATOR-SHELLCODE x86 OS agnostic fnstenv

geteip dword xor decoder
OS-WINDOWS DCERPC NCACN-IP-TCP
IActivation remote activation

overflow attempt

• Samba:

GPL NETBIOS SMB trans2open buffer
overflow attempt

GPL NETBIOS SMB IPC$ share access

Next, we performed replay of our obfuscated attacks on each vulnerable service and there
were not generated any alerts by SNORT NIDS. Therefore, the tunneling obfuscation of
network intrusions was considered completely successful in evading detection by one repre-
sentative of the signature based NIDSs.

7.4.2 Detection by SNORT and SURICATA in 2016

In this stage of our research, we performed NIDS detection by SNORT and SURICATA
through VirusTotal API [191]. SNORT was equipped with Sourcefire VRT ruleset and
SURICATA utilized Emerging Threats ETPro ruleset. Both of them were actualized to
15th of May 2016. The results of direct attacks’ detection by both SNORT and SURICATA
are shown in Table 7.2. Note that 93 direct attacks on Apache service were detected by high
priority rules in both NIDSs but there were also 4 undetected direct attacks which occurred
almost at the same time as some of detected attack instances, and thus we considered them
as part of other detected direct attacks. Also, we can see that 5 instances of direct attacks
were not detected by SNORT nor SURICATA. These 5 instances utilized (c) and (d) network
traffic modifications (see Section 7.3.2) which likely influenced the detection rate of both
NIDSs.

The resulting detection rates of direct attacks look the same in both NIDSs but there were
differences in fired alerts during exploitation of Apache service. Unlike SNORT, SURICATA
did not detect any occurrence of buffer overflow nor shellcode nor remote commad execution,
but instead fired high prioroty alerts related to potencial corporate privacy violation:

ET POLICY
Possible SSLv2 Negotiation in Progress
Client Master Key SSL2_RC4_128_WITH_MD5,

which we decided to consider as correct detection. If we did not consider them as correctly
detected, then SURICATA would not detect any attack on Apache service.

Next, we analyzed the detection properties of obfuscated attacks by both NIDSs and
the results are depicted in Table 7.3, which distinguishes between tunneling obfuscation
performed through HTTP and HTTPS protocols. We can see that average detection
rate per service is much more lower for obfuscated attacks than in the case of direct attacks
detection, and thus tunneling obfuscation was partially capable of evading attacks’ detection
by utilized NIDSs. Regarding tunneling through the HTTP protocol, both SNORT and
SURICATA achieved the same low detection rate for all classes of attacks.
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(a) SNORT

Direct Attacks
Detected Total %

Apache 93 +4 102 95.10%
BadBlue 4 4 100.00%

DCOM RPC 4 4 100.00%
Samba 20 20 100.00%

Overall Detection 125 130 96.15%
ADR∗ per Service 98.77%

∗Average detection rate.

(b) SURICATA

Direct Attacks
Detected Total %

Apache 93 +4 102 95.10%
BadBlue 4 4 100.00%

DCOM RPC 4 4 100.00%
Samba 20 20 100.00%

Overall Detection 125 130 96.15%
ADR∗ per Service 98.77%

∗Average detection rate.

Table 7.2: Detection of direct attacks by SNORT and SURICATA

The situation is little different for the case of tunneling through the HTTPS protocol.
The SNORT achieved average detection rate per class equal to 68.75% and SURICATA
only 23.25%. We found out the same fact about high priority rules fired by SURICATA on
exploitation of Apache service as in the case of direct attacks detection – no buffer overflow
nor shellcode nor remote command execution rules were matched, and thus we accepted
previously mentioned potential corporate privacy violation alert as correct detection again.
If we did not accept it, then SURICATA would not detect any tunneled attack on Apache
service. Also notice that SURICATA fired one non-high-priority alert classified as poten-
tially bad traffic in several instances of attacks tunneled through HTTPS, which exploited
BadBlue, DCOM and Samba services:

ET POLICY
FREAK Weak Export Suite From Client (CVE-2015-0204).

But we did not consider it as correct detection due to the priority of the alert as well as the
scope of CVE-2015-0204 is only the client code of OpenSSL. The plus notation in Table 7.3,
alike Table 7.2, denotes undetected attacks that occurred almost at the same time as some
other correctly detected attacks, and thus are considered as their parts.

The first difference between our NIDS analysis experiments in 2014 and 2016 is that
in latter case SNORT has detected the most of direct attacks on Apache service despite
it was encrypted. This indicates that VirusTotal may utilize very paranoic rule set, which
causes false positives. Thus, the results of the analysis through VirusTotal API are arguable.
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(a) SNORT

Service
Obfuscated Attacks

HTTP HTTPS All
Detected Total % Detected Total % Detected Total %

Apache 0 4 0.00 51 +6 57 100.00 57 61 93.40
BadBlue 3 6 50.00 2 4 50.00 5 10 50.00
DCOM 0 4 0.00 3 4 75.00 3 8 37.50
Samba 0 4 0.00 2 4 50.00 2 8 25.00

Summary 3 18 16.67 64 69 92.75 67 87 77.01
ADR∗ 12.50 68.75 51.49

∗Average detection rate per class.

(b) SURICATA

Service
Obfuscated Attacks

HTTP HTTPS All
Detected Total % Detected Total % Detected Total %

Apache 0 4 0.00 50 +3 57 92.98 53 61 86.89
BadBlue 3 6 50.00 0 4 0.00 3 10 30.00
DCOM 0 4 0.00 0 4 0.00 0 8 0.00
Samba 0 4 0.00 0 4 0.00 0 8 0.00

Summary 3 18 16.67 53 69 76.81 56 87 64.37
ADR∗ 12.50 23.25 29.22

∗Average detection rate per class.

Table 7.3: Detection of obfuscated attacks by SNORT and SURICATA

However, concluding the results of this section, we can state that detection capabilities of
utilized NIDSs are not resistant to our proposed tunneling obfuscation technique, as high
number of obfuscated attacks were not detected in comparison to the case where obfuscations
were not employed.

7.5 Data Processing and Analysis in ADS

All collected data were passed into the data processing and analysis stage of our experiments.
The whole process of data processing and analysis is illustrated in Figure 7.2. There are 3
segments with data flow direction shown from the top to the bottom of the scheme. Empty
boxes represent data as input or output of some processes and filled ovals represent working
components which perform some action. A working component takes input data and outputs
output data. The upper segment represents the input of the whole experiment process and
includes:

• TCP dump files – collected during the simulation of attacks and legitimate commu-
nications.

• Directory structure – it contains information about a kind of simulation (attack or
legitimate), identification of a network service, identification of vulnerability by CVE.

114



• Mapping of services to hosts – it contains the IP addresses of hosts relevant to our
simulations with mapping of the analyzed services to hosts. It included information
about obfuscation tunnel’s endpoints too.

TCP dump files

Mining tool
(RapidMiner)

Classification
accuracy [%]
& other results

TCP dump
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Figure 7.2: Scheme of data processing and analysis

The middle segment of the scheme represents a process of ASNM network feature ex-
traction. Two upper components of this segment serves for parsing TCP dump files with
parallel expert knowledge processing. These two components take all inputs and export
processed data ready for storing into persistent database storage. The next component,
DB importer, enables persisting of processed data. Next, an active component, Connection
extractor, performs the identification of all TCP connections in database. It produces a list
of TCP connection objects with embedded ground truth information. Then, ASNM feature
extraction is performed for each TCP connection by the Metrics extractor component and
the results of this step are values of ASNM features for each TCP connection object in
CSV representation. The last segment of the scheme illustrates the mining and assessment
process, which produces the output results of the analysis. The RapidMiner [157] tool was
employed for our data mining experiments.
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7.6 Data Mining Experiments

In this section, we describe data mining experiments from three classification perspectives
– binominal, trinominal and multi-class. These perspectives reflect the interpretation of
processed data and their ground truth. A communication record in collected and processed
data can either be interpreted as malicious/legitimate communication – in binary represen-
tation – or it can be interpreted as malicious/legitimate communication which distinguishes
between direct and obfuscated attacks – in trinominal representation – or it can be inter-
preted as malicious/legitimate communication at specific network service – in the multi-class
representation. Our multi-class classification includes three classes for each service (result-
ing into 12 classes) plus one class for other captured traffic. The names of classes in the
binominal and trinominal classification experiments are intuitive and indicate legitimate or
malicious behavior of communication records. The identification of classes in a multi-class
case consists of two parts. The first part represents the subclass of the connection specifying
its maliciousness and may contain three labels with an intuitive representation: legitimate
traffic, direct attacks and obfuscated attacks. The second part of the identification indicates
the specific acronym of a service. Every presented experiment employed the Naive Bayes
classifier. Almost all results of experiments were based on the k-fold cross validations of the
classifier. The only exceptions were the first binominal and the first multi-class classifica-
tion experiment, which predicted target labels of previously unknown obfuscated attacks.
There was utilized Forward Feature Selection method (FFS) to find the best features with
emphasis on selection of context-free features, as context-based features were designed to
be applicable in real network traffic conditions, not in synthetic traffic from laboratory
experiments.

7.6.1 Forward Feature Selection

For the purpose of finding the best subset of ASNM features, we performed the FFS method.
FFS started to run with an empty set of features and in each iteration added a new feature
contributing by the best improvement of average recall of all classes. The average recall of
all classes was computed using the underlying 5-fold cross validation method employing the
Naive Bayes classifier. The experiment considered two class prediction – the first for legiti-
mate traffic and the second for intrusive traffic. Therefore, the classifier did not distinguish
between obfuscated and direct attacks, and they were represented by the same class.

Some features existed which were inconvenient for comparison of synthetic attacks with
legitimate traffic captured in real network, therefore, such features were removed from the
dataset in the preprocessing phase of our experiments. The examples include: TTL based
features, IP addresses, ports, MAC addresses, occurrence of source/destination host in mon-
itored local network, context-based features etc.

The utilized FFS method allowed the acceptance of one iteration without improvement,
as we wanted to alleviate the possibility of the selection process becoming stuck in local
extremes. The experiment consisted of two executions of the FFS. The first took as input
just legitimate traffic and direct attack entries, and represented the case where ADS was
trained without knowledge about obfuscated attacks. The second execution took as input
the whole dataset of network traffic – consisting of legitimate traffic, direct attacks as well
as obfuscated ones, and therefore, represented the case where ADS was aware of obfuscated
attacks. The selected features of both executions are depicted in Table 7.4. The penultimate
column of the table (i.e., FFS DOL) denotes the selected features where the whole dataset
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Feature ID Description F
F
S
D
O
L

F
F
S
D
L

SigPktLenIn • Std. deviation of inbound (server to client) packet sizes. X
ConTcpFinCntIn • The number of TCP FIN flags occurred in inbound traffic. X X
ConTcpSynCntIn • The number of TCP SYN flags occurred in inbound traffic. X X
InPktLen32s10i[0] • Lengths of inbound packets occurred in the first 32 seconds

of a connection which are distributed into 10 intervals. The
feature represents totaled inbound packet lengths of the 1st
interval.

X

InPktLen1s10i[2] • The same as the previous one, but computed above the
first second of a connection. The feature represents totaled
inbound packet lengths of the 3rd interval.

X

InPktLen8s10i[7] • The same as the previous one, but computed above the first
8 seconds of a connection. The feature represents totaled
inbound packet lengths of the 8th interval.

X

OutPktLen1s10i[0] • Lengths of outbound (client to server) packets occurred in
the first second of a connection which are distributed into 10
intervals. The feature represents totaled outbound packet
lengths of the 1st interval.

X

FourGonAngleN[9]∗ • Fast Fourier Transformation (FFT) of all packet sizes. The
feature represents the angle of the 10th coefficient of the FFT
in goniometric representation.

X X

InPktLen8s10i[1] • Lengths of inbound packets occurred in the first 8 seconds
of a connection which are distributed into 10 intervals. The
feature represents totaled inbound packet lengths of the 2nd
interval.

X

PolyInd8ordOut[5] • Approximation of outbound packet lengths in index do-
main by polynomial of 8th order. The feature represents 6th
coefficient of the polynomial.

X

PolyInd8ordIn[5] • Approximation of inbound packet lengths in index domain
by polynomial of 8th order. The feature represents 6th co-
efficient of the polynomial.

X

∗Sizes of inbound and outbound packets are represented by negative and positive values,
respectively.

Table 7.4: ASNM features selected by FFS method

was utilized for the FFS, and the last one (i.e., FFS DL) denotes the case where only direct
attacks and legitimate traffic were taken into account. We have noticed that the final model
of the FFS DL case has achieved average recall of classes equal to 99.71%±0.57% as well as
99.67%± 0.66% accuracy in comparison to the FFS DOL case in which average recall equal
to 99.49% ± 0.64% and accuracy of 99.49% ± 0.62% has been achieved, indicating that it
has been a little difficult to train the classifier with inclusion of obfuscated attacks unlike
the case not considering them.
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Several mutual features were selected in both cases which means they provided a value
regardless of whether obfuscation was performed or not. Almost all of the following experi-
ments will utilize the feature set gained from the second execution (i.e., FFS DOL), as we
consider them as more appropriate for general behavior representation of both kinds of at-
tacks. The only exceptions are the first binominal, two of the trinominal and the first of the
multi-class experiments, which will be described and marked in the following subsections.

7.6.2 Binominal Classification

First, we executed the experiment which performed detection of malicious obfuscated traffic
by the classifier trained on direct attacks and legitimate traffic only. It represented the
situation when ADS had no previous knowledge about obfuscated attacks, and therefore we
utilized FFS DL feature set. As the result, only 35.63% (31 of 87) of obfuscated attacks
were correctly detected by the current model of the classifier, and thus average recall and
classification accuracy of the classifier were equal to 67.53% and 78.41%, respectively. An
associated confusion matrix is depicted in Table 7.5. We realized that 64.36% of obfuscated

Classification Accuracy: True Class Precision
78.41% Legit. Flows Obfus. Attacks

Predicted
Class

Legit. Flows 176 56 75.86%
Obfus. Attacks 1 31 96.88%

Recall 99.44% 35.63% F1 = 52.10%

Table 7.5: Detection of unknown obfuscated attacks by binominal classifier

attacks were incorrectly predicted as legitimate traffic, and thus caused evasion of the ADS
classifier.

Our second binominal classification experiment considered explicit information about
obfuscated attacks in training phase of the classifier. Therefore, we validated the classifier
by direct and obfuscated attacks labeled as one class. FFS DOL feature set was utilized for
the purpose of this experiment. The resulting confusion matrix with performance measures
is shown in Table 7.6. The outcome of this experiment indicates a high class recall, pre-
cision, F1 -measure and classification accuracy of the model trained with knowledge about
obfuscated attacks.

Classification Accuracy: True Class Precision
99.49% ± 0.62% Legit. Flows All Attacks

Predicted
Class

Legit. Flows 176 1 99.44%
All Attacks 1 216 99.54%

Recall 99.44% 99.54% F1 = 99.54%

Table 7.6: Reference confusion matrix

The third binominal classification experiment differs from the previous one in the as-
sumption: obfuscated attacks or direct attacks can be undetected by ADS, and thus can be
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(a) Obfuscated attacks labeled as legitimate traffic

Classification Accuracy: True Class Precision
96.45% ± 2.82% Legit. Flows Direct Attacks

Predicted
Class

Legit. Flows 256 6 97.71%
Direct Attacks 8 124 93.94%

Recall 96.97% 95.38% F1 = 94.65%

(b) Direct attacks labeled as legitimate traffic

Classification Accuracy: True Class Precision
93.65% ± 1.40% Legit. Flows Obfus. Attacks

Predicted
Class

Legit. Flows 298 16 94.90%
Obfus. Attacks 9 71 88.75%

Recall 97.07% 81.61% F1 = 85.03%

Table 7.7: Neutralization of obfuscated/direct attacks

experimentally considered as legitimate traffic. We performed this assumption by neutral-
ization of the target malicious class – labeling it as legitimate. Accordingly, we performed
two validations: the first contained legitimate labels for obfuscated attack instances and the
second one contained legitimate labels for direct attack instances. The achieved results are
depicted in Table 7.7.

We can observe, that in the case of obfuscated attack class neutralization (Table 7.7a),
it was less difficult to train the classifier with relabeled classes than in the case of direct
attack class (Table 7.7b), which reveals that obfuscated attacks class may have more similar
characteristics with legitimate traffic than direct attacks may have. The performance results
of the third experiment are lower in comparison with reference confusion matrix (Table 7.6),
which indirectly indicates that obfuscated and direct attack classes have different statistical
and behavioral characteristics than legitimate traffic has. This result represents simple
form of randomization testing of the null hypothesis saying: binominal classifier is able to
distinguish between malicious and legitimate traffic. The outcome of the experiment accepts
the null hypothesis, as classifier trained on rearranged labels achieved worse performance
than original one.

7.6.3 Trinominal Classification

In trinominal classification experiments, connection records were divided into 3 classes:
direct attacks, obfuscated attacks and legitimate traffic. Firstly, we tested the classifier,
previously trained on direct attacks and legitimate traffic utilizing FFS DL feature set, on
the whole dataset including obfuscated attacks. The resulting confusion matrix representing
the result of prediction is depicted in Table 7.8. We expected the results to be very similar
as in the first binominal experiment (Table 7.5). We can see that only 33.33% of obfuscated
attacks (29 of 87 instances) were predicted as direct attacks, and thus our expectation was
fulfilled. Little difference, in comparison with binominal experiment, might be caused by
nuance in randomness of validation process. All obfuscated attacks predicted as legitimate
traffic (58 instances) caused evasion of the ADS classifier. Thus, this experiment shows
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Classification Accuracy: True Class
PPV (Ci)PPV (Ci)PPV (Ci) F1(Ci)F1(Ci)F1(Ci)

77.66% Legit.
Flows

Direct
Attacks

Obfus.
Attacks

Predicted
Class

Legit. Flows 176 0 58 75.21% 85.64%
Direct Attacks 1 130 29 81.25% 89.65%
Obfus. Attacks 0 0 0 0.00% 0.00%

Recall 99.44% 100.00% 0.00%

Table 7.8: Prediction of unknown obfuscated attacks by trinominal classifier

once again that ADS classifier is not able to correctly distinguish/predict obfuscated attacks
without previous knowledge about them.

Later, we utilized FFS DOL feature set obtained by binominal FFS as well as we executed
FFS with 3 class labels. The confusion matrices with achieved performance measures are
shown in Table 7.9. As we expected, better performance results were achieved by new

(a) FFS DOL feature set

Classification Accuracy: True Class
PPV (Ci)PPV (Ci)PPV (Ci) F1(Ci)F1(Ci)F1(Ci)

95.18% ± 1.85% Legit.
Flows

Direct
Attacks

Obfus.
Attacks

Predicted
Class

Legit. Flows 174 3 2 97.21% 97.75%
Direct Attacks 1 122 6 94.57% 94.20%
Obfus. Attacks 2 5 79 91.86% 91.32%

Recall 98.31% 93.85% 90.80%

(b) Feature set obtained from FFS considering 3 labels

Classification Accuracy: True Class
PPV (Ci)PPV (Ci)PPV (Ci) F1(Ci)F1(Ci)F1(Ci)

97.97% ± 0.63% Legit.
Flows

Direct
Attacks

Obfus.
Attacks

Predicted
Class

Legit. Flows 173 0 1 99.43% 98.57%
Direct Attacks 2 127 0 98.45% 98.06%
Obfus. Attacks 2 3 86 94.51% 96.63%

Recall 97.74% 97.69% 98.85%

Table 7.9: Trinominal classification

run of FFS method which considered 3 class labels, and thus it selected different features
more appropriate for trinominal classification. But on the other hand, very plausible results
were reached by FFS DOL feature set as well, which even approved them as appropriate for
distinction between attack classes.

7.6.4 Multi-class Classification

Our multi-class experiment was performed with explicit information about obfuscated at-
tacks and utilized the whole dataset. We performed validation of classifier utilizing FFS
DOL feature set as well as we executed FFS method considering multi-class labels. Results
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Table 7.10: Multi-class classification – FFS DOL features

of the 3-fold cross validation of the classifier on FFS DOL feature set are depicted in Table
7.10 and the results obtained from new run of FFS method are shown in Table 7.11.
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Table 7.11: Multi-class classification – FFS considering 13 labels

Mean recall of classes obtained from cross validation run was equal to 80.46% ±3.26% in the
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case of FFS DOL features and 94.87% ±2.06% in the case of new FFS run. Alike trinominal
experiment, we obtained better performance in the case of new FFS run. However, FFS
DOL features achieved very plausible results again.

7.6.5 Comparison of Various Classifiers

For the purpose of performance comparison of various classifiers, we executed 5-fold cross
validation on the next two classification models – Decision Tree and SVM. FFS DOL feature
set was utilized in this experiment as the input for the classifiers working with two class
prediction. At first, we evaluated performance of the SVM classifier which utilized radial
basis function as non-linear kernel function. The adjacent confusion matrix is depicted in
Table 7.12.

Classification Accuracy: True Class Precision
80.96% ± 3.51% Legit. Flows All Attacks

Predicted
Class

Legit. Flows 176 74 70.40%
All Attacks 1 143 99.31%

Recall 99.44% 65.90% F1 = 79.22%

Table 7.12: Performance of the SVM classifier

The next experiment was performed with Decision Tree classifier, which utilized gini
index as selection criterion for splitting of attributes. The adjacent result is represented by
confusion matrix in Table 7.13. The results of both performance evaluation experiments

Classification Accuracy: True Class Precision
95.93% ± 2.47% Legit. Flows All Attacks

Predicted
Class

Legit. Flows 169 8 95.48%
All Attacks 8 209 96.31%

Recall 95.48% 96.31% F1 = 96.31%

Table 7.13: Performance of the Decision Tree classifier

can be compared to the result of Naive Bayes classifier represented by reference confusion
matrix in Table 7.6. Considering average recall of all class and F1 -measure as the most
credible performance measures, we can say that the Naive Bayes classifier achieved the best
results, following by Decision Tree, and finally by SVM.

All the classification models were compared by ROC method. Considering neutral bias,
the most interesting configuration of classifier was achieved by Naive Bayes classifier. ROC
diagram with neutral bias is depicted in Figure 7.3. Note that comparing of ROC ran
above cross validation method, and thus generated certain variability, which is shown by
line-adjacent transparent areas.
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Figure 7.3: ROC diagram comparing classifiers

7.7 Analysis of Network Traffic Characteristics

ASNM [76] features of AIPS and discriminators features of A. Moore [119] are utilized
for the analysis of network traffic characteristics. Representative example depicting the
traffic flow differences between tunneled and direct malicious traffic is Samba service whose
network traffic flow is illustrated in Figure 7.4. The positive sign on the y axis denotes
direct malicious traffic and negative sign represents obfuscated (tunneled) one.It is obvious
that tunneling obfuscation may change many network traffic characteristics of direct attack,
e.g. the number of incoming and outgoing packets, the size of them, various packet header
fields.

We examined the value density distribution of each feature with emphasis on distinctive-
ness of obfuscated and direct malicious traffic. For the purpose of value density examination
among TCP connections of our dataset, we utilized kernel density estimation with Gaussian
kernels. However, we performed value density examination by frequency analysis in some
features because of their clearer interpretation. We selected some features presenting the
interesting characteristics of each network traffic class. At first, we present discriminating
features enabling good malicious and legitimate traffic separation. Further, we present
obfuscated features representing specific characteristics of obfuscated attacks which are
similar to legitimate traffic, making the detection of such obfuscated attacks more compli-
cated from the view of ADS which does not have any previous knowledge about obfuscated
attacks.
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Figure 7.4: Traffic flows of direct and tunneled attack on Samba service

7.7.1 Discriminating Features

The first discriminating feature, which we present, is standard deviation of packet lengths
from server to client in the TCP communication (SigPktLenIn). The Gaussian kernel
density estimation of this feature is shown in Figure 7.5. The obvious observation of the
figure is that both of the attack classes have different values than the most of legitimate
traffic representatives. There can be seen two value ranges of the legitimate traffic: 〈50, 150〉
and 〈600, 750〉 – in Figure, while in the case of attacks there is one significant value range
〈350, 450〉 and two less significant: 〈0, 80〉 and 〈200, 300〉. Notice, that feature does not have
clear discriminating property in the range 〈0, 80〉, however, more important are previously
mentioned ranges, as they can be used for distinction between both network traffic classes
in the majority of their instances. Also, regarding FFS experiment, we can see that this
feature was selected into FFS DOL set (see Table 7.4).

The maximum segment size observed during a lifetime of a connection in outbound
direction (81/max_segm_size_a_b) is the next example of the current category of features.
The histogram of the feature is shown in Figure 7.6. Values of the feature are very similar
for obfuscated and direct attack classes in the most of instances, while values of legitimate
traffic can be recognized in two intervals: 〈150, 180〉 and 〈350, 460〉. Thus, there are value
density differences between attack classes and legitimate traffic class.

The next interesting feature, representing the current group, is the average segment size
observed during the lifetime of the connection in inbound direction (86/avg_segm_size_b_a).
The Gaussian kernel density estimate of the feature is depicted in Figure 7.7. The majority
of malicious and legitimate traffic can be distinguished by the feature.

Another interesting feature from actual group represents the Fast Fourier Transformation
(FFT) of lengths of packets transmitted from server to client (FourGonModulIn[1]). The
Gaussian kernel density estimation of this feature is illustrated in Figure 7.8. Notice that
this feature represents the modul of the second frequency of FFT and has goniometric
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Figure 7.5: Standard deviation of inbound packet lengths
(SigPktLenIn)

representation. It shows the highest discrimination rate for malicious traffic in the range
of values 〈900, 1500〉. The most difficult is to distinguish between legitimate and malicious
traffic in the interval of values 〈0, 600〉, but for this purpose, the feature can be combined
with another one which may help for recognition.

One of the last examples belonging into the current category of discriminating features
is distribution of lengths of inbound packets occurred in the first 32 seconds of a connection
(InPktLen32s10i[0]). Gaussian kernel density estimation of the feature can be found in
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Figure 7.6: Maximum TCP segment size from client to server
(81/max_segm_size_a_b)
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Figure 7.8: FFT of packet lengths from server to client
(FourGonModulIn[1])

Appendix G.1. Finally, the last two identified representatives of this category are FFT
of packet lengths in both directions of a connection (FourGonAngleNeg[9]) – the feature
represents the 10th frequency of FFT; and normalized sum of products of all packet lengths
of a connection with 8 Gaussian curves (GaussProds8AllNeg[7]) – the feature represents
the 8th normalized sum of products with Gaussian curves. Both features consider packet
lengths from client to server as positive values and opposite lengths as negative ones. The
Gaussian kernel density estimations of these two features can be found in Appendix G.1.
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7.7.2 Obfuscated Features

The second group of features aims on distinctiveness of network attacks performed by tun-
neling obfuscation technique, which in the optimal case, leads to similar characteristics as
legitimate traffic has. The first example of this group is the FFT of Inter Arrival Time
(IAT) of all traffic in a connection (222/FFT_all_#4). The histogram of this feature is
shown in Figure 7.9. This feature represents just the magnitude of the fourth frequency of
approximation by FFT. The most important result shows similar values of tunneled attack
instances and legitimate traffic instances, which can be considered as successful obfuscation
of malicious traffic imitating the behavior of legitimate traffic in several instances. Another
observation shows differences between the majority of tunneled attacks instances and direct
attack instances, resulting into fair discrimination between these two attack classes.
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Figure 7.9: FFT of IAT for all traffic in a connection
(222/FFT_all_#4)

The Gaussian kernel density estimation of the feature representing FFT of packet lengths
is illustrated in Figure 7.10. The feature denotes the angle of goniometric representation
of the 8th frequency of FFT (FourGonAngleOut[7]). The important observation of this
figure is specific value distribution of direct attacks instances as well as value distribution
of tunneled attacks similar to legitimate traffic’s distribution. This disables to detect ob-
fuscated attacks among legitimate traffic and direct attacks by this feature without having
any additional information about them. The same statements can be claimed about feature
representing the number of transferred packets from client to server during a connection
(PktPerSesOut), which is illustrated in Figure 7.11. The next example belonging into the
current category of obfuscated features is approximation of communication from client to
server by polynomial of 8 order in the index domain of packets (PolyInd8ordOut[3]). The
feature represents the 4th coefficient of the approximation. Gaussian kernel density estima-
tion of this feature can be found in Appendix G.2. The last two identified representatives
of this category are lengths of outbound packets occurred in the first 4 and 3 seconds of
a connection, respectively. Both of them can be found in Appendix G.2.
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Figure 7.10: FFT of packet lengths from client to server
(FourGonAngleOut[7])
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Figure 7.11: The number of transferred packets from client to server
(PktPerSesOut)

7.8 Concluding Remarks

In this chapter, we presented obfuscation of malicious network traffic by tunneling in HTTP
and HTTPS protocols. The main reason of the proposed malicious traffic obfuscation was to
imitate the characteristics of the legitimate traffic by the malicious traffic and to show low
detection capabilities of NIDSs and ADSs. There were utilized advanced network features
in contrast with tunneling obfuscation stated in state-of-the-art paper [56]. We analyzed
only network services vulnerable to buffer overflow attacks, which have many characteristics
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common. Therefore, the generalization of our results is very likely for this category of
malicious network traffic.

We performed exploitation of chosen services with a direct approach and by employ-
ing our proposed obfuscation. Also, we performed legitimate traffic simulation as well as
a capture of real network traffic in order to balance malicious and legitimate traffic class
representatives. All simulations of malicious and legitimate traffic were performed in four
network modifications, which simulated traffic shaping, traffic policing and transmission on
an unreliable network channel, and thus helped to emulate real network traffic conditions.
The achieved results showed low detection rate of obfuscated attacks by our ADS trained
on direct attacks and legitimate traffic only; in contrast with high classification perfor-
mance in the case it was trained with knowledge about obfuscated attacks. Therefore, the
assumptions from Subsection 7.1.1 were confirmed.

Further, we examined interesting characteristics of tunneled and direct network attacks.
Observed characteristics were divided into two categories. The first one, called discriminat-
ing features, has properties which are useful in detection phase of malicious network traffic.
These features can help us in distinguishing between legitimate traffic class and malicious
traffic class. The later category called obfuscated features, represents features which were
significantly influenced by our tunneling obfuscation technique, and therefore, cannot be di-
rectly used to distinguish between malicious and legitimate traffic. Examples of this feature
group serve as prove of obfuscations success.

Moreover, several experiments with signature-based NIDSs – SNORT and SURICATA
– were performed and achieved results show high detection rate of direct attacks by both
NIDS, while detection rate of obfuscated attack was poor (considering standard rule set of
SNORT).
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Chapter 8

Non-payload-based Network
Obfuscation Techniques

Although non-payload-based evasions of network attacks in the area of intrusion detection
were considered as an actual research subject more than one and half decade ago [66, 139,
140], it turned out to be important to study a few years ago as well [19]. There are several
related works considering non-payload-based evasions of network attacks for payload-based
intrusion detection, however, there is a lack of works performing investigations into non-
payload-based network behavior anomaly detection and this kind of evasion.

Exploitation of several vulnerable network services is performed in a virtual network
environment by employing of non-payload-based obfuscations of malicious network traffic.
Captured data is examined by NIDSs SNORT and SURICATA as well as by the ASNM
network features and a supervised classifier. The goal of this chapter is to train a classifier
to be aware of the behavior of obfuscated attacks, and thus correctly predict other similar
obfuscated attacks. In this chapter, ASNM features and a supervised classifier represent
ADS detection engine.

The obfuscation techniques leveraged in the chapter are based on non-payload-based
modifications of connection-oriented communications accomplished by NetEm [73] utility
and ifconfig [80] Linux command. The next purpose of this chapter is to analyze dis-
criminating characteristics of network attacks also containing obfuscated representatives in
contrast with legitimate traffic ones. The obfuscation tool and techniques which are pre-
sented in this chapter were designed in Master’s thesis [185] of Martin Teknös which was
created under my supervision.

8.1 Network Traffic Normalizers

Generally, to face the non-payload-based obfuscations, and thus possible evasions, IDSs uti-
lize network normalizers which aim to eliminate impact of such evasions by transformation
of network traffic by several rules unifying the network flow. However, issues with perfor-
mance and platform dependency of the normalizers, as well as differences between various
implementations, were described. Because of the shortcomings of network normalizers, their
usage in a network can result in side-effects and can even be prone to various attacks, e.g.
state holding and CPU overload [53, 132, 168]. Thus, we specify the next goal of this
chapter which is based on the previous facts about network normalizers: investigation of
network normalizer’s exigency in our ADS. Experimentally, this chapter does not consider
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a normalizer of network traffic, instead considers traffic without application of proposed ob-
fuscations as normalized one. Similarly, network traffic containing some non-payload-based
obfuscations is considered as un-normalized one.

8.2 Method Description

This section formally describes data exchanges over network channel followed by explanation
of non-payload-based obfuscations, which aim to modify the behavioral characteristics of
intrusive communication in a way of having different characteristics from original malicious
network traffic.

Consider a session of a protocol at the application layer of the TCP/IP stack which
serves for data transfer between the parts of client/server based application. The data is
transferred in both directions one by one in succession:

C.delivers(dC [1], S),

S.delivers(dS [1], C),

...
C.delivers(dC [q], S),

S.delivers(dS [q], C),

(8.1)

where C, S, q, delivers, dC [i] and dS [i] denote the client, the server, the number of data
exchanges of the session, the method of delivering data from client to server (and vice versa),
i−th sentence of application protocol’s data passed from client to server where i ∈ {1, . . . , q}
and vice versa, respectively.

The interpretation of the previous application data exchanges between client and server
can be formulated, considering the TCP/IP stack up to the transport layer, by connection
k which is constrained to connection oriented protocol TCP at L4, internet protocol IPv41

at L3 and Ethernet protocol at L2 layers of the TCP/IP stack. The TCP connection k is
represented by the tuple k = (ts, te, pc, ps, ipc, ips, Pc, Ps). Consider interpretation of tuple
symbols from Table 5.2. Sets Pc and Ps contain a number of packets, where each of them can
be interpreted by the packet tuple p = (t, size, ethsrc, ethdst, ipoff , ipttl, ipp, ipsum, ipsrc,
ipdst, ipdscp tcpsport, tcpdport, tcpsum, tcpseq, tcpack, tcpoff , tcpflags, tcpwin, tcpurp, data).
Symbols stated in the packet tuple were described in Table 5.1.

8.2.1 Definition of Non-payload-based Obfuscations

Consider feature extraction process of ASNM described in Section 5.2, and for simplicity,
do not consider context of an analyzed connection as well as optional arguments of fea-
ture extraction functions. Assume connection ka representing an intrusive communication
executed without any obfuscation. Then, ka can be represented by ADS features

f(ka) 7→ F a = (F a1 , F a2 , . . . , F
a
n ) (8.2)

which are delivered to the previously trained classifier C. Assume that C can correctly
predict the target label as an intrusive one, because its knowledge base is derived from

1Our description and experiments are related to only IPv4 traffic, as we assume that substantial behav-
ioral characteristics of IPv4 and IPv6 traffic are very similar.
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training datasetDtr containing intrusive connections having similar (or the same) behavioral
characteristics.

Now, consider connection k′a which represents intrusive communication ka executed by
employment of non-payload-based obfuscations aimed at modification of its network be-
havioral properties. The obfuscations can modify Pc and Ps packet sets of the original
connection ka by insertion, removal and transformation of the packets. Symbols of a packet
tuple whose values are sensitive to the obfuscations include: t, size, ipoff , ipsum, tcpsum,
tcpseq, tcpack, tcpoff , tcpflags, tcpwin, tcpurp and data. 2 The modifications of Pc and Ps of
the connection ka can cause alteration of the original ADS features’ values F a to new ones.
Thus, ADS features extracted over k′a are represented by

f(k′a) 7→ F a
′

= (F a
′

1 , F a
′

2 , . . . , F
a′
n ) (8.3)

and have different values than features F a of the connection ka. Therefore, we assume
that the probability of a correct prediction of k′a-connection’s features F a

′ by the previously
assumed classifier C is lower than in the case of connection ka. Also, we assume that
classifier C ′ trained by learning algorithm A on training dataset D′tr, containing obfuscated
intrusion instances, will be able to correctly predict higher number of unknown obfuscated
intrusions than classifier C. These assumptions will be evaluated and analyzed later.

8.3 Obfuscation Tool

We designed and implemented a tool for automatic exploitation of network services which
is able to perform various obfuscation techniques based on NetEm utility and ifconfig Linux
command. Execution of direct attacks (non-obfuscated ones) is also supported by the tool
as well as capturing network traffic related to the attacks. The tool can restore all modified
system settings and consequences of attacks on a compromised machine. The behavioral
state diagram of the obfuscation tool is depicted in Figure 8.1. After successful execution of
each specified obfuscation of selected attack, the output directory contains several network
traffic dumps associated with the obfuscations.

8.3.1 Supported Obfuscation Techniques

Several obfuscation techniques are proposed which are able to influence network flow charac-
teristics at network and transport layers of the TCP/IP stack. Table 8.1 presents instances
of these techniques and contains appropriate empirically recognized parameters. It had been
experimented with various parameter values until attacks could be successfully performed
and appropriate divergent behavior had been achieved.

8.3.2 Implementation Notes

The obfuscation tool is based on third party open source tools and is written in python
programming language. For the purpose of an automatic attack execution, a utility from
Metasploit framework [113] called msfconsole, is used. Tcpdump [183] tool is chosen to
perform network traffic capture between the attacker’s machine and the legitimate one.

2Notice, the data field is sensitive to the obfuscations only in the manner of damaging or splitting the
original packet’s data.
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Figure 8.1: Behavioral state diagram of the obfuscation tool

The most suggested obfuscations are performed by tc [89] utility and its extension NetEm
[73], respectively. NetEm enables us to add latency of packets, loss of packets, duplication
of packets, reordering of packets and other outgoing traffic characteristics of the selected
network interface. The modification of MTU is performed by the linux utility ifconfig [80].
The tool supports an automatic snapshot restoring of a compromised machine by use of the
vboxmanage [127] utility. Also, the tool supports adjustment of special restoring procedure
for each attack.
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Technique Instance ID

Spread out packets
in time

• constant delay: 1s (a)
• constant delay: 8s (b)
• normal distribution of delay with 5s mean 2.5s standard devia-
tion (25% correlation)

(c)

Packets’ loss • 25% of packets (d)

Unreliable network
channel simulation

• 25% of packets damaged (e)
• 35% of packets damaged (f)
• 35% of packets damaged with 25% correlation (g)

Packets’ duplica-
tion

• 5% of packets (h)

Packets’ order
modification

• reordering of 25% packets; reordered packets are sent with 10ms
delay and 50% correlation

(i)

• reordering of 50% packets; reordered packets are sent with 10ms
delay and 50% correlation

(j)

Fragmentation

• MTU 1000 (k)
• MTU 750 (l)
• MTU 500 (m)
• MTU 250 (n)

Combinations

• normal distribution delay (µ = 10ms, σ = 20ms) and 25% corre-
lation; loss: 23% of packets; corrupt: 23% of packets; reorder: 23%
of packets

(o)

• normal distribution delay (µ = 7750ms, σ = 150ms) and 25%
correlation; loss: 0.1% of packets; corrupt: 0.1% of packets; dupli-
cation: 0.1% of packets; reorder: 0.1% of packets

(p)

• normal distribution delay (µ = 6800ms, σ = 150ms) and 25%
correlation; loss: 1% of packets; corrupt: 1% of packets; duplica-
tion: 1% of packets; reorder 1% of packets

(q)

Table 8.1: Experimental obfuscation techniques with parameters
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8.4 Virtual Network Infrastructure

We utilized a virtual private network environment for network vulnerability exploitation
because of legal aspects related to this research. VirtualBox [128] virtualization tool was
utilized for this purpose. Virtual network infrastructure used in our research is shown in

Internet

Kali Linux

Metasploitable Metasploitable 2

Windows XP SP3

Figure 8.2: Testing network infrastructure

Figure 8.2. All virtual machines (VM) were configured with private static IP addresses in
order to ensure easy automatization of the whole exploitation process. Snapshots of all
VMs were taken in order to ensure consistent post attack recovery. Our testing network
infrastructure consisted of the attacker’s machine equipped with Kali Linux 1.1.0 and vul-
nerable machines which were running Metasploitable 1, 2 and Windows XP with Service
Pack 3 (WinXPSP3). WinXPSP3 had Microsoft SQL Server 2005 installed and the firewall
disabled. Metasploitable [146] machines represented publicly available vulnerable Linux
machines serving for penetration testing purposes and validation of security tools.

8.4.1 Chosen Vulnerabilities

Network intrusion attacks were executed on various available vulnerable network services.
The selection of the services was aimed at the high severity of their successful exploita-
tion leading to remote shell code execution through established backdoor communication.
The following listing contains a brief description of vulnerable services considered in our
experiments. CVE IDs [123] with CVSS [124] values are shown in square brackets:3

• Apache Tomcat 5.5
[CVE-1999-0502: 7.5; CVE-2009-3843: 10.0] – firstly, a dictionary attack was executed
in order to obtain access credentials into the application manager instance [156]. Fur-
ther, the server’s application manager was exploited for transmission and execution of
malicious code [143].

• Microsoft SQL Server 2005
[CVE-1999-0506: 7.2; CVE-2000-1209: 10.0] – a dictionary attack was employed to
obtain access credentials of MSSQL user [149] and then the procedure xp_cmdshell
enabling the execution of an arbitrary code was exploited [148].

3In those cases when there is more CVE and CVSS scores present, the order of their exploitation matches
with the order stated in the description.
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• Samba 3.0.20-Debian
[CVE-2007-2447: 6.0] – vulnerability in Samba service enabled the attacker of arbi-
trary command execution which exploited MS-RPC functionality when configuration
username map script [155] was allowed. There was no need of authentication in this
attack.

• Server service of Windows XP
[CVE-2008-4250: 10.0] – the service enabled the attacker of arbitrary code execution
through crafted RPC request resulting into stack overflow during path canonicalization
[147].

• PostgreSQL 8.3.8
[CVE-1999-0502: 7.5; CVE-2007-3280: 9.0] – a dictionary attack was executed in order
to obtain access credentials into the PostgreSQL instance [151]. Standard PostgreSQL
linux installation had write access to /tmp directory and it could call user defined
functions (UDF) which utilized shared libraries located on an arbitrary path (e.g.
/tmp). An attacker exploited this fact and copied its own UDF code to /tmp directory
and then executed it [150].

• DistCC 2.18.3
[CVE-2004-2687: 9.3] – vulnerability enabled the attacker remote execution of an ar-
bitrary command through compilation jobs which were executed on the server without
any permission check [145].

8.4.2 Collected Network Traffic Dataset

Our obfuscation tool was employed for automatic exploitation of the described vulnerable
services and the capturing of related intrusive network traffic. Legitimate network traffic was
collected from two sources. The first source represented legitimate traffic simulation in our
virtual network architecture which also employed non-payload-based obfuscations for the
purpose of real network simulation. As the second source, common usage of all previously
mentioned services was captured in real network, and all traffic was anonymized and filtered
by signature based NIDS Suricata [178] and SORT [160] through Virus Total API [191]. The
final dataset is summarized in Table 8.2. Notice, that dataset contains higher number of
legitimate traffic representatives than malicious one, which is also common in real network
conditions.

8.5 Detection by Signature Based NIDS

In this section, the detection by signature-based NIDSs was performed because we wanted
to analyze their detection capabilities to our proposed obfuscation techniques in similar
manner like we did in Section 7.4. There were investigated detection results of SNORT and
SURICATA NIDSs (through VirusTotal API [191]) equipped by rules of the same version
as in the tunneling obfuscation experiments.

First, we let NIDSs to inspect direct attacks exploiting our current network vulnera-
bilities. The results of the inspection summarize the detection properties of SNORT and
SURICATA, and are depicted in Table 8.3. Regarding to mutual comparison of SNORT’s
and SURICATA’s detection capabilities, we can see that SNORT overcame SURICATA and
correctly detected 100.00% of direct attacks. Notice that only 33 direct attack instances on
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Network Service Count of TCP Connections

Legitimate Direct
Attacks

Obfuscated
Attacks

Summary

Apache Tomcat 34 57 164 255
DistCC 100 10 23 133
MSSQL 75 31 103 209

PostgreSQL 42 13 45 100
Samba 4635 18 43 4696
Server 3339 26 102 3467

Other Traffic 144 n/a n/a 144

Summary 8369 155 480 9004

Table 8.2: Testing dataset distribution

(a) SNORT

Direct Attacks
Detected Total %

Apache Tomcat 33 +24 57 100.00
DistCC 10 10 100.00
MSSQL 31 31 100.00

PostgreSQL 13 13 100.00
Samba 18 18 100.00
Server 26 26 100.00

Overall Detection 155 155 100.00
ADR∗ per Service 100.00

∗Average detection rate.

(b) SURICATA

Direct Attacks
Detected Total %

Apache Tomcat 56 +1 57 100.00
DistCC 0 10 0.00
MSSQL 31 31 100.00

PostgreSQL 0 13 0.00
Samba 0 18 0.00
Server 26 26 100.00

Overall Detection 114 155 73.55
ADR∗ per Service 50.00

∗Average detection rate.

Table 8.3: Detection of direct attacks by SNORT and SURICATA
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Apache service were detected by high priority rules of SNORT and 24 attacks were unde-
tected. Despite of it, we considered these attacks as correctly detected, as they occurred
almost at the same time like other correctly predicted direct attacks instances, and thus
were part of their execution. In the case of SURICATA, only one such undetected direct
attack occurred. However, unlike SNORT, SURICATA did not fire any alert representing
buffer overflow nor shellcode nor remote commad execution, but instead fired combination
of high priority alerts related to potential corporate privacy violation:

• ET POLICY
Incoming Basic Auth Base64 HTTP
Password detected unencrypted

• ET POLICY
Outgoing Basic Auth Base64 HTTP
Password detected unencrypted

• ET POLICY
HTTP Request on Unusual Port Possibly Hostile

• ET POLICY
Internet Explorer 6 in use
Significant Security Risk,

which we decided to consider as correctly detected. If we did not consider them as correctly
detected, then SURICATA would not detect any attack on Apache service.

Next, we analyzed detection capabilities of both NIDSs on obfuscated attacks and the re-
sults are depicted in Table 8.4. Comparing the detection rate of SNORT and SURICATA on
obfuscated attacks, we can conclude that SNORT overcame SURICATA again and the ratio
of their correct detection was almost the same as in the case of direct attacks (Table 8.3).
The only difference happened during exploitation of vulnerability in Server service, where 2
instances of obfuscated attacks were not detected by any NIDS. These 2 instances utilized
obfuscations with IDs (f) and (g), both from category of unreliable network traffic chan-
nel simulation techniques (see Table 8.1). There were also several undetected obfuscated
attacks on Apache service in both NIDSs, but we were able to track their occurrences and
associate them as part of other detected attacks, thus the detection rate for Apache service
achieved 100.00% for both NIDSs. Regarding to Apache service, SURICATA once again did
not fired any alert detecting malicious content, but instead fired previously mentioned com-
bination of high priority alerts stating corporate privacy violation, which were, once again,
considered as correct detection. Also, notice that SURICATA fired one non-high-priority
alert classified as potentially bad traffic in all instances of direct and obfuscated attacks
exploiting PostgreSQL service:

ET POLICY
Suspicious inbound to PostgreSQL port 5432.

But we did not considered it as correct detection due to the priority and the classification
of the alert. As discussed in Section 7.4.2, VirusTotal likely use paranoic rule set, and
thus fired alerts may contain false positives. However comparing fired alerts before and
after obfuscation, we can see that detection properties of utilized NIDSs are resistant to the
non-payload-based obfuscations in the majority of the cases.
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(a) SNORT

Obfuscated Attacks
Detected Total %

Apache Tomcat 128 +36 164 100.00
DistCC 23 23 100.00
MSSQL 103 103 100.00

PostgreSQL 45 45 100.00
Samba 43 43 100.00
Server 100 102 98.04

Overall Detection 478 480 99.58
ADR∗ per Service 99.67

∗Average detection rate.

(b) SURICATA

Obfuscated Attacks
Detected Total %

Apache Tomcat 162 +2 164 100.00
DistCC 0 23 0.00
MSSQL 103 103 100.00

PostgreSQL 0 45 0.00
Samba 0 43 0.00
Server 100 102 98.04

Overall Detection 367 480 76.46
ADR∗ per Service 49.67

∗Average detection rate.

Table 8.4: Detection of obfuscated attacks by SNORT and SURICATA

8.6 Data Mining Experiments

The purpose of this section is to perform supervised classification in order to evaluate the
effectiveness of the proposed obfuscation techniques as well as feedback of the classifier
having obfuscated data included in its training process.

All experiments were performed in Rapid Miner Studio [157] using a k-fold cross vali-
dation and conditional probability based Naive Bayes classifier which is also employed in
other works [11, 77, 118]. The optimization of the Naive Bayes classifier was not the subject
of our experiments, and therefore we utilized fixed settings of the classifier.

Considering our current dataset’s class distribution, we utilized 5-fold cross validation
which creates big enough Dt sets for binominal classification. In the case of multi-class
classification, we utilized 3-fold cross validation. All cross validation experiments of our
work have been adjusted to employ stratified sampling during assembling of data folds. The
stratified sampling ensures equally balanced class distribution of each fold.
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8.6.1 Forward Feature Selection Experiment

This principle of the experiment is the same as in one described in 7.6.1. The experiment
consisted of two executions of the FFS. The first took as input just legitimate traffic and
direct attack entries, and represented the case where ADS was trained without knowledge
about obfuscated attacks. The second execution took as input the whole dataset of network
traffic – consisting of legitimate traffic, direct attacks as well as obfuscated ones, and there-
fore, represented the case where ADS was aware of obfuscated attacks. The selected features
of both executions are depicted in Table 8.5.The penultimate column of Table (i.e., FFS
DOL) denotes the selected features where the whole dataset was utilized for the FFS, and
the last one (i.e., FFS DL) denotes the case where only direct attacks and legitimate traffic
were considered. We have noticed that the final model of the FFS DL case has achieved
average recall of classes equal to 99.68% ± 0.65% as well as 99.99% ± 0.02% accuracy in
comparison to the FFS DOL case in which average recall equal to 99.62% ± 0.40% and
accuracy of 99.40%± 0.16% has been achieved, indicating that it has been a little difficult
to train the classifier with inclusion of obfuscated attacks unlike the case not considering
them.

Several mutual features were selected in both cases which means they provided a value
regardless of whether obfuscation was performed or not. From another point of view, we no-
ticed that in the FFS DL case some features more susceptible to suggested obfuscations were
selected in comparison with the FFS DOL case, e.g. MeanPktLenOut, OutPktLen{4s10i[2],
4s10i[3], 1s10i[1]}, as modification of packets’ lengths is the part of fragmentation-like ob-
fuscations as well as packets can be re-transmitted and spread in time which can markedly
influence mentioned features. Therefore, almost all of the following experiments will utilize
the feature set gained from the second execution (i.e., FFS DOL), as we consider them as
more appropriate for general behavior representation of both kinds of attacks. The only
exception is the second binominal classification experiment which will be described in Sub-
section 8.6.3.

8.6.2 Binominal Classification Experiment I

Similarly to the previous experiment, the current one also worked with two classes prediction.
A 5-fold cross validation was performed using direct attacks and legitimate traffic and further
prediction of the whole dataset. The results of the cross validation experiment which use
data consisting of legitimate traffic and direct attacks are shown in Table 8.6a. The classifier
trained on all direct attacks and legitimate traffic instances was applied in the prediction
of the whole dataset (including obfuscated attacks) and it correctly predicted 71.25% of
obfuscated attacks and 78.26% of all attacks respectively. An associated confusion matrix
is depicted in Table 8.6b. The achieved result proclaimed the existence of some successful
obfuscations of attacks which were predicted as legitimate traffic (138 instances4).

In the next part of the current binominal classification experiment, we performed 5-
fold cross validation of the whole dataset including obfuscated attacks. The results of this
experiment are shown in Table 8.7. The high precision and recall of both classes represents
the fulfilled assumption that a classifier trained with knowledge about some obfuscated
attacks is able to detect the same or similar obfuscated attacks later.

4We notice that Table 8.6a contains 2 false negative instances of direct attacks, but they are not present
in Table 8.6b. It happened because Table 8.6b evaluates the model built on all instances of direct and
legitimate traffic in comparison with k-cross validation which evaluates k models trained on k − 1 folds.
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Feature ID Description F
F
S
D
O
L

F
F
S
D
L

SigPktLenOut • Std. deviation of outbound (client to server) packet sizes. X
SigPktLenIn • Std. deviation of inbound (server to client) packet sizes. X
HasFragIP • The feature indicates occurrence of fragmented packets. X
MeanPktLenOut • Mean of packets’ sizes in outbound traffic of a connection. X
SumTCPHdrLen • The sum of TCP header lengths of all traffic. X
BytesTCPOverhead • The number of bytes transferred during establishment and

finishing of a connection.
X X

ConTcpFinCntIn • The number of TCP FIN flags occurred in inbound traffic. X X
ConTcpSynCntIn • The number of TCP SYN flags occurred in inbound traffic. X X
GaussProds8AllN[2]∗ • Normalized products of all packet sizes with 8 Gaussian

curves. The feature represents a product of the 3rd slice of
packets with a Gaussian function which fits to the interval of
the packets’ slice.

X

GaussProds8AllN[7]∗ • The same as the previous one, but it represents a product of
the 8th slice of packets with a Gaussian function which fits to
the interval of the packets’ slice.

X

GaussProds8All[6] • The same as the previous one, but it represents a product of
the 7th slice of packets with a Gaussian function which fits to
the interval of the packets’ slice.

X

GaussProds8In[3] • The same as the previous one, but computed above inbound
packets and represents a product of the 4th slice of packets with
a Gaussian function which fits to the interval of the packets’
slice.

X

FourGonAngleN[9]∗ • Fast Fourier Transformation (FFT) of all packet sizes. The
feature represents the angle of the 10th coefficient of the FFT
in goniometric representation.

X X

FourGonModulN[0]∗ • The same as the previous one, but it represents the module
of the 1st coefficient of the FFT in goniometric representation.

X

FourGonModulIn[1] • FFT of inbound packet sizes. The feature represents the mod-
ule of the 2nd coefficient of the FFT in goniometric representa-
tion.

X

OutPktLen4s10i[2] • Lengths of outbound packets occurred in the first 4 seconds
of a connection which are distributed into 10 intervals. The
feature represents totaled outbound packet lengths of the 3rd
interval.

X

OutPktLen4s10i[3] • The same as the previous one, but it represents totaled out-
bound packet lengths of the 4th interval.

X

OutPktLen1s10i[1] • The same as the previous one, but computed above the first
second of a connection. The feature represents totaled out-
bound packet lengths of the 2nd interval.

X

∗Sizes of inbound and outbound packets are represented by negative and
positive values, respectively.

Table 8.5: ASNM features selected by FFS method
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(a) Direct attacks & legitimate traffic cross validation

Classification Accuracy: True Class Precision
99.95% ± 0.04% Legit. Flows Direct Attacks

Predicted
Class

Legit. Flows 8367 2 99.98%
Direct Attacks 2 153 98.71%

Recall 99.98% 98.71% F1 = 98.71%

(b) Whole dataset prediction

Classification Accuracy: True Class Precision
98.46% Legit. Flows All Attacks

Predicted
Class

Legit. Flows 8368 138 98.38%
All Attacks 1 497 99.80%

Recall 99.99% 78.27% F1 = 87.73%

Table 8.6: Confusion matrices of binominal classification (FFS DOL features)

Classification Accuracy: True Class Precision
99.84% ± 0.08% Legit. Flows All Attacks

Predicted
Class

Legit. Flows 8359 4 99.95%
All Attacks 10 631 98.44%

Recall 99.88% 99.37% F1 = 98.90%

Table 8.7: Legitimate traffic & all attacks cross validation (FFS DOL features)

8.6.3 Binominal Classification Experiment II

The second binominal classification experiment basically did the same as the first one but
the only difference resided in the subset of features utilized in it. The experiment considered
features collected by FFS method which ran on the dataset consisted of direct attacks and
legitimate traffic only (previously referred to as FFS DL features).

The results of the cross validation experiment are shown in Table 8.8a. The classifier
trained on the data collection containing direct attacks and legitimate traffic was applied in
the prediction of the whole dataset (including obfuscated attacks) and it correctly predicted
67.50% of obfuscated attacks (75.43% of all attacks, respectively). An associated confusion
matrix is depicted in Table 8.8b.

Finally, the cross validation of the whole dataset (including obfuscated attacks) was
performed and the obtained results are depicted in Table 8.9. To summarize differences
in the results of the both binominal classification experiments, we conclude that the second
model (using FFS DL features) has achieved slightly better results in learning direct attacks
and legitimate traffic characteristics than the first model (using DOL features), but on the
other hand, later, it has resulted into more misclassified cases of obfuscated attacks than
the first model (i.e., 155:138 instances), as well as it has achieved worse results in cross
validation of the whole dataset than the first one. Therefore, our consideration about more
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(a) Direct attacks & legitimate traffic cross validation

Classification accuracy: True class Precision
99.99% ± 0.02% Legit. flows Direct attacks

Predicted
class

Legit. flows 8368 0 100.00%
Direct attacks 1 155 99.36%

Recall 99.99% 100.00% F1 = 99.67%

(b) Whole dataset prediction

Classification accuracy: True class Precision
98.27% Legit. flows All attacks

Predicted
class

Legit. flows 8369 156 98.17%
All attacks 0 479 100.00%

Recall 100.00% 75.43% F1 = 85.99%

Table 8.8: Confusion matrices of binominal classification (FFS DL features)

Classification accuracy: True class Precision
99.40% ± 0.16% Legit. flows All attacks

Predicted
class

Legit. flows 8330 15 99.82%
All attacks 39 620 94.08%

Recall 99.53% 97.64% F1 = 95.82%

Table 8.9: Legitimate traffic & all attacks cross validation (FFS DL features)

appropriate feature set has been confirmed and there will be no longer considered FFS DL
features.

8.6.4 Trinominal Classification Experiment

The current experiment divides the attack class into two subclasses (obfuscated and direct
attacks) resulting into trinominal classification. The assumption of having different statis-
tical and behavioral properties in direct and obfuscated attacks cases is considered. Then,
the classifier should be able to distinguish between these two attacks’ subclasses.

Confusion matrix related to the experiment is depicted in Table 8.10. 5-fold cross val-
idation of the classifier confirms the previous assumption for over 80% of all attack cases.
There are almost 22% of direct attacks (34 instances) predicted as obfuscated attacks and
almost 14% of obfuscated attacks (67 instances) predicted as direct ones. The gray color of
the cells’ background denotes these two cases.

Notice, that the overall prediction preserves attack’s superclass – which refers to the
comparable results to those achieved in the first binominal classification experiment (Table
8.7). No direct attacks are predicted as legitimate traffic and vice versa, however, in the case
of obfuscated attacks 8 obfuscated attacks are predicted as legitimate traffic and 10 instances
of legitimate traffic are predicted as obfuscated attacks, which may indirectly indicate more
similar behavioral characteristics of these two classes than in the case of direct attacks and
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Classification Accuracy: True Class
PPV (Ci)PPV (Ci)PPV (Ci) F1(Ci)F1(Ci)F1(Ci)

98.68% ± 0.20% Legit.
Flows

Direct
Attacks

Obfus.
Attacks

Predicted
Class

Legit. Flows 8359 0 8 99.90% 99.89%
Direct Attacks 0 121 67 64.36% 70.55%
Obfus. Attacks 10 34 405 90.20% 87.19%

Recall 99.88% 78.06% 84.38%

Table 8.10: Confusion matrix of trinominal classification

legitimate traffic pair. Aside from the previous statements, there is achieved average recall
of all classes equal to 87.44%± 3.43% which can be still considered as interesting one from
the classification perspective, but it is not the purpose of the experiment.

8.6.5 Multi-class Classification Experiment

Different view on the results of the obfuscations is provided by multi-class classification
experiment. The experiment distributes the input dataset into 19 classes according to
the class of a communication on a particular network service. The communication classes
are represented by direct and obfuscated attacks versus legitimate traffic. The Cartesian
product of 3 communication classes with all considered services yields 18 classes plus 1 class
representing other legitimate traffic.

The confusion matrix of 3-fold cross validation is shown in Table 8.11. Mean recall
of the classes is equal to 69.94% ± 2.61% which does not indicate excellent performance
of the multi-class classifier, however, it is not the purpose of the experiment. Cells with
a gray background depict incorrectly predicted attacks – obfuscated attacks predicted as
direct ones and vice versa. These cells shape a parallel line to a great diagonal of the
matrix. In these cases, ASNM are not able to distinguish between obfuscated and direct
attacks. Nevertheless, more important obfuscated cases, having discriminating properties
and distinguished by FFS DOL features, lay on the great diagonal. The next important
fact is that attacks’ superclass is preserved in the majority of the cases.
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Apache Tomcat 52 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 70.27% 79.39%

DistCC 0 10 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 58.82% 74.07%

MSSQL 0 0 24 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 85.71% 81.35%

PostgreSQL 0 0 0 11 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 78.57% 81.48%

Samba 0 0 0 0 18 0 0 0 0 0 12 0 0 0 0 0 0 0 0 60.00% 75.00%

Server 0 0 0 0 0 8 0 0 0 0 0 14 0 0 0 0 0 0 0 36.36% 33.33%

Apache Tomcat 5 0 0 0 0 0 137 1 0 0 0 0 0 0 0 0 0 0 2 94.48% 88.67%

DistCC 0 0 0 0 0 0 0 11 0 0 2 0 0 0 0 0 0 0 0 84.62% 61.12%
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MSSQL 0 0 0 0 0 0 2 0 0 0 0 0 8 21 26 2 9 6 9 31.33% 32.92%
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Table 8.11: Confusion matrix of multi-class classification

145



8.6.6 Comparison of Various Classifiers

For the purpose of performance comparison of various classifiers, we executed 5-fold cross
validation on already discussed and employed classification models – Decision Tree and SVM.
FFS DOL feature set was utilized in this experiment as the input for the classifiers working
with two class prediction. At first, we evaluated performance of the SVM classifier which
utilized radial basis function as non-linear kernel function. The results of the evaluation are
represented by confusion matrix which is depicted in Table 8.12.

Classification Accuracy: True Class Precision
99.51% ± 0.12% Legit. Flows All Attacks

Predicted
Class

Legit. Flows 8329 4 99.95%
All Attacks 40 631 94.04%

Recall 99.52% 99.37% F1 = 96.63%

Table 8.12: Performance of the SVM classifier

The following experiment was performed with Decision Tree classifier utilizing gini in-
dex as selection criterion for splitting of attributes. The associated confusion matrix which
represents the result is shown in Table 8.13. Comparing the results of the current two exper-
iments with performance achieved by the Naive Bayes classifier, we can declare that Naive
Bayes achieved the best performance, while the second best was Decision Tree, followed by
SVM. This statement is the same as in the tunneling obfuscation case (Section 7.6.5).

Classification Accuracy: True Class Precision
99.74% ± 0.13% Legit. Flows All Attacks

Predicted
Class

Legit. Flows 8358 12 99.86%
All Attacks 11 623 98.26%

Recall 99.87% 98.11% F1 = 98.18%

Table 8.13: Performance of the Decision Tree classifier

Also, all the classification models were compared by ROC method, which considered
neutral bias. The most interesting configurations of classifier adjustment were achieved in
the case of the Naive Bayes classifier and the SVM one. ROC diagram with neutral bias
is depicted in Figure 8.3. Note that we executed ROC method in one run with stratified
distribution of samples, which utilized 90% of the input dataset for training and 10% for
validation purpose. Therefore, the figure does not contain any variability of the ROC curves.
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Figure 8.3: ROC diagram comparing classifiers

8.7 Summary of the Obfuscation Techniques

The section compares and analyzes utilized obfuscation techniques identified by IDs listed
in Table 8.1. The results presented in the first part of the section originate from a binom-
inal classification experiment in which the classifier is trained without obfuscated attack
knowledge and validated on the whole dataset. The obfuscations are considered successful
if they are predicted as legitimate traffic, and therefore the situation represents the ADS
evasion case. Table 8.14 presents ordered ratios of successfully obfuscated attacks per tech-
nique. The most successful obfuscations use combinations of more techniques (i.e., o, q,
p), damaging of packets (i.e., f , e) and spreading out packets in time with delays specified
by normal distribution (i.e., c). From the MTU modification techniques, (n) appear to be
the most successful. We can observe inverse relationship – the lower the MTU value is, the
higher number of successful instances obfuscation achieves. It is caused by a direct relation-
ship of some features to modification of the data packet’s lengths. On the other hand, the
least successful obfuscations utilize spreading out packets in time with a short delay (a),
modification of MTU by higher values than 500 (i.e., k, l) and reordering of packets (i.e., i,
j).

Table 8.15 presents ordered ratios of successfully obfuscated attacks per service. Com-
paring both features’ sets, it can be noted that the average ratio of successful obfuscations is
lower in the FFS DOL case (i.e., 30.24%) than in the case of FFS DL (i.e., 37.10%). There-
fore, it endorses better resistance to obfuscated attacks of the FFS DOL feature set than
the FFS DL one. Regarding the FFS DOL feature set (Table 8.15a), the most successful ob-

147



Obfuscation
Technique

All
Instances

Successful
Instances

Ratios of
Successful
Instances

(o) 27 14 51.85%
(f) 29 14 48.28%
(c) 30 14 46.67%
(q) 35 16 45.71%
(p) 33 15 45.45%
(e) 27 10 37.04%
(n) 27 10 37.04%
(d) 30 10 33.33%
(m) 27 9 33.33%
(g) 27 8 29.63%
(b) 22 5 22.73%
(h) 30 6 20.00%
(i) 27 2 7.41%
(j) 27 2 7.41%
(l) 27 2 7.41%
(a) 28 1 3.57%
(k) 27 0 0.00%

Table 8.14: Ratios of successfully obfuscated attacks per technique

fuscated attacks are those exploiting DistCC and Samba services. From the analysis of the
distributions of features’ values, it was found out that instances of direct attacks executed
on these services had very flat distribution of values of many features in comparison with
other direct attacks. Example features are standard deviation of inbound and outbound
packet sizes of the connection, followed by other features dependent on the packets’ length
variability of the flow. Therefore, obfuscated attacks on these services cause more variability
of the features which is in many cases similar to legitimate traffic.

On the other hand, in the cases of MSSQL and PostgreSQL many features’ values of the
direct attacks are more divergent through their instances, and thus obfuscations contribute
to the divergence only in low scale. Therefore, the most of the obfuscated attacks have
similar characteristics like direct ones, which enables their correct detection.

8.7.1 Discriminative Analysis of Prediction

The results of the current subsection evaluate discriminative characteristics of the classifier
with emphasis on distinction among obfuscated attacks, direct attacks and legitimate traffic.
We know that there exist obfuscated attack instances which are easier to correctly predict
than other ones. We denote characteristics of such attacks as discriminative. The previous
fact also occurs in direct attacks and legitimate traffic classes. Therefore, obfuscated attacks
having discriminative characteristics should be correctly predicted as intrusions. Following
results utilize gathered data of trinominal and multi-class classification experiments, and
thus, assume that obfuscated attacks’ ground truth is available in the training process
of the ADS classifier. Table 8.16 presents ordered ratios of correctly predicted obfuscated
attacks per obfuscations technique, i.e., ones having discriminative characteristics.Spreading
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(a) FFS DOL features

Service
Ratios of
Successful
Instances

DistCC 43.48%
Samba 41.86%
Apache
Tomcat 35.37%

Server 26.47%
PostgreSQL 17.78%

MSSQL 16.50%

(b) FFS DL features

Service
Ratios of
Successful
Instances

DistCC 52.17%
Samba 51.16%
Server 46.08%

PostgreSQL 28.89%
Apache
Tomcat 26.83%

MSSQL 17.48%

Table 8.15: Ratios of successfully obfuscated attacks per service

out packets in time (i.e., b, c) together with the combinations of various techniques (i.e., p,
q) achieve the highest discrimination rate in the both classification cases. Moreover, they
can be considered as resilient to a granularity of the classes. As obfuscation techniques
not resilient to granularity of the classes can be considered one which performs spreading
out packets in time using short constant delay (i.e., a) and one which performs damage of
packets (i.e., g). The least discriminative characteristics are obvious at MTU modification
techniques with the highest values (i.e., k, l).

(a) Trinominal classification

Obfuscation ID True
Prediction

(b) 100.00%
(p) 100.00%
(q) 100.00%
(c) 96.67%
(f) 96.55%
(e) 85.19%
(g) 85.19%
(o) 85.19%
(d) 83.33%
(a) 82.14%
(j) 81.48%
(n) 81.48%
(h) 76.67%
(i) 74.07%
(m) 70.37%
(k) 66.67%
(l) 62.96%

(b) Multi-class classification

Obfuscation ID True
Prediction

(b) 100.00%
(p) 100.00%
(q) 97.14%
(c) 93.33%
(n) 88.89%
(o) 88.89%
(e) 85.19%
(d) 83.33%
(h) 83.33%
(f) 79.31%
(i) 77.78%
(j) 77.78%
(m) 77.78%
(g) 74.07%
(a) 71.43%
(k) 66.67%
(l) 66.67%

Table 8.16: Ratios of obfuscated attacks having discriminative characteristics
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Table 8.17 depicts ordered ratios of attacks’ obfuscations per service having discrimi-
nating characteristics. As can be seen in Table 8.17, obfuscated attacks exploiting MSSQL
and PostgreSQL services are the most discriminative. In the case of MSSQL, it is caused by
the fact, that direct attacks contain around 20-50 times and 5-10 times more data packets
transferred from client to server and vice versa, respectively, in comparison with other direct
attack types and legitimate traffic classes. The second, but not less important observation
of direct attacks at MSSQL service, is the fact that average size of data packets uploaded to
the server is approx. 15 times greater than downloaded one. Therefore, lot of obfuscations
modify characteristics of the attacks in correlated scale which reflects the distinctness of
them.

The situation regarding the second observation of MSSQL is very similar in the case
of PostgreSQL as well. The substantial difference resides in the fact that average size of
uploaded packets is approx. 2 times greater than in the case of average downloaded size.
This ratio is much more lower in other direct attack cases.

Contrary, there has been achieved the lowest discrimination rate of the obfuscated at-
tacks exploiting DistCC service. It can be explained by the two facts: a) first, direct attacks
on the service contain the lowest number of data packets among all other direct attacks
classes, and therefore, some obfuscation techniques using only low percentage of attack’s
flow modification are applied on them in that scale; b) second, the most of the data packets
of direct attacks on the service have lower size than 250 Bytes, and therefore MTU modifi-
cation obfuscations do not expressively influence the TCP flow of the attack.Comparing the

(a) Trinominal classification

Service
True
Predic-
tion

MSSQL 96.12%
PostgreSQL 95.56%

Apache
Tomcat 85.29%

Server 79.27%
Samba 72.09%
DistCC 65.22%

(b) Multi-class classification

Service
True
Predic-
tion

MSSQL 96.12%
PostgreSQL 91.11%

Apache
Tomcat 84.31%

Server 83.54%
Samba 60.47%
DistCC 47.83%

Table 8.17: Ratios of discriminative obfuscated attacks per service

results which contains Table 8.17 to those present at Table 8.15a, we realize that they almost
have inverse relationship. The interpretation of this observation can be formulated by the
statement: The more discriminative characteristics obfuscated attacks have, the higher is
the probability of their detection.
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8.8 Analysis of Network Traffic Characteristics

Alike Section 7.7 of Chapter 7, we examined the value density distribution of each feature.
This time, the emphasis was put on the distinctiveness of malicious and legitimate network
traffic, as the current obfuscation techniques were not as efficient as tunneling one, and thus
it was difficult to find significant differences between obfuscated and direct malicious traffic
by analyzing features independently. For the purpose of value density examination among
TCP connections of our dataset, we utilized frequency analysis of the features’ values. Also,
kernel density estimation with Gaussian kernels was utilized in few cases because of their
clearer interpretation. Several features presenting the interesting characteristics of each
network traffic class will be discussed and described.

Considering categorization of the features from Section 7.7, we primarily aim at dis-
criminating features enabling good malicious and legitimate traffic separation. However,
we present one obvious example of obfuscated features’ group which represents specific
characteristics of obfuscated attacks which are similar to legitimate traffic.

8.8.1 Discriminating Features

We selected the mean of packet lengths from client to server (MeanPktLenOut) as the first
example of the discriminating features’ category. The corresponding histogram of the feature
is depicted in Figure 8.4. The obvious observation of the figure is that both of the attack
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Figure 8.4: Mean of packet lengths from client to server
(MeanPktLenOut)

classes have different values than the most of legitimate traffic representatives. There can be
seen two values which revealed to be characteristic for legitimate traffic – 70 and 95 as well
as their near surroundings; while in the case of malicious traffic, primarily two value ranges
were observed: 〈100, 125〉 and 〈200, 250〉. Also, regarding to FFS experiment of Subsection
8.6.1, we can see that this feature was selected into FFS DL set (see Table 8.5).
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Figure 8.5: FFT of packet lengths from client to server
(FourGonAngleOut[2])

The next discriminating feature is FFT of lengths of packets which were transferred
from client to server (FourGonAngleOut[2]). The feature denotes the angle of goniometric
representation of the 3rd frequency of FFT. The Gaussian kernel density estimation of the
feature is depicted in Figure 8.5. The important observation of the figure is that values
of legitimate traffic instances are spread in two intervals: 〈-25 , 25 〉 and 〈50, 100〉; while
intervals 〈-180 , -50 〉 and 〈100, 180〉 are characteristic for malicious traffic.

The histogram of the feature representing standard deviation of lengths of packets trans-
ferred from server to client (SigPktLenIn) is depicted in Figure 8.6. The legitimate traffic
representatives are characteristic by two value ranges: 〈-10 , 10 〉 and 〈150, 220〉. The inter-
val 〈150 , 160 〉 does not have discriminating properties but representatives falling into this
interval can be distinguished by another features.

Another example belonging into the current category of discriminating features is dis-
tribution of lengths of outbound packets occurred in the first 4 seconds of a connection
(OutPktLen4s10i[9]). The histogram of the feature can be found in Appendix H.1. The
next identified examples of discriminating features are standard deviation of lengths of pack-
ets transferred from client to server (SigPktLenOut) and the sum of TCP header lengths of
all packets transferred in TCP connection (SumTCPHdrLen). The corresponding histograms
of the features are depicted in Appendix H.2 and H.3, respectively. Finally, the last repre-
sentative of this category is FFT of packet lengths which are considered as negative values
for incoming direction and positive values for outgoing one (FourGonAngleNeg[5]). The
Gaussian kernel density estimation of the feature is depicted in Appendix H.4.

8.8.2 Obfuscated Features

Since the current obfuscation techniques were not as efficient as tunneling one, it was more
difficult to find obfuscated features. The only representative feature which we present is
normalized sum of products of a connection with 8 Gaussian curves (GaussProds8All[6]),

152



 0

 0.05

 0.1

 0.15

 0.2

 0  100  200  300  400  500  600

F
re

qu
en

cy

Value

Legit. traffic
Direct attacks

Obfus. attacks

Figure 8.6: Standard deviation of lengths of packets transferred from server to client
(SigPktLenIn)

which is depicted in Figure 8.7. The feature represents the 7th sum of products and the figure
shows just the most interesting sub-interval of the feature. The most important observation
of the figure occurs around the value of 16, where exists significant amount of obfuscated
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attacks which have very similar values of the feature as legitimate traffic has. Therefore, it
can be difficult to distinguish between malicious and legitimate traffic classes at this value,
and thus obfuscation was partially successful from the perspective of this feature.

8.9 Concluding Remarks

In this chapter, we performed remote intrusive attacks on selected vulnerable network ser-
vices employing various non-payload-based obfuscation techniques based on NetEm and
MTU modifications with intention to make behavioral characteristics of the attacks, rep-
resented by ASNM features, being similar to legitimate traffic ones, and thus cause false
negative predictions of machine learning based ADS (AIPS).

The summary of the presented results revealed non-payload-based obfuscation tech-
niques as partially successful in evading the detection by Naive Bayes classifier trained
without knowledge about them. On the other hand, if some of the obfuscated attacks were
included into the training process of the classifier, then it was able to detect other (similar)
obfuscated attacks with high recall and precision. Therefore, the assumptions from Sub-
section 8.2.1 were confirmed. Other results were achieved by considering the ground truth
of obfuscated attacks, and demonstrated that ASNM features are not able to distinguish
between obfuscated and direct attacks in some cases, but they are able to keep attacks’
superclass. Further, we examined interesting characteristics of all network attacks and le-
gitimate traffic. Lot of discriminating features were identified, while obfuscated features
were rare. The obfuscation-like properties of simulated attacks were not as evident as in the
case of tunneling obfuscation.

Moreover, several experiments with signature-based NIDSs – SNORT and SURICATA
– were performed and the results revealed that detection capabilities of utilized NIDSs
are resistant to our proposed obfuscation techniques in almost all instances. In the case
of SNORT, there were only 2 instances of undetected obfuscated attacks, while all direct
attacks were detected. However, the situation was little different in the case of SURICATA,
which did not contain rules for detection of attacks on DistCC, PostgreSQL and Samba
service, and thus did not detect any of direct and obfuscated attacks on those services.
Despite of it, SURICATA detected all instances of direct and obfuscated attacks executed
on remaining services. Therefore, we can say that if signature based NIDSs had rules
detecting direct variants of attacks, then these rules also match in almost all instances of
obfuscated attacks.

8.9.1 (Non) Exigency of Network Normalization

If we would assume existence of an optimal network normalizer for ADS which would be able
to completely eliminate the impact of proposed non-payload-based obfuscation techniques,
then these obfuscation techniques would be useless. If such optimal network normalizer
would exists, then it would still be prone to state holding and CPU overload attacks. Con-
trary, if we would not assume network normalizer as part of ADS system, then:

“non-payload-based obfuscation techniques
may be employed as training data driven
approximation of network normalizer,”
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which would not be prone to previously mentioned issues and attacks. The situation can
be demonstrated by our binomal classification experiments described in 8.6.2 and 8.6.3.
Consider ADS model validated on direct attacks and legitimate traffic whose performance
achieved average recall of 99.99% and F1 -measure equal to 99.67% (see Table 8.8a). Training
and testing data of ADS were built upon normalized malicious network traffic represented
by direct attacks. Then, the model trained on the direct attacks and legitimate traffic was
applied onto prediction of the whole dataset which included obfuscated attacks as well. In
this case obfuscated attacks represented un-normalized malicious network traffic, and thus
classifier of ADS achieved worse performance than in the previous case – average recall of
87.72% and F1 -measure equal to 85.99% were achieved (see Table 8.8b).

In order to alleviate negative performance impact of un-normalized malicious network
traffic (represented by obfuscated attacks) on our ADS system not performing normalization,
we can include obfuscated attacks into the training process of the classifier. This case is
interpreted by confusion matrix depicted in Table 8.7. The average recall of 99.63% and
F1 -measure equal to 98.90% was achieved which were improved by 11.91%11.91%11.91% and 12.91%12.91%12.91%,
respectively. Thus network normalizer element may be omitted from ADS infrastructure
and can be approximated by appropriate training data.
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Chapter 9

Conclusion

In this thesis, I firstly compiled taxonomy of network intrusion detection approaches. Con-
sidering the taxonomy by Lim [103], I decided to concentrate my attention and research
to the category of model-based behavioral network intrusion detection which utilize data
mining techniques. From the perspective of the Axelsson’s taxonomy [12], my research be-
longs to group of programmable systems which require ground truth provided by the user
or by another resource of expert knowledge. Although, in general terms of data mining, this
approach is falling into supervised machine learning.

Afterwards, I presented network anomaly intrusion detection system called Automated
Intrusion Detection System (AIPS), which is aimed at the detection of intrusions caused by
successful execution of network buffer overflow attacks and was designed at FIT BUT. The
detection of AIPS is based on extraction of Advanced Security Network Metrics (ASNM
features) which describe statistical and behavioral characteristics of a network connection,
and then are employed as the input for the supervised machine learning classifiers.

The detection capability of ASNM features was firstly evaluated on the dataset collected
in laboratory conditions, which contained only small number of samples. Later, I evaluated
the performance of ASNM on CDX 2009 dataset [164], and also compared the detection
properties of ASNM with the performance of the state-of-the-art feature set designed by
Andrew Moore [119] (also referred to as discriminators). The results of the experiments from
both feature sets achieved promising results, offering high detection capability of network
buffer overflow attacks, while keeping low false positive rate.

9.1 Evading the Detection by ASNM

Because ASNM is primarily based on behavioral and statistical analysis which often use
time and index slope of a connection and analysis of payload size distribution, there can
arise the question of breaching detection capability of ASNM. The most of the ASNM
detection features use information gathered from L3 and L4 layers of packet headers. If
such information would be intentionally modified, then it might influence the detection
capability of ASNM in negative way. On the other hand, if such modifications would be
included into the training process of a classifier, then they could help in further detection
of similar modified intrusions evading ADS detection utilizing ASNM features.
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9.2 Performance Improvement of ASNM Intrusion Detection

The principal technique which was proposed to be used as the performance improvement of
ASNM is the previous idea of evading the detection capability of a classifier. I proposed to
utilize two categories of obfuscation techniques aimed at the evasion of the detection by the
ASNM features:

• The first category is referred to as tunneling obfuscation and resides in tunneling TCP
communications in HTTP and HTTPS protocols. Achieved results showed that the
tunneling obfuscation can evade the detection by ASNM with Naive Bayes classifier
in 64.4% cases of all tunneled attack instances, however if the classifier had previ-
ous information about tunneled attacks, then it could successfully detect 98.9% of
obfuscated attacks, while keeping low false positive rate (0.56%).

• The second category is referred to as non-payload-based obfuscations and aims on mod-
ification of various statistical and behavioral properties of network traffic. At the lower
level, this category of obfuscation techniques is based on altering of several properties
at L3 and L4 layers of TCP/IP reference network model. Proposed examples include
the following ideas: spreading out packets in time, fragmentation of IP packets, chang-
ing of packet order, simulation of unreliable network channel, packet loss, duplication
of packets as well as their combinations. The results of the experiments showed that
non-payload-based obfuscations can evade the detection by ASNM and Naive Bayes
classifier in 28.8% cases of all obfuscated attack instances. If the classifier was trained
with knowledge about some of obfuscated attacks, then it could successfully detect the
majority of obfuscated attacks (99.4%), while keeping low false positive rate (0.12%).

9.3 Summary of Research Contributions

Although, I can mention many small contributions of the current work, primarily I want to
emphasize 5 main research contributions and draw attention to them:

• I formally defined the network feature set (ASNM) capable of remote anomaly in-
trusion detection, whose extracted values for particular TCP communications were
utilized as the input of supervised machine learning classifiers. Also, the extraction
process of the ASNM features was formally defined together with the context analysis
of a TCP communication (see Section 5.2).

• I evaluated the performance of ASNM on three supervised classifiers (Naive Bayes,
Support Vector Machines and Decision Tree), and mutually compared their detection
capabilities at each stage of my research (see Section 6.3.1, 7.6.5 and 8.6.6).

• The performance of the ASNM features was compared to the performance of the
state-of-the-art discriminator features using CDX 2009 dataset [164] (see Section 6.3).

• I formally defined two categories of obfuscation techniques primarily aimed at evading
the detection by the ASNM features. These obfuscation techniques were employed as
the training data driven performance improvement of the ASNM’s detection capability
(see Chapter 7 and 8).
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• I revealed an alternative view on the non-payload-based obfuscation techniques, and
demonstrated how they can be employed as a training data driven approximation of
network traffic normalizer (see Section 8.9.1).
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Appendix B

Full List of KDD Cup ’99 Features
B.1 Basic Features

Feature Name Description type

duration • length (number of seconds) of the connection continuous
protocol_type • type of the protocol, e.g. tcp, udp, etc. discrete

service • network service on the destination, e.g., http, telnet, etc. discrete
src_bytes • number of data bytes from source to destination continuous
dst_bytes • number of data bytes from destination to source continuous

flag • normal or error status of the connection discrete
land • 1 if connection is from/to the same host/port; 0 otherwise discrete

wrong_fragment • number of “wrong” fragments continuous
urgent • number of urgent packets continuous

Table B.1: Basic features of individual TCP connections [187]

B.2 Content Features

Feature Name Description Type

hot • number of “hot” indicators continuous
num_failed_logins • number of failed login attempts continuous

logged_in • 1 if successfully logged in; 0 otherwise discrete
num_compromised • number of “compromised” conditions continuous

root_shell • 1 if root shell is obtained; 0 otherwise discrete
su_attempted • 1 if “su root” command attempted; 0 otherwise discrete

num_root • number of “root” accesses continuous
num_file_creations • number of file creation operations continuous

num_shells • number of shell prompts continuous
num_access_files • number of operations on access control files continuous

num_outbound_cmds • number of outbound commands in an ftp session continuous
is_hot_login • 1 if the login belongs to the “hot” list; 0 otherwise discrete

is_guest_login • 1 if the login is a “guest”login; 0 otherwise discrete

Table B.2: Content features within a connection suggested by domain knowledge [187]
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B.3 Traffic Features

Feature Name Description Type

count • the number of connections to the same host as
the current connection in the past two seconds continuous

Note: The following features refer to these same-host connections.
serror_rate • % of connections that have “SYN” errors continuous
rerror_rate • % of connections that have “REJ” errors continuous

same_srv_rate • % of connections to the same service continuous
diff_srv_rate • % of connections to different services continuous

srv_count • number of connections to the same service as
the current connection in the past two seconds continuous

Note: The following features refer to these same-service connections.
srv_serror_rate • % of connections that have “SYN” errors continuous
srv_rerror_rate • % of connections that have “REJ” errors continuous

srv_diff_host_rate • % of connections to different hosts continuous

Table B.3: Traffic features computed using a two-second time window [187]
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Appendix C

Full List of Kyoto 2006+ Features

C.1 Statistical Features

Feature Name Description

Duration • the length (in seconds) of the connection
Service • the connection’s service type, e.g. http, telnet

Source_bytes • the number of data bytes sent by the source IP address
Destination_bytes • the number of data bytes sent by the destination IP address

Count • the number of connections whose source IP ad-dress and destination
IP address are the same to those of the current connection in the past
two seconds.

Same_srv_rate • % of connections to the same service in Count feature
Serror_rate • % of connections that have “SYN” errors in Count feature

Srv_serror_rate • % count of connections that have “SYN” errors in Srv_count (the
number of connections whose service type is the same to that of the
current connection in the past two seconds) feature

Dst_host_count • among the past 100 connections whose destination IP address is the
same as in the current connection, the number of connections whose
source IP address is also the same as in the current connection

Dst_host_srv_count • among the past 100 connections whose destination IP address is the
same as in the current connection, the number of connections whose
service type is also the same as in the current connection

Dst_host_same-
_src_port_rate

• % of connections whose source port is the same to that of the current
connectionin Dst_host_count feature

Dst_host_serror_rate % of connections that have “SYN”errors in Dst_host_count feature
Dst_host_srv-

_serror_rate
• % of connections that “SYN”errors in Dst_host_srv_count feature

Flag • the state of the connection at the time the connection was written

Table C.1: Statistical features adopted from KDD Cup ’99 [173]
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C.2 Additional Features

Feature Name Description

IDS_detection • reflects whether IDS(Intrusion Detection System) triggered an alert
for the connection; ‘0’ means any alerts were not triggered, and an ara-
bic numeral(except ‘0’) means the different kinds of the alerts. Paren-
thesis indicates the number of the same alert observed during the con-
nection. The authors used Symantec IDS [179] to extract this feature.

Malware_detection • indicates whether malware, also known as malicious software,was ob-
served in the connection; ‘0’ means no malware was observed, and a
string indicates the corresponding malware observed at the connection.
The authors used ClamAV [35] software to detect malwares. Paren-
thesis indicates the number of the same malware observed during the
connection.

Ashula_detection • means whether shellcodes and exploit codes were used in the connec-
tion by using the dedicated software [10]; ‘0’ means no shellcodes and
exploit codes were observed, and an arabic numeral(except ‘0’) means
the different kinds of the shellcodes or exploit codes. Parenthesis indi-
cates the number of the same shellcode or exploit code observed during
the connection.

Label • indicates whether the session was attack or not; ‘1’ means the session
was normal, ‘-1’ means known attack was observed in the session, and
‘-2’ means unknown attack was observed in the session.

Source_IP_Address • means the source IP address used in the session. The original IP
address on IPv4 was sanitized to one of the Unique Local IPv6 Unicast
Addresses [159]. Also, the same private IP addresses are only valid in
the same month: if two private IP addresses are the same within the
same month. It means their IP addresses on IPv4 were also the same,
otherwise they are different.

Source_Port_Number • indicates the source port number used in the session.
Destination_IP_Address • it was also sanitized.

Destination_Port_Number • indicates the destination port number used in the session.
Start_Time • indicates when the session was started.

Duration • indicates how long the session was being established

Table C.2: Additional features of the Kyoto 2006+ dataset [173]

185



Appendix D

Full List of ASNM Features

D.1 Statistical Features

Feature ID Description C
on

te
xt

sumTTLIn • sum of TTL value for inbound traffic.
medTTLOut • median of TTL value in outbound traffic.
modTTLOut • mode of TTL value in outbound traffic.
sigTTLOut • standard deviation of TTL value in outbound traffic.
meanTTLOut • mean of TTL value in outbound traffic.
sumTTLOut • sum of TTL value for outbound traffic.
cntDataPktIn • the number of inbound data packets. A data packets contain non-zero

length payload of application layer of TCP/IP model.
cntNondPktIn • the number of inbound non-data packets. A non-data packets contain

zero length payload of application layer of TCP/IP model.
cntDataPktOut • the number of outbound data packets.
cntNondPktOut • the number of outbound non-data packets.
modTosIp • mode of TOS (type of service) field in IP headers of all traffic.
medTosIp • median of TOS (type of service) field in IP headers of all traffic.
sigTCPHdrLen • standard deviation of TCP header lengths in all traffic.
meanTCPHdrLen • mean of TCP header lengths in all traffic.
sumTCPHdrLen • totaled TCP header lengths in all traffic.
modTCPHdrLen • mode of TCP header lengths in all traffic.
medTCPHdrLen • median of TCP header lengths in all traffic.
hasFragIp • indication of occurrence of fragmented packets in a connection.
sumFragPkt • the number of fragmented packets in all traffic.
sumNfragPkt • the number of non-fragmented packets in all traffic.
ratFragNfrag • ratio of the number of fragmented packets to the number of non-

fragmented ones.

BytesPerSecOut
• the number of bytes per seconds in outbound direction
(from client to server).

BytesPerSecIn
• the number of bytes per seconds in outbound direction
(from server to client).

BytesPerSessOut • the number of transferred bytes during TCP session in outbound direc-
tion.

Table D.1: Statistical features (part 1/3)
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Feature ID Description C
on

te
xt

BytesPerSessIn • the number of transferred bytes during TCP session in inbound direction.
Bytes3WH2FIN • the number of all transferred bytes from the start to the end of a commu-

nication including session initiation and destruction packets.
BytesTCPSess • the number of all transferred bytes from the start to the end of a commu-

nication excluding session initiation and destruction packets.
BytesTCPOverhead • the number of all transferred bytes in TCP session initiation and destruc-

tion phases.
MedPktLenOut • median of packet sizes in outbound traffic of a connection.
ModPktLenOut • mode of packet sizes in outbound traffic of a connection.
MeanPktLenOut • mean of packet sizes in outbound traffic of a connection.
SigPktLenOut • standard deviation of outbound packet lengths.
SumPktLenOut • the totaled outbound packet lengths of a connection.
MedPktLenIn • median of packet sizes in inbound traffic of a connection.
ModPktLenIn • mode of packet sizes in inbound traffic of a connection.
MeanPktLenIn • mean of packet sizes in inbound traffic of a connection.
SigPktLenIn • standard deviation of packet sizes in inbound traffic of a connection.
SumPktLenIn • the totaled inbound packet lengths of a connection.
CntPktsOut • the number of outbound packets per second.
CntPktsIn • the number of inbound packets per second.
SumPktOut • the overall number of outbound packets.
SumPktIn • the overall number of inbound packets.
SumSYNPerSess • the overall number of packets with SYN flag set.
SumSACKPerSess • the overall number of packets with SYN + ACK flags set.
RatInOutB • the ratio of inbound to outbound bytes.
RatInOutPkt • the ratio of inbound to outbound packet counts.
MedTTLIn • median of TTL (time to live) value in inbound traffic.
ModTTLIn • mode of TTL value in inbound traffic.
SigTTLIn • standard deviation of TTL value in inbound traffic.
MeanTTLIn • mean of TTL value in inbound traffic.
ConTcpFinCntIn • the number of inbound packets of a connection with FIN flag set.
ConTcpSynCntIn • the number of inbound packets of a connection with SYN flag set.
ConTcpRstCntIn • the number of inbound packets of a connection with RST flag set.
ConTcpPshCntIn • the number of inbound packets of a connection with PSH flag set.
ConTcpAckCntIn • the number of inbound packets of a connection with ACK flag set.
ConTcpUrgCntIn • the number of inbound packets of a connection with URG flag set.
ConTcpEceCntIn • the number of inbound packets of a connection with ECE flag set.
ConTcpCwrCntIn • the number of inbound packets of a connection with CWR flag set.
ConTcpRstAckIn • the number of inbound packets of a connection with RST+ACK set.
ConTcpFinCntOut • the number of outbound packets of a connection with FIN flag set.
ConTcpSynCntOut • the number of outbound packets of a connection with SYN flag set.
ConTcpRstCntOut • the number of outbound packets of a connection with RST flag set.
ConTcpPshCntOut • the number of outbound packets of a connection with PSH flag set.
ConTcpAckCntOut • the number of outbound packets of a connection with ACK flag set.
ConTcpUrgCntOut • the number of outbound packets of a connection with URG flag set.
ConTcpEceCntOut • the number of outbound packets of a connection with ECE flag set.
ConTcpCwrCntOut • the number of outbound packets of a connection with CWR flag set.
ConTcpRstAckOut • the number of outbound packets of a connection with RST+ACK flags

set.

Table D.2: Statistical features (part 2/3)
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Feature ID Description C
on

te
xt

ConTcpFinCntAll • the number of all packets of a connection with FIN flag set.
ConTcpSynCntAll • the number of all packets of a connection with SYN flag set.
ConTcpRstCntAll • the number of all packets of a connection with RST flag set.
ConTcpPshCntAll • the number of all packets of a connection with PSH flag set.
ConTcpAckCntAll • the number of all packets of a connection with ACK flag set.
ConTcpUrgCntAll • the number of all packets of a connection with URG flag set.
ConTcpEceCntAll • the number of all packets of a connection with ECE flag set.
ConTcpCwrCntAll • the number of all packets of a connection with CWR flag set.
ConTcpRstAckAll • the number of all packets of a connection with RST+ACK flags set.

Table D.3: Statistical features (part 3/3)

D.2 Localization Features

Feature ID Description C
on

te
xt

SrcIP • the IP address of the source machine (client).
SrcIPInVlan • indication of occurrence of source IP in local network.
DstIP • the IP address of the destination machine (server).
DstIPInVlan • indication of occurrence of destination IP in local network.
SrcPort • a port of the client machine.
DstPort • a port of the server machine.
SrcMAC • MAC address of the source machines network adapter.
DstMAC • MAC address of the destination machines network adapter.

Table D.4: Localization features
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D.3 Distributed Features

Feature ID Description C
on

te
xt

InPkt1s10i • the number of inbound packets occurred in the first second of a connection
which are distributed into 10 intervals.

InPkt4s10i • the same as the previous one, but computed above the first 4s.
InPkt8s10i • the same as the previous one, but computed above the first 8s.
InPkt32s10i • the same as the previous one, but computed above the first 32s.
InPkt64s10i • the same as the previous one, but computed above the first 64s.
OutPkt1s10i • the number of outbound packets occurred in the first second of a con-

nection which are distributed into 10 intervals.
OutPkt4s10i • the same as the previous one, but computed above the first 4s.
OutPkt8s10i • the same as the previous one, but computed above the first 8s.
OutPkt32s10i • the same as the previous one, but computed above the first 32s.
OutPkt64s10i • the same as the previous one, but computed above the first 64s.
InPkt1s20iTr4KB • the accumulated number of inbound packets occurred in the 1st second

of a connection distributed into 20 intervals, each after accumulation of
4KB of data.

InPkt4s20iTr4KB • the same as the previous one, but computed over the first 4s.
InPkt8s20iTr4KB • the same as the previous one, but computed over the first 8s.
InPkt32s20iTr4KB • the same as the previous one, but computed over the first 32s.
InPkt64s20iTr4KB • the same as the previous one, but computed over the first 64s.
InPkt64s20iTr1KB • the same as the previous one, but assumes threshold of 1KB.
InPkt64s20iTr2KB • the same as the previous one, but assumes threshold of 2KB.
OutPkt1s20iTr4KB • the accumulated number of outbound packets occurred in the 1st second

of a connection distributed into 20 intervals, each after accumulation of
4KB of data.

OutPkt4s20iTr4KB • the same as the previous one, but computed over the first 4s.
OutPkt8s20iTr4KB • the same as the previous one, but computed over the first 8s.
OutPkt32s20iTr4KB • the same as the previous one, but computed over the first 32s.
OutPkt64s20iTr4KB • the same as the previous one, but computed over the first 64s.
OutPkt64s20iTr1KB • the same as the previous one, but assumes threshold of 1KB.
OutPkt64s20iTr2KB • the same as the previous one, but assumes threshold of 2KB.
InPktLen1s10i • lengths of inbound packets occurred in the first second of a connection

which are distributed into 10 intervals.
InPktLen4s10i • the same as the previous one, but computed above the first 4s.
InPktLen8s10i • the same as the previous one, but computed above the first 8s.
InPktLen32s10i • the same as the previous one, but computed above the first 32s.
InPktLen64s10i • the same as the previous one, but computed above the first 64s.
OutPktLen1s10i • lengths of outbound packets occurred in the first second of a connection

which are distributed into 10 intervals.
OuPktLen4s10i • the same as the previous one, but computed above the first 4s.
OuPktLen8s10i • the same as the previous one, but computed above the first 8s.
OuPktLen32s10i • the same as the previous one, but computed above the first 32s.
OuPktLen64s10i • the same as the previous one, but computed above the first 64s.

Table D.5: Distributed features
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D.4 Dynamic Features

Feature ID Description C
on

te
xt

BPerSecIn • the number of bytes per second transferred in inbound traffic. X
BPerSecOut • the number of bytes per second transferred in outbound traffic. X
BPerSesIn • the number of transferred bytes between client and server hosts in in-

bound traffic during TCP session.
X

BPerSesOut • the number of transferred bytes between client and server hosts in out-
bound traffic during TCP session.

X

PktPerSIn • the number of packets per second in inbound traffic. X
PktPerSOut • the number of packets per second in outbound traffic. X
PktPerSesIn • the number of inbound packets transferred between client and server

hosts during the duration of a connection.
X

PktPerSesOut • the number of outbound packets transferred between client and server
hosts during time of a connection.

X

TSesStart • start time of a connection.
TSesEnd • end time of a connection.
SessDuration • a duration of a connection.
CntResendPktsIn • the number resend inbound packets.
CntResendPktsOut • the number resend outbound packets.
CntPktOutOfOrd • the number of packets occurred out of order.
MedTdiff2Pkts • median of packet IAT in all traffic.
MeanTdiff2Pkts • mean of packet IAT in all traffic.
SigTdiff2Pkts • standard deviation of packet IAT in all traffic.
MedTdiff2PktsIn • median of packet IAT in inbound traffic.
MeanTdiff2PktsIn • mean of packet IAT in inbound traffic.
SigTdiff2PktsIn • standard deviation of packet IAT in inbound traffic
MedTdiff2PktsOut • median of packet IAT in outbound traffic.
MeanTdiff2PktsOut • mean of packet IAT in outbound traffic.
SigTdiff2PktsOut • standard deviation of packet IAT in outbound traffic
IntervalsPortsSig • standard deviation of time intervals between consecutive connections of

the two hosts running on the same ports as an analyzed connection. The
feature assumes only beginnings of connection for computation of intervals.

X

IntervalsPortsSig2 • the same as the previous one, but it assumes the beginnings as well as
ends of connections for computation of intervals.

X

IntervalsIPsSig • standard deviation of time intervals between consecutive connections of
the two hosts running on the same IP addresses as an analyzed connec-
tion. The feature assumes only beginnings of connection for computation
of intervals.

X

IntervalsIPsSig • the same as the previous one, but it assumes the beginnings as well as
ends of connections for computation of intervals.

X

CntSYNIn • the number of inbound packets with SYN flag set. X
CntSYNOut • the number of outbound packets with SYN flag set. X
CntACKIn • the number of inbound packets with ACK flag set. X
CntACKOut • the number of outbound packets with ACK flag set. X
CntFINIn • the number of inbound packets with FIN flag set. X
CntFINOut • the number of outbound packets with FIN flag set. X

Table D.6: Dynamic features
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D.5 Behavioral Features

Feature ID Description C
on

te
xt

CntOfOldFlows • the number of mutual flows between client and server hosts of analyzed
connection 5 minutes before it started.

X

CntOfNewFlows • the number of mutual flows between client and server hosts of analyzed
connection 5 minutes after it finished.

X

CorClosed • indication of correctly closed connection. It exploits 3-way end-shake.
PolyInd3ordIn • approximation of inbound communication by polynomial of 3rd order in

the index domain of packet occurrences.
PolyInd5ordIn • the same as the previous one, but utilizes polynomial of 5th order.
PolyInd8ordIn • the same as the previous one, but utilizes polynomial of 8th order.
PolyInd10ordIn • the same as the previous one, but utilizes polynomial of 10th order.
PolyInd13ordIn • the same as the previous one, but utilizes polynomial of 13th order.
PolyInd3ordOut • approximation of outbound communication by polynomial of 3rd order

in the index domain of packet occurrences.
PolyInd5ordOut • the same as the previous one, but utilizes polynomial of 5th order.
PolyInd8ordOut • the same as the previous one, but utilizes polynomial of 8th order.
PolyInd10ordOut • the same as the previous one, but utilizes polynomial of 10th order.
PolyInd13ordOut • the same as the previous one, but utilizes polynomial of 13th order.
PolyTime3ordIn • approximation of inbound communication by polynomial of 3rd order in

the time domain of packet occurrences.
PolyTime5ordIn • the same as the previous one, but utilizes polynomial of 5th order.
PolyTime8ordIn • the same as the previous one, but utilizes polynomial of 8th order.
PolyTime10ordIn • the same as the previous one, but utilizes polynomial of 10th order.
PolyTime13ordIn • the same as the previous one, but utilizes polynomial of 13th order.
PolyTime3ordOut • approximation of outbound communication by polynomial of 3rd order

in the time domain of packet occurrences.
PolyTime5ordOut • the same as the previous one, but utilizes polynomial of 5th order.
PolyTime8ordOut • the same as the previous one, but utilizes polynomial of 8th order.
PolyTime10ordOut • the same as the previous one, but utilizes polynomial of 10th order.
PolyTime13ordOut • the same as the previous one, but utilizes polynomial of 13th order.
PolyInd3ordAllN • the same as the previous one, but utilizes polynomial of 3th order for

approximation of all packet sizes, while inbound packets are assumed with
negative sign and outbound packets by positive sign.

Table D.7: Behavioral features (part 1/2)
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Feature ID Description C
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FourGonModulIn • Fast Fourier Transformation (FFT) of inbound packet sizes. The feature
represents angle coefficients of the FFT in goniometric representation.

FourGonAngleIn • the same as previous, but the feature represents module coefficients of
the FFT.

FourGonModulOut • FFT of outbound packet sizes. The feature represents angle coefficients
of the FFT in goniometric representation.

FourGonAngleOut • the same as previous, but the feature represents module coefficients of
the FFT.

FourGonModulAllN • FFT of all packet sizes, while inbound packets are represented with neg-
ative sign and outbound packets with positive sign. The feature represents
module coefficients of the FFT in goniometric representation.

FourGonAngleAllN • the same as the previous one, but the feature represent angle coefficients
of the FFT.

GaussProds1In • normalized products of inbound packet sizes with 1 Gaussian curve.
GaussProds2In • normalized sums of products of inbound packet sizes with 2 Gaussian

curves. Packets are divided into 2 slices and products are computed per
each slice by summing of products of relevant packets with fitted Gaussian
function. Each product is normalized by the number of packets in a slice.

GaussProds4In • the same as the previous one, but products are computed using 4 Gaus-
sian curves.

GaussProds8In • the same as the previous one, but products are computed using 8 Gaus-
sian curves.

GaussProds1Out • normalized products of outbound packet sizes with 1 Gaussian curve.
GaussProds2Out • normalized products of outbound packet sizes with 2 Gaussian curves.

Packets are divided into 2 slices and products are computed per each slice
by summing of products of relevant packets with fitted Gaussian function.
Each product is normalized by the number of packets in a slice.

GaussProds4Out • the same as the previous one, but products are computed using 4 Gaus-
sian curves.

GaussProds8Out • the same as the previous one, but products are computed using 8 Gaus-
sian curves.

GaussProds1All • normalized products of all packet sizes with 1 Gaussian curve.
GaussProds2All • the same as gaussProds2Out, but considers all traffic.
GaussProds4All • the same as the previous one, but products are computed using 4 Gaus-

sian curves.
GaussProds8All • the same as the previous one, but products are computed using 8 Gaus-

sian curves.
GaussProds8AllN • the same as the previous one, but it considers incoming packet sizes with

negative sign and outgoing with positive sign.

Table D.8: Behavioral features (part 2/2)
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Appendix E

Discriminators of Andrew Moore

ID Short Name Description

1 Server Port • port number of a server.
2 Client Port • port number of a client.
3 min_IAT • minimum packet inter-arrival time (IAT) for all packets of the flow.
4 q1_IAT • the first quartile of packet IAT.
5 med_IAT • median of packet IAT.
6 mean_IAT • mean of packet IAT.
7 q3_IAT • the 3rd quartile of packet IAT
8 max_IAT • the maximum packet IAT.
9 var_IAT • variance in packet IAT.
10 min_data_wire • the minimum of bytes in Ethernet packet.
11 q1_data_wire • the first quartile of bytes in Ethernet packet.
12 med_data_wire • median of bytes in Ethernet packet.
13 mean_data_wire • mean of bytes in Ethernet packet.
14 q3_data_wire • the 3rd quartile of bytes in Ethernet packet.
15 max_data_wire • the maximum of bytes in Ethernet packet.
16 var_data_wire • variance of bytes in Ethernet packet.
17 min_data_ip • the minimum of total bytes in IP packet, using the size of payload

declared by the IP packet.
18 q1_data_ip • the first quartile of total bytes in IP packet.
19 med_data_ip • median of total bytes in IP packet.
20 mean_data_ip • mean of total bytes in IP packet.
21 q3_data_ip • the 3rd quartile of total bytes in IP packet.
22 max_data_ip • the maximum of total bytes in IP packet.
23 var_data_ip • variance of total bytes in IP packet.
24 min_data_control • the minimum of control bytes in packet.
25 q1_data_control • the first quartile of control bytes in packet.
26 med_data_control • median of control bytes in packet.
27 mean_data_control • mean of control bytes in packet.
28 q3_data_control • the 3rd quartile of control bytes in packet.
29 max_data_control • the maximum of control bytes in packet.
30 var_data_control • variance of control bytes in packet.
31 total_packets_a_b • the total number of packets seen from client to server.
32 total_packets_b_a • the total number of packets seen from server to client.
33 ack_pkts_sent_a_b • the total number of packets with ACK flag set (client to server).
34 ack_pkts_sent_b_a • the total number of packets with ACK flag set (server to client).
35 pure_acks_sent_a_b • the total number of packets with ACK flag that were not piggy-backed

with data (client to server).
36 pure_acks_sent_b_a • the same as the previous one, but considers opposite direction.

Table E.1: Discriminator features [119] (part 1/7)
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ID Short Name Description

37 sack_pkts_sent_a_b • the total number packets with SYN + ACK set (client to server).
38 sack_pkts_sent_b_a • the same as the previous one, but for opposite direction.
39 dsack_pkts_sent_a_b • the total number of packets with duplicate SYN + ACK flags set

(client to server).
40 dsack_pkts_sent_b_a • the same as the previous one, but for opposite direction
41 max_sack_blks/ack_a_b • the maximum number of SYN + ACK blocks seen in any SYN +

ACK packet (client to server).
42 max_sack_blks/ack_b_a • the same as the previous one, but for opposite direction.
43 unique_bytes_sent_a_b • the number of unique bytes sent, i.e., the total bytes of data sent

excluding retransmitted bytes and any bytes sent doing window probing
(client to server).

44 unique_bytes_sent_b_a • the same as the previous one, but for opposite direction.
45 actual_data_pkts_a_b • the count of all the packets with at least a byte of TCP data payload

(client to server).
46 actual_data_pkts_b_a • the same as the previous one, but for opposite direction.
47 actual_data_bytes_a_b • the total number of data bytes seen, including bytes from retransmis-

sions and window probe packets (client to server).
48 actual_data_bytes_b_a • the same as the previous one, but for opposite direction.
49 rexmt_data_pkts_a_b • the count of all retransmitted packets (client to server).
50 rexmt_data_pkts_a_b • the same as the previous one, but for opposite direction.

51 rexmt_data_bytes_a_b
• the total bytes of data found in retransmitted packets
(client to server).

52 rexmt_data_bytes_b_a • the same as the previous one, but for opposite direction
53 zwnd_probe_pkts_a_b • the count of all the window probe packets seen (client to server).
54 zwnd_probe_pkts_b_a • the same as the previous one, but for opposite direction.

55 zwnd_probe_bytes_a_b • the total bytes of data sent in the window probe packet
(client to server).

56 zwnd_probe_bytes_b_a • the same as the previous one, but for opposite direction.
57 outoforder_pkts_a_b • the count of all the packets arrived out of order (client to server).
58 outoforder_pkts_b_a • the same as the previous one, but for opposite direction.
59 pushed_data_pkts_a_b • the count of all the packets seen with the PUSH flag set in the TCP

header (client to server).
60 pushed_data_pkts_b_a • the same as the previous one, but for opposite direction.
61 SYN_pkts_sent_a_b • The count of all the packets seen with the SYN flag set in the TCP

header (client to server).
62 FIN_pkts_sent_a_b • the count of all the packets seen with the FIN flag set in the TCP

header (client to server).
63 SYN_pkts_sent_b_a • the same as SYN_pkts_sent_a_b, but for oppposite direction.
64 FIN_pkts_sent_b_a • the same as FIN_pkts_sent_a_b, but for oppposite direction.
65 req_1323_ws_a_b • if the endpoint requested Window Scaling option as specified in RFC

1323 a ’Y’ is printed on the respective field. If the option was not
requested, an ’N’ is printed (client to server).

66 req_1323_ts_a_b • if the endpoint requested Timestamp option as specified in RFC 1323
a ’Y’ is printed on the respective field. If the option was not requested,
an ’N’ is printed (client to server).

67 req_1323_ws_b_a • the same as req_1323_ws_a_b, but for oppposite direction.
68 req_1323_ts_b_a • the same as req_1323_ts_a_b, but for oppposite direction.
69 adv_wind_scale_a_b • the window scaling factor used. This field is valid only if the connec-

tion was captured fully to include the SYN packets (client to server).
70 adv_wind_scale_b_a • the same as the previous one, but for opposite direction.
71 req_sack_a_b • if the endpoint sent a SYN + ACK permitted option in the SYN

packet opening the connection, a ’Y’ is printed; otherwise ’N’ is printed
(client to server).

72 req_sack_b_a • the same as the previous one, but for opposite direction.
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73 sacks_sent_a_b • the total number of ACK packets seen carrying SYN + ACK
information (client to server).

74 sacks_sent_b_a • the same as the previous one, but for opposite direction.
75 urgent_data_pkts_a_b • the total number of packets with the URG flag turned on in

the TCP header (client to server).
76 urgent_data_pkts_b_a • the same as the previous one, but for opposite direction.
77 urgent_data_bytes_a_b • the total bytes of urgent data sent. This field is calculated

by summing the urgent pointer offset values found in packets
having the URG flag set in the TCP header (client to server).

78 urgent_data_bytes_b_a • the same as the previous one, but for opposite direction.
79 mss_requested_a_b • the Maximum Segment Size (MSS) requested as a TCP option

in the SYN packet opening the connection (client to server).
80 mss_requested_b_a • the same as the previous one, but for opposite direction.
81 max_segm_size_a_b • the maximum segment size observed during the lifetime of the

connection (client to server).
82 max_segm_size_b_a • the same as the previous one, but for opposite direction.
83 min_segm_size_a_b • the minimum segment size observed during the lifetime of the

connection (client to server).
84 min_segm_size_b_a • the same as the previous one, but for opposite direction.
85 avg_segm_size_a_b • the average segment size observed during the lifetime of the

connection calculated as the value reported in the actual data
bytes field divided by the actual data packets found (client to
server).

86 avg_segm_size_b_a • the same as the previous one, but for opposite direction.
87 max_win_adv_a_b • the maximum window advertisement seen if the connection is

using window scaling (client to server).
88 max_win_adv_b_a • the same as the previous one, but for opposite direction.
89 min_win_adv_a_b • the minimum window advertisement seen. This is the mini-

mum window-scaled advertisement seen if both sides negotiated
window scaling (client to server).

90 min_win_adv_b_a • the same as the previous one, but for opposite direction.
91 zero_win_adv_a_b • the number of times a zero receive window was advertised

(client to server).
92 zero_win_adv_b_a • the same as the previous one, but for opposite direction.
93 avg_win_adv_a_b • the average window advertisement seen, calculated as the sum

of all window advertisements divided by the total number of
packets seen (client to server).

94 avg_win_adv_b_a • the same as the previous one, but for opposite direction.
95 initial_window-bytes_a_b • the total number of bytes sent in the initial window i.e., the

number of bytes seen in the initial flight of data before receiving
the first ACK packet from the other endpoint (client to server).

96 initial_window-bytes_b_a • the same as the previous one, but for opposite direction.
97 initial_window-packets_a_b • the total number of segments (packets) sent in the initial win-

dow (client to server).
98 initial_window-packets_b_a • the same as the previous one, but for opposite direction.
99 ttl_stream_length_a_b • The theoretical stream length, which is calculated as the differ-

ence between the sequence numbers of the SYN and FIN packets,
giving the length of the data stream seen (client to server).

100 ttl_stream_length_b_a • the same as the previous one, but for opposite direction.
101 missed_data_a_b • the missed data, calculated as the difference between the the-

oretical stream length and unique bytes sent (client to server).
102 missed_data_b_a • the same as the previous one, but for opposite direction.
103 truncated_data_a_b • The truncated data, calculated as the total bytes of data trun-

cated during packet capture (client to server).
104 truncated_data_b_a • the same as the previous one, but for opposite direction.
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105 truncated_packets_a_b • the total number of packets truncated as explained above
(client to server).

106 truncated_packets_b_a • the same as the previous one, but for opposite direction.
107 data_xmit_time_a_b • total data transmission time, calculated as the difference be-

tween the times of capture of the first and last packets carrying
non-zero TCP data payload (client to server).

108 data_xmit_time_b_a • the same as the previous one, but for opposite direction.
109 idletime_max_a_b • the maximum idle time, calculated as the maximum time be-

tween consecutive packets seen in the direction (client to server).
110 idletime_max_b_a • the same as the previous one, but for opposite direction.
111 throughput_a_b • the average throughput calculated as the unique bytes sent

divided by the elapsed time (client to server).
112 throughput_b_a • the same as the previous one, but for opposite direction.
113 RTT_samples_a_b • the total number of Round-Trip Time (RTT) samples found

(client to server).
114 RTT_samples_b_a • the same as the previous one, but for opposite direction.
115 RTT_min_a_b • the minimum RTT sample seen (client to server).
116 RTT_min_b_a • the same as the previous one, but for opposite direction.
117 RTT_max_a_b • the maximum RTT sample seen (client to server).
118 RTT_max_b_a • the same as the previous one, but for opposite direction.
119 RTT_avg_a_b • the average value of RTT found, calculated in straightforward

way as the sum of all the RTT values found divided by the total
number of RTT samples (client to server).

120 RTT_avg_b_a • the same as the previous one, but for opposite direction.
121 RTT_stdv_a_b • The standard deviation of the RTT samples (client to server).
122 RTT_stdv_b_a • the same as the previous one, but for opposite direction.
123 RTT_from_3WHS_a_b • the RTT value calculated from the TCP 3-Way Hand-Shake

(client to server).
124 RTT_from_3WHS_b_a • the same as the previous one, but for opposite direction.
125 RTT_full_sz_smpls_a_b • The total number of full-size RTT samples, calculated from

the RTT samples of full-size segments. Full-size segments are
defined to be the segments of the largest size seen in the con-
nection (client server).

126 RTT_full_sz_smpls_b_a • the same as the previous one, but for opposite direction.
127 RTT_full_sz_min_a_b • the minimum full-size RTT sample (client to server).
128 RTT_full_sz_min_b_a • the same as the previous one, but for opposite direction.
129 RTT_full_sz_max_a_b • the maximum full-size RTT sample (client to server).
130 RTT_full_sz_max_b_a • the same as the previous one, but for opposite direction.
131 RTT_full_sz_avg_a_b • the average full-size RTT sample (client to server).
132 RTT_full_sz_avg_b_a • the same as the previous one, but for opposite direction.

133 RTT_full_sz_stdev_a_b • the standard deviation of full-size RTT sample
(client to server).

134 RTT_full_sz_stdev_b_a • the same as the previous one, but for opposite direction.
135 post-loss_acks_a_b • the total number of ACK packets received after losses, which

were detected and a retransmission occurred (client to server).
136 post-loss_acks_b_a • the same as the previous one, but for opposite direction.
137 segs_cum_acked_a_b • the count of the number of segments that were cumulatively

acknowledged and not directly acknowledged (client to server).
138 segs_cum_acked_b_a • the same as the previous one, but for opposite direction.

139 duplicate_acks_a_b • the total number of duplicate acknowledgments received
(client to server).

140 duplicate_acks_b_a • the same as the previous one, but for opposite direction.
141 triple_dupacks_a_b • the total number of triple duplicate acknowledgments received

(client to server).
142 triple_dupacks_a_b • the same as the previous one, but for opposite direction.
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143 max_#_retrans_a_b • the maximum number of retransmissions seen for any segment
during the lifetime of the connection (client to server).

144 max_#_retrans_b_a • the same as the previous one, but for opposite direction.
145 min_retr_time_a_b • the minimum time seen between any two (re)transmissions of

a segment among all the retransmissions seen (client to server).
146 min_retr_time_b_a • the same as the previous one, but for opposite direction.
147 max_retr_time_a_b • the maximum time seen between any two (re)transmissions of

a segment (client to server).
148 max_retr_time_b_a • the same as the previous one, but for opposite direction.
149 avg_retr_time_a_b • the average time seen between any two (re)transmissions of a

segment (client to server).
150 avg_retr_time_b_a • the same as the previous one, but for opposite direction.
151 std_retr_time_a_b • the standard deviation of the retransmission-time samples ob-

tained from all the retransmissions (client to server).
152 std_retr_time_b_a • the same as the previous one, but for opposite direction.

153 min_data_wire_a_b • the minimum number of bytes in Ethernet packet
(client to server).

154 q1_data_wire_a_b • the first quartile of bytes in Ethernet packet (client to server).
155 med_data_wire_a_b • median of bytes in Ethernet packet (client to server).
156 mean_data_wire_a_b • mean of bytes in Ethernet packet (client to server).
157 q3_data_wire_a_b • the third quartile of bytes in Ethernet packet (client to server).
158 max_data_wire_a_b • the maximum of bytes in Ethernet packet (client to server).
159 var_data_wire_a_b • variance of bytes in Ethernet packet (client to server).

160 min_data_ip_a_b • the minimum number of total bytes in IP packet
(client to server).

161 q1_data_ip_a_b • the first quartile of total bytes in IP packet (client to server).
162 med_data_ip_a_b • median of total bytes in IP packet (client to server).
163 mean_data_ip_a_b • mean of total bytes in IP packet (client to server).
164 q3_data_ip_a_b • the third quartile of total bytes in IP packet (client to server).
165 max_data_ip_a_b • the maximum of total bytes in IP packet (client to server).
166 var_data_ip_a_b • variance of total bytes in IP packet (client to server).

167 min_data_control_a_b • the minimum number of control bytes in packet
(client to server).

168 q1_data_control_a_b • the first quartile of control bytes in packet (client to server).
169 med_data_control_a_b • median of control bytes in packet (client to server).
170 mean_data_control_a_b • mean of control bytes in packet (client to server).
171 q3_data_control_a_b • the third quartile of control bytes in packet (client to server).
172 max_data_control_a_b • the maximum of control bytes in packet (client to server).
173 var_data_control_a_b • variance of control bytes in packet (client to server).

174 min_data_wire_b_a • the minimum number of bytes in Ethernet packet
(server to client).

175 q1_data_wire_b_a • the first quartile of bytes in Ethernet packet (server to client).
176 med_data_wire_b_a • median of bytes in Ethernet packet (server to client).
177 mean_data_wire_b_a • mean of bytes in Ethernet packet (server to client).
178 q3_data_wire_b_a • the third quartile of bytes in Ethernet packet (server to client).
179 max_data_wire_b_a • the maximum of bytes in Ethernet packet (server to client).
180 var_data_wire_b_a • variance of bytes in Ethernet packet (server to client).
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181 min_data_ip_b_a • the minimum number of total bytes in IP packet
(server to client).

182 q1_data_ip_b_a • the first quartile of total bytes in IP packet (server to client).
183 med_data_ip_b_a • median of total bytes in IP packet (server to client).
184 mean_data_ip_b_a • mean of total bytes in IP packet (server to client).

185 q3_data_ip_b_a • the third quartile of total bytes in IP packet
(server to client).

186 max_data_ip_b_a • the maximum of total bytes in IP packet (server to client).
187 var_data_ip_b_a • variance of total bytes in IP packet (server to client).

188 min_data_control_b_a • the minimum number of control bytes in packet
(server to client).

189 q1_data_control_b_a • the first quartile of control bytes in packet (server to client).
190 med_data_control_b_a • median of control bytes in packet (server to client).
191 mean_data_control_b_a • mean of control bytes in packet (server to client).
192 q3_data_control_b_a • the third quartile of control bytes in packet (server to client).
193 max_data_control_b_a • the maximum of control bytes in packet (server to client).
194 var_data_control_b_a • variance of control bytes in packet (server to client).
195 min_IAT_a_b • the minimum of packet inter-arrival time (client to server).

196 q1_IAT_a_b • the first quartile of packet inter-arrival time
(client to server).

197 med_IAT_a_b • median of packet inter-arrival time (client to server).
198 mean_IAT_a_b • mean of packet inter-arrival time (client to server).

199 q3_IAT_a_b • the third quartile of packet inter-arrival time
(client to server).

200 max_IAT_a_b • the maximum of packet inter-arrival time (client to server).
201 var_IAT_a_b • variance of packet inter-arrival time (client to server).
202 min_IAT_b_a • the minimum of packet inter-arrival time (server to client).

203 q1_IAT_b_a • the first quartile of packet inter-arrival time
(server to client).

204 med_IAT_b_a • median of packet inter-arrival time (server to client).
205 mean_IAT_b_a • mean of packet inter-arrival time (server to client).

206 q3_IAT_b_a • the third quartile of packet inter-arrival time
(server to client).

207 max_IAT_b_a • the maximum of packet inter-arrival time (server to client).
208 var_IAT_b_a • variance of packet inter-arrival time (server to client).
209 Time_since

_last_connection
• time elapsed since the last connection between involved
client and server.

210 No._transitions
_bulk/trans

• the number of transitions between transaction mode and
bulk transfer mode, where bulk transfer mode is defined as
the time when there are more than three successive packets in
the same direction without any packets carrying data in the
other direction.

211 Time_spent_in_bulk • amount of time spent in bulk transfer mode.
212 Duration • connection duration.

Table E.6: Discriminator features [119] (part 6/7)

198



ID Short Name Description

213 %_bulk • ratio of time spent in bulk transfer mode.
214 Time_spent_idle • the time spent idle, where idle time is the accumu-

lation of all periods of 2 seconds or greater when no
packet was seen in either direction.

215 %_idle • ratio of time spent in idle mode.

216 Effective_Bandwidth • effective bandwidth based upon entropy
(both directions).

217 Effective_Bandwidth_a_b • effective bandwidth based upon entropy
(client to server).

218 Effective_Bandwidth_b_a • effective bandwidth based upon entropy
(server to client).

219 FFT_all_#1 • FFT of packet IAT – Frequency #1 (both directions).
220 FFT_all_#2 • FFT of packet IAT – Frequency #2 (both directions).
221 FFT_all_#3 • FFT of packet IAT – Frequency #3 (both directions).
222 FFT_all_#4 • FFT of packet IAT – Frequency #4 (both directions).
223 FFT_all_#5 • FFT of packet IAT – Frequency #5 (both directions).
224 FFT_all_#6 • FFT of packet IAT – Frequency #6 (both directions).
225 FFT_all_#7 • FFT of packet IAT – Frequency #7 (both directions).
226 FFT_all_#8 • FFT of packet IAT – Frequency #8 (both directions).
227 FFT_all_#9 • FFT of packet IAT – Frequency #9 (both directions).
228 FFT_all_#10 • FFT of packet IAT – Frequency #10 (both directions).
229 FFT_a_b_#1 • FFT of packet IAT – Frequency #1 (client to server).
230 FFT_a_b_#2 • FFT of packet IAT – Frequency #2 (client to server).
231 FFT_a_b_#3 • FFT of packet IAT – Frequency #3 (client to server).
232 FFT_a_b_#4 • FFT of packet IAT – Frequency #4 (client to server).
233 FFT_a_b_#5 • FFT of packet IAT – Frequency #5 (client to server).
234 FFT_a_b_#6 • FFT of packet IAT – Frequency #6 (client to server).
235 FFT_a_b_#7 • FFT of packet IAT – Frequency #7 (client to server).
236 FFT_a_b_#8 • FFT of packet IAT – Frequency #8 (client to server).
237 FFT_a_b_#9 • FFT of packet IAT – Frequency #9 (client to server).
238 FFT_a_b_#10 • FFT of packet IAT – Frequency #10 (client to server).
239 FFT_b_a_#1 • FFT of packet IAT – Frequency #1 (server to client).
240 FFT_b_a_#2 • FFT of packet IAT – Frequency #2 (server to client).
241 FFT_b_a_#3 • FFT of packet IAT – Frequency #3 (server to client).
242 FFT_b_a_#4 • FFT of packet IAT – Frequency #4 (server to client).
243 FFT_b_a_#5 • FFT of packet IAT – Frequency #5 (server to client).
244 FFT_b_a_#6 • FFT of packet IAT – Frequency #6 (server to client).
245 FFT_b_a_#7 • FFT of packet IAT – Frequency #7 (server to client).
246 FFT_b_a_#8 • FFT of packet IAT – Frequency #8 (server to client).
247 FFT_b_a_#9 • FFT of packet IAT – Frequency #9 (server to client).
248 FFT_b_a_#10 • FFT of packet IAT – Frequency #10 (server to client).
249 Classes • application class.
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Appendix F

Performance Experiments with
ASNM

F.1 Confusion Matrices from Master’s Thesis

Classification Accuracy: True Class Precision
87.57% Legit. Flows Attacks

Predicted
Class

Legit. Flows 151 1 99.34%
Attacks 22 11 33.33%
Recall 87.28% 91.67% F1 = 48.88%

Table F.1: Naive Bayes Classifier

Classification Accuracy: True Class Precision
91.92% Legit. Flows Attacks

Predicted
Class

Legit. Flows 168 10 94.38%
Attacks 5 2 28.57%
Recall 97.11% 16.16% F1 = 20.64%

Table F.2: Naive Bayes classifier and PCA with automatic count of components

Classification Accuracy: True Class Precision
88.10% Legit. Flows Attacks

Predicted
Class

Legit. Flows 153 2 98.71%
Attacks 20 10 33.33%
Recall 88.44% 83.33% F1 = 47.61%

Table F.3: Naive Bayes classifier and PCA with fixed count of components
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Classification Accuracy: True Class Precision
94.06% Legit. Flows Attacks

Predicted
Class

Legit. Flows 163 1 99.39%
Attacks 10 11 52.38%
Recall 94.22% 91.67% F1 = 66.66%

Table F.4: Naive Bayes classifier with discretization of ordinal attributes

Classification Accuracy: True Class Precision
82.17% Legit. Flows Attacks

Predicted
Class

Legit. Flows 140 0 100.00%
Attacks 33 12 26.67%
Recall 80.92% 100.00% F1 = 42.10%

Table F.5: SVM classifier with neural kernel

Classification Accuracy: True Class Precision
95.14% Legit. Flows Attacks

Predicted
Class

Legit. Flows 169 5 97.13%
Attacks 4 7 63.64%
Recall 97.69% 58.33% F1 = 60.87%

Table F.6: Decision Tree classifier with gini index split criterion
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F.2 CDX 2009 and ASNM

We placed the results achieved by Forward Feature Selection (FFS) method which ran on
the Decision Tree classifier into the current appendix, as our attention was primarily focused
on the Naive Bayes classifier. For detailed information see Section 6.3.1.

F.2.1 FFS with Decision Tree

Figure F.1: Model of the Decision Tree classifier (ASNM features)

Classification Accuracy: True Class Precision
99.86% ±0.10 Legit. Flows Attacks

Predicted
Class

Legit. Flows 5723 4 99.93%
Attacks 4 40 90.91%
Recall 99.93% 90.91% F1 = 90.91%

Table F.7: FFS on ASNM features and Decision Tree classifier
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Appendix G

Tunneling Obfuscation

Several examples of discriminating and obfuscated features are placed into the current ap-
pendix, as they are not representatives of particular category, and thus their outcome may
be unclear or inexpressive in some ranges of the feature distribution. For more information
about associated experiments see Section 7.7.

G.1 Discriminating Features
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Figure G.1: Lengths of inbound packets occurred in the first 32 seconds of a connection
(InPktLen32s10i[0])

203



0

0.005

0.01

0.015

0.02

0.025

0.03

-150 -100 -50 0 50 100 150

D
en

si
ty

Value

Legit. traffic
Direct attacks

Obfus. attacks

Figure G.2: FFT of packet lengths (both directions)
(FourGonAngleNeg[9])
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Figure G.3: Normalized sum of products of a connection with 8 Gaussian curves
(GaussProds8AllNeg[7])
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G.2 Obfuscated Features
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Figure G.4: Lengths of outbound packets occurred in the first 4 seconds of a connection
(OutPktLen4s10i[3])
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Figure G.5: Lengths of outbound packets occurred in the first second of a connection
(OutPktLen1s10i[1])
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Figure G.6: Approximation of inbound communication by polynomial of 8 order
(PolyInd8ordOut[3])
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Appendix H

Non-payload Based Obfuscations

Several examples of discriminating and obfuscated features are placed into the current ap-
pendix, as they are not representatives of particular category, and thus their outcome may
be unclear or inexpressive in some ranges of the feature distribution. For more information
about associated experiments see Section 8.8.

H.1 Discriminating Features
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Figure H.1: Lengths of outbound packets occurred in the first 4 seconds of a connection
(OutPktLen4s10i[9])
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Figure H.2: Standard deviation of lengths of packets transferred from client to server
(SigPktLenOut)
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Figure H.3: Sub-interval of sum of TCP header lengths
(SumTCPHdrLen)
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Figure H.4: FFT of packet lengths in both directions
(FourGonAngleNeg[5])
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