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ON A TWO-POINT BOUNDARY VALUE PROBLEM FOR
THIRD-ORDER LINEAR FUNCTIONAL DIFFERENTIAL
EQUATIONS. PART II.

ROBERT HAKL

Abstract. Efficient conditions sufficient for the solvability of the problem
u(t) = g(t)u(u(t) — p(t)u(r(t)) + q(t); ula) =c1, u'(a)=c2, u(d)=cs
are derived using the general results obtained in our recent paper [1]. Here, p,g €

L([a,b];]R+), q € L([a7 b];R), 7,1 : [a,b] — [a,b] are measurable functions, and
¢; € R (i =1,2,3). Sign-constant solutions are discussed as well.

1. INTRODUCTION

In [1], we have obtained general results on the existence, uniqueness and positivity
of a solution to the two-point boundary value problem
u" (t) = L(u)(t) + q(t) for a.e. t € [a, ], (1.

L.1)
1

1
u(a) = ¢y, u'(a) = ¢, u(b) = ca, (1.2)

where ¢ € L([a,b];R), ¢ € R (i =1,2,3), and ¢ : C([a,b];R) — L([a,b];R)
is a linear bounded operator. The present paper, which is the second part of [1],
contains some nontrivial consequences of the general results of [1] for the equations
with deviating arguments. The proofs essentially use the statements obtained
in [1]. We refer to [1] for an overview of the topic and the related literature.

Here, we consider the problem (1.1), (1.2) with the operator ¢ having one of the
following forms:

L()(t) = —p(t)v(r(t)) for ae. t € [a,b], veC([a,b];R), (1.3)
L()(t) = g(t)v(u(t)) for a.e. t € [a,b], ve C([a,b];R), (1.4)

and
L) (t) = g(t)v(p(t)) — p(t)v(T(¢)) for a.e. t € [a,b], veC(la,b;R), (1.5)

where p,g € L([a,b);R") and 7,4 : [a,b] — [a,b] are measurable functions. By
a solution to the problem (1.1), (1.2), we understand a function « : [a, b] — R which
is absolutely continuous together with its first and second derivatives, satisfies the
equality (1.1) almost everywhere in [a, b], and (1.2) holds.
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The following notation is used throughout the paper:

R is a set of all real numbers, R = [0, +o0].

C([a,b); R) is a Banach space of all continuous functions u : [a,b] — R endowed
with the norm

ull¢ = max {|u(t)| : t € [a,b]}.

C? (fa,b];R) is the set of all functions u : [a,b] — R that are absolutely contin-
uous together with their first and second derivatives.

@200(]@ b[;R) is the set of all functions u :]a, b — R such that u € C? ([a, Bl; R)
for every «, 8 €]a,b], a < S.

Let u :]a,b[— R be a continuous function and let there exist a finite or an
infinite right, left, limit of w at the point a, b, respectively. Then we will write
u(a+), u(b—), instead of tlir;l+u(t), tl_i)Ill)l u(t), respectively.

6’0(]a, b[;R) is a set of all functions u € é?oc(]a, b[;R) N C([a,b];R) such that
there exist finite or infinite limits «/(a+) and u'(b—).

L([a, bl; R) is a Banach space of all Lebesgue integrable functions p : [a,b] — R
endowed with the norm

b
ol = [ o)l ds.
L([a,b);RT) = {p € L([a,b];R) : p(t) € RT for a.e. t € [a,b]}.
Ly is a set of all linear bounded operators £ : C([a,b; R) — L([a,b];R).

For convenience we recall the definitions introduced in [1].

Definition 1.1. An operator ¢ € L, is said to belong to the set V([a, b]) if
every function u € 52([a, b];R) satisfying

u'(t) < L(u)(t)  for ae. t € [a,b], (1.6)
u(a) >0, u'(a) >0, u(b) >0

admits the inequality
u(t) >0 for ¢ € [a, b]. (1.7)

Definition 1.2. An operator £ € L, is said to belong to the set Vo([a, b]) if
every function u € 52([a, b]; R) satisfying (1.6) and

admits the inequality (1.7).
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2. MAIN RESULTS

Theorem 2.1. Let

6= 7)) —a) [ -0 —apas— T [ = appis)as
b
+w /(b —5)?p(s)ds < (b— a)? for a.e. t € [a,b]. (2.1)
7(t)

Then the operator { defined by (1.3) belongs to the set V([a,b]).
Corollary 2.2. Let

b
/p(s) ds < ﬁ. (2.2)
Then the operator £ defined bya (1.3) belongs to the set V([a,b]).
Theorem 2.3. Let
<b—<t>> 3 (ﬂw—ay*?p(t) B

b—t t—a b—1t)3(t —a)d
for a.e. t €la,b]. (2.3)

Then the operator { defined by (1.3) belongs to the set V([a,b]).

5

Theorem 2.4. Let there exist ¢ € [a,b] and A\;j € RT, v; € [0,1], (4,7 = 1,2)
such that
+oo

ds (c—a)t—n
/ 52+ A1s+ Ai2 = 11— (24)
0
T (b—c)t—
/ 52 4+ X215 + Moo = 1—vy (2:5)
0
and
—a)? 7(t) —t)? 2! 11
—p(t) (t . ) +p(t)a(t)( (t)2 t) < — + (ti\a)”l for a.e. t € [a,c], (2.6)
pt)(t —a)+pt)o(t)(r(t) —t) < (1€—>\;2)2”1 for a.e. t € [a,c], (2.7)
p(t) (t _2a) —p(t)o(t) (T(t)Q_ ‘) < by—zt + C /\2;)”2 for a.e. t €[c,b], (2.8)
p(t)(t —a) +pt)o(t)(r(t) —t) < (b—)\% for a.e. t € [c,b], (2.9)

where
(1+sgn(r(t) —t)).

DO | =

o(t) =
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Then the operator € defined by (1.3) belongs to the set V([a, b]).
Theorem 2.5. Let p(t) <t for a.e. t € [a,b] and

b
/(b —s)(s —a)g(s)ds < 2. (2.10)

a

Then the operator £ defined by (1.4) belongs to the set V([a, b])

Corollary 2.6. Let u(t) <t for a.e. t € [a,b] and
b

/g(s) ds < T —8(1)2'

a

Then the operator € defined by (1.4) belongs to the set V([a, b]).
Theorem 2.7. Let p(t) <t for a.e. t € [a,b] and

V3 _3
b—p®\'TT () —a+w)' T ) < 2v3(b — a + w)3
b—t t—a+w T =906 —1)3(t —a + w)
for a.e. t €la,b] (2.11)
with w = g;g(b — a). Then the operator £ defined by (1.4) belongs to the set
V([a,b]).
Theorem 2.8. Let u(t) < t for a.e. t € [a,b]. Let, moreover, there exist
c € [a,b] and A\;j € R, v; € [0,1], (i,5 =1,2) such that (2.4), (2.5) hold and
(b—1) (t — p(t)? "1 A1
— < .e.
g(t) 5 g(t) 5 Sy, 7 a7 for a.e. t € [a,d,
(2.12)
A
SO0+ 9O —n(0) < g for ae. t€fad), (2.13)
(b—1) (t — p(t)” V2 A2
_ < .e. 2.14
9(t) =5+ 9(t)—— <yt b0 for a.e. t € [c,b], (2.14)
A
gt)(b—1t) + gt)(t — u(t) < ﬁ for a.e. t € [c,b]. (2.15)

Then the operator € defined by (1.4) belongs to the set V([a, b]).

Theorem 2.9. Let p(t) <t for a.e. t € [a,b] and
b b

)2
0= ) =) [ 0= 5)(s —apgls)ds = LU= o sy2g05)as
w(t) w(t)
) n(t)

HOZBOE [ apgpas <0-af*  for ae. 1€ o] (2.16)

a

Then the operator £ defined by (1.4) belongs to the set Vo([a,b]).



ON A TWO-POINT BVP FOR THIRD-ORDER LFDE. PART II. 133

Corollary 2.10. Let u(t) <t for a.e. t € [a,b] and

b
/g(s) ds < T i6a)2. (2.17)

Then the operator £ defined by (1.4) belongs to the set Vo([a,b]).
Theorem 2.11. Let u(t) <t for a.e. t € [a,b] and

b— )\ ) —a)\ 2V/3(b — a)?
( ot ) (Mta ) 90 < 5= ap
for a.e. t € [a,b]. (2.18)

Then the operator £ defined by (1.4) belongs to the set VO([a,b]).

The results listed below immediately follow from [1, Theorems 2.10-2.13], The-
orems 2.1-2.11, and Corollaries 2.2-2.10.

Theorem 2.12. Let functions p, T satisfy the assumptions of at least one of
Theorems 2.1-2.4 or Corollary 2.2 and let functions g, 1 satisfy the assumptions
of at least one of Theorems 2.5-2.8 or Corollary 2.6. Then the problem (1.1),
(1.2) with ¢ defined by (1.5) has a unique solution w. If, in addition,

q(t) <0 for a.e. t € la,b, (2.19)

>0 (i=1,2,3),

3
lalle +> e >0,
=1

then
u(t) >0 for t €la,b. (2.20)

Theorem 2.13. Let functions p, T satisfy the assumptions of at least one of
Theorems 2.1-2.4 or Corollary 2.2 and let functions g, satisfy the assumptions
of either Theorem 2.9 or Theorem 2.11 or Corollary 2.10. Then the problem (1.1),
(1.2) with £ defined by (1.5) has a unique solution w. If, in addition, (2.19) holds
and

¢ =0, co > 0, c3 =0,
lallz +c2 >0,
then (2.20) holds.

Theorem 2.14. Let functions p, T satisfy the assumptions of at least one of
Theorems 2.1-2.4 or Corollary 2.2 and let functions g, i satisfy at least one of the
following items:

(i) p(t) <t for a.e. t € [a,b] and
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(i) p(t) <t for a.e. t € [a,b] and
b

b
—a)?
=)0 —a) [ 0= = agts)ds — LU= [ 205
(t)

u u(t)

) w(t)
+(b_% / (s —a)g(s)ds <2(b—a)*  for a.c. t € [a,b];

a

(iil) p(t) <t for a.e. t € [a,b] and

b— u(t L t)—a\'"® 4/3(b — a)?
(I)M§S)> (M(t)a) g(t) < 9(bt()3(t)a)3 for a.e. t € [a,b];
(iv) p(t) < t for a.e. t € [a,b] and there exist ¢ € [a,b] and X\;; € RT,
v; €[0,1], (i, =1,2) such that (2.4), (2.5) hold and
e
S0=0) + a0 (1) < ot for ae t€ o]
- 2 V2 21
—9(t) 5 +9(0) = g(t)) = b2— it (b2_)\t)l/z

gt)(b—1t) + gt)(t — u(t) < (b”f;z for a.e. t € [c,b).

5

for a.e. t € [a,d],

for a.e. t € lc,bl,

Then the problem (1.1), (1.2) with € defined by (1.5) is uniquely solvable.

Theorem 2.15. Let functions p,T satisfy the assumptions of at least one of
Theorems 2.1-2.4 or Corollary 2.2. Let, moreover, T(t) <t and p(t) <t for a.e.
t € [a,b]. Then the problem (1.1), (1.2) with ¢ defined by (1.5) is uniquely solvable.

3. PROOFS

Proof of Theorem 2.1. If p = 0, then the conclusion of theorem follows from [1,
Remark 2.3]. Therefore, we can assume that

/bp(s) ds > 0. (3.1)
Put '
10 = = ((b ~1)(t - a) / (b 5)(s — a)p(s) ds
- ¢ (3.2)

(b —5)%p(s) ds) for t € [a,b].

[\
—
[V2)
|
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[\
S
—~
[V2)
~—
o
Va)
+
—
~
ol |
=)
~—
N
w\@



ON A TWO-POINT BVP FOR THIRD-ORDER LFDE. PART II. 135

We will show that 7 satisfies the assumptions of [1, Theorem 2.1] with ¢ defined
by (1.3). It can be easily verified that

~"'(t) = —p(t) for a.e. t € [a, ], (3.3)
(@) =0, +'(a)=0, ~(b)=0.

Therefore, according to [1, Remark 2.3, Theorem 2.10] and the inequality (3.1),
we have

() >0  for t€]a,b. (3.5)
Furthermore, (2.1) and (3.2) imply
v(r(t)) <1  forae. t€la,b], (3.6)
which, when used in (3.3), yields
Y"(t) < —p(t)y((t)) for a.e. t € [a,b], (3.7)
meas {t € [a,b] : 7" (t) < —p(t)y(7(£))} > 0.

Finally, v € 6’0(]a,b[;R) and (3.4), (3.5), (3.7), and (3.8) imply that all the
assumptions of [1, Theorem 2.1] are fulfilled. O

Proof of Corollary 2.2. If p = 0, then the conclusion of the corollary follows
from [1, Remark 2.3]. Therefore, assume that (3.1) holds. It is sufficient to show
that (2.1) is fulfilled. For this purpose, we will estimate the maximum value of
the function v defined by (3.2). Obviously, (3.3)—(3.5) hold. In view of (3.4) and
(3.5), there exists to €]a, b[ such that

Y(to) = max {y(t) : t € [a,b]}. (3.9)

Consequently, 7/ (tp) = 0, i.e.,

(a+b—2tp) /(b —5)(s —a)p(s)ds+ (b —to) /(s —a)?p(s)ds
o ¢ (3.10)
+(to — a) /(b —5)?p(s)ds = 0.
From (3.10) we obtain
(to — a) /(b —8)(s — a)p(s) ds — (b to) /(s — a)?p(s)ds
¢ ¢ (3.11)

to

b
~(to =) [ (b= 9Pp(s)ds + (b~ to) [ (b= 5)(s — a)p(s) ds.

to a
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From (3.2) we have

b to
y(to) = ﬁ (t —a)/(b— $)2p(s) ds + (b — to)/(b— 5)(s — a)p(s) ds

a

+2(Z;)—t) (“0 —a) / (b~ s)(s = a)p(s) ds — (b— to) / (s — a)?p(s) ds) .

a a

Now using (3.11) in the latter equality, we obtain

b to
t() —a 2 b— to /
to) = b— ds+ 0 [(p—g)(s — d
o) = g [ (0= 5Pp)ds + o= [ (b= s)(s — ) s
to a
whence, on account of the relation 4AB < (A + B)?, we get
b / (b 7
— t0)%(to — —a)(b—ty)
7(150)( Ooa/p 2 0/
. o (3.12)
Sw/p(é’) ds.
8
On the other hand, the equality (3.10) yields
b
atb—2<0, ie  ty> “; . (3.13)
Therefore, the inequality (3.12) with respect to (2.2), (3.1), and (3.13) results in
b
b— 2
A0 < 2 [psyas <t (3.14)

a

Now in view of (3.9), we have (3.6), whence, on account of (3.2), we get (2.1). O

Proof of Theorem 2.3. Put

V) =b-t)"Ft—a) 't for tea,b]. (3.15)

Obviously, v € 50(]a7b[;R), ~(t) > 0 for ¢t €la, b,
a)=0,  4'(a)=0,  ~(b)=0,

and
" _ 2\/§(b - a)S
=50 s ap
Using (2.3) in the latter equality, in view of (3.15), we get
Y"'(#) < —p(t)y(T(t)) for a.e. t € [a,b].

Moreover, (3.8) holds because p(-)y(7(:)) € L([a,b];R) and v & L([a,b];R).
Thus, all the assumptions of [1, Theorem 2.1] are fulfilled. O

f

(b—t)!=75 (t — a)l"'@ for a.e. t € [a,b].
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Proof of Theorem 2.4. Assume ¢ €]a,b[; the cases ¢ = a and ¢ = b can be
proved analogously. Without loss of generality we can assume that (2.4) and (2.5)
are fulfilled as equalities. Define functions p; (i = 1,2) as follows:

+oo

ds (t—a)t
/ P Wy W p— for t €]a, (], (3.16)
p1(t)
N d (b— 1)
S — 2
= for t b|. 1
/ T s T s s or t € c,b] (3.17)
p2(t)
Then
p1(t) >0  for t €la,c], p2(t) >0  for t €]c,b], (3.18)
pi(c)=0 (i=1,2), tg%l—&- p1(t) = +o0, tl_lﬁ?_ pa(t) = +o0, (3.19)
and
Pi(t) = —(t—a) " (p1(t) + A11p1(t) + A12) for ¢ €]a,c|, (3.20)
,O/Q(t) = (b — t)iu? (p%(t) + )\leg(t) + )\22) for ¢ S [C, b[ (321)
Put
exp( [(s—a)™ (s)ds) for t €]a, c]
2(t) = Y (3.22)
exp ( J® p2(s) ds) for t €]c,b]
and
t
() = /z(s) ds for ¢ € [a, b]. (3.23)

We will show that ~ satisfies the assumptions of [1, Theorem 2.1]. Obviously,
v e Co(]a,b[;R) and

~(a) =0, () >0 for ¢ €]a,bl. (3.24)
Moreover, in view of (3.19) and (3.22), we have
7' (a+) = 0. (3.25)
Furthermore, (3.22) and (3.23) yield
" _ (t - a’) ( )Vl(t) for ¢ E]a, C],
7= {—(b—t) p2(t)y (£)  for t €]e,b[. (3.26)

Obviously,
Y(t) >0 for ¢ €]a, b (3.27)
and, in view of (3.18), we have

Y'(t) >0  for t €la,c, Y'(t) <0  for t €]c,b[. (3.28)
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Finally, with respect to (3.20) or (3.21), from (3.26), we obtain

’Ym(t) i2_y1 (t— a)—ul—lpl (t)’y'(t) —(t— a)—2u1 A11p1 (t)’}”(t) (3.29)
—(t—a)"Ay'(t)  for t €la,d],

or
’7’”(1‘5) f2_V2(b _ t)—uz—1p2 (t)’)//(t) - (b — t)_2V2 )\21p2 (t>7/(t) (330)
—(b— 1) X227/ (1) for t €]e, [,

respectively. Now using (3.26) in (3.29) and (3.30), we get

~(t) = — (t fa 0 f;)yl> ~(t) — (t_)\%’y'(t) for ¢t €]a,d, (3.31)

Y (E) = <b”_2t G i2;)u2) V() — (bjﬁmy(t) for t €]e,b[.  (3.32)

Note that, on account of (3.27) and (3.28), we have " (¢t) < 0 for t €]a,b] and,
consequently, v’ is a nonincreasing function. Therefore,

t

A(t) = / 7 (s)ds = (t — a)y/(t) — / (s — a)y"(s) ds

<t-ay® -SSP o telay

and thus (3.31), or (3.32), results in

V(1) < - <tlfa 0 jlé)yl +pin ;a) ) 7"(t)
A /
- ((75;2)21,1 —p)(t - a)) ¥ (t) — p(t)y(t) for a.e. t €]a,c],

or

12 A21

"y < (¢ an
70 = (525 + g -0 5 ) )
A
(22 - 0) YO - plen)  forac teled].
respectively. In view of (2.6)—(2.9), (3.27), and (3.28), the latter two inequalities
yield

wy//(ﬂ —p(t)a(@)(T(t) — )Y (t) — p(t)¥(t)

for a.e. t €]a,b[. (3.33)

Y"(t) < —p(t)o(t)

On the other hand, in view of (3.27),
7(t)
Y(s)ds <0 if T(t) <t (3.34)
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and

t t (3.35)

<(rlt) — o)y (1) +
Thus, from (3.34) and (3.35), we have
T/(t)y’(s)ds <ot)(r(t)—t)Y'(t)+o(t )MW@) for a.e. t € [a,b]. (3.36)
N;w using (3.36) in (3.33), we obtain
7" (t) < —p(t) 7)7’(8) ds — p(t)v(t) = —p(t)y(7(t))  for a.e. t € [a,b]. (3.37)

Consequently, (3.22)—(3.25), and (3.37) imply that all the assumptions of [1, The-
orem 2.1] are fulfilled. a

Proof of Theorem 2.5. Put

Bt)=1- ﬁ ((b —t)(t —a) /(b —5)(s—a)g(s)ds + (t —a)?

_(b;)z/t(s—a)2g(s 2/bb—s ) for ¢ € [a,b].

a t
We will show that the assumptions of [1, Theorem 2.4] are fulfilled. Obviously,
B € Co(Ja,b[;R),

Bla)=1,  B'(a)=0,  B(b) =0, (3.38)
and it can be easily verified that
b
B (b) = bia (/(b—s)(s—a)g(s) ds—2> ) (3.39)
B"(t) = g(t) for a.e. t € [a, b]. (3.40)
From (3.38)—(3.40), in view of (2.10), it follows that
B'(t) <0  for t € [a,b)]. (3.41)

Further, put

v(t) = Bla+b—1t) for ¢ € [a, b]. (3.42)
Then, on account of (3.38), (3.40), and (3.41), we have

Y () = —g(t) for a.e. t € [a,b],

(@) =0, A'(a)>0, ~(b)=1,
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whence, according to [1, Remark 2.3, Theorem 2.10], it follows that
~v(t) >0 for t €la,b.
However, the latter inequality together with (3.38) and (3.42) results in

B(t) >0 for ¢ € [a,b]. (3.43)
Finally, in view of (3.38) and (3.41), we have
Blu(t)) <1 for a.e. t € [a, D], (3.44)
which, together with (3.40), results in
B () > g(t)B(u(t)) for a.e. t € [a, b). (3.45)
Consequently, (3.41), (3.43), and (3.45) imply that all the assumptions of [1, The-
orem 2.4] are fulfilled. O

Proof of Corollary 2.6. It immediately follows from Theorem 2.5 because
b

b
Jo-s6-agas < E50 [ gas

4
’ g
Proof of Theorem 2.7. Put
Bt =B -t Tt —at+w)lF  for te[ab] (3.46)
Then, obviously, 8 € CNVO(]a, b[;R), (3.43) holds,
B'(a)=0,  B'(b) =0, (3.47)
and

6///(0 _ 2\/3(17 —a+ w)g
9 —t)3(t—a+w)
From (3.47) and (3.48), it follows that (3.41) holds. Moreover, using (2.11) in
(3.48), on account of (3.46), we get (3.45). Thus, all the assumptions of [1, Theo-
rem 2.4] are fulfilled. O

(-t (t—a+w)'™F for t €la,b[. (3.48)

Proof of Theorem 2.8. Assume ¢ €]a,b[; the cases ¢ = a and ¢ = b can be
proved analogously. Without loss of generality we can assume that (2.4) and (2.5)
are fulfilled as equalities. Define functions p; (i = 1,2) by (3.16) and (3.17),
respectively. Then (3.18)—(3.21) hold. Define z by (3.22) and put

b
B(t) = /z(s) ds for ¢ € [a,b]. (3.49)

We will show that [ satisfies the assumptions of [1, Theorem 2.4]. Obviously,
B e Co(]a,b[;R) and

B(b) =0, B(t) >0 for ¢ € [a,b]. (3.50)
Moreover, in view of (3.22), we have

B'(t)y<0  for t €la,bl. (3.51)
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Furthermore, (3.22) and (3.49) yield

won ) t=a)Tpi(t)B'(2) for t €]a,c|,
T {—<b—t>-wp2<t>,6'<t> for 1 €e.b]. )
In view of (3.18) and (3.51), we have
p"(t) <0  for t €la,c[, p'(t) >0  for t €lc,b[. (3.53)
Finally, with respect to (3.20), or (3.21), from (3.52) we obtain
B7(t) = (£ — ) pr (DF'(1) — (£ — ) Aapn (08 (0)
o (3.54)
—(t—a) " A28 (t) for ¢ €la, ],
or
B () = —va(b— )7 pa()B(8) — (b — )T Aarpa(8) B'(2) (3.55)

—(b—t)"2"2 X8/ (t)  for t €]c,b],
respectively. Now using (3.52) in (3.54) and (3.55), we get

v ALt A12

B (t) = — (t — - a)V1> B (t) — o B'(t)  for t €la,c], (3.56)

8" (t) = (b”_?t T iztl)u2> 50 - _AQSQ B(t)  for teleb.  (3.57)

Note that, on account of (3.51) and (3.53), we have 3”(¢) > 0 for ¢ €]a,b[ and,
consequently, 3" is a nondecreasing function. Therefore,
b b
5=~ [ 56 ds=~w- 0510 - [b-95"(s)ds
t t

<—-0p-"Saw o tea,

and thus, (3.56) or (3.57) results in

B(1) > (

V1 + Al
t—a (t—a)n

-a0 25 )

(G2~ 00-0) F O+ 9050 orae. t€lad

or

V2 21 —t)? "
802 (25 + g + a0 5 ) 5

A2z
- ((b — g(t)(b— t)) B'(t) + g(t)B(t) for a.e. t €]c,b],
respectively. In view of (2.12)—(2.15), (3.51), and (3.53), the latter two inequalities
yield

%6"@) = g(6)(t = u()B'(t) + 9(1)B(t)

for a.e. t €]a,b[. (3.58)

B (t) = g(t)
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On the other hand,

t

‘/E®N8=@—M0Wﬁ%—/@—u®w%@®
w(t) wn(t) (359)

>(t = pu(t)B'(t) —
Now using (3.59) in (3.58), we obtain

p'(t)  for ae. t € [a,b].

B (t) = —g(t) / B'(s)ds +g(t)B(t) = g()B(u(t))  forae. t€[a,b]. (3.60)
(t)

Consequently, (3.50), (3.51), and (3.60) imply that all the assumptions of [1, The-
orem 2.4] are fulfilled. O

Proof of Theorem 2.9. If g = 0, then the conclusion of theorem follows from [1,
Remarks 1.4 and 2.3]. Therefore, we assume that

b

/9(8) ds > 0. (3.61)

a

Put

b
80 = gz | 0= 0= ) [0= 95— alg()a:

t

b . (3.62)
—a)? 2
— (¢ ) /(b —5)2g(s)ds + (- /(s —a)?g(s) ds) for t € [a,b].

2 2

a

We will show that § satisfies the assumptions of [1, Theorem 2.5] with ¢ defined
by (1.4). It can be easily verified that

B (t) = g(t) for a.e. t € [a, b], (3.63)
Bla)=0,  B'(b)=0,  B(b)=0. (3.64)
Defining
~v(t) = Bla+b—1t) for t € [a, ],
from (3.63) and (3.64) we obtain
Y"'(t)=—-gla+b—1t)  forae. t € |a,bl,
(@) =0, +'(a)=0, ~(b)=0.

Therefore, according to [1, Remark 2.3, Theorem 2.10] and the inequality (3.61),
we have y(t) > 0 for ¢ €]a, b] and, consequently,

B(t) >0 for t €]a,bl. (3.65)
Furthermore, (2.16) and (3.62) imply (3.44), which, when used in (3.63), yields

(3.45). Finally, 8 € 5’0(]a,b[;R) and (3.45), (3.64), and (3.65) imply that all the
assumptions of [1, Theorem 2.5] are fulfilled. O
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Proof of Corollary 2.10. Define 8 by (3.62) and put

v(t) = Bla+b—1t) for ¢ € [a, b]. (3.66)
Then + satisfies (3.2) with
p(t) =gla+b—1) for a.e. t € [a,b]. (3.67)

Analogously to the proof of Corollary 2.2, in view of (2.17) and (3.67), it can
be easily verified that (3.14) holds where tg €]a,b[ is such that (3.9) is satisfied.
Thus, in view of (3.66), we have (3.44) and, consequently, (2.16) is fulfilled. O

Proof of Theorem 2.11. Put
Bt = (b -+ F @t —a)l=F  for t€[a,b]. (3.68)
Obviously, S € éo(]a,b[;]R), B(t) >0 for t €]a,b[,
Bla)=0,  B'(b)=0,  B(b) =0,

5

and
3
g = 9(5@2@ a)a)3
Using (2.18) in the latter equality, in view of (3.68), we get
() > g()B(u(t)  for ae. t € [a,b].
Thus, all the assumptions of [1, Theorem 2.5] are fulfilled. O

o

(b— t)1+§(t —a)t~ for a.e. t € [a,b].
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