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ON A TWO-POINT BOUNDARY VALUE PROBLEM FOR

THIRD-ORDER LINEAR FUNCTIONAL DIFFERENTIAL

EQUATIONS. PART II.

ROBERT HAKL

Abstract. Efficient conditions sufficient for the solvability of the problem

u′′′(t) = g(t)u(µ(t))− p(t)u(τ(t)) + q(t); u(a) = c1, u′(a) = c2, u(b) = c3

are derived using the general results obtained in our recent paper [1]. Here, p, g ∈
L
(
[a, b];R+

)
, q ∈ L

(
[a, b];R

)
, τ, µ : [a, b] → [a, b] are measurable functions, and

ci ∈ R (i = 1, 2, 3). Sign-constant solutions are discussed as well.

1. Introduction

In [1], we have obtained general results on the existence, uniqueness and positivity
of a solution to the two-point boundary value problem

u′′′(t) = `(u)(t) + q(t) for a.e. t ∈ [a, b], (1.1)

u(a) = c1, u′(a) = c2, u(b) = c3, (1.2)

where q ∈ L
(
[a, b];R

)
, ci ∈ R (i = 1, 2, 3), and ` : C

(
[a, b];R

)
→ L

(
[a, b];R

)
is a linear bounded operator. The present paper, which is the second part of [1],
contains some nontrivial consequences of the general results of [1] for the equations
with deviating arguments. The proofs essentially use the statements obtained
in [1]. We refer to [1] for an overview of the topic and the related literature.

Here, we consider the problem (1.1), (1.2) with the operator ` having one of the
following forms:

`(v)(t) = −p(t)v(τ(t)) for a.e. t ∈ [a, b], v ∈ C
(
[a, b];R

)
, (1.3)

`(v)(t) = g(t)v(µ(t)) for a.e. t ∈ [a, b], v ∈ C
(
[a, b];R

)
, (1.4)

and

`(v)(t) = g(t)v(µ(t))− p(t)v(τ(t)) for a.e. t ∈ [a, b], v ∈ C
(
[a, b];R

)
, (1.5)

where p, g ∈ L
(
[a, b];R+

)
and τ, µ : [a, b] → [a, b] are measurable functions. By

a solution to the problem (1.1), (1.2), we understand a function u : [a, b]→ R which
is absolutely continuous together with its first and second derivatives, satisfies the
equality (1.1) almost everywhere in [a, b], and (1.2) holds.
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The following notation is used throughout the paper:
R is a set of all real numbers, R+ = [0,+∞[ .
C
(
[a, b];R

)
is a Banach space of all continuous functions u : [a, b]→ R endowed

with the norm

‖u‖C = max
{
|u(t)| : t ∈ [a, b]

}
.

C̃2
(
[a, b];R

)
is the set of all functions u : [a, b]→ R that are absolutely contin-

uous together with their first and second derivatives.

C̃2
loc

(
]a, b[ ;R

)
is the set of all functions u : ]a, b[→ R such that u ∈ C̃2

(
[α, β];R

)
for every α, β ∈ ]a, b[ , α < β.

Let u : ]a, b[→ R be a continuous function and let there exist a finite or an
infinite right, left, limit of u at the point a, b, respectively. Then we will write
u(a+), u(b−), instead of lim

t→a+
u(t), lim

t→b−
u(t), respectively.

C̃0

(
]a, b[ ;R

)
is a set of all functions u ∈ C̃2

loc

(
]a, b[ ;R

)
∩ C

(
[a, b];R

)
such that

there exist finite or infinite limits u′(a+) and u′(b−).
L
(
[a, b];R

)
is a Banach space of all Lebesgue integrable functions p : [a, b]→ R

endowed with the norm

‖p‖L =

b∫
a

|p(s)|ds.

L
(
[a, b];R+

)
=
{
p ∈ L

(
[a, b];R

)
: p(t) ∈ R+ for a.e. t ∈ [a, b]

}
.

Lab is a set of all linear bounded operators ` : C
(
[a, b];R

)
→ L

(
[a, b];R

)
.

For convenience we recall the definitions introduced in [1].

Definition 1.1. An operator ` ∈ Lab is said to belong to the set V
(
[a, b]

)
if

every function u ∈ C̃2
(
[a, b];R

)
satisfying

u′′′(t) ≤ `(u)(t) for a.e. t ∈ [a, b], (1.6)

u(a) ≥ 0, u′(a) ≥ 0, u(b) ≥ 0

admits the inequality

u(t) ≥ 0 for t ∈ [a, b]. (1.7)

Definition 1.2. An operator ` ∈ Lab is said to belong to the set V0
(
[a, b]

)
if

every function u ∈ C̃2
(
[a, b];R

)
satisfying (1.6) and

u(a) = 0, u′(a) ≥ 0, u(b) = 0

admits the inequality (1.7).
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2. Main results

Theorem 2.1. Let

(b− τ(t))(τ(t)− a)

τ(t)∫
a

(b− s)(s− a)p(s) ds− (b− τ(t))2

2

τ(t)∫
a

(s− a)2p(s) ds

+
(τ(t)− a)2

2

b∫
τ(t)

(b− s)2p(s) ds < (b− a)2 for a.e. t ∈ [a, b]. (2.1)

Then the operator ` defined by (1.3) belongs to the set V
(
[a, b]

)
.

Corollary 2.2. Let
b∫
a

p(s) ds ≤ 16

(b− a)2
. (2.2)

Then the operator ` defined by (1.3) belongs to the set V
(
[a, b]

)
.

Theorem 2.3. Let(
b− τ(t)

b− t

)1−
√

3
3
(
τ(t)− a
t− a

)1+
√

3
3

p(t) ≤ 2
√

3(b− a)3

9(b− t)3(t− a)3

for a.e. t ∈ [a, b]. (2.3)

Then the operator ` defined by (1.3) belongs to the set V
(
[a, b]

)
.

Theorem 2.4. Let there exist c ∈ [a, b] and λij ∈ R+, νi ∈ [0, 1[ , (i, j = 1, 2)
such that

+∞∫
0

ds

s2 + λ11s+ λ12
≥ (c− a)1−ν1

1− ν1
, (2.4)

+∞∫
0

ds

s2 + λ21s+ λ22
≥ (b− c)1−ν2

1− ν2
, (2.5)

and

−p(t) (t− a)2

2
+ p(t)σ(t)

(τ(t)− t)2

2
≤ ν1
t− a

+
λ11

(t− a)ν1
for a.e. t ∈ [a, c], (2.6)

p(t)(t− a) + p(t)σ(t)(τ(t)− t) ≤ λ12
(t− a)2ν1

for a.e. t ∈ [a, c], (2.7)

p(t)
(t− a)2

2
− p(t)σ(t)

(τ(t)− t)2

2
≤ ν2
b− t

+
λ21

(b− t)ν2
for a.e. t ∈ [c, b], (2.8)

p(t)(t− a) + p(t)σ(t)(τ(t)− t) ≤ λ22
(b− t)2ν2

for a.e. t ∈ [c, b], (2.9)

where

σ(t) =
1

2

(
1 + sgn(τ(t)− t)

)
.
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Then the operator ` defined by (1.3) belongs to the set V
(
[a, b]

)
.

Theorem 2.5. Let µ(t) ≤ t for a.e. t ∈ [a, b] and

b∫
a

(b− s)(s− a)g(s) ds ≤ 2. (2.10)

Then the operator ` defined by (1.4) belongs to the set V
(
[a, b]

)
.

Corollary 2.6. Let µ(t) ≤ t for a.e. t ∈ [a, b] and

b∫
a

g(s) ds ≤ 8

(b− a)2
.

Then the operator ` defined by (1.4) belongs to the set V
(
[a, b]

)
.

Theorem 2.7. Let µ(t) ≤ t for a.e. t ∈ [a, b] and(
b− µ(t)

b− t

)1+
√

3
3
(
µ(t)− a+ ω

t− a+ ω

)1−
√

3
3

g(t) ≤ 2
√

3(b− a+ ω)3

9(b− t)3(t− a+ ω)3

for a.e. t ∈ [a, b] (2.11)

with ω = 3−
√
3

3+
√
3
(b − a). Then the operator ` defined by (1.4) belongs to the set

V
(
[a, b]

)
.

Theorem 2.8. Let µ(t) ≤ t for a.e. t ∈ [a, b]. Let, moreover, there exist
c ∈ [a, b] and λij ∈ R+, νi ∈ [0, 1[ , (i, j = 1, 2) such that (2.4), (2.5) hold and

g(t)
(b− t)2

2
− g(t)

(t− µ(t))2

2
≤ ν1
t− a

+
λ11

(t− a)ν1
for a.e. t ∈ [a, c],

(2.12)

g(t)(b− t) + g(t)(t− µ(t)) ≤ λ12
(t− a)2ν1

for a.e. t ∈ [a, c], (2.13)

−g(t)
(b− t)2

2
+ g(t)

(t− µ(t))2

2
≤ ν2
b− t

+
λ21

(b− t)ν2
for a.e. t ∈ [c, b], (2.14)

g(t)(b− t) + g(t)(t− µ(t)) ≤ λ22
(b− t)2ν2

for a.e. t ∈ [c, b]. (2.15)

Then the operator ` defined by (1.4) belongs to the set V
(
[a, b]

)
.

Theorem 2.9. Let µ(t) ≤ t for a.e. t ∈ [a, b] and

(b− µ(t))(µ(t)− a)

b∫
µ(t)

(b− s)(s− a)g(s) ds− (µ(t)− a)2

2

b∫
µ(t)

(b− s)2g(s) ds

+
(b− µ(t))2

2

µ(t)∫
a

(s− a)2g(s) ds ≤ (b− a)2 for a.e. t ∈ [a, b]. (2.16)

Then the operator ` defined by (1.4) belongs to the set V0
(
[a, b]

)
.



ON A TWO-POINT BVP FOR THIRD-ORDER LFDE. PART II. 133

Corollary 2.10. Let µ(t) ≤ t for a.e. t ∈ [a, b] and

b∫
a

g(s) ds ≤ 16

(b− a)2
. (2.17)

Then the operator ` defined by (1.4) belongs to the set V0
(
[a, b]

)
.

Theorem 2.11. Let µ(t) ≤ t for a.e. t ∈ [a, b] and(
b− µ(t)

b− t

)1+
√

3
3
(
µ(t)− a
t− a

)1−
√

3
3

g(t) ≤ 2
√

3(b− a)3

9(b− t)3(t− a)3

for a.e. t ∈ [a, b]. (2.18)

Then the operator ` defined by (1.4) belongs to the set V0
(
[a, b]

)
.

The results listed below immediately follow from [1, Theorems 2.10–2.13], The-
orems 2.1–2.11, and Corollaries 2.2–2.10.

Theorem 2.12. Let functions p, τ satisfy the assumptions of at least one of
Theorems 2.1–2.4 or Corollary 2.2 and let functions g, µ satisfy the assumptions
of at least one of Theorems 2.5–2.8 or Corollary 2.6. Then the problem (1.1),
(1.2) with ` defined by (1.5) has a unique solution u. If, in addition,

q(t) ≤ 0 for a.e. t ∈ [a, b], (2.19)

ci ≥ 0 (i = 1, 2, 3),

‖q‖L +

3∑
i=1

ci > 0,

then

u(t) > 0 for t ∈ ]a, b[ . (2.20)

Theorem 2.13. Let functions p, τ satisfy the assumptions of at least one of
Theorems 2.1–2.4 or Corollary 2.2 and let functions g, µ satisfy the assumptions
of either Theorem 2.9 or Theorem 2.11 or Corollary 2.10. Then the problem (1.1),
(1.2) with ` defined by (1.5) has a unique solution u. If, in addition, (2.19) holds
and

c1 = 0, c2 ≥ 0, c3 = 0,

‖q‖L + c2 > 0,

then (2.20) holds.

Theorem 2.14. Let functions p, τ satisfy the assumptions of at least one of
Theorems 2.1–2.4 or Corollary 2.2 and let functions g, µ satisfy at least one of the
following items:

(i) µ(t) ≤ t for a.e. t ∈ [a, b] and

b∫
a

g(s) ds ≤ 32

(b− a)2
;
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(ii) µ(t) ≤ t for a.e. t ∈ [a, b] and

(b− µ(t))(µ(t)− a)

b∫
µ(t)

(b− s)(s− a)g(s) ds− (µ(t)− a)2

2

b∫
µ(t)

(b− s)2g(s) ds

+
(b− µ(t))2

2

µ(t)∫
a

(s− a)2g(s) ds ≤ 2(b− a)2 for a.e. t ∈ [a, b];

(iii) µ(t) ≤ t for a.e. t ∈ [a, b] and(
b− µ(t)

b− t

)1+
√

3
3
(
µ(t)− a
t− a

)1−
√

3
3

g(t) ≤ 4
√

3(b− a)3

9(b− t)3(t− a)3
for a.e. t ∈ [a, b];

(iv) µ(t) ≤ t for a.e. t ∈ [a, b] and there exist c ∈ [a, b] and λij ∈ R+,
νi ∈ [0, 1[ , (i, j = 1, 2) such that (2.4), (2.5) hold and

g(t)
(b− t)2

2
− g(t)

(t− µ(t))2

2
≤ 2ν1
t− a

+
2λ11

(t− a)ν1
for a.e. t ∈ [a, c],

g(t)(b− t) + g(t)(t− µ(t)) ≤ 2λ12
(t− a)2ν1

for a.e. t ∈ [a, c],

−g(t)
(b− t)2

2
+ g(t)

(t− µ(t))2

2
≤ 2ν2
b− t

+
2λ21

(b− t)ν2
for a.e. t ∈ [c, b],

g(t)(b− t) + g(t)(t− µ(t)) ≤ 2λ22
(b− t)2ν2

for a.e. t ∈ [c, b].

Then the problem (1.1), (1.2) with ` defined by (1.5) is uniquely solvable.

Theorem 2.15. Let functions p, τ satisfy the assumptions of at least one of
Theorems 2.1–2.4 or Corollary 2.2. Let, moreover, τ(t) ≤ t and µ(t) ≤ t for a.e.
t ∈ [a, b]. Then the problem (1.1), (1.2) with ` defined by (1.5) is uniquely solvable.

3. Proofs

Proof of Theorem 2.1. If p ≡ 0, then the conclusion of theorem follows from [1,
Remark 2.3]. Therefore, we can assume that

b∫
a

p(s) ds > 0. (3.1)

Put

γ(t) =
1

(b− a)2

(b− t)(t− a)

t∫
a

(b− s)(s− a)p(s) ds

− (b− t)2

2

t∫
a

(s− a)2p(s) ds+
(t− a)2

2

b∫
t

(b− s)2p(s) ds

 for t ∈ [a, b].

(3.2)
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We will show that γ satisfies the assumptions of [1, Theorem 2.1] with ` defined
by (1.3). It can be easily verified that

γ′′′(t) = −p(t) for a.e. t ∈ [a, b], (3.3)

γ(a) = 0, γ′(a) = 0, γ(b) = 0. (3.4)

Therefore, according to [1, Remark 2.3, Theorem 2.10] and the inequality (3.1),
we have

γ(t) > 0 for t ∈ ]a, b[ . (3.5)

Furthermore, (2.1) and (3.2) imply

γ(τ(t)) < 1 for a.e. t ∈ [a, b], (3.6)

which, when used in (3.3), yields

γ′′′(t) ≤ −p(t)γ(τ(t)) for a.e. t ∈ [a, b], (3.7)

meas
{
t ∈ [a, b] : γ′′′(t) < −p(t)γ(τ(t))

}
> 0. (3.8)

Finally, γ ∈ C̃0

(
]a, b[ ;R

)
and (3.4), (3.5), (3.7), and (3.8) imply that all the

assumptions of [1, Theorem 2.1] are fulfilled. �

Proof of Corollary 2.2. If p ≡ 0, then the conclusion of the corollary follows
from [1, Remark 2.3]. Therefore, assume that (3.1) holds. It is sufficient to show
that (2.1) is fulfilled. For this purpose, we will estimate the maximum value of
the function γ defined by (3.2). Obviously, (3.3)–(3.5) hold. In view of (3.4) and
(3.5), there exists t0 ∈ ]a, b[ such that

γ(t0) = max
{
γ(t) : t ∈ [a, b]

}
. (3.9)

Consequently, γ′(t0) = 0, i.e.,

(a+ b− 2t0)

t0∫
a

(b− s)(s− a)p(s) ds+ (b− t0)

t0∫
a

(s− a)2p(s) ds

+(t0 − a)

b∫
t0

(b− s)2p(s) ds = 0.

(3.10)

From (3.10) we obtain

(t0 − a)

t0∫
a

(b− s)(s− a)p(s) ds− (b− t0)

t0∫
a

(s− a)2p(s) ds

= (t0 − a)

b∫
t0

(b− s)2p(s) ds+ (b− t0)

t0∫
a

(b− s)(s− a)p(s) ds.

(3.11)
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From (3.2) we have

γ(t0) =
t0 − a

2(b− a)2

(t0 − a)

b∫
t0

(b− s)2p(s) ds+ (b− t0)

t0∫
a

(b− s)(s− a)p(s) ds


+

b− t0
2(b− a)2

(t0 − a)

t0∫
a

(b− s)(s− a)p(s) ds− (b− t0)

t0∫
a

(s− a)2p(s) ds

 .

Now using (3.11) in the latter equality, we obtain

γ(t0) =
t0 − a

2(b− a)

b∫
t0

(b− s)2p(s) ds+
b− t0

2(b− a)

t0∫
a

(b− s)(s− a)p(s) ds,

whence, on account of the relation 4AB ≤ (A+B)2, we get

γ(t0) ≤ (b− t0)2(t0 − a)

2(b− a)

b∫
t0

p(s) ds+
(b− a)(b− t0)

8

t0∫
a

p(s) ds

≤ (b− a)(b− t0)

8

b∫
a

p(s) ds.

(3.12)

On the other hand, the equality (3.10) yields

a+ b− 2t0 < 0, i.e. t0 >
a+ b

2
. (3.13)

Therefore, the inequality (3.12) with respect to (2.2), (3.1), and (3.13) results in

γ(t0) <
(b− a)2

16

b∫
a

p(s) ds ≤ 1. (3.14)

Now in view of (3.9), we have (3.6), whence, on account of (3.2), we get (2.1). �

Proof of Theorem 2.3. Put

γ(t) = (b− t)1−
√

3
3 (t− a)1+

√
3

3 for t ∈ [a, b]. (3.15)

Obviously, γ ∈ C̃0

(
]a, b[ ;R

)
, γ(t) > 0 for t ∈ ]a, b[ ,

γ(a) = 0, γ′(a) = 0, γ(b) = 0,

and

γ′′′(t) = − 2
√

3(b− a)3

9(b− t)3(t− a)3
(b− t)1−

√
3

3 (t− a)1+
√

3
3 for a.e. t ∈ [a, b].

Using (2.3) in the latter equality, in view of (3.15), we get

γ′′′(t) ≤ −p(t)γ(τ(t)) for a.e. t ∈ [a, b].

Moreover, (3.8) holds because p(·)γ(τ(·)) ∈ L
(
[a, b];R

)
and γ′′′ 6∈ L

(
[a, b];R

)
.

Thus, all the assumptions of [1, Theorem 2.1] are fulfilled. �
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Proof of Theorem 2.4. Assume c ∈ ]a, b[ ; the cases c = a and c = b can be
proved analogously. Without loss of generality we can assume that (2.4) and (2.5)
are fulfilled as equalities. Define functions ρi (i = 1, 2) as follows:

+∞∫
ρ1(t)

ds

s2 + λ11s+ λ12
=

(t− a)1−ν1

1− ν1
for t ∈ ]a, c], (3.16)

+∞∫
ρ2(t)

ds

s2 + λ21s+ λ22
=

(b− t)1−ν2
1− ν2

for t ∈ [c, b[ . (3.17)

Then

ρ1(t) > 0 for t ∈ ]a, c[ , ρ2(t) > 0 for t ∈ ]c, b[ , (3.18)

ρi(c) = 0 (i = 1, 2), lim
t→a+

ρ1(t) = +∞, lim
t→b−

ρ2(t) = +∞, (3.19)

and

ρ′1(t) = −(t− a)−ν1
(
ρ21(t) + λ11ρ1(t) + λ12

)
for t ∈ ]a, c], (3.20)

ρ′2(t) = (b− t)−ν2
(
ρ22(t) + λ21ρ2(t) + λ22

)
for t ∈ [c, b[ . (3.21)

Put

z(t) =


exp

(
−

c∫
t

(s− a)−ν1ρ1(s) ds

)
for t ∈ ]a, c]

exp

(
−

t∫
c

(b− s)−ν2ρ2(s) ds

)
for t ∈ ]c, b[

(3.22)

and

γ(t) =

t∫
a

z(s) ds for t ∈ [a, b]. (3.23)

We will show that γ satisfies the assumptions of [1, Theorem 2.1]. Obviously,

γ ∈ C̃0

(
]a, b[ ;R

)
and

γ(a) = 0, γ(t) > 0 for t ∈ ]a, b]. (3.24)

Moreover, in view of (3.19) and (3.22), we have

γ′(a+) = 0. (3.25)

Furthermore, (3.22) and (3.23) yield

γ′′(t) =

{
(t− a)−ν1ρ1(t)γ′(t) for t ∈ ]a, c],

−(b− t)−ν2ρ2(t)γ′(t) for t ∈ ]c, b[ .
(3.26)

Obviously,

γ′(t) > 0 for t ∈ ]a, b[ (3.27)

and, in view of (3.18), we have

γ′′(t) > 0 for t ∈ ]a, c[ , γ′′(t) < 0 for t ∈ ]c, b[ . (3.28)
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Finally, with respect to (3.20) or (3.21), from (3.26), we obtain

γ′′′(t) = −ν1(t− a)−ν1−1ρ1(t)γ′(t)− (t− a)−2ν1λ11ρ1(t)γ′(t)

−(t− a)−2ν1λ12γ
′(t) for t ∈ ]a, c],

(3.29)

or

γ′′′(t) = −ν2(b− t)−ν2−1ρ2(t)γ′(t)− (b− t)−2ν2λ21ρ2(t)γ′(t)

−(b− t)−2ν2λ22γ′(t) for t ∈ ]c, b[ ,
(3.30)

respectively. Now using (3.26) in (3.29) and (3.30), we get

γ′′′(t) = −
(

ν1
t− a

+
λ11

(t− a)ν1

)
γ′′(t)− λ12

(t− a)2ν1
γ′(t) for t ∈ ]a, c], (3.31)

γ′′′(t) =

(
ν2
b− t

+
λ21

(b− t)ν2

)
γ′′(t)− λ22

(b− t)2ν2
γ′(t) for t ∈ ]c, b[ . (3.32)

Note that, on account of (3.27) and (3.28), we have γ′′′(t) ≤ 0 for t ∈ ]a, b[ and,
consequently, γ′′ is a nonincreasing function. Therefore,

γ(t) =

t∫
a

γ′(s) ds = (t− a)γ′(t)−
t∫
a

(s− a)γ′′(s) ds

≤(t− a)γ′(t)− (t− a)2

2
γ′′(t) for t ∈ ]a, b[

and thus (3.31), or (3.32), results in

γ′′′(t) ≤ −
(

ν1
t− a

+
λ11

(t− a)ν1
+ p(t)

(t− a)2

2

)
γ′′(t)

−
(

λ12
(t− a)2ν1

− p(t)(t− a)

)
γ′(t)− p(t)γ(t) for a.e. t ∈ ]a, c],

or

γ′′′(t) ≤
(

ν2
b− t

+
λ21

(b− t)ν2
− p(t) (t− a)2

2

)
γ′′(t)

−
(

λ22
(b− t)2ν2

− p(t)(t− a)

)
γ′(t)− p(t)γ(t) for a.e. t ∈ ]c, b[ ,

respectively. In view of (2.6)–(2.9), (3.27), and (3.28), the latter two inequalities
yield

γ′′′(t) ≤ −p(t)σ(t)
(τ(t)− t)2

2
γ′′(t)− p(t)σ(t)(τ(t)− t)γ′(t)− p(t)γ(t)

for a.e. t ∈ ]a, b[ . (3.33)

On the other hand, in view of (3.27),

τ(t)∫
t

γ′(s) ds ≤ 0 if τ(t) ≤ t (3.34)
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and
τ(t)∫
t

γ′(s) ds = (τ(t)− t)γ′(t) +

τ(t)∫
t

(τ(t)− s)γ′′(s) ds

≤(τ(t)− t)γ′(t) +
(τ(t)− t)2

2
γ′′(t) if τ(t) > t.

(3.35)

Thus, from (3.34) and (3.35), we have

τ(t)∫
t

γ′(s) ds ≤ σ(t)(τ(t)− t)γ′(t) +σ(t)
(τ(t)− t)2

2
γ′′(t) for a.e. t ∈ [a, b]. (3.36)

Now using (3.36) in (3.33), we obtain

γ′′′(t) ≤ −p(t)
τ(t)∫
t

γ′(s) ds− p(t)γ(t) = −p(t)γ(τ(t)) for a.e. t ∈ [a, b]. (3.37)

Consequently, (3.22)–(3.25), and (3.37) imply that all the assumptions of [1, The-
orem 2.1] are fulfilled. �

Proof of Theorem 2.5. Put

β(t) = 1− 1

(b− a)2

(b− t)(t− a)

t∫
a

(b− s)(s− a)g(s) ds+ (t− a)2

− (b− t)2

2

t∫
a

(s− a)2g(s) ds +
(t− a)2

2

b∫
t

(b− s)2g(s) ds

 for t ∈ [a, b].

We will show that the assumptions of [1, Theorem 2.4] are fulfilled. Obviously,

β ∈ C̃0

(
]a, b[ ;R

)
,

β(a) = 1, β′(a) = 0, β(b) = 0, (3.38)

and it can be easily verified that

β′(b) =
1

b− a

 b∫
a

(b− s)(s− a)g(s) ds− 2

 , (3.39)

β′′′(t) = g(t) for a.e. t ∈ [a, b]. (3.40)

From (3.38)–(3.40), in view of (2.10), it follows that

β′(t) ≤ 0 for t ∈ [a, b]. (3.41)

Further, put

γ(t) = β(a+ b− t) for t ∈ [a, b]. (3.42)

Then, on account of (3.38), (3.40), and (3.41), we have

γ′′′(t) = −g(t) for a.e. t ∈ [a, b],

γ(a) = 0, γ′(a) ≥ 0, γ(b) = 1,
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whence, according to [1, Remark 2.3, Theorem 2.10], it follows that

γ(t) > 0 for t ∈ ]a, b[ .

However, the latter inequality together with (3.38) and (3.42) results in

β(t) > 0 for t ∈ [a, b[ . (3.43)

Finally, in view of (3.38) and (3.41), we have

β(µ(t)) ≤ 1 for a.e. t ∈ [a, b], (3.44)

which, together with (3.40), results in

β′′′(t) ≥ g(t)β(µ(t)) for a.e. t ∈ [a, b]. (3.45)

Consequently, (3.41), (3.43), and (3.45) imply that all the assumptions of [1, The-
orem 2.4] are fulfilled. �

Proof of Corollary 2.6. It immediately follows from Theorem 2.5 because

b∫
a

(b− s)(s− a)g(s) ds ≤ (b− a)2

4

b∫
a

g(s) ds.

�

Proof of Theorem 2.7. Put

β(t) = (b− t)1+
√

3
3 (t− a+ ω)1−

√
3

3 for t ∈ [a, b]. (3.46)

Then, obviously, β ∈ C̃0

(
]a, b[ ;R

)
, (3.43) holds,

β′(a) = 0, β′(b) = 0, (3.47)

and

β′′′(t) =
2
√

3(b− a+ ω)3

9(b− t)3(t− a+ ω)3
(b− t)1+

√
3

3 (t− a+ ω)1−
√

3
3 for t ∈ ]a, b[ . (3.48)

From (3.47) and (3.48), it follows that (3.41) holds. Moreover, using (2.11) in
(3.48), on account of (3.46), we get (3.45). Thus, all the assumptions of [1, Theo-
rem 2.4] are fulfilled. �

Proof of Theorem 2.8. Assume c ∈ ]a, b[ ; the cases c = a and c = b can be
proved analogously. Without loss of generality we can assume that (2.4) and (2.5)
are fulfilled as equalities. Define functions ρi (i = 1, 2) by (3.16) and (3.17),
respectively. Then (3.18)–(3.21) hold. Define z by (3.22) and put

β(t) =

b∫
t

z(s) ds for t ∈ [a, b]. (3.49)

We will show that β satisfies the assumptions of [1, Theorem 2.4]. Obviously,

β ∈ C̃0

(
]a, b[ ;R

)
and

β(b) = 0, β(t) > 0 for t ∈ [a, b[ . (3.50)

Moreover, in view of (3.22), we have

β′(t) < 0 for t ∈ ]a, b[ . (3.51)
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Furthermore, (3.22) and (3.49) yield

β′′(t) =

{
(t− a)−ν1ρ1(t)β′(t) for t ∈ ]a, c],

−(b− t)−ν2ρ2(t)β′(t) for t ∈ ]c, b[ .
(3.52)

In view of (3.18) and (3.51), we have

β′′(t) < 0 for t ∈ ]a, c[ , β′′(t) > 0 for t ∈ ]c, b[ . (3.53)

Finally, with respect to (3.20), or (3.21), from (3.52) we obtain

β′′′(t) = −ν1(t− a)−ν1−1ρ1(t)β′(t)− (t− a)−2ν1λ11ρ1(t)β′(t)

−(t− a)−2ν1λ12β
′(t) for t ∈ ]a, c],

(3.54)

or

β′′′(t) = −ν2(b− t)−ν2−1ρ2(t)β′(t)− (b− t)−2ν2λ21ρ2(t)β′(t)

−(b− t)−2ν2λ22β′(t) for t ∈ ]c, b[ ,
(3.55)

respectively. Now using (3.52) in (3.54) and (3.55), we get

β′′′(t) = −
(

ν1
t− a

+
λ11

(t− a)ν1

)
β′′(t)− λ12

(t− a)2ν1
β′(t) for t ∈ ]a, c], (3.56)

β′′′(t) =

(
ν2
b− t

+
λ21

(b− t)ν2

)
β′′(t)− λ22

(b− t)2ν2
β′(t) for t ∈ ]c, b[ . (3.57)

Note that, on account of (3.51) and (3.53), we have β′′′(t) ≥ 0 for t ∈ ]a, b[ and,
consequently, β′′ is a nondecreasing function. Therefore,

β(t) = −
b∫
t

β′(s) ds = −(b− t)β′(t)−
b∫
t

(b− s)β′′(s) ds

≤− (b− t)β′(t)− (b− t)2

2
β′′(t) for t ∈ ]a, b[ ,

and thus, (3.56) or (3.57) results in

β′′′(t) ≥ −
(

ν1
t− a

+
λ11

(t− a)ν1
− g(t)

(b− t)2

2

)
β′′(t)

−
(

λ12
(t− a)2ν1

− g(t)(b− t)
)
β′(t) + g(t)β(t) for a.e. t ∈ ]a, c],

or

β′′′(t) ≥
(

ν2
b− t

+
λ21

(b− t)ν2
+ g(t)

(b− t)2

2

)
β′′(t)

−
(

λ22
(b− t)2ν2

− g(t)(b− t)
)
β′(t) + g(t)β(t) for a.e. t ∈ ]c, b[ ,

respectively. In view of (2.12)–(2.15), (3.51), and (3.53), the latter two inequalities
yield

β′′′(t) ≥ g(t)
(t− µ(t))2

2
β′′(t)− g(t)(t− µ(t))β′(t) + g(t)β(t)

for a.e. t ∈ ]a, b[ . (3.58)
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On the other hand,

t∫
µ(t)

β′(s) ds = (t− µ(t))β′(t)−
t∫

µ(t)

(s− µ(t))β′′(s) ds

≥(t− µ(t))β′(t)− (t− µ(t))2

2
β′′(t) for a.e. t ∈ [a, b].

(3.59)

Now using (3.59) in (3.58), we obtain

β′′′(t) ≥ −g(t)

t∫
µ(t)

β′(s) ds+ g(t)β(t) = g(t)β(µ(t)) for a.e. t ∈ [a, b]. (3.60)

Consequently, (3.50), (3.51), and (3.60) imply that all the assumptions of [1, The-
orem 2.4] are fulfilled. �

Proof of Theorem 2.9. If g ≡ 0, then the conclusion of theorem follows from [1,
Remarks 1.4 and 2.3]. Therefore, we assume that

b∫
a

g(s) ds > 0. (3.61)

Put

β(t) =
1

(b− a)2

(b− t)(t− a)

b∫
t

(b− s)(s− a)g(s) ds

− (t− a)2

2

b∫
t

(b− s)2g(s) ds+
(b− t)2

2

t∫
a

(s− a)2g(s) ds

 for t ∈ [a, b].

(3.62)

We will show that β satisfies the assumptions of [1, Theorem 2.5] with ` defined
by (1.4). It can be easily verified that

β′′′(t) = g(t) for a.e. t ∈ [a, b], (3.63)

β(a) = 0, β′(b) = 0, β(b) = 0. (3.64)

Defining
γ(t) = β(a+ b− t) for t ∈ [a, b],

from (3.63) and (3.64) we obtain

γ′′′(t) = −g(a+ b− t) for a.e. t ∈ [a, b],

γ(a) = 0, γ′(a) = 0, γ(b) = 0.

Therefore, according to [1, Remark 2.3, Theorem 2.10] and the inequality (3.61),
we have γ(t) > 0 for t ∈ ]a, b[ and, consequently,

β(t) > 0 for t ∈ ]a, b[ . (3.65)

Furthermore, (2.16) and (3.62) imply (3.44), which, when used in (3.63), yields

(3.45). Finally, β ∈ C̃0

(
]a, b[ ;R

)
and (3.45), (3.64), and (3.65) imply that all the

assumptions of [1, Theorem 2.5] are fulfilled. �
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Proof of Corollary 2.10. Define β by (3.62) and put

γ(t) = β(a+ b− t) for t ∈ [a, b]. (3.66)

Then γ satisfies (3.2) with

p(t) = g(a+ b− t) for a.e. t ∈ [a, b]. (3.67)

Analogously to the proof of Corollary 2.2, in view of (2.17) and (3.67), it can
be easily verified that (3.14) holds where t0 ∈ ]a, b[ is such that (3.9) is satisfied.
Thus, in view of (3.66), we have (3.44) and, consequently, (2.16) is fulfilled. �

Proof of Theorem 2.11. Put

β(t) = (b− t)1+
√

3
3 (t− a)1−

√
3

3 for t ∈ [a, b]. (3.68)

Obviously, β ∈ C̃0

(
]a, b[ ;R

)
, β(t) > 0 for t ∈ ]a, b[ ,

β(a) = 0, β′(b) = 0, β(b) = 0,

and

β′′′(t) =
2
√

3(b− a)3

9(b− t)3(t− a)3
(b− t)1+

√
3

3 (t− a)1−
√

3
3 for a.e. t ∈ [a, b].

Using (2.18) in the latter equality, in view of (3.68), we get

β′′′(t) ≥ g(t)β(µ(t)) for a.e. t ∈ [a, b].

Thus, all the assumptions of [1, Theorem 2.5] are fulfilled. �
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