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Abstract: This paper presents the extremely low-voltage supply of the CMOS structure of a differential
difference transconductance amplifier (DDTA). With a 0.3-volt supply voltage, the circuit offers rail-
to-rail operational capability. The circuit is designed for low-frequency biomedical and sensor
applications, and it consumes 357.4 nW of power. Based on two DDTAs and two grounded capacitors,
a voltage-mode universal filter and quadrature oscillator are presented as applications. The universal
filter possesses high-input impedance and electronic tuning ability of the natural frequency in the
range of tens up to hundreds of Hz. The total harmonic distortion (THD) for the band-pass filter was
0.5% for 100 mVpp @ 84.47 Hz input voltage. The slight modification of the filter yields a quadrature
oscillator. The condition and the frequency of oscillation are orthogonally controllable. The frequency
of oscillation can also be controlled electronically. The THD for a 67 Hz oscillation frequency was
around 1.2%. The circuit is designed and simulated in a Cadence environment using 130 nm CMOS
technology from United Microelectronics Corporation (UMC). The simulation results confirm the
performance of the designed circuits.

Keywords: universal filter; quadrature oscillator; differential difference transconductance amplifier;
analog signal processing

1. Introduction

In recent years, extremely low-voltage operation capability and low-power consump-
tion became inevitable requirements in modern, battery-operated, portable electronics and
self-powered systems. In modern nanoscale complementary metal–oxide–semiconductor
(CMOS) technologies, scaling the power supply voltage sustains the reliability and per-
formance improvement of digital circuits; however, it causes performance degradation in
the analog part. This poses a continual challenge for analog circuit designers to maintain
acceptable performance for applications and systems-on-chip. The main impact of reduc-
ing the voltage supply on analog circuit performance, such as an operational amplifier
(Op-Amp) or transconductance amplifier (TA or OTA), is the reduced input voltage swing,
the transconductance value, and the voltage gain. A conventional design technique used to
increase the input voltage swing is rail-to-rail circuits composed of both PMOS and NMOS
differential pairs. However, these circuits are complex due to the additional differential
pair, current branches, and circuitry used to maintain constant transconductance over the
whole input voltage range. Therefore, non-conventional techniques, such as bulk-driven
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(BD) [1–14], floating-gate (FG), and quasi-floating-gate (QFG) [15,16], are suitable can-
didates for circuits operating with low supply voltages. They may reduce the threshold
voltage or even remove it from the signal path, resulting in an extended input voltage range.
Multiple-input MOS transistor (MI-MOST) is an alternative technique to the FG. However,
unlike the FG, the MI-MOST: (a) does not need two polysilicon technologies; hence, it can
be implemented in any standard CMOS technology; (b) it can process both AC and DC
signals; and (c) there is no gate floating, and hence no issue associated with removing the
initial charge trapped as in the case of FG. The multiple-input can be applied to the gate, to
the bulk, or to their combination [17–27]. From the realization point of view, analog filter
applications with MI-MOST may reduce the count of needed active devices [17–24,28,29].
This leads to simplified filter circuitry and reduced power consumption and chip area.

The universal filter and oscillator are important blocks for analog signal processing.
Their applications include communication, control, and instrumentation systems [30–32].
Biquadratic filters and oscillators can be applied to biomedical systems [33–35]. Therefore,
low-voltage supply and low-power consumption are mainly considered for these applications.

The differential difference transconductance amplifier (DDTA) is a useful analog block
for filter applications [36–40]. It combines the features of a differential difference amplifier
(DDA) with unity gain, like addition and subtraction voltage ability, high-input impedance,
a low number of components, and the advantages of a operational transconductance ampli-
fier (OTA), such as electronic tuning ability and simple circuitry. There are DDTA-based
universal filters and oscillators available in the literature [36–40]. However, these DDTAs
are not suitable for extremely low-voltage supply (i.e., ≤0.3 V) applications. Their struc-
tures are standard; hence, reducing their voltage supply leads to significant performance
degradation, for instance a reduced input voltage swing. Focusing on recently published
universal filters and/or oscillators [41–47], only the circuit in [48] can work with sub-volt
supply (±0.3 V) and low-power consumption (5.77 µW).

Therefore, this paper presents an innovative CMOS structure for DDTA capable of
working under a 0.3 V supply voltage with a rail-to-rail input voltage swing without
degrading the other circuit’s performance. As an application of DDTA, a multiple-input,
multiple-output (MIMO) universal filter is presented. The filter employs two DDTAs
and two grounded capacitors. A variety of filter responses can be obtained by suitably
applying the input signal and suitably choosing the output terminal. The natural frequency
of filter responses can be electronically controlled. The proposed universal filter has also
been modified to work as a quadrature oscillator. The frequency of oscillation can be
controlled electronically. The proposed universal filter and quadrature oscillator can be
applied to biomedical and sensor systems due to their extremely low voltage supply and
low power consumption.

This paper is organized as follows: In Section 2, the DDTA and its innovative CMOS
structure are presented; Section 3 presents its application in the voltage-mode universal
filter and the quadrature oscillator; Section 4 presents the simulation results; and Section 5
concludes the paper.

2. DDTA and Its CMOS Structure

The symbol of the DDTA is shown in Figure 1. In the ideal case, this active component
is described by the following equations:

Vw = Vy1 −Vy2 + Vy3
Io = gm

(
Vw −Vy4

) }
(1)

The CMOS structure of the proposed DDTA is shown in Figure 2. The circuit consists
of two main blocks, namely, the differential-difference amplifier operating in a unity
feedback configuration, thus forming a differential-difference current conveyor (DDCC),
and the transconductance amplifier (TA). Both circuits are based on non-tailed differential
amplifiers [1], which allow for operation in an ultra-low-voltage environment with rail-to-
rail input swing.
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Its value can be calculated in the same way as that for a two-stage operational amplifier. 

The input stage of the DDCC circuit can be seen as a non-tailed differential pair with an 

additional partial positive feedback (PPF) circuit. The solution, first presented in [2] and 

experimentally validated in [3], has been adopted here. The transistors, M7 and M8, gen-

erate negative conductances, -gm7 and -gm8, which partially compensate for the positive 

conductances of the diode-connected transistors, M2A,B (≈gm2), thus increasing the re-
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This is the result of the fact that summation of input signals is realized using the passive 
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Figure 2. Proposed CMOS structure of DDTA.

The DDCC block consists of two stages, the input differential amplifier, M1–M6, and
the class-A output stage, M9–M10. The capacitance CC is used for frequency compensation.
Its value can be calculated in the same way as that for a two-stage operational amplifier.
The input stage of the DDCC circuit can be seen as a non-tailed differential pair with
an additional partial positive feedback (PPF) circuit. The solution, first presented in [2]
and experimentally validated in [3], has been adopted here. The transistors, M7 and
M8, generate negative conductances, -gm7 and -gm8, which partially compensate for the
positive conductances of the diode-connected transistors, M2A,B (≈gm2), thus increasing the
resistances at the gate-drain nodes of these transistors, and consequently the voltage gain
from inputs to the gate terminals of M1A,B. This improves the overall transconductance
and voltage gain of the first stage.

In the proposed realization, the input transistors M1A,B have been replaced by bulk-
driven MI-MOST transistors. The symbol and CMOS realization of these devices are
shown in Figure 3. This approach allows design simplification and the decreasing of the
total dissipation power by removing one differential stage of the conventional DDCC.
This is the result of the fact that summation of input signals is realized using the passive
voltage divider/summing circuit composed of the capacitances CBi (see Figure 3b). The
capacitances are shunted by large resistances, RMOSi, that allow proper DC biasing of the
bulk terminals of M1A,B. The resistors are realized as the antiparallel connection of two
MOS transistors operating in a cutoff region, as shown in Figure 3c.
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Figure 3. Bulk-driven MI-MOST: (a) symbol, (b) its realization, and (c) realization of RMOS.

The low-frequency open-loop voltage gain of the DDCC, from one differential input,
with the second input grounded for AC signals, can be expressed as follows:

Avo = Gm(rds1||rds6)gm10(rds9||rds10) (2)
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where Gm is the transconductance of the input differential stage given by:

Gm ∼= β
2gmb1
(1−m)

(3)

where β is the voltage gain of the input capacitive divider, equal to 1
2 if all capacitances

CBi are equal to each other and the input capacitance of the MOS transistor from its bulk
terminal can be neglected. The factor m represents the absolute value of the ratio of negative
to positive conductances at the gate/drain nodes of M2A,B:

m =
gm7,8

gm2 + gds2 + gds3 + gds7,8

∼=
gm7,8

gm2
(4)

Note that the transconductance Gm as well as the voltage gain Avo tend to infinity,
as m tends to unity, namely, when the negative conductances generated by M7 and M8
fully compensate the positive conductances of M2, thus leading to infinite voltage gain
from inputs to the drain/gate nodes of M2A,B. However, when the difference between gm2
and gm7,8 is decreasing, namely when m is increasing to unity, then the circuit sensitivity
to transistor mismatch is increasing as well, which limits the maximum value of m. The
second limitation is associated with the location of the parasitic pole associated with the
PPF circuit, which is given by the formula

ωp ∼=
gm2(1−m)

CΣ
(5)

where C∑ is the total capacitance associated with the gate/drain nodes of M2A,B. Note that
the frequency of this pole decreases with increasing m, namely, as the total resistance at the
gate/drain nodes of M2 increases with increasing positive feedback. For stable operation,
the pole should be located well above the GBW product of the internal DDA, which is

ωGBW =
Gm

CC
(6)

In view of the above considerations, the output signal at the W terminal for low
frequencies can be expressed as

Vw =
Avo

1 + Avo

(
Vy1 −Vy2 + Vy3

)
(7)

Note that accuracy of this function is improved thanks to the impact of the PPF,
which enlarges the low-frequency voltage gain Avo. The 3 dB frequency of this function is
approximately equal to ωGBW. The low-frequency output resistance at the W terminal is
given as follows:

routW =
rds9||rds10
1 + Avo

(8)

Thus, the resistance routW is also improved (decreased) thanks to the larger value
of Avo.

The second block of the proposed DDTA is the linear transconductance amplifier, TA.
The circuit applied here was first proposed and validated experimentally in [4]. It can be
considered as a non-tailed BD pair [1], linearized with an additional linear resistance R,
which significantly improves the linearity of the circuit. Thanks to its non-tailed architecture,
the circuit can operate from a very low-voltage supply.

Assuming that transistor MB is identical with M3 and M4, the DC transfer characteristic
of the TA in Figure 2 can be described by the formula [4]

IO = 2Iset[sinh(x)− (Ax) cosh(x)] (9)
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where

A =
npUT

Iset

(
R + 2

gm1,2

) (10)

x =
η
(
Vw −Vy4

)
npUT

(11)

and np is the subthreshold slope factor for a p-channel MOS, UT is the thermal potential,
and η = (np − 1) = gmb1,2/gm1,2 is the bulk-to-gate transconductance ratio for transistors M1
and M2.

As it was shown in [4], if the following condition holds

R =
1

gm1,2
(12)

then the circuit exhibits an optimum linearity. However, even for the non-optimal case, the
linearity of Equation (9) is much better than for the original circuit without the resistance,
R; therefore, the TA can be tuned using the current source Iset, while still maintaining good
linearity of its transfer characteristic.

The small-signal transconductance gm of the TA in the general case is

gm ∼= 2gmb1,2

[
R + 1

gm1,2

R + 2
gm1,2

]
(13)

thus, in the optimum case, (R = 1/gm1,2), it is equal to 4gmb1,2/3.

3. Proposed Applications
3.1. Proposed Universal Filter

Figure 4 shows the proposed voltage-mode MIMO universal filter. The topology
employs two DDTAs and two grounded capacitors. The terminals Vin1, Vin2, Vin3, Vin4, and
Vin5 provide high-input impedances, and the terminals Vo1 and Vo3 low-output impedances,
whereas the terminals Vo2 and Vo4 require external buffer circuits if a low-impedance load
is applied.
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𝑉𝑜4 =
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From (14)–(17), the low-pass (LP), band-pass (BP), high-pass (HP), band-stop (BS), 

and all-pass (AP) responses can be obtained by properly applying the input signal and 

choosing the output terminals as shown in Table 1. The input terminals that are not used 

should be connected to ground. In the case of the all-pass filtering response, the circuit 

requires an inverting-type input signal, which can be obtained using additional DDTA. 

Table 1. Obtaining variant filtering functions of the proposed filter. 

Filtering Function Input Output 

LP 

Non-inverting 𝑉𝑖𝑛4  =  𝑉𝑖𝑛5 𝑉𝑜1 

Non-inverting 𝑉𝑖𝑛5 𝑉𝑜2 

Inverting 𝑉𝑖𝑛1  =  𝑉𝑖𝑛4 𝑉𝑜2 

Non-inverting 𝑉𝑖𝑛5 𝑉𝑜3 

Non-inverting 𝑉𝑖𝑛1 𝑉𝑜4 

Non-inverting 𝑉𝑖𝑛2 𝑉𝑜4 

Inverting 𝑉𝑖𝑛4  =  𝑉𝑖𝑛5 𝑉𝑜4 

BP 

Non-inverting 𝑉𝑖𝑛3 𝑉𝑜1 

Inverting 𝑉𝑖𝑛4 𝑉𝑜1 

Non-inverting 𝑉𝑖𝑛1 𝑉𝑜2 

Non-inverting 𝑉𝑖𝑛2 𝑉𝑜2 

Inverting 𝑉𝑖𝑛4  =  𝑉𝑖𝑛5 𝑉𝑜2 

Figure 4. MIMO universal filter using DDTAs.

Using (1) and nodal analysis, the output voltages of Figure 4 can be expressed as follows:
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Vo1 =

(
s2C1C2 + sC2gm1

)
(Vin1 + Vin2) + sC1gm2(Vin3 −Vin4) + (sC1gm2 + gm1gm2)Vin5

s2C1C2 + sC2gm1 + gm1gm2
(14)

Vo2 =
sC2gm1(Vin1 + Vin2) + (sC2gm1 + gm1gm2)(Vin3 −Vin4)− gm1gm2Vin5

s2C1C2 + sC2gm1 + gm1gm2
(15)

Vo3 =
sC2gm1(Vin1 + Vin2) + s2C1C2(Vin4 −Vin3) + gm1gm2Vin5

s2C1C2 + sC2gm1 + gm1gm2
(16)

Vo4 =
gm1gm2(Vin1 + Vin2) + sC1gm2(Vin4 −Vin3)− (sC1gm2 + gm1gm2)Vin5

s2C1C2 + sC2gm1 + gm1gm2
(17)

From (14)–(17), the low-pass (LP), band-pass (BP), high-pass (HP), band-stop (BS),
and all-pass (AP) responses can be obtained by properly applying the input signal and
choosing the output terminals as shown in Table 1. The input terminals that are not used
should be connected to ground. In the case of the all-pass filtering response, the circuit
requires an inverting-type input signal, which can be obtained using additional DDTA.

The natural frequency (ωo) and the quality factor (Q) of the filter can be respectively
expressed as

ωo =

√
gm1gm2

C1C2
(18)

Q =

√
gm2C1

gm1C2
(19)

From (18) and (19), the natural frequency and the quality factor can be designed, as
the quality factor can be given by C1/C2 by letting gm1 = gm2 whereas the natural frequency
can be obtained electronically by adjusting gm (gm = gm1 = gm2).

Table 1. Obtaining variant filtering functions of the proposed filter.

Filtering Function Input Output

LP

Non-inverting Vin4 = Vin5 Vo1
Non-inverting Vin5 Vo2

Inverting Vin1 = Vin4 Vo2
Non-inverting Vin5 Vo3
Non-inverting Vin1 Vo4
Non-inverting Vin2 Vo4

Inverting Vin4 = Vin5 Vo4

BP

Non-inverting Vin3 Vo1
Inverting Vin4 Vo1

Non-inverting Vin1 Vo2
Non-inverting Vin2 Vo2

Inverting Vin4 = Vin5 Vo2
Non-inverting Vin1 Vo3
Non-inverting Vin2 Vo3
Non-inverting Vin4 Vo4

Inverting Vin3 Vo4
Inverting Vin1 = Vin5 Vo4

HP
Non-inverting Vin1 = Vin4 Vo1

Inverting Vin3 Vo3
Non-inverting Vin4 Vo3

BS Non-inverting Vin4 = Vin5 Vo3

AP Non-inverting −Vin2 = Vin4 = Vin5 Vo3
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3.2. Proposed Quadrature Oscillator

The proposed universal filter in Figure 4 was modified to work as a quadrature
oscillator as shown in Figure 5. It can be obtained by using a non-inverting BP filtering
response and a feedback connection. Using (14), the transfer function between Vo1 and Vin3
can be expressed as follows:

Vo1

Vin3
=

sC1gm2

s2C1C2 + sC2gm1 + gm1gm2
(20)
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Letting Vo1/Vin3 = 1, the oscillator characteristic can be derived as

s2C1C2 + s(C2gm1 − C1gm2) + gm1gm2 = 0 (21)

Letting gm1 = gm2 = gm, the condition of oscillation (CO) is

C1 = C2 (22)

and the frequency of oscillation (FO) is

ωo =

√
gm1gm2

C1C2
(23)

Thus, the CO of the oscillator can be controlled by C1 and/or C2, and letting gm1 = gm2,
the FO can be controlled electronically by gm (gm = gm1 = gm2). Therefore, the FO and CO
of the oscillator can be orthogonally controlled. The nodes Vo3 and Vo4 provide quadrature
output signals. It can be confirmed by the relationship between Vo3 and Vo4:

Vo4

Vo3
=

gm2

sC2
(24)

Thus, the phase difference between Vo3 and Vo4 is 90◦. After setting s = jω0 into (24)
and taking into account Equations (22) and (23) and the condition gm1 = gm2, the ratio
(24) is one; thus, if oscillation condition (22) is accomplished, the oscillator provides equal
amplitudes of both quadrature signals independently of the oscillation frequency.
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3.3. Non-Idealities Analysis

Considering non-idealities of the DDTA, (1) can be rewritten as:

Vw = βi1Vy1 − βi2Vy2 + βi3Vy3
Io = gmni

(
Vw −Vy4

) }
(25)

where βi1 denotes the voltage gain from Vy1 to Vw of i-th DDTA, βi2 denotes the voltage
gain from Vy2 to Vw of i-th DDTA, and βi3 denotes the voltage gain from Vy2 to Vw of
i-th DDTA. Ideally, the voltage gains βi1, βi2, and βi3 are unity. The gmni is the non-ideal
transconductance gain of the DDTA, whose frequency dependence is given by parasitic
capacitance Co and resistance Ro at o-terminal. In the frequency range near the cutoff
frequency, gmni can be approximated as [48]

gmni(s) ∼= gmi(1− µis) (26)

where µi = 1/ωgmi, ωgi denotes the first-order pole.
Using (25), the output voltages of Figure 4 can be rewritten to the form

Vo1 =

(
s2C1C2 + sC2gmn1β21

)
(β11Vin1 + β13Vin2) + sC1gmn2β12(β22Vin3 − β23Vin4)

+(sC1gmn2β12 + gmn1gmn2β12β21)Vin5

s2C1C2 + sC2gmn1β21 + gmn1gmn2β12β21
(27)

Vo2 =

sC2gmn1(β11Vin1 + β13Vin2) + (sC2gmn1 + gmn1gmn2β12)(β22Vin3 − β23Vin4)
−gmn1gmn2Vin5

s2C1C2 + sC2gmn1β21 + gmn1gmn2β12β21
(28)

Vo3 =
sC2gmn1β21(β11Vin1 + β13Vin2) + s2C1C2(β23Vin4 − β22Vin3) + gmn1gmn2β12β21Vin5

s2C1C2 + sC2gmn1β21 + gmn1gmn2β12β21
(29)

Vo4 =

gmn1gmn2β21(β11Vin1 + β13Vin2) + sC1gmn2(β23Vin4 − β22Vin3)
−(sC1gmn2 + gmn1gmn2β21)Vin5

s2C1C2 + sC2gmn1β21 + gmn1gmn2β12β21
(30)

Considering the denominator D(s) of (27)–(30), the modified parameters ωo and Q can
be expressed by:

ωo =

√
gmn1gmn2β12β21

C1C2
(31)

Q =

√
gmn2C1β12

gmn1C2β21
(32)

From (27), the modified oscillator characteristic can be expressed as

s2C1C2 + (sC2gmn1β21 − sC1gmn2β12β22) + gmn1gmn2β12β21 = 0 (33)

The modified CO and FO of the oscillator are then

C1β12β22 = C2β21 (34)

ωo =

√
gmn1gmn2β12β21

C1C2
(35)

Since this work is focused on circuits that operate at low frequency, Equation (26)
is not taken in consideration. In the case that the universal filter and the quadrature
oscillator operate in the frequency range in which the frequency dependence of gm asserts
its influence, then (26) should be used to refine the error analysis.
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4. Simulation Results

The DDTA circuit and its applications were designed in a Cadence environment, using
130 nm CMOS technology from UMC. The transistor’s aspect ratio and values of passive
devices are included in Table 2. The voltage supply is 0.3 V (VDD = −VSS = 0.15 V), the bias
current of the DDCC IB = 50 nA, and the nominal value of the setting current of the TA
Iset = 500 nA. The nominal power consumption of the DDTA is 357.4 nW (DDCC = 70.21 nW,
TA = 287.2 nW). The input and compensation capacitors are highly linear metal–isolator–
metal capacitors (MIM). The linear resistor R is a high-resistance poly-resistor.

Table 2. Transistor aspect ratios of the DDTA.

Device W/L (µm/µm)

M1A, M2A, M1B, M2B 20/3
M7, M8 15/3
M3–M6, MB 10/3
M9 6 × 10/3
M10 6 × 20/3
MR 5/3

MIM capacitor: CB = 0.2 pF, Cc = 4 pF

Poly-resistor R = 90 kΩ

The open-loop gain of the DDCC (i.e., without the unity gain feedback) was simulated
as 73.9 dB, and the phase margin was 56.2◦ for 20 pF load capacitor. The simulated
magnitude characteristics of the DDCC are shown in Figure 6. The low-frequency gain for
VW/VY1 (=VW/VY3) and VW/VY2 is 14 mdB and 57.29 mdB, while the −3 dB bandwidth
is 22.24 kHz and 22.23 kHz, respectively.
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Figure 6. The magnitude characteristics of the DDCC.

The simulated DC transfer characteristics of the DDCC are shown in Figure 7. As
is evident, the DDCC enjoys rail-to-rail operation for all its inverting and non-inverting
inputs. This rail-to-rail operation capability is a design achievement.

The simulated gain and phase characteristics for the TA with Iset = 0.5 µA and 20 pF
load capacitance are shown in Figure 8. The low DC gain is 23.2 dB, and the bandwidth
(BW) is 19.65 kHz, while the phase error is 3.8◦.

Figure 9a,b shows the DC characteristic of the output current and the transconductance
versus fully differential input voltage Vin (Vin = V+ − Vy4) for the TA for Iset = 0.125 µA,
0.25 µA, and 0.5 µA. The rail-to-rail operation with high linearity is evident.
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Figure 7. The DC transfer characteristics of the DDCC.
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To determine the impact of mismatch and process variation on the circuit’s perfor-
mance, Monte Carlo (MC) simulations (200 runs) were carried out. As the histograms show
in Figure 10, the impact of mismatch and process variation on the gain and −3 dB BW of
the DDCC is low. The impact is also low on the gain and phase error of the TA as shown in
Figure 11.

The process, voltage, temperature (PVT) corners analysis was also provided on the
proposed DDTA. The MOS transistor corners were slow-slow, slow-fast, fast-slow, and
fast-fast, the voltage supply corners were (VDD − VSS) ± 10%, and the temperature corners
were −20 ◦C and 70 ◦C. Tables 3 and 4 show the results of the minimum, nominal, and
maximum values of the gain, −3 dB BW for the DDCC, and gain and phase error for the
TA. The impact of the PVT corners in all cases is acceptable.

Table 3. The PVT corner analysis results for the DDCC.

DDCC
min.

nom.
max.

P/V/T P/V/T

Gain VW/VY1 [mdB] −75.3/9.8/−224 14 29.4/14/14
Gain VW/VY2 [mdB] −14.1/45.8/−75 57 101/67.3/57
−3 dB VW/VY1 [kHz] 20.2/22/21 22.24 25.2/22.1/23.7
−3 dB VW/VY2 [kHz] 20.1/22/20.8 22.23 25/22.7/23.4
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Table 4. The PVT corner analysis results for the TA.

TA
min.

nom.
max.

P/V/T P/V/T

Gain [dB] 23/20.6/21.9 23.19 23.2/25.2/24
Phase error [◦] 3.7/2.9/3.4 3.8 3.8/5.1/4.3

Gm [µS] 2.2/2.2/2.2 2.48 2.5/2.5/2.4

The universal filter in Figure 4 was simulated for C1 = C2 = 5 nF, which are off-chip
capacitors. The magnitude characteristics of the LPF, HPF, BPF, BSF, and APF are shown in
Figure 12. The simulated natural frequency (f o) is around 81.47 Hz. It is worth mentioning
that, due to the limited value of the output resistance of the TA, which is around 5.1 MΩ,
the attenuations of the HPF and BPF are degraded at low frequencies. Therefore, if an
application demands higher attenuation, then the output resistance could be increased,
employing the MOS transistor self-cascode technique.
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Figure 12. The magnitude characteristics of the universal filter.

The BPF was tested by applying a sine wave signal Vin = 100 mVpp @ 81.47 Hz. The
waveforms of the input and output voltages are shown in Figure 13a. The spectrum of the
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output signal is shown in Figure 13b, where the total harmonic distortion (THD) of the BPF
output is 0.5%.

1 
 

The BPF was tested by applying a sine wave signal Vin = 100 mVpp 
@ 81.47 Hz. The waveforms of the input and output voltages are shown 
in Figure 13a. The spectrum of the output signal is shown in Figure 13b, 
where the total harmonic distortion (THD) of the BPF output is 0.5%. 
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Figure 13. The transient response of the BPF (a) and the spectrum of the 
output signal (b). 
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Figure 13. The transient response of the BPF (a) and the spectrum of the output signal (b).

The electronic tuning capability of the LPF, BPF, HPF, and BSF with different bias
currents, Iset = 0.125, 0.25, 0.5, and 0.75 µA, is shown in Figure 14. The f o was in the range
of 21.11 Hz, 41.63 Hz, 81.47 Hz, and 115.74 Hz, respectively.
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The simulation results showing the start of the oscillation and the steady state of the
quadrature oscillator from Figure 5 are given in Figure 15. The oscillation frequency is
67 Hz, and the THD for outputs V3 and V4 are 1.2% and 1.29%, respectively.
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Finally, Table 5 provides the comparison of the proposed filter with others in the
literature [23,41,42,44,46,47]. It is evident that the proposed filter offers the highest number
of filtering functions with lowest power supply and power consumption, thanks to the
innovative CMOS structure of the DDTA.

Table 5. Comparison table with other universal filters.

Features Proposed Ref. [23] Ref. [41] Ref. [42] Ref. [44] Ref. [46] Ref. [47]

Active and
passive

elements
2 DDTA, 2 C 5 OTA, 2 C 5 OTA, 2 C 4 OTA, 2 C 3 CFOA, 2 C,

4 R

3 VDBA, 2 C,
1 R

(Figure 2)

8 OTA, 2 C
(Figure 3)

Realization
CMOS

structure
(130 nm)

CMOS
structure

(180 nm) &
commercial IC

commercial IC commercial IC
CMOS

structure
(180 nm)

CMOS
structure
(180 nm)

CMOS
structure
(180 nm)

Filter type MIMO MISO MIMO MIMO MOMO MISO MIMO

Number of
filtering

functions

22
(VM)

11
(VM)

13
(VM)

9
(VM)

5
(VM)

20
(Mixed-mode)

20
(Mixed-mode)

Offer universal
filter and
oscillator

Yes Yes Yes Yes Yes No No



Sensors 2022, 22, 2655 15 of 17

Table 5. Cont.

Features Proposed Ref. [23] Ref. [41] Ref. [42] Ref. [44] Ref. [46] Ref. [47]

Electronic
control of

parameter ωo

Yes Yes Yes Yes No Yes Yes

Natural
frequency

(kHz)
0.08147 1 217 144.7 757.88. 16.631 × 103 5.77

Total harmonic
distortion (%) 0.5@100 mVpp 1.67@600 mVpp 1.93@200 mVpp 3.83@170 mVpp 3.18@1.2 Vpp <3@500 mVpp <2@200 mVpp

Power supply
voltages (V) 0.3 1.2 ±15 ±15 ±0.9 ±1.25 ±0.3

Simulated
power

consumption
(µW)

0.715 96 860 × 103 0.92 × 106 5.4 × 103 5.482 × 103 5.77

Verification of
result Sim Sim/Exp Sim/Exp Sim/Exp Sim/Exp Sim/Exp Sim

Note: VDBA = voltage differencing buffered amplifier, VM = voltage-mode.

5. Conclusions

This paper presents an innovative structure of a DDTA capable of operating under an
extremely low voltage supply of 0.3 V while offering a rail-to-rail input voltage swing. As
an application, a universal filter and quadrature oscillator based on two DDTAs and two
grounded capacitors are presented. The simulation results including Monte Carlo and PVT
analysis confirm the good functionality of the proposed circuits.
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