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AUTOMATEDMULTI-OBJECTIVE PARALLEL EVOLU-

TIONARY CIRCUIT DESIGN AND APPROXIMATION
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BRNO 2017



Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Survey of the State of the Art 6
2.1 Approximate Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Application Error Resilience . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Approximate Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Overview of Circuit Approximation Methods . . . . . . . . . . . . . 10

2.2 Evolutionary Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Cartesian Genetic Programming . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Evolutionary Design of Digital Circuits . . . . . . . . . . . . . . . . 14
2.2.3 Multi-Objective EAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Design Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Research Summary 21
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Papers included in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.5 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.6 Paper VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.7 Paper VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 List of Other Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Research Projects and Grants . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Czech Science Foundation . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Anselm & Salomon Supercomputer Allocations . . . . . . . . . . . . 28

3.5 Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Discussion and Conclusions 29
4.1 The Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Software Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



4.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A Curriculum Vitae 39
A.1 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2 Conferences, Summer Schools, Institutions . . . . . . . . . . . . . . . . . . . 39
A.3 Awards, Courses & Certifications . . . . . . . . . . . . . . . . . . . . . . . . 40
A.4 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.5 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.6 Work Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.7 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



Chapter 1

Introduction

This chapter gives an introduction to the thesis. It starts with the motivation for the whole
research, then the open problems and research objectives of the thesis are formulated. At
the end of the chapter, an outline of the thesis is given.

1.1 Motivation

Computers and computer based systems play a crucial role in people’s everyday lives. Em-
bedded systems can be found almost everywhere. Power efficiency is becoming increasingly
important property of computing platforms, especially because of limited power supply
capacity of embedded devices and high costs associated with operating growing data cen-
ters and cloud infrastructure. At the same time, in an increasing number of applications
users are able to tolerate inaccurate or incorrect computations to a certain extent due to
imperfections of human senses, statistical nature of data processing, noisy input data etc.

Approximate computing, an emerging paradigm in computer engineering, takes advan-
tage of relaxed functionality requirements to make computer systems more efficient in terms
of energy consumption, computing speed or complexity [33]. Error resilient applications can
achieve significant savings while still serving their purpose with the same or a slightly de-
graded quality.

The complexity of computer systems is permanently growing and thus, automated de-
sign tools have to deal with more complex problems specified on higher level of abstraction
than before. The same holds true for approximate computing. Even though new methods
are emerging, there is a lack of methods for automated approximate HW/SW design offer-
ing a rich set of compromise solutions. Moreover, conventional synthesis algorithms often
produce solutions that are far from an optimum [8].

Evolutionary algorithms (EAs) have been confirmed to bring innovative solutions to
complex design and optimization problems. Recently, complex digital circuits have been
optimized by means of EAs while the scalability of the method has been improved substan-
tially [20, 55].

Every year, a special competition Humies is held at the Genetic and Evolutionary
Computation Conference to award scientific results that utilize an evolutionary computation
technique and are human-competitive [24]. In years 2004-2013, there were 42 Humie winners
and 10 of them published results that were patented or would qualify as a patentable new
invention [24]. The same trend can be observed for years 2014-2016.
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1.2 Open Problems

The main issue of approximate computing at the moment is the lack of available automated
methods capable of providing approximations for arbitrary combinational circuits under
different error metrics and with respect to multiple objectives. The solutions provided by
conventional circuit synthesis methods are often far from optimum.

On the other hand, the evolutionary based design and approximation methods suffer
from several problems, mainly the scalability of the methods (i.e. the scalability of the fitness
function and the representation of candidate circuits) is not sufficient. A high number of
fitness evaluations needed to evolve competitive results implies simplifications in circuit
parameters estimation and thus leads to reduced accuracy of the estimations. Although
complex digital circuits have been optimized using single-objective EAs, the same cannot
be said about the multi-objective methods.

1.3 Research Objectives

The first main research objective for this thesis is to

develop an automated scalable design method based on evolutionary algorithms,
capable of multi-objective design and approximation of digital circuits.

As indicated, such a method has to meet several requirements. It has to be able to
design circuits of a sufficient complexity. It has to take into account multiple design criteria.
Moreover, the estimation of the circuit parameters has to be accurate enough. Finally, the
implementation should be parallelized and should efficiently utilize computational resources.

The second main objective is to

show on several real-world problems that the method provides human-competitive
results.

These objectives can be translated into the following partial goals:

1. To develop an optimized parallel evolutionary algorithm for digital circuits design.

2. To extend the evolutionary design method with multi-objective design capability.

3. To identify objectives relevant for approximate circuits and transform them to fitness
functions.

4. To carry out experiments on different real world applications to show the performance
of the method.

5. To validate the achieved results by means of professional simulation tools.

1.4 Thesis Outline

The thesis is composed as a collection of papers. The research contribution of this thesis is
comprised of seven peer-reviewed research papers in their original publication format. The
thesis is organized as follows: Chapter 1 gives an introduction to the thesis. Chapter 2
surveys the state of the art and presents relevant background information for the research.
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Chapter 3 summarizes the research process and gives an overview over the papers constitut-
ing the research contribution. Finally, Chapter 4 presents conclusions and proposes future
research directions.
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Chapter 2

Survey of the State of the Art

This chapter gives relevant background information needed for a proper understanding of
the work presented in the thesis. It primarily addresses the areas of approximate computing
and evolutionary circuit design.

2.1 Approximate Computing

Recently, power efficiency has become one of the most important parameters of almost
every computing platform. At the same time, a wide range of applications in which we are
willing to tolerate imperfections in computations has spread out. As a consequence, a new
research field – approximate computing – has emerged to investigate how computer system
can be made more efficient in terms of energy consumption, computing speed or complexity
assuming that some errors are acceptable. It has been believed, that significant savings
can be achieved by relaxing the requirement of perfect functionality thanks to the error
resilience of some applications. Therefore, the accuracy (error) of the system can be used
as a design metric and inaccurate solutions can be accepted if an improvement in other
parameters occurs.

The approximation can be introduced at various levels including the entire computer
system architecture [30], particular components (e.g. ALU) [13], operating system, algo-
rithm or even programming language [3]. As the complexity of today’s computer systems
grows, manual approximation is not an efficient design method. Hence, several automated
approximate design methods have been introduced.

2.1.1 Application Error Resilience

Inherent application error resilience is the property of an application to produce acceptable
outputs even if some underlying computations are approximate or incorrect [6]. Whether an
output is acceptable or not is given by an output quality metric if the concept of approximate
computing is considered. Applications are designed to produce outputs of acceptable quality
rather than a unique correct output.

The sources that contribute to the application resilience can be classified into following
the categories [6]:

• Inputs: Applications that process noisy or redundant data can be inherently resilient.
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• Outputs: If the specification does not define a unique golden output or the outputs are
consumed by human senses, minor output variations that are often indistinguishable
are acceptable.

• Computation patterns: Statistical computations can result in attenuation or cancel-
lation of error. Applications employing statistical computations are thus resilient.

• Iterative processing : Many applications feature iterative processing and undergo suc-
cessive refinement or aggregation to obtain converged results. The quality gain tends
to attenuate as the iterations continue [65].

The level, at which the system is approximated, influences the resilience to approxima-
tions. For example, introducing approximations at the software level can lead to a very
different conclusion about the error resilience than at the hardware level [6].

The overall output quality is given by individual responses to different system inputs,
which makes the output quality a statistic. In general, the most frequently used qual-
ity metrics are the error probability (error rate), error magnitude (mean error) and error
predictability (error variance) [6]. These metrics form a three-dimensional space and all
acceptable qualities form a subspace in this space. This subspace is highly application de-
pendent, but in general, a wide range of applications accept outputs with low error rate or
low error magnitude [6].

The computation patterns (e.g. in statistical processing) present in particular applica-
tions affect the error resilience significantly. Thanks to that, there are applications that
accept output errors with small variance present in all computations (which correspond to
very high error rate) while the error magnitude can be very large. In addition to com-
putation patterns, the context in which the application is used significantly impacts the
resilience. For example, the error resilience of a k-means clustering algorithm used in an
image segmentation application depends on chosen quality metric. The application is able
to tolerate more aggressive approximations if mean centroid distance is used as the quality
metric in comparison with the percentage of mis-clustered points [6].

Approximations can be done at multiple levels by applying several approximate com-
puting techniques at the same time. The resilience is again application dependent in such
situation. Generally, different approximation techniques can be applied in a synergistic
manner, but there can be cases for which the combination of particular techniques leads to
unacceptable results [6].

2.1.2 Approximate Circuits

While automatic design of digital circuits has been well established in the past, the correct
functionality has always been an essential requirement put on the circuits. The other
parameters, like the area, delay or power consumption, have been considered as secondary
and have not been optimized as long as a fully working solution has been found.

The approximate circuits are designed in such a way that the functionality specification
(assuming a perfect operation) is not fully met in exchange for savings in terms of area,
delay, power consumption etc. Although the circuit is not working properly, it can still
be suitable for applications in which certain level of error is not recognizable (e.g. human
perception in the context of multimedia applications). Moreover, in some cases (e.g. low
battery), users could knowingly tolerate even more inaccuracy in order to extend the time
of operation.
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2.1.3 Design Objectives

When designing an approximate computer system, the functionality requirement (accuracy)
is traded off for improvements in other design objectives. These objectives are application
dependent, but they usually include size, power consumption and performance. In the case
of hardware solutions, one has to deal with the reliability and dependability of the system.
In order to correctly determine parameters (i.e. particular values for the objectives) of
computer systems, careful benchmarking has to be performed. The acceptable level of
inaccuracy is application dependent.

Accuracy/Error

The accuracy (error) of a computer system is the main objective tracked when doing ap-
proximations. In each application, different requirements on the accuracy metric can be
formulated resulting in a wide range of different accuracy metrics being used. Usually, an
opposite metric, the error , is used instead of accuracy.

For combinational circuits, one can use the number of incorrect outputs (i.e. the Ham-
ming distance):

ehamm =
∑

∀i,∀j,O(i,j)
approx 6=O

(i,j)
orig

1, (2.1)

where O
(i,j)
approx is the j-th bit of the i-th circuit output and O

(i,j)
orig is the correct one. The

other option is to calculate the error probability [54]:

eprob =

∑
∀i,O(i)

approx 6=O
(i)
orig

1

2ni
, (2.2)

where ni is the number of circuit inputs, O
(i)
approx is the i-th circuit output (all bits) and

O
(i)
orig is the correct one.

The significance of the aforementioned two metrics is very low for arithmetic circuits
or digital signal processing systems in general, for which more suitable metrics based on
the arithmetic distance between the actual and correct values exist. One can use the worst
case error ewce, the mean absolute error emae, the mean squared error emse or their relative
versions ewcre and emre as follows [54]:

ewce = max
∀i

∣∣∣O(i)
approx −O

(i)
orig

∣∣∣ , (2.3)

emae =

∑
∀i

∣∣∣O(i)
approx −O(i)

orig

∣∣∣
2ni

, (2.4)

emse =

∑
∀i

∣∣∣O(i)
approx −O(i)

orig

∣∣∣2
2ni

, (2.5)

ewcre = max
∀i

∣∣∣O(i)
approx −O(i)

orig

∣∣∣
max(1, O

(i)
orig)

, (2.6)

emre =

∑
∀i

∣∣∣O(i)
approx−O

(i)
orig

∣∣∣
max(1,O

(i)
orig)

2ni
, (2.7)

where no is the number of circuit outputs.
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Size

The size corresponds to the amount of resources statically used by the system. Computer
programs vary in the amount of program memory occupied or data memory operating on,
digital circuits occupy an area on die or the number of used reconfigurable cells on Field
Programmable Gate Arrays (FPGAs).

Power Consumption

The power consumption is the most important objective being shrunk in approximate com-
puting. It can be measured as energy needed for performing an operation or as average
power consumption of a permanently running system.

In the case of digital circuits (CMOS technology), there are three major sources of power
dissipation [5]:

Pavg = Pswitching + Pshort circuit + Pleakage

= α · CL · V 2
dd · fclk + Isc · Vdd + Ileakage · Vdd. (2.8)

The switching power Pswitching depends on the switching activity α (probability of
switching a gate’s output), the operating frequency fclk, load capacitance CL and power
supply voltage Vdd. The second term, the short circuit power Pshort circuit, is caused by the
short circuit current Isc which arises when both complementary transistors are active at
the same time, i.e. conducting current directly from supply to ground. These two terms
together represent the dynamic power, while the switching power is usually 10 times greater
than the short circuit power. The last term is the leakage (static) power Pleakage, which is
primarily determined by fabrication technology considerations [5].

The introduction of CMOS technology led to significant reductions in static power con-
sumption. For a long time, the dynamic power dissipation was the dominant component.
However, with the decreasing size of the semiconductor technology process, the static dis-
sipation is increasing due to rising leakage currents and is becoming the major component
of the power consumption [49].

Performance

The next commonly used objective is the performance (speed) of computation. In the case
of computer programs, it usually applies to the execution time. The speed of digital circuits
can be determined by the maximum operating frequency or the latency, i.e. the interval
between the stimulation of the inputs and the response on the outputs. Another way of
measuring the speed is to compute the throughput of the system.

Reliability/Dependability

Reducing the probability of failure and increasing the reliability of digital circuits is an
important design objective. Many applications (e.g. automotive, aerospace, operating in
remote environments) are safety-critical and need to be built using the principles of fault-
tolerant system design. As the complexity of computer systems increases, more complex
mechanisms must be introduced to preserve the reliability of the systems [49].
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2.1.4 Overview of Circuit Approximation Methods

Automated approximate computing techniques are being developed to speed up the design
process and to find the best trade-off solutions between the resources being shrunk and
the inaccuracy of the computation. The design of approximate circuits is typically based
on modifying fully functional circuits [47]. Most of the methods deal with combinational
circuit design, however, there are methods for sequential circuit approximation as well.

Voltage Over-Scaling

As can be seen from Equation 2.8, the power consumption Pavg is highly dependent on the
supply voltage Vdd. Present computer systems often utilize voltage scaling together with
frequency scaling in order to lower the power consumption when full performance is not
needed. Voltage over-scaling extends this concept beyond the critical voltage value at which
the critical path delay is just met. This leads to significant energy savings for the price of
possible incorrect computations [25].

The supply voltage can be controlled adaptively with respect to the occurrence of errors
in the circuit. For example, the adaptive voltage over-scaling strategy presented in [28]
monitors several locations in the circuit where errors can be detected. The signals are
sampled with a delayed clock and compared to the value sampled with the main clock. If
they differ, an error is detected. The supply voltage is then controlled according to current
error rate.

The drawback of the voltage over-scaling approach is the difficulty of controlling the
error. Since the behavior of the circuit after voltage over-scaling depends on many factors
(each logic gate behaves differently according to its type, input timing, output load, etc.),
accurate timing analysis has to be performed so as to measure the output quality. For
example, the Modeling and Analysis of Circuits for Approximate Computing (MACACO)
methodology is based on the construction of an equivalent circuit that represents the be-
havior of the approximate circuit at a given voltage and clock frequency [61].

Manual Methods

In the first approximation methods, the design of approximate circuits was typically based
on manual modifications of fully functional circuits. These first results include arithmetic
circuits, such as combinational adders [13] or multipliers [29]. In general, only small com-
ponents have been approximated manually, e.g. 2-bit multiplier occupying nearly half area
and working almost correctly except for a single output value (3 · 3 = 7) [29]. By using this
simple component as a building block, one can design larger circuits, however, the method
clearly does not exploit the whole potential of approximate computing.

SALSA

The Systematic methodology for Automatic Logic Synthesis (SALSA) uses a quality func-
tion which decides whether a predefined quality constraint is met or not. The algorithm
is allowed to modify the circuit as long as the quality constraint is not exceeded. SALSA
has been applied to a number of problems, e.g. 32-bit adders, 8-bit multipliers, FIR filters,
DCT blocks and others [59].
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SASIMI

Another approach, Substitute-and-Simplify (SASIMI), looks for signal pairs having similar
values with a high probability. By substituting one signal for the other, a part of the circuit
can be removed resulting in area and power savings at the cost of an error introduced to the
circuit. Moreover, SASIMI further extends the approach to synthesize quality configurable
circuits, where at runtime, processing of selected input vectors is given an additional cycle
to correct errors due to approximations [60].

ABACUS

Unlike the aforementioned methods, ABACUS (Automated Behavioral Approximate Cir-
cuit Synthesis) operates directly on the behavioral descriptions of circuits. ABACUS auto-
matically generates approximate circuits from input behavioral descriptions by performing
global transformations on an abstract synthesis tree (AST) created from the behavioral de-
scription. The outcome approximate circuits are still expressed in behavioral code and can
be synthesized by means of standard synthesis tools. Complementary approximate comput-
ing methods, e.g. voltage over-scaling or manually created approximate components, may
be still used [36]. The latest version of the algorithm supports multi-objective design based
on the principles of the NSGA-II algorithm [37].

ASLAN

Although most of the design methods deal with combinational circuits, there are methods
capable of approximating sequential circuits. As an example, the Automatic Methodology
for Sequential Logic Approximation (ASLAN) creates an approximate version of a sequen-
tial circuit that consumes lower energy, while meeting a specified quality constraint. ASLAN
identifies combinational blocks in the sequential circuit that are amenable to approxima-
tion and iteratively approximates the entire sequential circuit using a gradient-descent ap-
proach [43].

EA-based Methods

Several evolutionary algorithm based methods have been used in approximate computing
recently. Most of the methods are single-objective and the optimization of a secondary
objective is achieved either by restricting the circuit resources (by constraining the genotype
size) [53] or using a multi-phase approach [54]. A multi-objective evolutionary algorithm
was used to design approximate multiple constant multipliers [39]. However, the method
operated on functional unit level and the complexity of the circuits was relatively small.

Summary

Despite numerous attempts, almost all papers dealing with the design of approximate cir-
cuits show some of the following features that are undesirable [35]:

• The approximation method is described, but a corresponding software implementation
is not available.

• An implementation of the original (accurate) circuit is not available.
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• The quality of approximation and other parameters of approximate circuits are ex-
pressed relatively to parameters of the original circuits.

• Implementations of the resulting approximate circuits are not available.

• Only a few approximate versions created from the original circuit are reported, form-
ing thus a sparsely occupied Pareto front.

• It is unclear if a given number of test vectors used to evaluate approximate circuits
is sufficient for obtaining a trustworthy error quantification if the error is determined
using simulation.

• A given approximation method is only rarely compared against competitive approxi-
mation methods.

2.2 Evolutionary Design

Evolutionary Algorithms (EAs), generic population-based metaheuristic optimization al-
gorithms, use mechanisms inspired by biological evolution, such as reproduction, recom-
bination, mutation or selection for purposes of optimization and design. Population of
individuals represents a set of candidate solutions to a specified problem. Each individual
is assigned a fitness value depending on the ability of the individual to solve the problem.
In each generation, a subset of the population is selected according to the fitness value to
create offspring population by means of recombination and mutation [1].

While EAs were originally used to solve optimization problems, they are able to bring
innovative solutions to design problems as well. Evolutionary design of hardware is a grow-
ing research area since the beginning of the 1990s. In particular, it includes evolutionary
design of digital and analog circuits, antennas, optical systems and microelectromechanical
systems (MEMS) [46].

EAs have been applied to a number of real problems, however, their computational
complexity can be enormous. The scalability of the fitness function is often a prohibiting
factor and thus, one has to deal with the acceleration of the fitness function or fitness ap-
proximation. Besides the scalability of the fitness evaluation, another problems that limit
the application of EAs are known, such as the scalability of the representation (complex
problems are represented by long chromosomes which implies large search space), the non-
deterministic nature of EAs or slow convergence. Potential solutions to the problems have
been recently summarized in [49].

In the following section, we will introduce Cartesian Genetic Programming (CGP) since
it has been routinely used in the area of evolutionary based digital circuit design and
optimization.

2.2.1 Cartesian Genetic Programming

Cartesian genetic programming has been introduced by Miller [31] as a branch of genetic
programming. Unlike GP which uses tree representation, an individual in CGP is repre-
sented by a directed acyclic graph which enables the candidate solution to have multiple
outputs and automatically reuse intermediate results. This makes CGP very suitable for
the design of various kinds of digital circuits (such as arithmetic and logic circuits, digital
filters, etc.) and computer programs [31].
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Figure 2.1: Cartesian genetic programming scheme.

CGP uses a cartesian grid of nr × nc programmable elements (nodes) interconnected
by a feed-forward network (Figure 2.1). Each node’s input (each node has a fixed number
of inputs, e.g. nni = 2) can be connected either to one of ni primary inputs or to a node
output in the preceding l columns. By setting the l-back parameter and the grid size, one
can control the area and delay of the circuit. Each node can be programmed to perform one
of nni-input functions defined in the set Γ (let nf = |Γ|). The no primary circuit outputs are
connected either to the primary inputs or nodes. The output connectivity can be optionally
restricted by the o-back parameter.

Since all the CGP parameters are fixed, each chromosome is encoded using a fixed-size
string of nr · nc · (nni + 1) + no integers. Each primary input is assigned a number from
{0, ..., ni − 1} and the nodes are assigned numbers from {ni, ..., ni + nr · nc − 1}. The geno-
type is of fixed length, whereas the phenotype is of variable length depending on the number
of inactive nodes, i.e. nodes whose output is not used by any other node or primary output.
Hence, the genotype-phenotype mapping is not injective. The existence of genotypes with
the same fitness is usually referred to as neutrality. The role of neutrality has been inten-
sively studied [66] and it was shown that for certain problems the neutrality significantly
reduces the computational effort and helps to find more innovative solutions [32].

In CGP, a simple mutation based (1+λ) evolutionary strategy is used as a search mech-
anism. The population size 1 + λ is usually very small, typically, λ is between 1 and 15.
The initial population is constructed either randomly (then we speak about evolutionary
design) or by mapping of a known solution to the CGP chromosome (evolutionary optimiza-
tion) [55]. In each generation, a randomly selected individual with the best fitness value
(if there are more of them, an individual genotypically distinct from the parent) is passed
to the next generation unmodified and its λ offspring individuals are created by means of
point mutation operator which modifies m randomly selected genes of the chromosome.
The mutation rate is usually set to modify up to 5 % of the total number of genes. For
some problem classes (e.g. symbolic regression problem), special crossover operators have
been investigated [7], however, none of them has been confirmed to significantly improve
the search process.
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Recently, several modifications to CGP have been published. Embedded CGP is an
extension of the CGP which is capable of automatically acquiring, evolving and re-using
partial solutions in the form of modules [62]. By introducing multiple chromosomes, each
connected to a single output, large problems with multiple outputs can be broken down
into many smaller problems leading to significant performance increase for particular prob-
lems [63]. Self Modifying CGP enables self-modifications of CGP individuals by introducing
operations into the CGP chromosome [14]. Multi Expression CGP modifies CGP individual
evaluation in such a way that multiple nodes are compared to the desired output instead
of just a single node [4]. Recurrent CGP allows recurrent connections [52]. All these mod-
ifications share a common objective – to increase the scalability of CGP and speed up the
evolutionary process.

2.2.2 Evolutionary Design of Digital Circuits

In the case of combinational circuit evolution, the fitness function corresponds to the quality
of the candidate circuit measured as the number of correct output bits compared to a
specified truth table (see Equation 2.1). In order to obtain a fully working circuit, all
combinations of input values have to be evaluated. For a circuit with ni inputs and no
outputs, 2ni test vectors need to be fetched to the primary inputs and no · 2ni output bits
have to be verified so as to compute the fitness value. In this thesis, we assume this scenario.

Recently, complex digital circuits have been successfully optimized by means of CGP [57].
However, designing complex circuits from scratch (from a randomly generated initial pop-
ulation) has been shown to be much more difficult [20].

Besides using the Hamming distance as the fitness function for digital circuits design,
there are other possibilities for particular applications. For example, digital image filters
can be designed by means of CGP. In this case, the functional specification is not complete,
the quality of the candidate circuits is evaluated on a limited training data set [46].

Other applications of CGP include the design and optimization of digital circuits at
the transistor level [34], evolutionary design of polymorphic circuits [38] or transistor-level
design and optimization of FPGA architectures with respect to production variability [49].

2.2.3 Multi-Objective EAs

Unlike the single-objective optimization, which enables to compare any two candidate solu-
tions and decide which one is better, the multi-objective optimization leads to the existence
of a set of solutions showing different trade-offs, if the objectives are conflicting.

A multi-objective evolutionary optimization problem can be defined as

minimize/maximize fm(p), m = 1, 2, ...,M,
subject to gj(p) ≥ 0, j = 1, 2, ..., J,

hk(p) = 0, k = 1, 2, ...,K,
(2.9)

where fm are the optimized objectives, p is an individual. The solutions must fulfill the
inequity constraints gj and equity constraints hk to be acceptable [10].

Many multi-objective evolutionary algorithms have been proposed. Most of them are
based on the idea of Pareto dominance. The solution p dominates the solution q (p ≺ q)
if p is no worse than q in all objectives and p is strictly better than q in at least one
objective. The principle can be seen in Figure 2.2, where the Pareto optimal solutions are
not dominated by any other solutions and form the so called Pareto front.
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Strength Pareto Evolutionary Algorithm 2

Strength Pareto Evolutionary Algorithm 2 (SPEA2), a multi-objective EA introduced by
Zitzler et al. [67], maintains two sets of individuals: an archive with non-dominated solutions
and a breeding population. In each generation, the fitness of all individuals from both sets
is evaluated and the non-dominated solutions are found. The archive is then updated with
the non-dominated solutions; a nearest neighbor density estimation algorithm is applied
if the archive size is exceeded. The fitness of an individual is computed based on the
number of individuals it dominates, the number of individuals that are dominated and the
density estimate. The offspring population is created using recombination and mutation of
individuals selected using a binary tournament selection [27].

TSPEA2

TSPEA2 is a branch of SPEA2 introduces by Kaufmann and Platzner [26]. The only
difference between SPEA2 and TSPEA2 is that TSPEA2 favours one (main) objective over
several others. In the binary tournament, the main objective is first checked and if one
of the individuals is better, it is preferred regardless of other objectives. TSPEA2 was
motivated by an earlier algorithm MO-Turtle GA introduced by Trefzer et al. [50].

µGA and µGAII

The µGA and µGAII algorithms use three populations: an external population for non-
dominated individuals of high diversity, a working (breeding) population and an immutable
population containing randomized solutions [48]. In each generation, a small set of individ-
uals is selected randomly from the breeding and the immutable population and a standard
GA is applied on them. After reaching nominal convergence (the situation when all in-
dividuals have similar chromosomes), the best individuals are copied to the breeding and
the external population. After several generations, a subset of the breeding population is
replaced by non-dominated individuals from the external population [27].

f1

f2
Pareto optimal
dominated

Figure 2.2: Pareto optimal and dominated solutions (when f1 and f2 have to be minimized).
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Non-dominated Sorting Genetic Algorithm II

One of the most popular multi-objective evolutionary algorithms is the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [9]. It is based on sorting individuals from pop-
ulation P according to the dominance relation into multiple fronts. The first front F0

contains all non-dominated solutions. Each subsequent front Fi is constructed by removing
all the preceding fronts from the population and finding a new Pareto front. Each solu-
tion is assigned a rank according to the front it belongs to, the solutions from the front
Fi have the rank equal to i. The NSGA-II fast non-dominated sort (see Algorithm 1) is
very efficient, the overall complexity is O(MN2), where N is the population size and M is
the number of objectives. The set Sp contains all individuals from the population that are
dominated by p. The number of individuals that dominate p is denoted by np. The rank
of an individual p (the order of the frontier it belongs to) is denoted by prank.

fast-non-dominated-sort(P )
F0 = ∅
foreach p ∈ P do

Sp = ∅
np = 0
foreach q ∈ P do

if p ≺ q then
Sp = Sp ∪ {q}

end
else if q ≺ p then

np = np + 1
end

end
if np = 0 then

prank = 0
F0 = F0 ∪ {p}

end

end
i = 0
while Fi 6= ∅ do

Q = ∅
foreach p ∈ Fi do

foreach q ∈ Sp do
nq = nq − 1
if nq = 0 then

qrank = i+ 1
Q = Q ∪ {q}

end

end

end
i = i+ 1
Fi = Q

end
F = (F0, F1, . . . )
return F

Algorithm 1: Non-dominated sort [19].

crowding-distance-assignment(Fi)
l = |Fi|
foreach p ∈ P do

pdist = 0
end
foreach objective m do

I = sort(Fi, m)
I [0]dist =∞
I [l − 1]dist =∞
for i in 1 to l − 2 do

I [i]dist = I [i]dist +
I[i+1]m−I[i−1]m

fmax
m −fmin

m

end

end

Algorithm 2: Crowding distance assign-
ment [19].

constraint-violation-assignment(P )

foreach p ∈ P do
pconstr viol = 0
foreach objective m do

if pm < cmin
m then

pconstr viol = pconstr viol+
cmin
m −pm
fmax
m

end
if pm > cmax

m then

pconstr viol = pconstr viol+
pm−cmax

m
fmax
m

end

end

end

Algorithm 3: Constraint violation assign-
ment [19].

The solutions within the individual fronts are then sorted according to the crowding
distance metric. This metric helps to preserve the diversity of the population along the
fronts [9]. It is computed as the average distance of two solutions on either side along each of
the objectives. Solutions on the boundaries are assigned an infinite crowding distance, which
ensures that these solutions will always dominate the other solutions (see Algorithm 2). Any
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Figure 2.3: NSGA-II algorithm scheme.

solution from the front Fi always dominate any solution from Fj , j > i. Within the fronts,
solutions with higher crowding distance are preferred [19].

Many real world applications require constraining the solutions on particular objectives.
NSGA-II offers a simple way to handle the constraints, whilst the low algorithm complexity
is preserved. Each solution can be either feasible or infeasible. The infeasible solutions
are assigned a constraint violation according to the Algorithm 3. The constraints on the
objective m are denoted by

〈
cmin
m , cmax

m

〉
. When comparing two solutions, a feasible solution

is always preferred. If both solutions are infeasible, the solution with smaller constraint
violation is better. In the opposite case, if both solutions are feasible, the dominance
depends on the rank and the crowding distance metric [19].

The overall algorithm works as follows. In each generation t, the parental population
Pt and the offspring population Qt (both of the same size) form an unified population Rt.
The individuals in Rt are assigned the equivalence rank and the crowding distance. Then,
the Pareto fronts are identified and the new parental population Pt+1 is filled with the
individuals from the first fronts as long as Pt+1 is not overcrowded. The individuals from
the last used Pareto front are sorted using the crowding distance and a fraction of them is
selected just to fill the population Pt+1 (see Figure 2.3) [19].

The first attempts to use NSGA-II with CGP used the GA representation of the indi-
viduals [27]. Knieper et al. compared the performance of four multi-objective EAs (SPEA2,
TSPEA2, NSGA-II and µGA) with standard GA in the task of combinational 2- and 3-bit
adders and multipliers and 6- and 7-parity circuits. Hilder et al. [15] used NSGA-II with
CGP to evolve 2- and 3-bit combinational adders and multipliers and a Hex to 7-Segment
display driver. Unfortunately, the complexity of the circuits used for the evaluation is not
comparable to real world applications in both cases.

Petrlik [39] evolved approximate multiple constant multipliers with respect to multiple
objectives by means of NSGA-II and CGP on functional level.

2.2.4 Design Acceleration

The evolutionary design is a very computationally demanding approach. In order to reduce
the design time, one has to deal with the acceleration of the fitness function or search
algorithm modifications. We will briefly survey relevant approaches in the context of CGP.
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Spatially Structured EAs

Spatially structured evolutionary algorithms have been intensively studied in the past and
a variety of approaches differing in the used evolutionary algorithm or communication
topology has emerged [2]. By introducing multiple populations evolving in parallel, one
can increase the population diversity and thus make the EA more explorative leading to a
higher probability of finding the global optimum for particular problems.

As the combinational circuit design is a very complex problem, the search space is
generally rugged containing lots of local optima and thus the potential of exploiting parallel
EA is high. Unfortunately, the absence of a crossover operator in CGP is a very limiting
factor since most parallel models take advantage of combining genotypes from different
isolated populations. Nevertheless, the model of isolated islands with migration of the best
individuals in each population can be applied to CGP [20].

Coevolutionary Algorithms

Often, the fitness in CGP is calculated over a set of fitness cases (e.g. when designing digital
image filters). A fitness case corresponds to a representative situation in which the ability
of a program to solve a problem can be evaluated. Each fitness case consists of potential
program inputs and target values expected from a perfect solution as a response for these
program inputs.

A set of fitness cases can be either a complete specification or just a small sample of
the entire domain space. The choice of how many fitness cases (and which ones) to use is
often crucial since whether or not an evolved solution will generalize over the entire domain
depends on this choice. However, in the case of digital circuit evolution, it is necessary to
verify whether a candidate n-input circuit generates correct responses for all possible fitness
cases (input combinations, i.e. 2n assignments). It was shown that testing just a subset of
2n fitness cases does not lead to correctly working circuits [22].

Hillis [16] introduced an approach that can automatically evolve subsets of fitness cases
concurrently with problem solution. He used a two-population coevolutionary algorithm
(CoEA) in the task of minimal sorting network design. Subsets of test cases used to eval-
uate sorting networks evolved simultaneously with the sorting networks. Evolved sorting
networks were used to evaluate the test cases subsets. The fitness of each sorting network
was measured by its ability to correctly solve fitness cases while the fitness of the fitness
cases subsets was better for those that could not be solved well by currently evolved sorting
networks. This approach was recently used to evolve digital image filters [21].

Other CoEA approaches and techniques include compositional coevolution [12], indi-
rectly encoded fitness predictors [11] or plastic fitness predictors [64].

Coevolutionary algorithms are traditionally used to evolve interactive behavior which is
difficult to evolve with an absolute fitness function. The state of the art of coevolutionary
algorithms has recently been summarized in [42].

Parallelization

When designing combinational circuits, the CGP implementation usually must process all
the 2ni test vectors on the whole phenotype for the entire population of individuals and
compare all the no outputs to the desired ones. In order to take advantage of modern
superscalar out-of-order processors, the parallelism at various levels has to be employed
and special attention to memory access policy has to be paid.
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Figure 2.4: Parallel evaluation of a CGP individual – multiple test vectors can be evaluated
in parallel using bitwise or vector operations. The hamming distance can be efficiently
calculated by XORing the output value with the desired one and counting the number of
ones.

• Vectorization: The most fundamental optimization we can apply is the bit-level par-
allelism. Instead of separate test vector processing, up to 64 test vectors can be pro-
cessed in parallel on 64-bit processors thanks to bitwise operations (see Figure 2.4).
Furthermore, by introducing the data-level parallelism using SIMD instructions, 128,
256 or even 512 test vectors can fit into the SSE, AVX or AVX-512 registers respec-
tively.

Significant speed-up can be achieved by introducing the so called native implemen-
tation [20]. Instead of traversing the chromosome and computing the node outputs
directly, the chromosome is compiled at first. The compiled program is then executed
on each test vector for each individual in the population.

• Thread Parallelism: The most straightforward way of dividing the computations into
multiple threads is to assign each thread a subset of the population and compute the
fitness values in parallel. However, CGP uses a very small population, often much
smaller than the number of physical cores present in today’s processors. Nevertheless,
one can parallelize the fitness function in a different way, such as assigning each thread
a portion of the test vectors [20].

• General Purpose GPUs: Recent advances in scientific computing have made it possible
to use general purpose GPUs (GPGPUs) for parallel EAs. GPGPUs are low-cost,
massively parallel, many-core processors. Although the parallelism of EAs is well
suited for the single-program multiple-data based GPGPUs, there are many issues to
be resolved such as the thread divergence caused by the randomness of EAs. The
state of the art of EAs on GPGPUs has been recently summarized in [51].

• Coprocessors: Coprocessors have been mostly used to accelerate specific tasks, e.g.
audio or video encoding/decoding, cryptography etc. Recently, Intel introduced a
general purpose Many Integrated Core Architecture (Intel MIC). Intel Xeon Phi co-
processor is an example of this approach, it has been designed for applications that can
exploit vector instructions and are scalable enough to efficiently run in a huge number
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of threads [23]. Unlike GPGPUs, the user can exploit standard programming model
and thus reuse a lot of code optimized for CPUs. However, to reach the maximum
performance, one has to seriously deal with manual code optimizations [18].

• Computer Clusters: Spatially structured EAs are inherently suitable for running on
computer clusters. The distributive nature of spatially structured EAs in combination
with other complementary parallelization techniques enables to fully utilize multiple
computing nodes. Communication is usually not a bottleneck, since the populations
are evolving on individual nodes independently and exchange data occasionally [20].

Hardware Accelerators

Reconfigurable hardware (i.e. FPGAs or hybrid platforms, such as Xilinx Zynq) offers a
great possibility for accelerating computationally intensive applications. Recently, CGP
has been accelerated by means of so called Virtual Reconfigurable Circuit (VRC) [45] or
Dynamic Partial Reconfiguration (DPR) [44]. Multiple VRCs have been used to even
increase the performance [21].

Formal Methods

Computing the fitness function for complex digital circuits (i.e. circuits with more than 20
inputs) is not efficient. In the case of evolutionary optimization, the exact fitness value
is often not needed, because the evolution starts with a fully working circuit and every
destructive mutation is unwanted. Therefore, checking the output equivalence of the original
and the candidate circuit is sufficient to perform in this case.

Recently, the fitness calculation has been sped up by introducing formal methods, e.g.
based on the Boolean Satisfiability (SAT) problem [55] or the Binary Decision Diagrams
(BDD) [56]. Although the fitness function is mostly based on Hamming distance [56], the
latest published results suggest that formal methods can be used to calculate even more
complex error metrics (e.g. the worst case error) [17].

• SAT Solvers: The problem of output equivalence can be easily transformed to the
Boolean satisfiability problem, which can be then solved by means of standard tools
(SAT solvers) [55].

• Binary Decision Diagrams: A BDD is a directed acyclic graph with one root and two
terminal nodes that are referred to as ’0’ and ’1’. The other (non-terminal) nodes
are associated with a primary input variable and have exactly two outgoing edges
corresponding to assigning the variable true or false truth value. Every path in a
BDD is unique; if we find a path from the root node to the terminal node ’1’, then
we have found a value assignment to the variables for which the function is evaluated
to 1. A CGP individual can be represented by a BDD. When properly used, various
error metrics can be computed [17].
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Chapter 3

Research Summary

This chapter summarizes the research presented in the thesis. After a brief overview of
the research process, the motivation and abstracts for each included paper are presented.
Finally, a complete list of publications, research projects, grants and awards are listed.

3.1 Overview

The research presented in this thesis extends the previous research in several ways. The
scalability of the evolutionary design method is improved by introducing a highly optimized
parallel implementation of CGP. To address all demands placed by the hardware community,
the method is extended to be multi-objective and the estimation accuracy of various circuit
parameters is substantially improved. The thesis primarily deals with approximate circuits
design, the performance of the method is demonstrated on several real-world problems.

The research started with a detailed analysis of the state of the art methods. It was
shown in Chapter 2 that the evolutionary design methods suffer from low scalability and
thus, a highly optimized CGP implementation was proposed and various acceleration tech-
niques were analyzed in Paper I. The scalability of the implementation was then evaluated
on several problems – design of combinational adders and multipliers (Paper I) and bent
Boolean functions (Paper II). The design of the bent Boolean functions was a very complex
problem with a high potential of parallelization and thus the Xeon Phi Coprocessor was
utilized to further accelerate the design process (Paper III).

The work was then directed to the multi-objective design approach. The first version of
multi-objective CGP was published in Paper IV. In Paper V, the method was improved by
replacing the randomly generated initial population by a set of conventional circuits. The
accuracy of the estimation of circuit parameters was enhanced by more accurate modeling
of a real technology process library. The results were compared to a state of the art method
and published as the EvoApprox8b library in Paper VII.

In Paper VI, the method was used to generate approximate circuits to be used in a
TMR schema. Experimental results demonstrated that the evolutionary approach produced
better solutions than the probabilistic approach developed by our colleagues from University
Carlos III de Madrid.
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3.2 Papers included in this thesis

3.2.1 Paper I

Radek Hrbáček and Lukáš Sekanina. Towards Highly Optimized Cartesian Genetic
Programming: From Sequential via SIMD and Thread to Massive Parallel
Implementation. In GECCO ’14 Proceedings of the 2014 conference on Genetic and
evolutionary computation. New York: Association for Computing Machinery, 2014, pp.
1015-1022. ISBN 978-1-4503-2662-9.

Author participation: 80 %.
Conference Rank: A1 (Qualis).

Abstract

Most implementations of Cartesian genetic programming (CGP) which can be found in the
literature are sequential. However, solving complex design problems by means of genetic
programming requires parallel implementations of search methods and fitness functions.
This paper deals with the design of highly optimized implementations of CGP and their
detailed evaluation in the task of evolutionary circuit design. Several sequential imple-
mentations of CGP have been analyzed and the effect of various additional optimizations
has been investigated. Furthermore, the parallelism at the instruction, data, thread and
process level has been applied in order to take advantage of modern processor architectures
and computer clusters. Combinational adders and multipliers have been chosen to give a
performance comparison with state of the art methods.

Contribution

As a highly optimized implementation of the evolutionary design method based on CGP
was one of the first goals of the research, a deep analysis of possible optimization techniques
was desirable. Such an analysis is covered within this paper. Although the results presented
in this paper suggest that the most efficient approach, at least for complex circuits, is the
native implementation (see Chapter 2), subsequent research revealed a weakness of this
method – low flexibility in terms of function set modification. Therefore, the standard
interpreted approach was preferred in further research.

This work resulted in a very efficient CGP implementation capable of running on a wide
range of computers – from single-core processors to supercomputers.

3.2.2 Paper II

Radek Hrbáček and Václav Dvořák. Bent Function Synthesis by Means of Carte-
sian Genetic Programming. In Parallel Problem Solving from Nature - PPSN XIII.
Heidelberg: Springer Verlag, 2014, LNCS vol. 8672, pp. 414-423. ISBN 978-3-319-10761-5.

Author participation: 80 %.
Conference Rank: A2 (Qualis).

Abstract

In this paper, a new approach to synthesize bent Boolean functions by means of Cartesian
Genetic Programming (CGP) is proposed. Bent functions have important applications in
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cryptography due to their high nonlinearity. However, they are very rare and their discovery
using conventional brute force methods is not efficient enough. We show that by using CGP
we can routinely design bent functions of up to 16 variables. The evolutionary approach
exploits parallelism in both the fitness calculation and the search algorithm.

Contribution

The proposed efficient CGP implementation presented in the previous papers can be applied
to a wide range of applications. In this paper, the method is used to find Boolean functions
with the highest nonlinearity, which are very rare, but very important for networking and
cryptography.

This work resulted in a new efficient approach for finding Boolean functions with high
nonlinearity. It was the first time CGP was successfully used for this purpose and the paper
gave an impulse for other researchers to further develop this approach [41, 40]. The results
were awarded by the bronze medal at the Humies competition (2014).

3.2.3 Paper III

Radek Hrbáček. Bent Functions Synthesis on Xeon Phi Coprocessor. In Mathe-
matical and Engineering Methods in Computer Science. Heidelberg: Springer Verlag, 2014,
LNCS vol. 8934, pp. 88-99. ISBN 978-3-319-14895-3.

Author participation: 100 %.

Abstract

A new approach to synthesize bent Boolean functions by means of Cartesian Genetic Pro-
gramming (CGP) has been proposed recently. Bent functions have important applications
in cryptography due to their high nonlinearity. However, they are very rare and their dis-
covery using conventional brute force methods is not efficient enough. In this paper, a new
parallel implementation is proposed and the performance is evaluated on the Intel Xeon
Phi Coprocessor.

Contribution

The computational demands of the method proposed in Paper II are very high. The fitness
(nonlinearity) evaluation time grows exponentially with the number of variables. However,
there is a great potential of parallelization, even higher than in the case of the fitness
function based on Hamming distance. This paper deals with the implementation and opti-
mization of the method for running on the Intel Xeon Phi Coprocessor. The implementation
is highly parallel and allows to utilize all 60 cores of the coprocessor by running 240 threads.

This work resulted in a significant speedup and an increase in complexity of the bent
functions designed using the proposed evolutionary design method – up to 18 variable bent
functions were found.

3.2.4 Paper IV

Radek Hrbáček. Parallel Multi-Objective Evolutionary Design of Approximate
Circuits. In GECCO ’15 Proceedings of the 2015 conference on Genetic and evolutionary
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computation. New York: Association for Computing Machinery, 2015, pp. 687-694. ISBN
978-1-4503-3472-3.

Author participation: 100 %.
Conference Rank: A1 (Qualis).

Abstract

Evolutionary design of digital circuits has been well established in recent years. Besides
correct functionality, the demands placed on current circuits include the area of the circuit
and its power consumption. By relaxing the functionality requirement, one can obtain
more efficient circuits in terms of the area or power consumption at the cost of an error
introduced to the output of the circuit. As a result, a variety of trade-offs between error
and efficiency can be found. In this paper, a multi-objective evolutionary algorithm for
the design of approximate digital circuits is proposed. The scalability of the evolutionary
design has been recently improved using parallel implementation of the fitness function and
by employing spatially structured evolutionary algorithms. The proposed multi-objective
approach uses Cartesian Genetic Programming for the circuit representation and a modified
NSGA-II algorithm. Multiple isolated islands are evolving in parallel and the populations
are periodically merged and new populations are distributed across the islands. The method
is evaluated in the task of approximate arithmetical circuits design.

Contribution

Since the most important goal of the thesis was to develop an automated design method
capable of multi-objective evolutionary design, an extension to the standard CGP was
needed. This paper introduces such an extension. The approach is based on the NSGA-II
algorithm, but several modifications were required to adapt the algorithm for CGP. The
implementation preserves all benefits of the single-objective parallel CGP implementation
– even a new multi-objective island model was introduced to utilize computer clusters.

As a result of this work, the CGP implementation was extended with the multi-objective
approach. The method was used to design approximate arithmetical circuits from scratch.

3.2.5 Paper V

Radek Hrbáček, Vojtěch Mrázek and Zdeněk Vaš́ıček. Automatic Design of Approx-
imate Circuits by Means of Multi-Objective Evolutionary Algorithms. In Pro-
ceedings of the 11th International Conference on Design & Technology of Integrated Systems
in Nanoscale Era. Istanbul: Istanbul Sehir University, 2016, pp. 239-244. ISBN 978-1-5090-
0335-8.

Author participation: 50 %.

Abstract

Recently, power efficiency has become the most important parameter of many real circuits.
At the same time, a wide range of applications capable of tolerating imperfections has
spread out especially in multimedia. Approximate computing, an emerging paradigm, takes
advantage of relaxed functional requirements to make computer systems more efficient in
terms of energy consumption, speed or complexity. As a result, a variety of trade-offs
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between error and efficiency can be found. In this paper, a design method based on a
multi-objective evolutionary algorithm is proposed. For a given circuit, the method is able
to produce a set of Pareto optimal solutions in terms of the error, power consumption
and delay. The proposed design method uses Cartesian Genetic Programming for the
circuit representation and a modified NSGA-II algorithm for design space exploration. The
method is used to design Pareto optimal approximate versions of arithmetic circuits such
as multipliers and adders.

Contribution

In Paper IV, a new multi-objective CGP implementation was proposed. However, the
estimation of circuit parameters was simplified and the complexity of evolved circuits was
relatively low (4-bit combinational adders and multipliers). In this paper, we proposed to
use a set of conventional arithmetic circuits of various architectures as the initial population
instead of randomly generated initial population. Moreover, we implemented more accurate
estimation of the power consumption, propagation delay and area of the circuits based on
an existing technology process library.

As a result of this work, hundreds of approximate 8-bit adders and multipliers were
designed with respect to three objectives – mean relative error, power consumption and
delay.

3.2.6 Paper VI

Antonio José Sánchez-Clemente, Luis Entrena, Radek Hrbáček and Lukáš Sekanina. Error
Mitigation using Approximate Logic Circuits: A Comparison of Probabilistic
and Evolutionary Approaches. IEEE Transactions on Reliability. 2016, vol. 65, no. 4,
pp. 1871-1883. ISSN 0018-9529.

Author participation: 25 %.
Impact factor: 2.287.

Abstract

Technology scaling poses an increasing challenge to the reliability of digital circuits. Hard-
ware redundancy solutions, such as Triple Modular Redundancy, produce very high area
overhead, so partial redundancy is often used to reduce the overheads. Approximate logic
circuits provide a general framework for optimized mitigation of errors arising from a broad
class of failure mechanisms, including transient, intermittent and permanent failures. How-
ever, generating an optimal redundant logic circuit that is able to mask the faults with the
highest probability while minimizing the area overheads is a challenging problem. In this
work we propose and compare two new approaches to generate approximate logic circuits to
be used in a TMR schema. The probabilistic approach approximates a circuit in a greedy
manner based on a probabilistic estimation of the error. The evolutionary approach can
provide radically different solutions that are hard to reach by other methods. By com-
bining these two approaches, the solution space can be explored in depth. Experimental
results demonstrate that the evolutionary approach can produce better solutions, but the
probabilistic approach is close. On the other hand, these approaches provide much better
scalability than other existing partial redundancy techniques.
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Contribution

In this work, we provided the CGP based method for the design of approximate logic circuits
to be used in partially protected circuits in a TMR schema. The advantage of the proposed
technique was the ability to generate good trade-off solutions between the reliability and
the area overhead of the circuit.

This work resulted in a new method of designing approximate logic circuits to be used
in a TMR schema. In comparison with other existing partial redundancy techniques, the
proposed method provided much better scalability.

3.2.7 Paper VII

Vojtěch Mrázek, Radek Hrbáček, Zdeněk Vaš́ıček and Lukáš Sekanina. EvoApprox8b:
Library of Approximate Adders and Multipliers for Circuit Design and Bench-
marking of Approximation Methods. In Proc. of the 2017 Design, Automation & Test
in Europe Conference & Exhibition (DATE). Lausanne: European Design and Automation
Association, 2017, pp. 258-261. ISBN 978-3-9815370-9-3.

Author participation: 25 %.
Conference Rank: A1 (Qualis).

Abstract

Approximate circuits and approximate circuit design methodologies attracted a significant
attention of researchers as well as industry in recent years. In order to accelerate the
approximate circuit and system design process and to support a fair benchmarking of circuit
approximation methods, we propose a library of approximate adders and multipliers called
EvoApprox8b. This library contains 430 nondominated 8-bit approximate adders created
from 13 conventional adders and 471 non-dominated 8-bit approximate multipliers created
from 6 conventional multipliers. These implementations were evolved by a multi-objective
Cartesian genetic programming. The EvoApprox8b library provides Verilog, Matlab and
C models of all approximate circuits. In addition to standard circuit parameters, the
error is given for seven different error metrics. The EvoApprox8b library is available at:
www.fit.vutbr.cz/research/groups/ehw/approxlib.

Contribution

This paper compares the results of Paper V to a conventional design method and presents
the evolved circuits as a library of circuits (synthesized using Synopsys Design Compiler
for 180nm and 45nm technologies).

As a result of this paper, a free library of approximate arithmetic circuits was proposed.
The library provides several representations of the circuits along with their properties. One
can filter the circuits by the properties. The work was awarded by the Best IP Award at the
Design, Automation and Test in Europe (DATE) conference 2017.

3.3 List of Other Publications

• Radek Hrbáček. Simulation Based Neural Motion Planner Learning. In Proceedings
of the 17th Conference STUDENT EEICT 2011 Volume 1. Brno: NOVPRESS s.r.o.,

26



2011. pp. 189-191. ISBN: 978-80-214-4271-9.
Author participation: 100 %.

• Radek Hrbáček. Introduction to Compressive Sampling. In Proceedings of the 17th
Conference STUDENT EEICT 2011 Volume 1. Brno: NOVPRESS s.r.o., 2011. pp.
45-47. ISBN: 978-80-214-4271-9.
Author participation: 100 %.

• Jan Hrbáček, Radek Hrbáček and Stanislav Věchet. Modular Control System Ar-
chitecture for a Mobile Robot. In Proceedings of the 17th international conference
Engineering Mechanics 2011. 1. Prague: Institute of Thermomechanics, Academy of
Sciences of the Czech Republic, 2011. pp. 211-214. ISBN: 978-80-87012-33-8.
Author participation: 33 %.

• Radek Hrbáček, Pavel Rajmic, Vı́tězslav Veselý and Jan Špǐŕık. Introduction to sparse
signal representations. Elektrorevue – internet journal (http://www.elektrorevue.cz),
2011, vol. 2011, no. 50, pp. 1-10. ISSN: 1213-1539.
Author participation: 40 %.

• Radek Hrbáček, Pavel Rajmic, Vı́tězslav Veselý and Jan Špǐŕık. Sparse signal repre-
sentations: compressed sensing. Elektrorevue – internet journal
(http://www.elektrorevue.cz), 2011, vol. 2011, no. 67, pp. 1-6. ISSN: 1213-1539.
Author participation: 44 %.

• Jiri Krejsa, Stanislav Věchet, Jan Hrbáček, Tomáš Ripel, Vı́tězslav Ondroušek, Radek
Hrbáček and Petr Schreiber. Presentation robot Advee. Engineering Mechanics, 2012,
vol. 18, no. 5/6, pp. 307-322. ISSN: 1802-1484.
Author participation: 5 %.

• Radek Hrbáček. Hardware Platform for Coevolutionary Design. In Proceedings of
the 19th Conference STUDENT EEICT 2013 Volume 2. Brno: LITERA, 2013. pp.
279-281. ISBN: 978-80-214-4694-6.
Author participation: 100 %.

• Radek Hrbáček and Michaela Šikulová. Coevolutionary Cartesian Genetic Program-
ming in FPGA. In Advances in Artificial Life, ECAL 2013, Proceedings of the Twelfth
European Conference on the Synthesis and Simulation of Living Systems. Cambridge,
US: MIT, 2013. pp. 431-438. ISBN 978-0-262-31709-2.
Author participation: 60 %

Conference Rank: B1 (Qualis).

• Jǐŕı Toman and Radek Hrbáček. Redundant Control Algorithm for a Brushless DC
Motor. In Electrical Drives and Power Eletronics. Košice: Technical University of
Košice, 2015, pp. 117-124. ISBN: 978-80-553-2208-7.
Author participation: 50 %.

• Filip Vaverka, Radek Hrbáček and Lukáš Sekanina. Evolving Component Library for
Approximate High Level Synthesis. In 2016 IEEE Symposium Series on Computa-
tional Intelligence. Athens: IEEE Computational Intelligence Society, 2016, pp. 1-8.
ISBN 978-1-5090-4240-1.
Author participation: 25 %.

Conference Rank: B5 (Qualis).
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3.4 Research Projects and Grants

3.4.1 Czech Science Foundation

• GA16-17538S Relaxed equivalence checking for approximate computing.
Co-investigator.

• GA14-04197S Advanced Methods for Evolutionary Design of Complex Digital Circuits.
Co-investigator.

3.4.2 Anselm & Salomon Supercomputer Allocations

• OPEN-8-4 Multi-objective Approximate Circuit Design on Computer Cluster.
500 000 core hours.

Primary investigator.

• IT4T-10-4 Evolutionary Design of Cryptographic Boolean Functions.
300 000 core hours.

Investigator.

• IT4T-9-2 Approximate circuit design on computer cluster.
300 000 core hours.

Investigator.

• IT4I-7-6 Evolutionary design on computer cluster.
80 000 core hours.

Investigator.

• IT4I-5-9 Evolvable hardware on computer cluster.
75 000 core hours.

Investigator.

3.5 Awards

• Special Prize IT4Innovations (Joseph Fourier Prize 2017).

• Best Interactive Presentation (DATE 2017).

• Bronze medal in Humies competition (GECCO 2014).

• BUT rector’s award for excellent master study and scientific research results.

• 1. prize in the competition ICT Master thesis of the year 2013 awarded for the master
thesis Coevolutionary Algorithm in FPGA.

• FIT BUT dean’s award for the master thesis Coevolutionary Algorithm in FPGA.

• 1. prize in the Student EEICT 2013 competition awarded for the paper Hardware
Platform for Coevolutionary Design.
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Chapter 4

Discussion and Conclusions

This chapter discusses and summarizes the results presented in the thesis and gives conclu-
sions and possible directions for future work.

4.1 The Approach

An analysis of the state of the art evolutionary design methods and a study of possible ac-
celeration techniques have been performed within the research presented in this thesis. In
order to accomplish the given research objectives, a new highly optimized implementation
of Cartesian Genetic Programming was proposed. The next step was to extend the CGP to
support the design with respect to multiple objectives – a modified NSGA-II algorithm was
used for this purpose. The performance of the implementation was evaluated in multiple
different applications, in particular (approximate) combinational arithmetic circuits design,
bent Boolean functions discovery, approximate logic circuits for TMR schema and others.
The experiments were conducted on computers operated by two organizations – MetaCen-
trum VO and IT4Innovations (supercomputers Anselm, Salomon). All particular research
steps are presented in the description of relevant scientific papers mentioned in Chapter 3.

4.2 Software Outcomes

During the research, a new CGP implementation was developed and actively used. This
implementation was improved and extended with new features step by step to maintain
the universality of the tool as great as possible, except for a few particular cases (e.g. Intel
Xeon Phi coprocessor implementation).

The CGP tool is implemented using C/C++. Thread level parallelism is based on the
OpenMP library and the island model utilizes MPI message passing communication ap-
proach. The tool is a command line utility, where all parameters are passed to the tool
using command line arguments. The desired circuit functionality can be specified either as
a truth table or by importing a PLA (Programmable Logic Array) file. The evolutionary
design can start either from scratch (randomly generated initial population) or a set of CGP
chromosomes can be imported. The results of the evolutionary design can be exported to
various output formats:

• chromosome file – CGP chromosome representation,

• VHDL, Verilog and BENCH – hardware description languages,
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• C/C++ – logic and arithmetic representation.

The CGP implementation is able to model various technology processes as listed in
Table 4.1. The simplest one implements general logic gates (BUF, NOT, AND, OR, XOR,
NAND, NOR, XNOR, 1, 0) and the estimation of the area, power consumption and delay
is very rough.

A much more realistic technology library osu180 is based on a real technology process
library. It is available in four variants; from a set of up to 4-input gates to a subset
containing just 2-input gates.

The last technology supported by the tool is the look-up table (LUT) technology with
3-6 node inputs. The LUT-level implementation was optimized by the tool itself (on gate-
level) by generating highly optimized implementations of all 3-input and 4-input Boolean
functions. These optimized functions were exported to C/C++ and compiled together into
a new LUT-level implementation. This implementation is intended for the design and
approximation of digital circuits running on FPGAs. The LUT-based approach is currently
prepared for publication.

Technology Node inputs nni Node outputs nno Node functions nf

gate 2 1 10

osu180

4 2 17
3 2 15
2 2 9
2 1 8

look-up table

3 1 256
4 1 65536
5 1 4294967296
6 1 264

Table 4.1: List of supported CGP circuit primitives.

All the technologies can be used with the same algorithms. There are basically two
different approaches supported by the tool. The single-objective algorithm is based on
standard CGP. The fitness function can be composed of multiple objectives; when reaching
the maximum of the first objective, the next one is included into the fitness value calcu-
lation and so on. The multi-objective algorithm is an extension of CGP with a modified
NSGA-II algorithm. All objectives are optimized simultaneously. Both algorithms support
constraining the individual objectives by entering a minimum or/and a maximum value.
The supported fitness functions are as follows:

• Hamming distance, on/off-set Hamming distance

• mean absolute error (MAE), mean squared error (MSE), mean relative error (MRE)

• worst case error (WCE), worst case relative error (WCRE)

• variance of absolute error (VAE)

• error probability (EP)

• area, delay, power, power-delay product (PDP)
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Both, single-objective and multi-objective algorithms can be executed on multiple iso-
lated islands. On each island, a separate population of individuals is evolving independently
of the others until a predefined number of generations or a time interval is reached. In the
single-objective case, the best individual of all islands is determined and the evolutionary
process is restarted on all islands with the best individual as a seed. In the multi-objective
case, the populations of all islands are merged, a global Pareto front is formed and the
individual populations are seeded with individuals from the front.

4.3 Contributions

The main contributions of this thesis can be summarized as follows:

• Development of a new highly optimized parallel implementation of CGP that is much
more scalable than the state of the art implementations and thus applicable for com-
plex problems.

• Extension of CGP with new function sets based on real technology processes (180nm
CMOS library, LUTs).

• Extension of CGP with multi-objective design capability.

• Evolved comprehensive library of 8-bit approximate combinational adders and mul-
tipliers that can be used for benchmarking of approximate design methods or as a
component library for high-level approximate circuit design.

• Evolved bent Boolean functions of up to 18 variables that are more difficult instances
than previous solutions.

• Evolved approximate combinational circuits for TMR schema that show better prop-
erties than the circuits obtained by a conventional probabilistic method.

The aforementioned contributions are important for approximate computing as well as
for other research areas dealing with digital circuits or related technologies. The work has
been awarded by both EAs (Bronze medal in Humies competition) and hardware (DATE
Best IP Award) community.

4.4 Future Work

The scalability of the CGP method was significantly improved, as presented in this thesis.
However, a great potential in further increasing the complexity of problems solved by CGP
resides in using formal verification methods in the fitness function. Until recently, these
methods could only be used to check if two circuits are equivalent in terms of their output
responses. The latest results suggest that some formal methods (e.g. binary decision dia-
grams) could be used to directly determine an arithmetic distance or to check if a circuit
satisfies an arithmetic constraint [17]. Integrating these methods to the proposed CGP
implementation is straightforward – only the fitness function has to be re-designed.

The EvoApprox8b library presented in this thesis can be directly used as a component
library for a high level approximate circuit synthesis algorithm. For example, a multi-
objective evolutionary algorithm has been developed for this purpose [58]. This way, the
scalability of the method can be further improved.
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The LUT-level CGP implementation mentioned in this chapter promises to further
extend the application area of the proposed method to FPGA devices. This will need
further experiments and it will be definitely an interesting and challenging continuation of
the research started in this thesis.

Another issue that should also be addressed is high computation time of the method
in comparison with conventional synthesis methods. Nevertheless, the evolutionary design
method is still valuable considering the fact that better results can be obtained in compari-
son with the conventional methods. Besides, the performance and parallelism of computers
is growing and the EA based methods can take advantage of that, as shown in this thesis.
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