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Abstract

Recently, energy efficiency has become one of the most important properties of computing
platforms, especially because of limited power supply capacity of battery-power devices and
very high consumption of growing data centers and cloud infrastructure. At the same time,
in an increasing number of applications users are able to tolerate inaccurate or incorrect
computations to a certain extent due to the imperfections of human senses, statistical nature
of data processing, noisy input data etc.

Approximate computing, an emerging paradigm in computer engineering, takes advan-
tage of relaxed functionality requirements to make computer systems more efficient in terms
of energy consumption, computing performance or complexity. Error resilient applications
can achieve significant savings while still serving their purpose with the same or a slightly
degraded quality.

Even though new design methods for approximate computing are emerging, there is a
lack of methods for automated approximate HW/SW design offering a rich set of compro-
mise solutions. Conventional methods often produce solutions that are far from an opti-
mum. Evolutionary algorithms have been shown to bring innovative solutions to complex
design and optimization problems. However, these methods suffer from several problems,
such as the scalability or a high number of fitness evaluations needed to evolve compet-
itive results. Finally, existing methods are usually single-objective whilst multi-objective
approach is more suitable in the case of approximate computing.

In this thesis, a new automated multi-objective parallel evolutionary algorithm for cir-
cuit design and approximation is proposed. The method is based on Cartesian Genetic
Programming. In order to improve the scalability of the algorithm, a brand new highly
parallel implementation was proposed. The principles of the NSGA-II algorithm were used
to provide the multi-objective design and approximation capability.

The performance of the implementation was evaluated in multiple different applications,
in particular (approximate) combinational arithmetic circuits design, bent Boolean func-
tions discovery and approximate logic circuits for TMR schema. In these cases, important
improvements with respect to the state of the art were obtained.
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Abstrakt

Spotieba a energetickd efektivita se stavd jednim z nejdulezitéjsich parametru pii navrhu
pocitacovych systému, zejména kvuli omezené kapacité napdjeni u zafizeni napajenych
bateriemi a velmi vysoké spotiebé energie rostoucich datacenter a cloudové infrastruk-
tury. Soucasné jsou uzivatelé ochotni do urcité miry tolerovat neptfesné nebo chybné
vypocty v roustoucim poctu aplikaci diky nedokonalostem lidskych smysli, statistické po-
vaze vypoctu, Sumu ve vstupnich datech apod.

Priblizné pocitani, nova oblast vyzkumu v poéitacovém inzenyrstvi, vyuziva rozvolnéni
pozadavki na funkénost za tdcelem zvysSeni efektivity pocitacovych systému, pokud jde
o spotfebu energie, vypocetni vykon ¢i slozitost. Aplikace tolerujici chyby mohou byt
implementovany efektivnéji a stdle slouzit svému 1celu se stejnou nebo mirné snizenou
kvalitou.

Ackoli se objevuji nové metody pro navrh piiblizné pocitajicich vypocetnich systému, je
stale nedostatek automatickych navrhovych metod, které by nabizely velké mnozstvi kom-
promisnich feSeni dané ulohy. Konvenéni metody navic ¢asto produkuji feSeni, ktera jsou
daleko od optima. Evoluéni algoritmy sice piinaSeji inovativni feSeni slozitych optimali-
zatnich a ndvrhovych problému, nicméné trpi nékolika nedostatky, napf. nizkou Skélo-
vatelnosti ¢i vysokym poctem generaci nutnych k dosazeni konkurenceschopnych vysledki.
Pro ptiblizné pocitani je vhodny zejména multikriteridlni navrh, coz existujici metody
vétsinou nepodporuji.

V této préci je predstaven novy automaticky multikriteridlni paralelni evoluéni algorit-
mus pro navrh a aproximaci digitdlnich obvodu. Metoda je zaloZena na kartézském genet-
ickém programovani, pro zvysSeni Skalovatelnosti byla navrzena nova vysoce paralelizovand
implementace. Multikriteridlni ndvrh byl zalozen na principech algoritmu NSGA-II.

Vykonnost implementace byla vyhodnocena na nékolika ruznych ulohach, konkrétné pii
navrhu (pfiblizné pocitajicich) aritmetickych obvodu, Booleovskych funkcich s vysokou ne-
linearitou ¢i pfibliznych logickych obvodi pro tfi-modulovou redundanci. V téchto tlohach
bylo dosazeno vyznammych zlepSeni ve srovnani se soucasnymi metodami.
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Chapter 1

Introduction

This chapter gives an introduction to the thesis. It starts with the motivation for the whole
research, then the open problems and research objectives of the thesis are formulated. At
the end of the chapter, an outline of the thesis is given.

1.1 Motivation

Computers and computer based systems play a crucial role in people’s everyday lives. Em-
bedded systems can be found almost everywhere. Power efficiency is becoming increasingly
important property of computing platforms, especially because of limited power supply
capacity of embedded devices and high costs associated with operating growing data cen-
ters and cloud infrastructure. At the same time, in an increasing number of applications
users are able to tolerate inaccurate or incorrect computations to a certain extent due to
imperfections of human senses, statistical nature of data processing, noisy input data etc.

Approximate computing, an emerging paradigm in computer engineering, takes advan-
tage of relaxed functionality requirements to make computer systems more efficient in terms
of energy consumption, computing speed or complexity [42]. Error resilient applications can
achieve significant savings while still serving their purpose with the same or a slightly de-
graded quality.

The complexity of computer systems is permanently growing and thus, automated de-
sign tools have to deal with more complex problems specified on higher level of abstraction
than before. The same holds true for approximate computing. Even though new methods
are emerging, there is a lack of methods for automated approximate HW /SW design offer-
ing a rich set of compromise solutions. Moreover, conventional synthesis algorithms often
produce solutions that are far from an optimum [10].

FEvolutionary algorithms (EAs) have been confirmed to bring innovative solutions to
complex design and optimization problems. Recently, complex digital circuits have been
optimized by means of EAs while the scalability of the method has been improved substan-
tially [27,[69).

Every year, a special competition Humies is held at the Genetic and Evolutionary
Computation Conference to award scientific results that utilize an evolutionary computation
technique and are human-competitive [35]. In years 2004-2013, there were 42 Humie winners
and 10 of them published results that were patented or would qualify as a patentable new
invention [31]. The same trend can be observed for years 2014-2016.



1.2 Open Problems

The main issue of approximate computing at the moment is the lack of available automated
methods capable of providing approximations for arbitrary combinational circuits under
different error metrics and with respect to multiple objectives. The solutions provided by
conventional circuit synthesis methods are often far from optimum.

On the other hand, the evolutionary based design and approximation methods suffer
from several problems, mainly the scalability of the methods (i.e. the scalability of the fitness
function and the representation of candidate circuits) is not sufficient. A high number of
fitness evaluations needed to evolve competitive results implies simplifications in circuit
parameters estimation and thus leads to reduced accuracy of the estimations. Although
complex digital circuits have been optimized using single-objective EAs, the same cannot
be said about the multi-objective methods.

1.3 Research Objectives
The first main research objective for this thesis is to

develop an automated scalable design method based on evolutionary algorithms,
capable of multi-objective design and approximation of digital circuits.

As indicated, such a method has to meet several requirements. It has to be able to
design circuits of a sufficient complexity. It has to take into account multiple design criteria.
Moreover, the estimation of the circuit parameters has to be accurate enough. Finally, the
implementation should be parallelized and should efficiently utilize computational resources.

The second main objective is to

show on several real-world problems that the method provides human-competitive
results.

These objectives can be translated into the following partial goals:
1. To develop an optimized parallel evolutionary algorithm for digital circuits design.
2. To extend the evolutionary design method with multi-objective design capability.

3. To identify objectives relevant for approximate circuits and transform them to fitness
functions.

4. To carry out experiments on different real world applications to show the performance
of the method.

5. To validate the achieved results by means of professional simulation tools.

1.4 Thesis Outline

The thesis is composed as a collection of papers. The research contribution of this thesis
is comprised of seven peer-reviewed research papers in their original publication format
attached in Appendix[A] The thesis is organized as follows: Chapter[I]gives an introduction
to the thesis. Chapter |2 surveys the state of the art and presents relevant background



information for the research. Chapter [3] summarizes the research process and gives an
overview over the papers constituting the research contribution. Finally, Chapter [4] presents
conclusions and proposes future research directions.



Chapter 2

Survey of the State of the Art

This chapter gives relevant background information needed for a proper understanding of
the work presented in the thesis. It primarily addresses the areas of approximate computing
and evolutionary circuit design.

2.1 Approximate Computing

Recently, power efficiency has become one of the most important parameters of almost
every computing platform. At the same time, a wide range of applications in which we are
willing to tolerate imperfections in computations has spread out. As a consequence, a new
research field — approzrimate computing — has emerged to investigate how computer system
can be made more efficient in terms of energy consumption, computing speed or complexity
assuming that some errors are acceptable. It has been believed, that significant savings
can be achieved by relaxing the requirement of perfect functionality thanks to the error
resilience of some applications. Therefore, the accuracy (error) of the system can be used
as a design metric and inaccurate solutions can be accepted if an improvement in other
parameters occurs.

The approximation can be introduced at various levels including the entire computer
system architecture [38|, particular components (e.g. ALU) [15, |37], operating system,
algorithm or even programming language [54, 3]. As the complexity of today’s computer
systems grows, manual approximation is not an efficient design method. Hence, several
automated approximate design methods have been introduced.

2.1.1 Application Error Resilience

Inherent application error resilience is the property of an application to produce acceptable
outputs even if some underlying computations are approximate or incorrect [6]. Whether an
output is acceptable or not is given by an output quality metric if the concept of approximate
computing is considered. Applications are designed to produce outputs of acceptable quality
rather than a unique correct output.

The sources that contribute to the application resilience can be classified into following
the categories [6]:

e Inputs: Applications that process noisy or redundant data can be inherently resilient.



o Qutputs: If the specification does not define a unique golden output or the outputs are
consumed by human senses, minor output variations that are often indistinguishable
are acceptable.

o Computation patterns: Statistical computations can result in attenuation or cancel-
lation of error. Applications employing statistical computations are thus resilient.

e [terative processing: Many applications feature iterative processing and undergo suc-
cessive refinement or aggregation to obtain converged results. The quality gain tends
to attenuate as the iterations continue [82].

The level, at which the system is approximated, influences the resilience to approxima-
tions. For example, introducing approximations at the software level can lead to a very
different conclusion about the error resilience than at the hardware level [6].

The overall output quality is given by individual responses to different system inputs,
which makes the output quality a statistic. In general, the most frequently used qual-
ity metrics are the error probability (error rate), error magnitude (mean error) and error
predictability (error variance) |6]. These metrics form a three-dimensional space and all
acceptable qualities form a subspace in this space. This subspace is highly application de-
pendent, but in general, a wide range of applications accept outputs with low error rate or
low error magnitude [6].

The computation patterns (e.g. in statistical processing) present in particular applica-
tions affect the error resilience significantly. Thanks to that, there are applications that
accept output errors with small variance present in all computations (which correspond to
very high error rate) while the error magnitude can be very large. In addition to com-
putation patterns, the context in which the application is used significantly impacts the
resilience. For example, the error resilience of a k-means clustering algorithm used in an
image segmentation application depends on chosen quality metric. The application is able
to tolerate more aggressive approximations if mean centroid distance is used as the quality
metric in comparison with the percentage of mis-clustered points [6].

Approximations can be done at multiple levels by applying several approximate com-
puting techniques at the same time. The resilience is again application dependent in such
situation. Generally, different approximation techniques can be applied in a synergistic
manner, but there can be cases for which the combination of particular techniques leads to
unacceptable results [6].

2.1.2 Approximate Circuits

While automatic design of digital circuits has been well established in the past, the correct
functionality has always been an essential requirement put on the circuits |7]. The other
parameters, like the area, delay or power consumption, have been considered as secondary
and have not been optimized as long as a fully working solution has been found.

The approzimate circuits are designed in such a way that the functionality specification
(assuming a perfect operation) is not fully met in exchange for savings in terms of area,
delay, power consumption etc. Although the circuit is not working properly, it can still
be suitable for applications in which certain level of error is not recognizable (e.g. human
perception in the context of multimedia applications). Moreover, in some cases (e.g. low
battery), users could knowingly tolerate even more inaccuracy in order to extend the time
of operation.



2.1.3 Design Objectives

When designing an approximate computer system, the functionality requirement (accuracy)
is traded off for improvements in other design objectives. These objectives are application
dependent, but they usually include size, power consumption and performance. In the case
of hardware solutions, one has to deal with the reliability and dependability of the system.
In order to correctly determine parameters (i.e. particular values for the objectives) of
computer systems, careful benchmarking has to be performed. The acceptable level of
inaccuracy is application dependent.

Accuracy/Error

The accuracy (error) of a computer system is the main objective tracked when doing ap-
proximations. In each application, different requirements on the accuracy metric can be
formulated resulting in a wide range of different accuracy metrics being used. Usually, an
opposite metric, the error, is used instead of accuracy.

For combinational circuits, one can use the number of incorrect outputs (i.e. the Ham-
ming distance):

€hamm = > 1, (2.1)
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Size

The size corresponds to the amount of resources statically used by the system. Computer
programs vary in the amount of program memory occupied or data memory operating on,
digital circuits occupy an area on die or the number of used reconfigurable cells on Field
Programmable Gate Arrays (FPGAs).

Power Consumption

The power consumption is the most important objective being shrunk in approximate com-
puting. It can be measured as energy needed for performing an operation or as average
power consumption of a permanently running system.

In the case of digital circuits (CMOS technology), there are three major sources of power
dissipation [5]:

P, avg — P, switching + P, short_circuit 1 f)leakage
=a-Cr Vi fax + Isc - Vad + Deakage - Vad. (2.8)

The switching power Piyitching depends on the switching activity a (probability of
switching a gate’s output), the operating frequency foy, load capacitance Cr, and power
supply voltage Vyq. The second term, the short circuit power Pinort_circuit, 1S caused by the
short circuit current Iy, which arises when both complementary transistors are active at
the same time, i.e. conducting current directly from supply to ground. These two terms
together represent the dynamic power, while the switching power is usually 10 times greater
than the short circuit power. The last term is the leakage (static) power Peakage, Which is
primarily determined by fabrication technology considerations [5].

The introduction of CMOS technology led to significant reductions in static power con-
sumption. For a long time, the dynamic power dissipation was the dominant component.
However, with the decreasing size of the semiconductor technology process, the static dis-
sipation is increasing due to rising leakage currents and is becoming the major component
of the power consumption [62].

Performance

The next commonly used objective is the performance (speed) of computation. In the case
of computer programs, it usually applies to the execution time. The speed of digital circuits
can be determined by the maximum operating frequency or the latency, i.e. the interval
between the stimulation of the inputs and the response on the outputs. Another way of
measuring the speed is to compute the throughput of the system.

Reliability /Dependability

Reducing the probability of failure and increasing the reliability of digital circuits is an
important design objective. Many applications (e.g. automotive, aerospace, operating in
remote environments) are safety-critical and need to be built using the principles of fault-
tolerant system design. As the complexity of computer systems increases, more complex
mechanisms must be introduced to preserve the reliability of the systems [62].



2.1.4 Overview of Circuit Approximation Methods

Automated approximate computing techniques are being developed to speed up the design
process and to find the best trade-off solutions between the resources being shrunk and
the inaccuracy of the computation. The design of approximate circuits is typically based
on modifying fully functional circuits [59]. Most of the methods deal with combinational
circuit design, however, there are methods for sequential circuit approximation as well.

Voltage Over-Scaling

As can be seen from Equation the power consumption P,y is highly dependent on the
supply voltage Vyq. Present computer systems often utilize voltage scaling together with
frequency scaling in order to lower the power consumption when full performance is not
needed. Voltage over-scaling extends this concept beyond the critical voltage value at which
the critical path delay is just met. This leads to significant energy savings for the price of
possible incorrect computations [32].

The supply voltage can be controlled adaptively with respect to the occurrence of errors
in the circuit. For example, the adaptive voltage over-scaling strategy presented in [306]
monitors several locations in the circuit where errors can be detected. The signals are
sampled with a delayed clock and compared to the value sampled with the main clock. If
they differ, an error is detected. The supply voltage is then controlled according to current
error rate.

The drawback of the voltage over-scaling approach is the difficulty of controlling the
error. Since the behavior of the circuit after voltage over-scaling depends on many factors
(each logic gate behaves differently according to its type, input timing, output load, etc.),
accurate timing analysis has to be performed so as to measure the output quality. For
example, the Modeling and Analysis of Circuits for Approximate Computing (MACACO)
methodology is based on the construction of an equivalent circuit that represents the be-
havior of the approximate circuit at a given voltage and clock frequency [77].

Manual Methods

In the first approximation methods, the design of approximate circuits was typically based
on manual modifications of fully functional circuits. These first results include arithmetic
circuits, such as combinational adders |15, [16] or multipliers [37]. In general, only small
components have been approximated manually, e.g. 2-bit multiplier occupying nearly half
area and working almost correctly except for a single output value (3 -3 = 7) [37]. By
using this simple component as a building block, one can design larger circuits, however,
the method clearly does not exploit the whole potential of approximate computing.

SALSA

The Systematic methodology for Automatic Logic Synthesis (SALSA) uses a quality func-
tion which decides whether a predefined quality constraint is met or not. The algorithm
is allowed to modify the circuit as long as the quality constraint is not exceeded. SALSA
has been applied to a number of problems, e.g. 32-bit adders, 8-bit multipliers, FIR filters,
DCT blocks and others [75].



SASIMI

Another approach, Substitute-and-Simplify (SASIMI), looks for signal pairs having similar
values with a high probability. By substituting one signal for the other, a part of the circuit
can be removed resulting in area and power savings at the cost of an error introduced to the
circuit. Moreover, SASIMI further extends the approach to synthesize quality configurable
circuits, where at runtime, processing of selected input vectors is given an additional cycle
to correct errors due to approximations [76].

ABACUS

Unlike the aforementioned methods, ABACUS (Automated Behavioral Approximate Cir-
cuit Synthesis) operates directly on the behavioral descriptions of circuits. ABACUS auto-
matically generates approximate circuits from input behavioral descriptions by performing
global transformations on an abstract synthesis tree (AST) created from the behavioral de-
scription. The outcome approximate circuits are still expressed in behavioral code and can
be synthesized by means of standard synthesis tools. Complementary approximate comput-
ing methods, e.g. voltage over-scaling or manually created approximate components, may
be still used [45]. The latest version of the algorithm supports multi-objective design based
on the principles of the NSGA-II algorithm [46].

ASLAN

Although most of the design methods deal with combinational circuits, there are methods
capable of approximating sequential circuits. As an example, the Automatic Methodology
for Sequential Logic Approximation (ASLAN) creates an approximate version of a sequen-
tial circuit that consumes lower energy, while meeting a specified quality constraint. ASLAN
identifies combinational blocks in the sequential circuit that are amenable to approxima-
tion and iteratively approximates the entire sequential circuit using a gradient-descent ap-
proach [52].

EA-based Methods

Several evolutionary algorithm based methods have been used in approximate computing
recently. Most of the methods are single-objective and the optimization of a secondary
objective is achieved either by restricting the circuit resources (by constraining the genotype
size) [58, 67] or using a multi-phase approach [68]. A multi-objective evolutionary algorithm
was used to design approximate multiple constant multipliers [48]. However, the method
operated on functional unit level and the complexity of the circuits was relatively small.

Summary

Despite numerous attempts, almost all papers dealing with the design of approximate cir-
cuits show some of the following features that are undesirable [44]:

e The approximation method is described, but a corresponding software implementation
is not available.

e An implementation of the original (accurate) circuit is not available.



e The quality of approximation and other parameters of approximate circuits are ex-
pressed relatively to parameters of the original circuits.

e Implementations of the resulting approximate circuits are not available.

e Only a few approximate versions created from the original circuit are reported, form-
ing thus a sparsely occupied Pareto front.

e [t is unclear if a given number of test vectors used to evaluate approximate circuits
is sufficient for obtaining a trustworthy error quantification if the error is determined
using simulation.

e A given approximation method is only rarely compared against competitive approxi-
mation methods.

2.2 Evolutionary Design

Evolutionary Algorithms (EAs), generic population-based metaheuristic optimization al-
gorithms, use mechanisms inspired by biological evolution, such as reproduction, recom-
bination, mutation or selection for purposes of optimization and design. Population of
individuals represents a set of candidate solutions to a specified problem. Each individual
is assigned a fitness value depending on the ability of the individual to solve the problem.
In each generation, a subset of the population is selected according to the fitness value to
create offspring population by means of recombination and mutation [1].

While EAs were originally used to solve optimization problems, they are able to bring
innovative solutions to design problems as well. Evolutionary design of hardware is a grow-
ing research area since the beginning of the 1990s. In particular, it includes evolutionary
design of digital and analog circuits, antennas, optical systems and microelectromechanical
systems (MEMS) [56].

EAs have been applied to a number of real problems, however, their computational
complexity can be enormous. The scalability of the fitness function is often a prohibiting
factor and thus, one has to deal with the acceleration of the fitness function or fitness ap-
proximation. Besides the scalability of the fitness evaluation, another problems that limit
the application of EAs are known, such as the scalability of the representation (complex
problems are represented by long chromosomes which implies large search space), the non-
deterministic nature of EAs or slow convergence. Potential solutions to the problems have
been recently summarized in [62].

In the following section, we will introduce Cartesian Genetic Programming (CGP) since
it has been routinely used in the area of evolutionary based digital circuit design and
optimization.

2.2.1 Cartesian Genetic Programming

Cartesian genetic programming has been introduced by Miller [41] as a branch of genetic
programming. Unlike GP which uses tree representation, an individual in CGP is repre-
sented by a directed acyclic graph which enables the candidate solution to have multiple
outputs and automatically reuse intermediate results. This makes CGP very suitable for
the design of various kinds of digital circuits (such as arithmetic and logic circuits, digital
filters, etc.) and computer programs [39].
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Figure 2.1: Cartesian genetic programming scheme.

CGP uses a cartesian grid of n; x n. programmable elements (nodes) interconnected
by a feed-forward network (Figure [2.1). Each node’s input (each node has a fixed number
of inputs, e.g. ny; = 2) can be connected either to one of n; primary inputs or to a node
output in the preceding [ columns. By setting the I-back parameter and the grid size, one
can control the area and delay of the circuit. Each node can be programmed to perform one
of nyi-input functions defined in the set I' (let ng = |I'|). The n, primary circuit outputs are
connected either to the primary inputs or nodes. The output connectivity can be optionally
restricted by the o-back parameter.

Since all the CGP parameters are fixed, each chromosome is encoded using a fixed-size
string of ny - ne - (M + 1) + ne integers. Each primary input is assigned a number from
{0,...,n; — 1} and the nodes are assigned numbers from {n, ...,n; + n; - n. — 1}. The geno-
type is of fixed length, whereas the phenotype is of variable length depending on the number
of inactive nodes, i.e. nodes whose output is not used by any other node or primary output.
Hence, the genotype-phenotype mapping is not injective. The existence of genotypes with
the same fitness is usually referred to as neutrality. The role of neutrality has been inten-
sively studied [83] and it was shown that for certain problems the neutrality significantly
reduces the computational effort and helps to find more innovative solutions [40].

In CGP, a simple mutation based (1+ \) evolutionary strategy is used as a search mech-
anism. The population size 1 + A is usually very small, typically, A is between 1 and 15.
The initial population is constructed either randomly (then we speak about evolutionary
design) or by mapping of a known solution to the CGP chromosome (evolutionary optimiza-
tion) [69]. In each generation, a randomly selected individual with the best fitness value
(if there are more of them, an individual genotypically distinct from the parent) is passed
to the next generation unmodified and its A offspring individuals are created by means of
point mutation operator which modifies m randomly selected genes of the chromosome.
The mutation rate is usually set to modify up to 5% of the total number of genes. For
some problem classes (e.g. symbolic regression problem), special crossover operators have
been investigated [8], however, none of them has been confirmed to significantly improve
the search process.
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Recently, several modifications to CGP have been published. Embedded CGP is an
extension of the CGP which is capable of automatically acquiring, evolving and re-using
partial solutions in the form of modules [78]|. By introducing multiple chromosomes, each
connected to a single output, large problems with multiple outputs can be broken down
into many smaller problems leading to significant performance increase for particular prob-
lems [79, [80]. Self Modifying CGP enables self-modifications of CGP individuals by in-
troducing operations into the CGP chromosome [17, (18, (19} [20]. Multi Expression CGP
modifies CGP individual evaluation in such a way that multiple nodes are compared to the
desired output instead of just a single node [4]. Recurrent CGP allows recurrent connec-
tions [65]. All these modifications share a common objective — to increase the scalability of
CGP and speed up the evolutionary process.

2.2.2 Evolutionary Design of Digital Circuits

In the case of combinational circuit evolution, the fitness function corresponds to the quality
of the candidate circuit measured as the number of correct output bits compared to a
specified truth table (see Equation . In order to obtain a fully working circuit, all
combinations of input values have to be evaluated. For a circuit with n; inputs and n,
outputs, 2™ test vectors need to be fetched to the primary inputs and n, - 2™ output bits
have to be verified so as to compute the fitness value. In this thesis, we assume this scenario.

Recently, complex digital circuits have been successfully optimized by means of CGP [72].
However, designing complex circuits from scratch (from a randomly generated initial pop-
ulation) has been shown to be much more difficult [27].

Besides using the Hamming distance as the fitness function for digital circuits design,
there are other possibilities for particular applications. For example, digital image filters
can be designed by means of CGP. In this case, the functional specification is not complete,
the quality of the candidate circuits is evaluated on a limited training data set [57].

Other applications of CGP include the design and optimization of digital circuits at
the transistor level [43], evolutionary design of polymorphic circuits [47] or transistor-level
design and optimization of FPGA architectures with respect to production variability [62].

2.2.3 Multi-Objective EAs

Unlike the single-objective optimization, which enables to compare any two candidate solu-
tions and decide which one is better, the multi-objective optimization leads to the existence
of a set of solutions showing different trade-offs, if the objectives are conflicting.

A multi-objective evolutionary optimization problem can be defined as

minimize /maximize f,,(p), m=1,2 ..., M,
subject to gi(p) >0, j=1,2,...J, (2.9)
hi(p) =0, k=1,2,... K,

where f,, are the optimized objectives, p is an individual. The solutions must fulfill the
inequity constraints g; and equity constraints hy to be acceptable [12].

Many multi-objective evolutionary algorithms have been proposed. Most of them are
based on the idea of Pareto dominance. The solution p dominates the solution ¢ (p < q)
if p is no worse than ¢ in all objectives and p is strictly better than ¢ in at least one
objective. The principle can be seen in Figure [2.2] where the Pareto optimal solutions are
not dominated by any other solutions and form the so called Pareto front.
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Strength Pareto Evolutionary Algorithm 2

Strength Pareto Evolutionary Algorithm 2 (SPEA2), a multi-objective EA introduced by
Zitzler et al. [84], maintains two sets of individuals: an archive with non-dominated solutions
and a breeding population. In each generation, the fitness of all individuals from both sets
is evaluated and the non-dominated solutions are found. The archive is then updated with
the non-dominated solutions; a nearest neighbor density estimation algorithm is applied
if the archive size is exceeded. The fitness of an individual is computed based on the
number of individuals it dominates, the number of individuals that are dominated and the
density estimate. The offspring population is created using recombination and mutation of
individuals selected using a binary tournament selection [34].

TSPEA2

TSPEA2 is a branch of SPEA2 introduces by Kaufmann and Platzner [33]. The only
difference between SPEA2 and TSPEA2 is that TSPEA2 favours one (main) objective over
several others. In the binary tournament, the main objective is first checked and if one
of the individuals is better, it is preferred regardless of other objectives. TSPEA2 was
motivated by an earlier algorithm MO-Turtle GA introduced by Trefzer et al. [63].

wGA and pGAII

The pGA [9] and pGAII [61] algorithms use three populations: an external population
for non-dominated individuals of high diversity, a working (breeding) population and an
immutable population containing randomized solutions. In each generation, a small set of
individuals is selected randomly from the breeding and the immutable population and a
standard GA is applied on them. After reaching nominal convergence (the situation when
all individuals have similar chromosomes), the best individuals are copied to the breeding
and the external population. After several generations, a subset of the breeding population
is replaced by non-dominated individuals from the external population [34].

7 o Pareto optimal
2 .
° ° o dominated
[ O (@)
°
o
° o
°
°

Si

Figure 2.2: Pareto optimal and dominated solutions (when f; and f have to be minimized).
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Non-dominated Sorting Genetic Algorithm II

One of the most popular multi-objective evolutionary algorithms is the Non-dominated
Sorting Genetic Algorithm IT (NSGA-II) [11]. It is based on sorting individuals from pop-
ulation P according to the dominance relation into multiple fronts. The first front Fj
contains all non-dominated solutions. Each subsequent front F; is constructed by removing
all the preceding fronts from the population and finding a new Pareto front. Each solu-
tion is assigned a rank according to the front it belongs to, the solutions from the front
F; have the rank equal to i. The NSGA-II fast non-dominated sort (see Algorithm (1)) is
very efficient, the overall complexity is O(M N?), where N is the population size and M is
the number of objectives. The set S, contains all individuals from the population that are
dominated by p. The number of individuals that dominate p is denoted by n,. The rank
of an individual p (the order of the frontier it belongs to) is denoted by prank.

fast-non-dominated-sort(P) crowding-distance-assignment (F;)

Fo=90 1= |Fi
foreach p € P do foreach p € P do
Sp=10 | Dpaist =0
npy =0 end
foreach ¢ € P do foreach objective m do
if p < ¢ then I = sort(F;, m)
| Sp=5pU{q} 0] 45 = 00
end Il —1]4, =00
else if ¢ < p then foriinltol—2do
e‘ndnp =nptl ‘ il g = T li)gier + W
end
end
if 7, = 0 then end
Praak =0 Algorithm 2: Crowding distance assign-
Fy = FoU{p}
end ment [25].
end
1 =0
while F; # 0 do
Q=10 constraint-violation-assignment(P)

foreach p € F; do foreach p € P do

foreach ¢ € S, do Peonstr_viol =
Mg = Mg = 1 foreach objective m do
if n‘i}:ﬂ}? ihie_il_l 1 if pm < c™ then
Q=QuU{q} ‘ Pconstr_viol = Pconstr_viol +
end end
end if prm > ™ then
end ‘ Dconstr_viol = Pconstr_viol T Pm_cm”
t=1+1 end
Fi=Q end
end
F=(F,F,...) end
return [ Algorithm 3: Constraint violation assign-
Algorithm 1: Non-dominated sort [25]. ment |25].

The solutions within the individual fronts are then sorted according to the crowding
distance metric. This metric helps to preserve the diversity of the population along the
fronts [11]. It is computed as the average distance of two solutions on either side along
each of the objectives. Solutions on the boundaries are assigned an infinite crowding dis-
tance, which ensures that these solutions will always dominate the other solutions (see
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Figure 2.3: NSGA-II algorithm scheme.

Algorithm . Any solution from the front F; always dominate any solution from Fj, j > .
Within the fronts, solutions with higher crowding distance are preferred [25].

Many real world applications require constraining the solutions on particular objectives.
NSGA-II offers a simple way to handle the constraints, whilst the low algorithm complexity
is preserved. FEach solution can be either feasible or infeasible. The infeasible solutions
are assigned a constraint violation according to the Algorithm The constraints on the
objective m are denoted by <cnmlin, cg;aX>. When comparing two solutions, a feasible solution
is always preferred. If both solutions are infeasible, the solution with smaller constraint
violation is better. In the opposite case, if both solutions are feasible, the dominance
depends on the rank and the crowding distance metric [25].

The overall algorithm works as follows. In each generation ¢, the parental population
P, and the offspring population Q; (both of the same size) form an unified population R;.
The individuals in R; are assigned the equivalence rank and the crowding distance. Then,
the Pareto fronts are identified and the new parental population Py is filled with the
individuals from the first fronts as long as P.y; is not overcrowded. The individuals from
the last used Pareto front are sorted using the crowding distance and a fraction of them is
selected just to fill the population P,1; (see Figure [25].

The first attempts to use NSGA-IT with CGP used the GA representation of the indi-
viduals [34]. Knieper et al. compared the performance of four multi-objective EAs (SPEA2,
TSPEA2, NSGA-IT and pGA) with standard GA in the task of combinational 2- and 3-bit
adders and multipliers and 6- and 7-parity circuits. Hilder et al. [21] used NSGA-II with
CGP to evolve 2- and 3-bit combinational adders and multipliers and a Hex to 7-Segment
display driver. Unfortunately, the complexity of the circuits used for the evaluation is not
comparable to real world applications in both cases.

Petrlik [48] evolved approximate multiple constant multipliers with respect to multiple
objectives by means of NSGA-IT and CGP on functional level.

2.2.4 Design Acceleration

The evolutionary design is a very computationally demanding approach. In order to reduce
the design time, one has to deal with the acceleration of the fitness function or search
algorithm modifications. We will briefly survey relevant approaches in the context of CGP.
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Spatially Structured EAs

Spatially structured evolutionary algorithms have been intensively studied in the past and
a variety of approaches differing in the used evolutionary algorithm or communication
topology has emerged |2, [60]. By introducing multiple populations evolving in parallel, one
can increase the population diversity and thus make the EA more explorative leading to a
higher probability of finding the global optimum for particular problems.

As the combinational circuit design is a very complex problem, the search space is
generally rugged containing lots of local optima and thus the potential of exploiting parallel
EA is high. Unfortunately, the absence of a crossover operator in CGP is a very limiting
factor since most parallel models take advantage of combining genotypes from different
isolated populations. Nevertheless, the model of isolated islands with migration of the best
individuals in each population can be applied to CGP [27].

Coevolutionary Algorithms

Often, the fitness in CGP is calculated over a set of fitness cases (e.g. when designing
digital image filters) [66]. A fitness case corresponds to a representative situation in which
the ability of a program to solve a problem can be evaluated. Each fitness case consists of
potential program inputs and target values expected from a perfect solution as a response
for these program inputs.

A set of fitness cases can be either a complete specification or just a small sample of
the entire domain space. The choice of how many fitness cases (and which ones) to use is
often crucial since whether or not an evolved solution will generalize over the entire domain
depends on this choice. However, in the case of digital circuit evolution, it is necessary to
verify whether a candidate n-input circuit generates correct responses for all possible fitness
cases (input combinations, i.e. 2" assignments). It was shown that testing just a subset of
2" fitness cases does not lead to correctly working circuits [29].

Hillis [22] introduced an approach that can automatically evolve subsets of fitness cases
concurrently with problem solution. He used a two-population coevolutionary algorithm
(CoEA) in the task of minimal sorting network design. Subsets of test cases used to eval-
uate sorting networks evolved simultaneously with the sorting networks. Evolved sorting
networks were used to evaluate the test cases subsets. The fitness of each sorting network
was measured by its ability to correctly solve fitness cases while the fitness of the fitness
cases subsets was better for those that could not be solved well by currently evolved sorting
networks. This approach was recently used to evolve digital image filters [28].

Other CoEA approaches and techniques include compositional coevolution [14], indi-
rectly encoded fitness predictors [13] or plastic fitness predictors [81].

Coevolutionary algorithms are traditionally used to evolve interactive behavior which is
difficult to evolve with an absolute fitness function. The state of the art of coevolutionary
algorithms has recently been summarized in [51].

Parallelization

When designing combinational circuits, the CGP implementation usually must process all
the 2™ test vectors on the whole phenotype for the entire population of individuals and
compare all the n, outputs to the desired ones. In order to take advantage of modern
superscalar out-of-order processors, the parallelism at various levels has to be employed
and special attention to memory access policy has to be paid.
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Figure 2.4: Parallel evaluation of a CGP individual — multiple test vectors can be evaluated
in parallel using bitwise or vector operations. The hamming distance can be efficiently
calculated by XORing the output value with the desired one and counting the number of
ones.

o Vectorization: The most fundamental optimization we can apply is the bit-level par-
allelism. Instead of separate test vector processing, up to 64 test vectors can be pro-
cessed in parallel on 64-bit processors thanks to bitwise operations (see Figure .
Furthermore, by introducing the data-level parallelism using SIMD instructions, 128,
256 or even 512 test vectors can fit into the SSE, AVX or AVX-512 registers respec-
tively.

Significant speed-up can be achieved by introducing the so called native implementa-
tion 73], 27]. Instead of traversing the chromosome and computing the node outputs
directly, the chromosome is compiled at first. The compiled program is then executed
on each test vector for each individual in the population.

e Thread Parallelism: The most straightforward way of dividing the computations into
multiple threads is to assign each thread a subset of the population and compute the
fitness values in parallel. However, CGP uses a very small population, often much
smaller than the number of physical cores present in today’s processors. Nevertheless,
one can parallelize the fitness function in a different way, such as assigning each thread
a portion of the test vectors [27].

e General Purpose GPUs: Recent advances in scientific computing have made it possible
to use general purpose GPUs (GPGPUs) for parallel EAs. GPGPUs are low-cost,
massively parallel, many-core processors. Although the parallelism of EAs is well
suited for the single-program multiple-data based GPGPUs, there are many issues to
be resolved such as the thread divergence caused by the randomness of EAs. The
state of the art of EAs on GPGPUs has been recently summarized in [64].

e (Coprocessors: Coprocessors have been mostly used to accelerate specific tasks, e.g.
audio or video encoding/decoding, cryptography etc. Recently, Intel introduced a
general purpose Many Integrated Core Architecture (Intel MIC). Intel Xeon Phi co-
processor is an example of this approach, it has been designed for applications that can
exploit vector instructions and are scalable enough to efficiently run in a huge number
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of threads [30]. Unlike GPGPUs, the user can exploit standard programming model
and thus reuse a lot of code optimized for CPUs. However, to reach the maximum
performance, one has to seriously deal with manual code optimizations [24].

o Computer Clusters: Spatially structured EAs are inherently suitable for running on
computer clusters. The distributive nature of spatially structured EAs in combination
with other complementary parallelization techniques enables to fully utilize multiple
computing nodes. Communication is usually not a bottleneck, since the populations
are evolving on individual nodes independently and exchange data occasionally [26,
27].

Hardware Accelerators

Reconfigurable hardware (i.e. FPGAs or hybrid platforms, such as Xilinx Zynq) offers a
great possibility for accelerating computationally intensive applications. Recently, CGP
has been accelerated by means of so called Virtual Reconfigurable Circuit (VRC) [55] or
Dynamic Partial Reconfiguration (DPR) [53]. Multiple VRCs have been used to even
increase the performance |28, |70].

Formal Methods

Computing the fitness function for complex digital circuits (i.e. circuits with more than 20
inputs) is not efficient. In the case of evolutionary optimization, the exact fitness value
is often not needed, because the evolution starts with a fully working circuit and every
destructive mutation is unwanted. Therefore, checking the output equivalence of the original
and the candidate circuit is sufficient to perform in this case.

Recently, the fitness calculation has been sped up by introducing formal methods, e.g.
based on the Boolean Satisfiability (SAT) problem [69] or the Binary Decision Diagrams
(BDD) |71]. Although the fitness function is mostly based on Hamming distance [71], the
latest published results suggest that formal methods can be used to calculate even more
complex error metrics (e.g. the worst case error) [23)].

e SAT Solvers: The problem of output equivalence can be easily transformed to the
Boolean satisfiability problem, which can be then solved by means of standard tools
(SAT solvers) [69)].

e Binary Decision Diagrams: A BDD is a directed acyclic graph with one root and two
terminal nodes that are referred to as '0’ and ’1’. The other (non-terminal) nodes
are associated with a primary input variable and have exactly two outgoing edges
corresponding to assigning the variable true or false truth value. Every path in a
BDD is unique; if we find a path from the root node to the terminal node ’1’, then
we have found a value assignment to the variables for which the function is evaluated
to 1. A CGP individual can be represented by a BDD. When properly used, various
error metrics can be computed [23].
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Chapter 3

Research Summary

This chapter summarizes the research presented in the thesis. After a brief overview of
the research process, the motivation and abstracts for each included paper are presented.
Finally, a complete list of publications, research projects, grants and awards are listed.

3.1 Overview

The research presented in this thesis extends the previous research in several ways. The
scalability of the evolutionary design method is improved by introducing a highly optimized
parallel implementation of CGP. To address all demands placed by the hardware community;,
the method is extended to be multi-objective and the estimation accuracy of various circuit
parameters is substantially improved. The thesis primarily deals with approximate circuits
design, the performance of the method is demonstrated on several real-world problems.

The research started with a detailed analysis of the state of the art methods. It was
shown in Chapter [2| that the evolutionary design methods suffer from low scalability and
thus, a highly optimized CGP implementation was proposed and various acceleration tech-
niques were analyzed in Paper [l The scalability of the implementation was then evaluated
on several problems — design of combinational adders and multipliers (Paper [I) and bent
Boolean functions (Paper . The design of the bent Boolean functions was a very complex
problem with a high potential of parallelization and thus the Xeon Phi Coprocessor was
utilized to further accelerate the design process (Paper .

The work was then directed to the multi-objective design approach. The first version of
multi-objective CGP was published in Paper In Paper |V| the method was improved by
replacing the randomly generated initial population by a set of conventional circuits. The
accuracy of the estimation of circuit parameters was enhanced by more accurate modeling
of a real technology process library. The results were compared to a state of the art method
and published as the EvoApprox8b library in Paper

In Paper [VI] the method was used to generate approximate circuits to be used in a
TMR schema. Experimental results demonstrated that the evolutionary approach produced
better solutions than the probabilistic approach developed by our colleagues from University
Carlos III de Madrid.
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3.2 Papers included in this thesis

3.2.1 Paperl

Radek Hrbacek and Lukas Sekanina. Towards Highly Optimized Cartesian Genetic
Programming: From Sequential via SIMD and Thread to Massive Parallel
Implementation. In GECCO ’14 Proceedings of the 2014 conference on Genetic and
evolutionary computation. New York: Association for Computing Machinery, 2014, pp.
1015-1022. ISBN 978-1-4503-2662-9.

Author participation: 80 %.
Conference Rank: Al (Qualis).

Abstract

Most implementations of Cartesian genetic programming (CGP) which can be found in the
literature are sequential. However, solving complex design problems by means of genetic
programming requires parallel implementations of search methods and fitness functions.
This paper deals with the design of highly optimized implementations of CGP and their
detailed evaluation in the task of evolutionary circuit design. Several sequential imple-
mentations of CGP have been analyzed and the effect of various additional optimizations
has been investigated. Furthermore, the parallelism at the instruction, data, thread and
process level has been applied in order to take advantage of modern processor architectures
and computer clusters. Combinational adders and multipliers have been chosen to give a
performance comparison with state of the art methods.

Contribution

As a highly optimized implementation of the evolutionary design method based on CGP
was one of the first goals of the research, a deep analysis of possible optimization techniques
was desirable. Such an analysis is covered within this paper. Although the results presented
in this paper suggest that the most efficient approach, at least for complex circuits, is the
native implementation (see Chapter [2), subsequent research revealed a weakness of this
method — low flexibility in terms of function set modification. Therefore, the standard
interpreted approach was preferred in further research.

This work resulted in a very efficient CGP implementation capable of running on a wide
range of computers — from single-core processors to supercomputers.

3.2.2 Paper 11

Radek Hrbacek and Vaclav Dvoidk. Bent Function Synthesis by Means of Carte-
sian Genetic Programming. In Parallel Problem Solving from Nature - PPSN XIII.
Heidelberg: Springer Verlag, 2014, LNCS vol. 8672, pp. 414-423. ISBN 978-3-319-10761-5.

Author participation: 80 %.
Conference Rank: A2 (Qualis).

Abstract

In this paper, a new approach to synthesize bent Boolean functions by means of Cartesian
Genetic Programming (CGP) is proposed. Bent functions have important applications in
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cryptography due to their high nonlinearity. However, they are very rare and their discovery
using conventional brute force methods is not efficient enough. We show that by using CGP
we can routinely design bent functions of up to 16 variables. The evolutionary approach
exploits parallelism in both the fitness calculation and the search algorithm.

Contribution

The proposed efficient CGP implementation presented in the previous papers can be applied
to a wide range of applications. In this paper, the method is used to find Boolean functions
with the highest nonlinearity, which are very rare, but very important for networking and
cryptography.

This work resulted in a new efficient approach for finding Boolean functions with high
nonlinearity. It was the first time CGP was successfully used for this purpose and the paper
gave an impulse for other researchers to further develop this approach [50,|49]. The results
were awarded by the bronze medal at the Humies competition (2014).

3.2.3 Paper III

Radek Hrbacek. Bent Functions Synthesis on Xeon Phi Coprocessor. In Mathe-
matical and Engineering Methods in Computer Science. Heidelberg: Springer Verlag, 2014,
LNCS vol. 8934, pp. 88-99. ISBN 978-3-319-14895-3.

Author participation: 100 %.

Abstract

A new approach to synthesize bent Boolean functions by means of Cartesian Genetic Pro-
gramming (CGP) has been proposed recently. Bent functions have important applications
in cryptography due to their high nonlinearity. However, they are very rare and their dis-
covery using conventional brute force methods is not efficient enough. In this paper, a new
parallel implementation is proposed and the performance is evaluated on the Intel Xeon
Phi Coprocessor.

Contribution

The computational demands of the method proposed in Paper [[I] are very high. The fitness
(nonlinearity) evaluation time grows exponentially with the number of variables. However,
there is a great potential of parallelization, even higher than in the case of the fitness
function based on Hamming distance. This paper deals with the implementation and opti-
mization of the method for running on the Intel Xeon Phi Coprocessor. The implementation
is highly parallel and allows to utilize all 60 cores of the coprocessor by running 240 threads.

This work resulted in a significant speedup and an increase in complexity of the bent
functions designed using the proposed evolutionary design method — up to 18 variable bent
functions were found.

3.2.4 Paper IV

Radek Hrbacek. Parallel Multi-Objective Evolutionary Design of Approximate
Circuits. In GECCO ’15 Proceedings of the 2015 conference on Genetic and evolutionary
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computation. New York: Association for Computing Machinery, 2015, pp. 687-694. ISBN
978-1-4503-3472-3.

Author participation: 100 %.
Conference Rank: Al (Qualis).

Abstract

Evolutionary design of digital circuits has been well established in recent years. Besides
correct functionality, the demands placed on current circuits include the area of the circuit
and its power consumption. By relaxing the functionality requirement, one can obtain
more eflicient circuits in terms of the area or power consumption at the cost of an error
introduced to the output of the circuit. As a result, a variety of trade-offs between error
and efficiency can be found. In this paper, a multi-objective evolutionary algorithm for
the design of approximate digital circuits is proposed. The scalability of the evolutionary
design has been recently improved using parallel implementation of the fitness function and
by employing spatially structured evolutionary algorithms. The proposed multi-objective
approach uses Cartesian Genetic Programming for the circuit representation and a modified
NSGA-II algorithm. Multiple isolated islands are evolving in parallel and the populations
are periodically merged and new populations are distributed across the islands. The method
is evaluated in the task of approximate arithmetical circuits design.

Contribution

Since the most important goal of the thesis was to develop an automated design method
capable of multi-objective evolutionary design, an extension to the standard CGP was
needed. This paper introduces such an extension. The approach is based on the NSGA-II
algorithm, but several modifications were required to adapt the algorithm for CGP. The
implementation preserves all benefits of the single-objective parallel CGP implementation
— even a new multi-objective island model was introduced to utilize computer clusters.

As a result of this work, the CGP implementation was extended with the multi-objective
approach. The method was used to design approximate arithmetical circuits from scratch.

3.2.5 Paper V

Radek Hrbacek, Vojtéch Mrazek and Zdenék Vasicek. Automatic Design of Approx-
imate Circuits by Means of Multi-Objective Evolutionary Algorithms. In Pro-
ceedings of the 11th International Conference on Design & Technology of Integrated Systems
in Nanoscale Era. Istanbul: Istanbul Sehir University, 2016, pp. 239-244. ISBN 978-1-5090-
0335-8.

Author participation: 50 %.

Abstract

Recently, power efficiency has become the most important parameter of many real circuits.
At the same time, a wide range of applications capable of tolerating imperfections has
spread out especially in multimedia. Approximate computing, an emerging paradigm, takes
advantage of relaxed functional requirements to make computer systems more efficient in
terms of energy consumption, speed or complexity. As a result, a variety of trade-offs
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between error and efficiency can be found. In this paper, a design method based on a
multi-objective evolutionary algorithm is proposed. For a given circuit, the method is able
to produce a set of Pareto optimal solutions in terms of the error, power consumption
and delay. The proposed design method uses Cartesian Genetic Programming for the
circuit representation and a modified NSGA-II algorithm for design space exploration. The
method is used to design Pareto optimal approximate versions of arithmetic circuits such
as multipliers and adders.

Contribution

In Paper a new multi-objective CGP implementation was proposed. However, the
estimation of circuit parameters was simplified and the complexity of evolved circuits was
relatively low (4-bit combinational adders and multipliers). In this paper, we proposed to
use a set of conventional arithmetic circuits of various architectures as the initial population
instead of randomly generated initial population. Moreover, we implemented more accurate
estimation of the power consumption, propagation delay and area of the circuits based on
an existing technology process library.

As a result of this work, hundreds of approximate 8-bit adders and multipliers were
designed with respect to three objectives — mean relative error, power consumption and
delay.

3.2.6 Paper VI

Antonio José Sdnchez-Clemente, Luis Entrena, Radek Hrbacek and Lukas Sekanina. Error
Mitigation using Approximate Logic Circuits: A Comparison of Probabilistic
and Evolutionary Approaches. IEEE Transactions on Reliability. 2016, vol. 65, no. 4,
pp- 1871-1883. ISSN 0018-9529.

Author participation: 25 %.
Impact factor: 2.287.

Abstract

Technology scaling poses an increasing challenge to the reliability of digital circuits. Hard-
ware redundancy solutions, such as Triple Modular Redundancy, produce very high area
overhead, so partial redundancy is often used to reduce the overheads. Approximate logic
circuits provide a general framework for optimized mitigation of errors arising from a broad
class of failure mechanisms, including transient, intermittent and permanent failures. How-
ever, generating an optimal redundant logic circuit that is able to mask the faults with the
highest probability while minimizing the area overheads is a challenging problem. In this
work we propose and compare two new approaches to generate approximate logic circuits to
be used in a TMR schema. The probabilistic approach approximates a circuit in a greedy
manner based on a probabilistic estimation of the error. The evolutionary approach can
provide radically different solutions that are hard to reach by other methods. By com-
bining these two approaches, the solution space can be explored in depth. Experimental
results demonstrate that the evolutionary approach can produce better solutions, but the
probabilistic approach is close. On the other hand, these approaches provide much better
scalability than other existing partial redundancy techniques.
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Contribution

In this work, we provided the CGP based method for the design of approximate logic circuits
to be used in partially protected circuits in a TMR schema. The advantage of the proposed
technique was the ability to generate good trade-off solutions between the reliability and
the area overhead of the circuit.

This work resulted in a new method of designing approximate logic circuits to be used
in a TMR schema. In comparison with other existing partial redundancy techniques, the
proposed method provided much better scalability.

3.2.7 Paper VII

Vojtéch Mrazek, Radek Hrbacek, Zdenék Vasicek and Lukas Sekanina. EvoApprox8b:
Library of Approximate Adders and Multipliers for Circuit Design and Bench-
marking of Approximation Methods. In Proc. of the 2017 Design, Automation & Test
in Europe Conference & Ezhibition (DATE). Lausanne: European Design and Automation
Association, 2017, pp. 258-261. ISBN 978-3-9815370-9-3.

Author participation: 25 %.
Conference Rank: Al (Qualis).

Abstract

Approximate circuits and approximate circuit design methodologies attracted a significant
attention of researchers as well as industry in recent years. In order to accelerate the
approximate circuit and system design process and to support a fair benchmarking of circuit
approximation methods, we propose a library of approximate adders and multipliers called
EvoApprox8b. This library contains 430 nondominated 8-bit approximate adders created
from 13 conventional adders and 471 non-dominated 8-bit approximate multipliers created
from 6 conventional multipliers. These implementations were evolved by a multi-objective
Cartesian genetic programming. The EvoApprox8b library provides Verilog, Matlab and
C models of all approximate circuits. In addition to standard circuit parameters, the
error is given for seven different error metrics. The EvoApprox8b library is available at:
www.fit.vutbr.cz/research /groups/ehw/approxlib.

Contribution

This paper compares the results of Paper [V]to a conventional design method and presents
the evolved circuits as a library of circuits (synthesized using Synopsys Design Compiler
for 180nm and 45nm technologies).

As a result of this paper, a free library of approximate arithmetic circuits was proposed.
The library provides several representations of the circuits along with their properties. One
can filter the circuits by the properties. The work was awarded by the Best IP Award at the
Design, Automation and Test in Europe (DATE) conference 2017.

3.3 List of Other Publications

o Radek Hrbacek. Simulation Based Neural Motion Planner Learning. In Proceedings
of the 17th Conference STUDENT EEICT 2011 Volume 1. Brno: NOVPRESS s.r.o.,
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2011. pp. 189-191. ISBN: 978-80-214-4271-9.
Author participation: 100 %.

Radek Hrbacek. Introduction to Compressive Sampling. In Proceedings of the 17th
Conference STUDENT EEICT 2011 Volume 1. Brno: NOVPRESS s.r.o., 2011. pp.
45-47. ISBN: 978-80-214-4271-9.

Author participation: 100 %.

Jan Hrbacek, Radek Hrbacek and Stanislav Véchet. Modular Control System Ar-
chitecture for a Mobile Robot. In Proceedings of the 17th international conference
Engineering Mechanics 2011. 1. Prague: Institute of Thermomechanics, Academy of
Sciences of the Czech Republic, 2011. pp. 211-214. ISBN: 978-80-87012-33-8.

Author participation: 33 %.

Radek Hrbéécek, Pavel Rajmic, Vitézslav Vesely and Jan Spifik. Introduction to sparse
signal representations. Elektrorevue — internet journal (http://www.elektrorevue.cz),
2011, vol. 2011, no. 50, pp. 1-10. ISSN: 1213-1539.

Author participation: 40 %.

Radek Hrbacek, Pavel Rajmic, Vitézslav Vesely and Jan Spifik. Sparse signal repre-
sentations: compressed sensing. FElektrorevue — internet journal

(http://www.elektrorevue.cz), 2011, vol. 2011, no. 67, pp. 1-6. ISSN: 1213-1539.
Author participation: 44 %.

Jiri Krejsa, Stanislav Véchet, Jan Hrbacek, Tomas Ripel, Vitézslav Ondrousek, Radek
Hrbacek and Petr Schreiber. Presentation robot Advee. Engineering Mechanics, 2012,
vol. 18, no. 5/6, pp. 307-322. ISSN: 1802-1484.

Author participation: 5 %.

Radek Hrbacek. Hardware Platform for Coevolutionary Design. In Proceedings of
the 19th Conference STUDENT EEICT 2013 Volume 2. Brno: LITERA, 2013. pp.
279-281. ISBN: 978-80-214-4694-6.

Author participation: 100 %.

Radek Hrbécek and Michaela Sikulova. Coevolutionary Cartesian Genetic Program-
ming in FPGA. In Advances in Artificial Life, ECAL 2013, Proceedings of the Twelfth
European Conference on the Synthesis and Simulation of Living Systems. Cambridge,
US: MIT, 2013. pp. 431-438. ISBN 978-0-262-31709-2.

Author participation: 60 %

Conference Rank: Bl (Qualis).

Jit{ Toman and Radek Hrbacek. Redundant Control Algorithm for a Brushless DC
Motor. In FElectrical Drives and Power Eletronics. Kosice: Technical University of
Kosice, 2015, pp. 117-124. ISBN: 978-80-553-2208-7.

Author participation: 50 %.

Filip Vaverka, Radek Hrbédcek and Lukas Sekanina. Evolving Component Library for
Approximate High Level Synthesis. In 2016 IEEE Symposium Series on Computa-
tional Intelligence. Athens: IEEE Computational Intelligence Society, 2016, pp. 1-8.
ISBN 978-1-5090-4240-1.

Author participation: 25 %.

Conference Rank: B5 (Qualis).
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3.4

Research Projects and Grants

3.4.1 Czech Science Foundation

GA16-17538S Relazed equivalence checking for approximate computing.
Co-investigator.

GA14-04197S Advanced Methods for Evolutionary Design of Complex Digital Circuits.

Co-investigator.

3.4.2 Anselm & Salomon Supercomputer Allocations

3.5

OPEN-8-4 Multi-objective Approrimate Circuit Design on Computer Cluster.
500 000 core hours.

Primary investigator.

IT4T-10-4 Evolutionary Design of Cryptographic Boolean Functions.
300 000 core hours.
Investigator.

1T4T-9-2 Approximate circuit design on computer cluster.
300 000 core hours.
Investigator.

IT41-7-6 Evolutionary design on computer cluster.
80 000 core hours.
Investigator.

1T41-5-9 Evolvable hardware on computer cluster.
75 000 core hours.
Investigator.

Awards

Special Prize IT4Innovations (Joseph Fourier Prize 2017).

Best Interactive Presentation (DATE 2017).

Bronze medal in Humies competition (GECCO 2014).

BUT rector’s award for excellent master study and scientific research results.

1. prize in the competition IC'T Master thesis of the year 2013 awarded for the master
thesis Coevolutionary Algorithm in FPGA.

FIT BUT dean’s award for the master thesis Coevolutionary Algorithm in FPGA.

1. prize in the Student EEICT 2013 competition awarded for the paper Hardware
Platform for Coevolutionary Design.
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Chapter 4

Discussion and Conclusions

This chapter discusses and summarizes the results presented in the thesis and gives conclu-
sions and possible directions for future work.

4.1 The Approach

An analysis of the state of the art evolutionary design methods and a study of possible ac-
celeration techniques have been performed within the research presented in this thesis. In
order to accomplish the given research objectives, a new highly optimized implementation
of Cartesian Genetic Programming was proposed. The next step was to extend the CGP to
support the design with respect to multiple objectives — a modified NSGA-II algorithm was
used for this purpose. The performance of the implementation was evaluated in multiple
different applications, in particular (approximate) combinational arithmetic circuits design,
bent Boolean functions discovery, approximate logic circuits for TMR schema and others.
The experiments were conducted on computers operated by two organizations — MetaCen-
trum VO and IT4Innovations (supercomputers Anselm, Salomon). All particular research
steps are presented in the description of relevant scientific papers mentioned in Chapter

4.2 Software Outcomes

During the research, a new CGP implementation was developed and actively used. This
implementation was improved and extended with new features step by step to maintain
the universality of the tool as great as possible, except for a few particular cases (e.g. Intel
Xeon Phi coprocessor implementation).

The CGP tool is implemented using C/C++. Thread level parallelism is based on the
OpenMP library and the island model utilizes MPI message passing communication ap-
proach. The tool is a command line utility, where all parameters are passed to the tool
using command line arguments. The desired circuit functionality can be specified either as
a truth table or by importing a PLA (Programmable Logic Array) file. The evolutionary
design can start either from scratch (randomly generated initial population) or a set of CGP
chromosomes can be imported. The results of the evolutionary design can be exported to
various output formats:

e chromosome file — CGP chromosome representation,

e VHDL, Verilog and BENCH — hardware description languages,
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e C/C++ — logic and arithmetic representation.

The CGP implementation is able to model various technology processes as listed in
Table . The simplest one implements general logic gates (BUF, NOT, AND, OR, XOR,
NAND, NOR, XNOR, 1, 0) and the estimation of the area, power consumption and delay
is very rough.

A much more realistic technology library osu180 is based on a real technology process
library. It is available in four variants; from a set of up to 4-input gates to a subset
containing just 2-input gates.

The last technology supported by the tool is the look-up table (LUT) technology with
3-6 node inputs. The LUT-level implementation was optimized by the tool itself (on gate-
level) by generating highly optimized implementations of all 3-input and 4-input Boolean
functions. These optimized functions were exported to C/C++ and compiled together into
a new LUT-level implementation. This implementation is intended for the design and
approximation of digital circuits running on FPGAs. The LUT-based approach is currently
prepared for publication.

Technology Node inputs n,; Node outputs n,, Node functions n;
gate 2 1 10

17
15
9
8

256
65536

4294967296
264

osul8&0

look-up table

DT W DN DN W
[ S e I VN

Table 4.1: List of supported CGP circuit primitives.

All the technologies can be used with the same algorithms. There are basically two
different approaches supported by the tool. The single-objective algorithm is based on
standard CGP. The fitness function can be composed of multiple objectives; when reaching
the maximum of the first objective, the next one is included into the fitness value calcu-
lation and so on. The multi-objective algorithm is an extension of CGP with a modified
NSGA-II algorithm. All objectives are optimized simultaneously. Both algorithms support
constraining the individual objectives by entering a minimum or/and a maximum value.
The supported fitness functions are as follows:

e Hamming distance, on/off-set Hamming distance

e mean absolute error (MAE), mean squared error (MSE), mean relative error (MRE)
e worst case error (WCE), worst case relative error (WCRE)

e variance of absolute error (VAE)

e crror probability (EP)

e area, delay, power, power-delay product (PDP)
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Both, single-objective and multi-objective algorithms can be executed on multiple iso-
lated islands. On each island, a separate population of individuals is evolving independently
of the others until a predefined number of generations or a time interval is reached. In the
single-objective case, the best individual of all islands is determined and the evolutionary
process is restarted on all islands with the best individual as a seed. In the multi-objective
case, the populations of all islands are merged, a global Pareto front is formed and the
individual populations are seeded with individuals from the front.

4.3 Contributions

The main contributions of this thesis can be summarized as follows:

e Development of a new highly optimized parallel implementation of CGP that is much
more scalable than the state of the art implementations and thus applicable for com-
plex problems.

e Extension of CGP with new function sets based on real technology processes (180nm
CMOS library, LUTS).

e Extension of CGP with multi-objective design capability.

e Evolved comprehensive library of 8-bit approximate combinational adders and mul-
tipliers that can be used for benchmarking of approximate design methods or as a
component library for high-level approximate circuit design.

e Evolved bent Boolean functions of up to 18 variables that are more difficult instances
than previous solutions.

e Evolved approximate combinational circuits for TMR schema that show better prop-
erties than the circuits obtained by a conventional probabilistic method.

The aforementioned contributions are important for approximate computing as well as
for other research areas dealing with digital circuits or related technologies. The work has
been awarded by both EAs (Bronze medal in Humies competition) and hardware (DATE
Best IP Award) community.

4.4 Future Work

The scalability of the CGP method was significantly improved, as presented in this thesis.
However, a great potential in further increasing the complexity of problems solved by CGP
resides in using formal verification methods in the fitness function. Until recently, these
methods could only be used to check if two circuits are equivalent in terms of their output
responses. The latest results suggest that some formal methods (e.g. binary decision dia-
grams) could be used to directly determine an arithmetic distance or to check if a circuit
satisfies an arithmetic constraint [23]. Integrating these methods to the proposed CGP
implementation is straightforward — only the fitness function has to be re-designed.

The EvoApprox8b library presented in this thesis can be directly used as a component
library for a high level approximate circuit synthesis algorithm. For example, a multi-
objective evolutionary algorithm has been developed for this purpose [74]. This way, the
scalability of the method can be further improved.

29



The LUT-level CGP implementation mentioned in this chapter promises to further
extend the application area of the proposed method to FPGA devices. This will need
further experiments and it will be definitely an interesting and challenging continuation of
the research started in this thesis.

Another issue that should also be addressed is high computation time of the method
in comparison with conventional synthesis methods. Nevertheless, the evolutionary design
method is still valuable considering the fact that better results can be obtained in compari-
son with the conventional methods. Besides, the performance and parallelism of computers
is growing and the EA based methods can take advantage of that, as shown in this thesis.
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ABSTRACT

Most implementations of Cartesian genetic programming
(CGP) which can be found in the literature are sequen-
tial. However, solving complex design problems by means
of genetic programming requires parallel implementations of
search methods and fitness functions. This paper deals with
the design of highly optimized implementations of CGP and
their detailed evaluation in the task of evolutionary circuit
design. Several sequential implementations of CGP have
been analyzed and the effect of various additional optimiza-
tions has been investigated. Furthermore, the parallelism at
the instruction, data, thread and process level has been ap-
plied in order to take advantage of modern processor archi-
tectures and computer clusters. Combinational adders and
multipliers have been chosen to give a performance compar-
ison with state of the art methods.

Categories and Subject Descriptors

B.6.0 [Hardware]: Logic Design—General; 1.2.8 [Comput-
ing methodologies]: Artificial intelligence—Problem Solv-
ing, Control Methods, and Search

Keywords

Cartesian Genetic Programming, Parallel Computing, SIMD,
AVX, Cluster, Combinational Circuit Design

1. INTRODUCTION

The evolutionary design conducted by means of genetic
programming (GP) is a very computationally demanding
design method. In order to reduce the design time, various
accelerators of genetic programming have been proposed.
The accelerators are typically developed to speed up the
main components of the method — the search algorithm and
the fitness evaluation procedure. While the former case is
usually investigated in the field of parallel and distributed
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evolutionary algorithms, the latter one typically involves ac-
celerating an application specific simulator in which every
candidate phenotype has to be evaluated. The most fa-
mous parallel approaches to GP are represented by Koza’s
Beowulf-style parallel cluster [10] and recently, an approach
developed for the cloud environment [17].

As CGP has been accelerated on GPUs [6] and FPGAs [20],
in this contribution, the parallelism at the instruction, data,
thread and process level has been applied in order to take
advantage of modern processor architectures and computer
clusters. The goal of this paper is to provide a set of paral-
lel CGP implementations that can be used on these widely
accessible parallel computers. The proposed implementa-
tions will be compared and evaluated in the task of adder
and multiplier evolutionary design. The reason for choosing
these two problems is that the literature includes several
case studies that can be used for comparative purposes.

Another important assumption of this study is that CGP
starts with a randomly generated initial population and the
objective is to find a fully functional solution, i.e. an n;-
input/no-output circuit which provides n, - 2™ correct out-
put bits when all possible input combinations are evaluated.
In other words, the goal is not in minimizing the number of
gates, delay or other criteria. Note that for the evolution-
ary circuit optimization, in which CGP starts with a fully
functional solution and the goal is to minimize the number
of gates, efficient and fast fitness calculation methods based
on formal functional equivalence checking algorithms have
already been proposed [21]. While such methods are ca-
pable of optimizing circuits having hundreds of inputs and
thousands of gates, only relatively small circuits (with ten
to fifteen inputs and less than 100 gates) have been evolved
so far in the proposed scenario. Finally, this work does not
take into account advanced methods such as divide and con-
quer [18, 16] or self-modifying CGP [7] which allow for reduc-
ing the problem complexity and consequently applying the
standard CGP on sub-problems. Therefore, all techniques
reported in this paper operate on the whole circuit.

Parallel CGP implementations are usually focused on an
efficient phenotype evaluation, which is the most time crit-
ical operation of CGP due to the fact that the circuit eval-
uation time grows exponentially with the number of circuit
inputs. In order to accelerate a candidate circuit evalua-
tion, one can apply a parallel evaluation of multiple training
vectors by means of bit-level instructions [14], circuit pre-
compilation techniques or streaming SIMD extensions (SSE)
of modern processors [22].



On the other hand, the search algorithm used in the stan-
dard CGP is a simple (1+)\) evolution strategy. A natural
approach to accelerating the search is evaluating \ offspring
on A processors in parallel. A few attempts were made to
introduce more advanced operators into this search method,
but only a small improvement was reported in [3]. However,
a noticeable improvement can be obtained when the stan-
dard CGP is replaced by parallel coevolutionary CGP [9].

The rest of the paper is organized as follows. Section 2 in-
troduces CGP and its usage as combinational circuit design
method. The implementation of several sequential solutions
is discussed in Section 3. Section 4 deals with the CGP par-
allelisation. Section 5 is dedicated to experiments and the
achieved results. Final conclusions can be found in Section 6.

2. CARTESIAN GENETIC
PROGRAMMING

Cartesian genetic programming has been introduced by
Miller [12] as a branch of genetic programming. Unlike GP
which uses tree representation, an individual in CGP is rep-
resented by a directed acyclic graph which enables the can-
didate solution to have multiple outputs and automatically
reuse intermediate results. This makes CGP very suitable
for design of various kinds of digital circuits, such as arith-
metic and logic circuits, digital filters, etc. [13].

CGP uses a cartesian grid of n, X n. programmable el-
ements (nodes) interconnected by a feed-forward network
(Figure 1). Each node’s input (usually each node has a fixed
number of inputs n,; = 2) can be connected either to one
of ni primary inputs or to a node output in the preceding [
columns. By setting the [-back parameter and the grid size,
one can control the area and delay of the circuit. Each node
can be programmed to perform one of nyi-input functions
defined in the set I (let ny = |I'|). The no primary circuit
outputs are connected either to the primary inputs or nodes.
The output connectivity can be optionally restricted by the
o-back parameter.

Since all the CGP parameters are fixed, each chromo-
some is encoded using a fixed-sized array of n, - nc - (nni +
1) + no integers. Each primary input is assigned a num-
ber from {0,...,n; — 1} and the nodes are assigned num-
bers from {ni,...,ni + n: - nc — 1}. The genotype is of fixed
length, whereas the phenotype is of variable length depend-
ing on the number of inactive nodes, i.e. nodes whose output
is not used by any other node or primary output. Hence,
the genotype-phenotype mapping is not injective. The exis-
tence of genotypes with the same fitness is usually referred
to as neutrality. The role of neutrality has been intensively
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Figure 1: Cartesian genetic programming scheme.

studied [24] and it was shown that for certain problems the
neutrality significantly reduces the computational effort and
helps to find more innovative solutions [11].

In CGP, a simple mutation based (1 + ) evolutionary
strategy is used as a search mechanism. The population size
14 A is usually very small, typically, A is between 1 and 15.
The initial population is constructed either randomly (evo-
lutionary design) or by mapping of a known solution to the
CGP chromosome (evolutionary optimization) [21]. In each
generation, a randomly selected individual with the best fit-
ness value is passed to the next generation unmodified and
its A offspring individuals are created by means of point mu-
tation operator which modifies m randomly selected genes
of the chromosome. The mutation rate m is usually set to
modify up to 5% of the genes. Despite numerous attempts,
no useful crossover operator has been introduced. For some
problem classes (e.g. symbolic regression problem), special
crossover operators have been investigated [3], however, in
the case of digital circuits design, none of them has been
confirmed as useful.

In the case of combinational circuit evolution, the fitness
function corresponds to the quality of the candidate circuit
measured as the number of correct output bits compared to
a specified truth table. In order to obtain a fully working
circuit, all combinations of input values have to be evaluated.
For a circuit with n; inputs and n, outputs, 2™ test vectors
need to be fetched to the primary inputs and n, - 2™ output
bits have to be verified so as to compute the fitness value.

3. SEQUENTIAL IMPLEMENTATION

Every CGP implementation must process all the 2™ test
vectors on the whole phenotype for the entire population of
individuals and compare all the n, outputs to the desired
ones. This requirement directly implies the presence of 3
independent nested loops — the test vector loop, the loop
over all nodes and the population loop. The order of these 3
loops is crucial for the performance and the optimal choice
varies among different implementations. In a very naive im-
plementation, one can process each test vector separately on
all nodes no matter if they are active or not. However, in
order to take advantage of modern superscalar out-of-order
processors, the parallelism at various levels has to be em-
ployed and special attention to memory access policy has to
be paid.

The most fundamental optimization we can apply is the
bit-level parallelism. Instead of separate test vector pro-
cessing, up to 64 test vectors can be processed in parallel
on 64-bit processors thanks to bitwise operations. Further-
more, by introducing the data-level parallelism using SIMD
instructions, 128 or even 256 test vectors can fit into the
SSE or AVX registers respectively.

One of the most commonly used optimization in CGP
is the detection of inactive nodes. Before processing each
individual, the genotype is traversed in the reversed order
and the nodes whose output is never used are marked as
inactive. While processing, all inactive nodes are skipped
and thus only the phenotype is treated.

3.1 Interpreted implementation

The interpreted implementation is very simple, yet for
smaller circuits very efficient. The principle is shown in Al-
gorithm 1. At the beginning, an initial population is created
randomly just like in any other implementation. Then, in



randomly create and evaluate initial population;
while termination condition is false do
for i in 1 to P do
if i = best_ind then
| continue;
end
copy ind[best_ind] chromosome to ind[i;
mutate ind[i];
analyze ind][i];
foreach node do
foreach test vector do
\ compute node output value;
end
end
foreach primary output do
| ind[i].fit += number of wrong bits;

end
if indfi].fit > ind[best_ind].fit then
best_ind := i;
end
end

end
Algorithm 1: Interpreted implementation

every generation, the evaluation of the population is going on
as follows: For each individual not being the best individual
from the previous generation, the chromosome of the best
individual is copied and mutated. After that, the chromo-
some is analyzed in order to find the inactive nodes. For each
active node, all test vectors are processed according to the
node function. The test vector loop is put inside the node
loop because of the overhead of the switch statement the
node function is based on. Besides the overhead, by putting
the test vector loop inside, the compiler is able to optimize
this loop by unrolling. After computing each node’s out-
put value, the primary outputs are checked against desired
values and the number of wrong bits is accumulated. This
can be done very efficiently just by XORing the actual out-
put value and the expected value and counting the number
of ones. Since SSE 4.2, a special instruction POPCNT exists
which allows to count the number of ones with the latency
of 3 clock cycles (on the Intel Sandy Bridge microarchitec-
ture) [4].

Since all of the intermediate results for all test vectors have
to be kept in memory during the evaluation, the memory
usage of the interpreted implementation is not optimal (up
to ny-ne-2" /8 bytes), but it is still efficient for small circuits,
until the required memory size exceeds the cache size.

3.2 Native implementation

By introducing the native implementation, both the mem-
ory requirements and the switch statement overhead can be
significantly reduced. The principle can be seen from Algo-
rithm 2. Just like in the interpreted implementation, each
individual except the previous best one is copied, mutated
and analyzed. The difference lies in the evaluation process
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Figure 2: CGP individual example.

randomly create and evaluate initial population;
while termination condition is false do
for ¢ in 1 to P do
if i = best_ind then

| continue;
end
copy ind[best_ind] chromosome to ind][i];
mutate ind[i];
analyze ind[i];
compile ind([i];
end
foreach test vector do
for i in 1 to P do

if ¢ = best_ind then

continue;
end
ind[i].fit += run compiled code;
end
end

for i in 1 to P do

if indfi].fit > ind[best_ind].fit then
| best_ind := i

end

end

end

Algorithm 2: Native implementation.

— instead of traversing the chromosome and computing the
node outputs directly, the chromosome is compiled at first.
The compiled program is then executed on each test vector
for each individual in the population. This technique was
first introduced in [22] and the implementation presented
in this paper further improves this principle by introduc-
ing subroutine parameters, native fitness calculation and by
utilizing AVX instructions. Moreover, the native implemen-
tation uses slightly less memory since there is no need to
keep the intermediate results for all test vectors.

Figure 2 depicts a very simple circuit with n; = 3 pri-
mary inputs, n, = 1 primary output and n. = 4 nodes.
Listing 1 shows the compiled chromosome from Figure 2 in
64-bit version. The compiled subroutine has 4 parameters
passed on in the 64-bit registers RDI, RSI, RDX and RCX [15]
— the pointers to the primary inputs filled by corresponding
test vectors, node outputs, desired primary outputs and spe-

Listing 1: Native 64b implementation example.

push %rox ; store RBX

mov 0x08 (%rsi) ,%rbx ; node nO

and 0x00 (%rsi) ,%rbx ; AND

mov %rbx ,0x18 (%rdi) ; nO := il AND iO
mov 0x10(%rsi) ,%rbx ; node nil

xor 0x18 (%rdi) ,%rbx ; XOR

mov %rbx ,0x20 (%rdi) ; nl := i2 XOR nO
mov 0x18 (%rdi) ,%rbx ; node n3

or 0x28 (%rdi) ,%rbx ; OR

mov %rbx ,0x30 (%rdi) ; n3 := n0 OR n2
xor hrax ,lhrax ; RAX := 0

mov 0x30 (%rsi) ,%rbx ; output 00

xor 0x0 (%rdx) ,%rbx

and 0x0 (%rcx) ,%hrbx ; mask mO

popcnt  %rbx,%bdx ; error count

add %rbx ,%rax ; accumulate

pop %hrbx ; restore RBX
retq ; return RAX



cial masks.! For each node, the first input value is loaded
from the memory to the RBX register and the desired op-
eration is performed (optionally, the second input value is
loaded).? The node output is then stored back to the mem-
ory. After processing all active nodes, the number of wrong
output bits is accumulated in the RAX register. For each pri-
mary output, the corresponding node output is loaded from
the memory and XORed with the desired value. After apply-
ing the mask, the number of incorrect bits is computed using
the POPCNT instruction and accumulated in the RAX register.
The register RAX is used for integer return values [15], thus
the subroutine returns the number of wrong bits for a given
test vector.

The same example compiled in the AVX version can be
seen in Listing 2. Here, the calling convention is the same
and the register RAX has the same purpose as in the 64-bit
version. The intermediate results are computed in the YMMO
register. The register YMM1 contains just ones and serves for
computing the NOT operation using XOR, since there is not an
AVX instruction for this purpose. Compared to the 64-bit
version, the error computation is more complicated as there
is only a 32-bit and 64-bit POPCNT instruction available.

L After X0Ring the actual and desired output value, the result is
ANDed with this mask, which enables to specify which output bits
are not considered (we don’t care about their values).

2There is no need to avoid the output dependency thanks to
hardware register renaming.

Listing 2: Native AVX implementation example.
push hrbx ; store RBX

mov OxXXXXXXXX ,%rax ; RAX := &avx_ones
vmovdqa 0x0(%rax),’ymml ; YMM1 := 111..111
vmovdqa 0x20(%rsi),%ymmO ; node no0

vandps 0x0 (%rdi) ,%ymm0 ,%ymmO ; AND

vmovdqa %ymmO ,0x60 (%rdi) ; n0O := il AND io0
vmovdqa 0x40 (%rsi) ,%ymmO ; node nil

vxorps 0x60 (%rdi) ,%ymmO,%ymm0 ; XOR

vmovdqa %ymmO ,0x80 (%rdi) ; nl := i2 XOR nO
vmovdqa 0x60 (%rdi) ,%ymmO ; node n3

vorps 0xa0 (%rdi) ,%ymmO ; OR

vmovdqa %ymmO ,0xcO (%rdi) ; n3 := n0 OR n2
xor %rax,%hrax ; RAX := 0

mov 0xc0(%rsi) ,%rbx ; output o00[0]
xor 0x0 (%rdx) ,%rbx

and 0x0 (%rcx) ,%rbx ; mask mO[0]
popcnt %rbx ,%rbx ; error count

add %rbx ,%hrax

mov 0xc8 (%rsi) ,%rbx ; output o0[1]
xor 0x8 (%rdx) ,%rbx

and 0x8 (%rcx) ,%rbx ; mask mO[1]
popcnt %rbx ,%rbx ; error count

add %rbx ,%rax

mov 0xd0 (%rsi) ,krbx ; output o00[2]
xor 0x10 (%rdx) ,%rbx

and 0x10 (%rcx) ,%rbx ; mask mO[2]
popcnt %rbx ,%rbx ; error count

add %rbx ,%rax

mov 0xd8 (%rsi) ,%rbx ; output o00[3]
xor 0x18 (%rdx) ,%rbx

and 0x18 (%rcx) ,%rbx ; mask m0[3]
popcnt %rbx ,%rbx ; error count

add %rbx ,%rax

pop %rbx ; restore RBX
retq ; return RAX

The native implementation enables to introduce more op-
timizations than the interpreted implementation. The fit-
ness computation can be stopped after exceeding the num-
ber of wrong bits matching the best individual. Both native
and interpreted implementations can detect neutral muta-
tions and skip recomputing fitness values for individuals af-
fected only by neutral mutations [5].

The efficiency of the native implementation lies in ex-
ploiting the instruction-level parallelism offered by modern
superscalar out-of-order processors by reducing branch mis-
predictions and cache misses and increasing the arithmetic
intesity.

4. PARALLEL IMPLEMENTATION

Until the beginning of the 21st century, the aim of the
processor architects was to increase the single threaded per-
formance by means of extracting more instruction-level par-
allelism (ILP) and utilizing superscalar out-of-order execu-
tion, sophisticated branch predictors, multi-level cache hier-
archy, etc. However, growing power consumption and lim-
ited ILP extractable from common sequential code together
with increasing transistor density led to the introduction of
multiprocessors [8]. Since then, special attention has to be
paid to parallel computing in order to make use of modern
processor architectures.

4.1 Thread parallelism

The purpose of the thread-level parallelism (TLP) in CGP
is to speed up the whole evolutionary process — both the
fitness calculation and the genetic operators. Both inter-
preted and native parallel implementations are discussed in
this subsection; the OpenMP library has been used for man-
aging the threads.

Algorithm 3 shows the scheme of the interpreted parallel
implementation, very similar to the corresponding sequential
variant. The outer population loop has to be scheduled dy-
namically, because if it were scheduled statically, the thread
responsible for the previous best individual would have less
work than the others resulting in poor load balancing.

The parallelization of the native implementation is some-

randomly create and evaluate initial population;
while termination condition is false do
#pragma omp for schedule(dynamic)
for ¢ in 1 to pop_size do
if i = best_ind then

| continue;
end
copy ind[best_ind] chromosome to ind][i];
mutate ind[i];
analyze ind][i];
foreach node do

foreach test vector do
| compute node output value;
end

end
foreach primary output do

| ind[i].fit += number of wrong bits;
end
#pragma omp critical
if indfi].fit > ind[best_ind].fit then

| bestind := i
end
end
end

Algorithm 3: Parallel interpreted implementation.
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Figure 3: Parallel native implementation threading.

randomly create and evaluate initial population;
while termination condition is false do
#pragma omp for
for i in 1 to P do

if ¢ = best_ind then

| continue;

end

copy ind[best_ind] chromosome to ind|[i];

mutate ind[i];

analyze ind[i];

compile ind[i];

end

foreach i in 1 to P do
| fitli] = 0;

end

#pragma omp barrier
#pragma omp for nowait
foreach test vector do
foreach i = 1 to P do
if ¢ = best_ind then

| continue;
end
fit[i] += run compiled code;
end
end

foreach i in 1 to P do

#pragma omp atomic
‘ ind[i].fit += fit]i];

end

#pragma omp barrier

#pragma omp single

for i in 1 to P do

if indfi].fit > ind[best_ind].fit then
best_ind := i;

end

end

end

Algorithm 4: Parallel native implementation.

what more complicated, since it consists of three separate
loops, each having a different number of iterations. Figure 3
depicts the threading scheme. At first, a new population
has to be created using up to P threads, then the evaluation
can utilize all the threads (if there are enough test vectors)
and at the end, the new best individual has to be found,
unfortunately by a single thread.

Algorithm 4 shows the overall parallel implementation
principle. A special attention had to be paid for the fit-
ness accumulation across test vectors treated by different
threads. Each thread has its own partial fitness values which
are finally atomically accumulated to the total fitness values
doing a manual reduction over the fitness values (OpenMP
offers only reduction over scalar variables).

4.2 Process parallelism (inter-population)

Spatially structured evolutionary algorithms have been in-
tensively studied in the past and a variety of approaches dif-
fering in the used evolutionary algorithm or communication
topology has emerged [19, 2]. By introducing multiple popu-
lations evolving in parallel, one can increase the population

seed := randomly generated individual;
while termination condition is false do
run evolutionary design starting with seed;
exchange best individuals among islands;
if global best fitness is higher than local then
‘ seed := global best individual;
end
end
Algorithm 5: Isolated islands model.

diversity and thus make the EA more explorative leading
to a higher probability of finding the global optimum for
particular problems.

The combinational circuit design is a very complex prob-
lem, the search space is generally rugged containing lots of
local optima and thus the potential of exploiting parallel
EA is high. Unfortunately, the absence of a crossover op-
erator in CGP is a very limiting factor since most parallel
models take advantage of combining genotypes from differ-
ent isolated populations. Nevertheless, the model of isolated
islands with migration of the best individuals in each popu-
lation can be applied to this problem.

Algorithm 5 describes the parallel evolutionary process.
At the beginning, each population starts with a randomly
generated initial population. Until a perfectly working cir-
cuit is found, the evolutionary process is executed on each
island and after specified number of generations, the best
individual from each island is broadcasted to the other is-
lands. If the global best individual has higher fitness value
than the local best individual, the island is seeded by the
global best one.

After migration, each isolated population is evolving in-
dependently and can explore different areas in the search
space. This makes the search algorithm more effective and
speeds up the evolutionary process.

The implementation is based on the Open MPI library
and can be executed on computer clusters of arbitrary size
as well as on a single multiprocessor giving a great scalability
to the evolutionary design process.

5. EXPERIMENTAL RESULTS

In this section, experiments regarding the implementa-
tion performance are presented and the scalability of the
implementation is demonstrated on selected combinational
circuit design problems. All experiments were performed on
a computer cluster of 112 nodes with the following hard-
ware configuration: 2x 8-core Intel E5-2670, 128 GB RAM,
2x 600 GB 15k scratch hard disks, connected by gigabit
Ethernet and Infiniband links.

The implementations have been examined by means of the
common metrics: speedup, defined as the ratio of the sequen-
tial implementation execution time to the parallel execution
time, and efficiency, the ratio between the achieved speedup
and the number of threads.

5.1 Sequential implementation efficiency

The performance of the sequential implementations has
been measured in the task of a combinational adder design.
Table 1 and Figure 4 summarize the mean evolution times
obtained from 100 independent runs for individual sequen-
tial implementations. The CGP parameters were set as fol-
lows: population of 5 individuals, n. = 100 nodes, mutation
rate 5%, I' = {BUF, NOT, AND, OR, XOR, NAND, NOR, XNOR}. The
goal was not to find a fully functional solution, the evolu-



Table 1: Sequential implementation performance
(combinational adders, 10 000 generations).

evolution time [s]
width interpreted native
64b 256b 64b 256b
1x1 0.00382 - 0.00477 -
2x2 0.00908 - 0.02168 -
3 x3 0.01994 - 0.04954 -
4 x4 0.02442 0.02398 0.05497 | 0.07092
5X%X5 0.04681 0.03215 0.07076 | 0.08550
6 X6 0.11488 0.08280 0.11168 | 0.11109
TXT 0.97894 0.40800 0.28149 | 0.21899
8 x8 6.27716 2.14536 0.88332 | 0.55520
9x9 32.64657 9.84838 3.63436 | 2.21870
10 x 10 | 154.38932 | 47.59685 | 14.99801 | 8.75244

Table 2: Sequential implementation speedup (com-
binational adders, 10 000 generations).

speedup [-]
width | interpreted native
256b 64b 256b
1x1 - 0.80084 -
2X2 - 0.41882 -
3x3 - 0.40250 -
4x4 1.01835 0.44424 0.34433
5%x5 1.45599 0.66153 0.54749
6 X6 1.38744 1.02865 1.03412
TxXT 2.39936 3.47771 4.47025
8 X8 2.92592 7.10633 11.30612
9%x9 3.31492 8.98276 14.71428
10 x 10 3.24369 10.29399 | 17.63957
103 ' Sequential imp " t: ‘fnn perf,)rmancg '
+—+ interpreted 64b | :
102 L{+ =+ interpreted 256b [:....................L
X%—X native 64b
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Figure 4: Sequential implementation performance
(combinational adders, 10 000 generations).
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Figure 5: Sequential implementation speedup (com-
binational adders, 10 000 generations).

tion has been stopped after reaching 10 000 generations. The
achieved speedup relative to the 64b interpreted implemen-
tation can be seen in Table 2 and Figure 5. The experimen-
tal results indicate that for small circuits, the best imple-
mentation is the 64b interpreted implementation. Starting
with 8 primary inputs, the number of test vectors goes over
the limit of 256 test vectors and the AVX implementation
comes to the foreground. The native AVX implementation
needs even larger circuits to overcome the compilation over-
head and to be sufficiently efficient, however, the achieved
speedup is significant.

5.2 Parallel implementation efficiency

The sequential implementation performance is not sub-
stantially dependent on the number of nodes, which is not
the case of the parallel implementation efficiency. There-
fore, in order to evaluate the parallel speedup and efficiency,
a more complex circuit has been chosen for the experiment,
namely the combinational multiplier with n. = 800 nodes.
The population size was 5 individuals, the evolutionary pro-
cess was stopped after 100 000 generations in the case of
data widths 4-6 bits, 10 000 otherwise. Table 3 summarizes

Table 3: Parallel implementation efficiency.

width | threads | time [s] | speedup [-] | efficiency [%)]
1 1.092 - -
Axd 2 0.705 1.550 77.484
3 0.683 1.598 53.277
4 0.490 2.227 55.677
1 1.409 - -
5%5 2 0.857 1.644 82.213
3 0.837 1.683 56.094
4 0.567 2.486 62.149
1 3.616 - -
6% 6 2 2.048 1.766 88.295
3 1.950 1.855 61.827
4 1.226 2.950 73.751
1 0.584 - -
2 0.372 1.571 78.554
3 0.295 1.983 66.103
7T 4 0.247 2.361 59.033
5 0.212 2.755 55.101
6 0.198 2.947 49.119
7 0.202 2.899 41.410
8 0.196 2.985 37.312
1 1.663 - -
2 0.925 1.797 89.872
3 0.678 2.452 81.745
8% 8 4 0.539 3.082 77.044
5 0.448 3.710 74.202
6 0.399 4.163 69.385
7 0.380 4.370 62.424
8 0.347 4.786 59.831
1 6.108 - -
2 3.251 1.879 93.945
3 2.202 2.774 92.466
9%9 4 1.717 3.556 88.908
5 1.422 4.294 85.879
6 1.230 4.964 82.730
7 1.105 5.529 78.990
8 0.985 6.199 77.482
1 25.825 - -
2 13.455 1.919 95.972
3 9.070 2.847 94.912
10 % 10 4 7.077 3.649 91.231
5 5.840 4.422 88.440
6 4.905 5.265 87.758
7 4.363 5.919 84.553
8 3.842 6.722 84.029
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Figure 6: Parallel implementation efficiency.

the results. For each input data width, 100 independent
runs were performed and the mean evolution time has been
calculated.

The interpreted parallel implementation is limited to A
threads since each thread treats its own individual. Besides
that, the number of threads should divide A for the best load
balancing. This is not the case of the native parallel imple-
mentation, however, sufficiently many test vectors need to
be evaluated to fully utilize all eight cores of the E5-2670
processor (Figure 6).

The parallel efficiency is affected by the dynamic frequency
scaling which is present in Intel’s processors. In real deploy-
ment, when all processor cores are fully loaded, the sequen-
tial implementation evinces slightly worse performance due
to lower frequency, hence the parallel efficiency is better. Es-
pecially on multi-socket systems, one must mind the affinity
of the threads, preferably by binding individual threads to
specific processor cores, to reduce cache misses and keep the
memory access time as low as possible.

5.3 Test problems

Three different configurations of the evolutionary algo-
rithm have been examined — standard single-population CGP
optionally parallelized, multi-population CGP with few iso-
lated islands and massively parallel CGP exploiting tens of
islands. The performance of these approaches has been eval-
uated in the task of a combinational adder and multiplier
design, in the literature generally considered as very diffi-
cult tasks [23, 18]. The evolutionary design was stopped
after finding a fully functional solution.

Table 4: Combinational adder design performance.

nodes hosts/ time [s]

nr X ne | threads mean median std
1/6 39.4644 31.713 27.87117
6 X6 1 x 100 6/1 12.3851 10.620 7.966

width

60/1 3.259 2.871 1.608
1/6 142.419 103.722 139.862
7TxT | 1x150 6/1 53.479 44.286 37.883

60/1 17.569 16.410 7.864

1/6 367.915 307.545 254.455
8x8 | 1x200 6/1 129.546 106.111 76.887
60/1 57.961 48.986 44.527
1/6 3085.891 | 2802.061 | 1548.292
9x9 | 1x250 6/1 1607.212 | 1413.261 | 795.004
60/1 525.032 462.648 250.616

Table 5: Combinational multiplier design perfor-
mance.

. nodes hosts time [s

width nr X Ne threac{s mean medie[nl std

2x2 1 x50 1/1 0.00451 | 0.00333 | 0.00385

3 X2 1 x 100 1/1 0.0451 0.0338 0.0319
1/1 1.897 1.469 1.605

3x3 | 1x200 | gy 0530 | 0.417 | 0.403
1/4 10.365 8.427 8.726

4x3 1 x 400 6/1 5.106 3.979 3.991

60/1 2.457 2.210 1.140
1/4 817.689 | 874.075 | 148.275
4x4 1 x 800 6/1 538.058 | 458.494 | 310.345
60/1 191.175 | 154.922 | 141.206
5x4 | 1x1200 60/1 761.327 | 700.151 | 303.906
5x5 | 1x1600 60/2 16452.753

Table 4 shows the statistics for combinational adders of
data widths 6-9 bits calculated on a set of 100 independent
runs for each experimental setup, namely the mean evolu-
tion time, median and standard deviation. In the case of
the multi-population approaches, the migration of the best
individuals occurred every 100 000 generations. It can be ob-
served that the multi-population approach even with few iso-
lated islands significantly reduces the time requirements on
the design process compared to the single-population CGP
using the same computational capacity (6 threads vs. 6 pro-
cesses). By increasing the number of islands, the evolution
time decreases and according to the standard deviation, the
convergence becomes more stable. The stalling effect in the
fitness function, commonly observed when using other ap-
proaches [18, 1], is mitigated as a consequence of a more
explorative search.

The evolutionary design of combinational multipliers is an
even more complex task. No satisfactory results related to
techniques operating on the whole circuit without decompo-
sition have been published so far. While paper [23] reports
only a single complete run for the 4-bit multiplier, with the
aid of the proposed highly optimized CGP implementation,
we can routinely design 4-bit multipliers and moreover, 5-bit
multipliers are feasible as well (Table 5).

6. CONCLUSIONS

In this paper, highly optimized CGP implementations have
been presented. Starting with several sequential versions,
the paper thoroughly examines miscellaneous implementa-
tion aspects and gives detailed performance comparisons of
the proposed approaches. Parallelism at various levels has
been applied in order to speed up the evolutionary design
process. The native implementation based on compilation of
the genotype into machine code exploits the instruction-level
parallelism by reducing program branching and increasing
the arithmetic intensity. A large amount of test vectors can
be evaluated in parallel thanks to the use of AVX instruc-
tions. Besides a thread-parallel version, a process-parallel
implementation based on the isolated islands model has been
proposed.

The performance and scalability has been demonstrated
on the task of combinational adders and multipliers design
which is believed to be a very complex task. No additional
knowledge has been introduced into the design process. All

3Due to the very high computational effort, only a single
experiment has been executed for the 5-bit multiplier.



experiments started from a randomly generated initial pop-
ulation. In comparison with the previously published results
regarding similar evolutionary design approaches, much more
complex circuits are feasible to be designed with the pro-
posed CGP implementation.

Note that the absence of a crossover operator in CGP is
a potential limiting factor and by inventing a suitable one,
more efficient parallel evolutionary approaches could be ap-
plied. In our future research, we will focus on investigating
more sophisticated spatially structured evolutionary algo-
rithms with the aim of designing even more complex combi-
national circuits on computer clusters.
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Abstract. In this paper, a new approach to synthesize bent Boolean
functions by means of Cartesian Genetic Programming (CGP) is pro-
posed. Bent functions have important applications in cryptography due
to their high nonlinearity. However, they are very rare and their discov-
ery using conventional brute force methods is not efficient enough. We
show that by using CGP we can routinely design bent functions of up to
16 variables. The evolutionary approach exploits parallelism in both the
fitness calculation and the search algorithm.

1 Introduction

Evolutionary Algorithms (EAs) have been recently used in many engineering
areas as design and optimization methods. Thanks to the innovation introduced
into the design process, they are able to outperform conventional approaches
in particular problems. Several types of EAs have been successfully employed
in the task of evolutionary circuit design. Besides Genetic Programming (GP)
heavily used by John Koza [1] to automatically design analog circuits, regula-
tors, optical systems or antennas, excellent results have been achieved with the
use of Cartesian Genetic Programming (CGP) [2]. The applications of CGP in-
clude combinational circuits design [3] and optimization [4], digital image filter
design [5, 6], artificial neural networks design [7] and many others.

The evolutionary design is often very computationally demanding approach.
In order to reduce the design time, various application specific accelerators as
well as evolutionary algorithm modifications have been proposed. While the for-
mer case typically involves parallel fitness function implementation based on
FPGA accelerators [6,8] or running on multicore CPUs, GPUs [9] or even com-
puter clusters [3] and exploiting parallelism at various levels (instruction, data,
thread or process), the latter one includes genotype representation or search al-
gorithm modifications. In the past, spatially structured evolutionary algorithms
have been intensively studied and variety of approaches differing in the used
evolutionary algorithm or communication topology has emerged [10-12].

While the use of computers and communication networks is becoming more
and more popular, one has to seriously deal with the security of the data being



2 Radek Hrbacek, Vaclav Dvorak

stored or transferred. In cryptography, the two most fundamental techniques to
achieve security in systems are confusion and diffusion [13]. Confusion refers to
making a complex relationship between the ciphertext and the key. Thanks to
diffusion, the statistical structure of the plain text is dissipated over significant
part of the ciphertext, which prevents from reconstructing the original statistical
information. In real cryptographic systems, the cipher key is much shorter than
the message being encrypted and thus the key has to be reused in some way, often
by applying a Boolean function to the key all over again. To avoid decryption by
an attacker, the key sequence has to be random. If the Boolean function used to
generate the key stream is close to linear, the message can be possibly deciphered.
By using functions that are as far from linear as possible, one can build more
secure cryptographic systems [14]. These functions, called bent functions, are
very rare.

The state of the art methods for finding them operate usually on the brute
force principle although exploiting some properties of the functions in order to
reduce the size of the search space [15]. The number of Boolean functions grows
exponentially with the number of variables, while the relative frequency of bent
functions decreases. Therefore, for higher number of variables (the literature re-
ports only functions of no more than 8 variables), these methods are not efficient
enough. Another approach based on genetic algorithm (GA) is very limited as
well. Even though the GA seems to be suitable for this purpose, the proposed
approach is not scalable enough [16].

Inspired by the evolutionary design of combinational circuits by means of
CGP, we propose a CGP based synthesis of bent Boolean functions. The par-
allelism at the data, thread and process level has been applied in order to take
advantage of modern processor architectures and computer clusters. The scala-
bility of this approach has been earlier verified in the task of evolutionary design
of combinational adders and multipliers [3].

The paper is organized as follows. Section 2 introduces bent Boolean func-
tions from the mathematical perspective. CGP is discussed in Section 3 and
the proposed evolutionary approach to synthesize bent functions is described in
Section 4. Section 5 is dedicated to experiments and the achieved results, final
conclusions can be found in Section 6.

2 Bent Boolean functions

Boolean functions are of great importance for various cryptographic algorithms.
Special attention is paid to the design of nonlinear Boolean functions due to their
resistance to linear cryptanalysis [17]. This section presents necessary mathemat-
ical definitions for the purpose of introduction of bent functions [14,15].

Definition 1. A Boolean function is a function of the form f : D™ — D,
where D = {0,1} is a Boolean domain and n > 0 is the arity of the func-
tion. For a function f, let fo = £(0,0,...,0), f1 = f(0,0,...,1), ..., fon_q =
J(,1,...,1). TTy = (fon_1--- f1fo) is the truth table representation of the
function f.
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Definition 2. A linear (Boolean) function is either the constant 0 function or
the exclusive OR (XOR) of one or more variables. An affine (Boolean) function
18 a linear function or the complement of a linear function.

Definition 3. The Hamming distance d(f,g) between two functions f and g
is the number of truth table entries with different values.

Definition 4. The nonlinearity NL; of a function f is the minimum Hamming
distance between the function f and an affine function.

Definition 5. Let f be a Boolean function of even arity n, f is a bent function
iff its nonlinearity NLy is maximum among n-variable functions.

Affine functions are not suitable for the use in cryptography, since they are
susceptible to a linear attack. Therefore, one seeks functions that are as far
away (in the Hamming distance) as possible from all the affine functions — these
are the bent functions. The nonlinearity of a bent function f of n variables is
NL; = 27~! —2%~1 [18]. This constraint is not applicable for functions of odd

Table 1. Examples of 4-variable Boolean functions and their nonlinearities.

function f truth table TT; | nonlinearity NLy
0 0000000000000000 0
0 1010101010101010 0
1 1100110011001100 0
z1 @ o 0110011001100110 0
2 1111000011110000 0
z2 @ 20 0101101001011010 0
22 @ 71 0011110000111100 0
5 T2 ® 71 @ T0 1001011010010110 0
£ 3 1111111100000000 0
3 @ 2o 0101010110101010 0
T3 B 21 0011001111001100 0
x5 @ 71 ® To 1001100101100110 0
T3 ® T2 0000111111110000 0
T3 ® T2 @ 20 1010010101011010 0
23 @ T2 ® 71 1100001100111100 0
T3 ® 22 ® 11 D o 0110100110010110 0
3 T30 1010101000000000 4
g Taz121 @ T3 D To 1101010100101010 2
£ T30 ® T1 0110011011001100 4
= z372 ® 1 B To 0110011011001100 4
= T372  T10 0001000100011110 6
2 | w310 @ (22 @ 20)1 B 22 B z0 | 1011100000010010 6



4 Radek Hrbacek, Vaclav Dvorak

arity that can, in general, have greater nonlinearity. This paper deals only with
functions of even number of variables.

Examples of Boolean functions of 4 variables can be seen in Table 1. In
the first 16 rows, all linear functions are listed, followed by several nonlinear
and bent functions, the maximum nonlinearity of 4-variable functions is NL; =
24-1 931 =,

The number of different Boolean functions grows exponentially with the num-
ber of variables: Ny (n) = 22". However, the relative frequency of bent functions
decreases very fast (see Table 2) and thus, for n > 6, identifying them is like
looking for a needle in a haystack.

Table 2. Relative frequency of n-variable bent functions [14].

variables n 2 4 6 8
Boolean functions 24 216 2064 9256
bent functions 23 ~ 298 ~~ 2323 A 21063

relative frequency | 27! &~ 2762 27817 97197

Recently, various approaches based on the properties of bent functions have
been proposed, effectively reducing the number of the Boolean functions needed
to be verified in order to identify bent functions by means of a brute force search
[16, 15]. In some special cases, bent functions can be constructed directly [17].

3 Cartesian Genetic Programming

Cartesian genetic programming - a branch of genetic programming - has been
introduced by Miller [2] and since then it has been successfully applied to a
number of challenging real-world problems [19]. In contrast with GP which uses
tree representation, an individual in CGP is represented by a directed acyclic
graph. This dissimilarity enables the candidate solution to automatically reuse
intermediate results and have multiple outputs, which makes CGP very suitable
for design of various kinds of digital circuits, digital filters, etc.

A candidate program in CGP consist of the cartesian grid of n, X n. pro-
grammable nodes interconnected by a feed-forward network, as it can be seen
in Figure 1. Node inputs can be connected either to one of n; primary inputs
or to a node in preceding | columns, each node has usually a fixed number of
inputs n,; = 2. Each node can perform one of ny;-input functions from the set
I'. Each of n, primary circuit outputs is connected either to a primary input
or a node output, the output connectivity can be additionally restricted by the
o-back parameter. By changing the grid size and the [-back parameter, one can
control the area and delay of the circuit.

Thanks to the fixed topology of CGP programs, each chromosome can be
encoded using an fixed-sized array of n, - n¢ - (nn; + 1) + no integers (ny; inputs
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n, columns

4 F | F | F | F | F
21 7 18
o Py
g~ | Fl I F] J F] I F | F] — |2
S22 4 4 A 74 4 [Z|g
-2 I : g
s S,
Sy —ve

— F | F | F | F _ F

Fig. 1. Cartesian genetic programming scheme.

and one function per each node). Each primary input is assigned a number from
{0, ...,n; — 1} and the nodes are assigned numbers from {n;,...,n; + ny - nec — 1}.
Unlike the genotype, the phenotype is of variable length depending on the num-
ber of inactive nodes (i.e. nodes whose output is not used by any other node
or primary output), which implies the existence of individuals with different
genotypes but the same phenotypes. The existence of individuals with different
genotypes but with the same fitness value is usually referred to as neutrality.
For certain problems, the neutrality significantly reduces the computational ef-
fort and helps to find more innovative solutions [20].

CGP uses a simple mutation based (1+ A) evolutionary strategy as a search
mechanism, the population size 14 \ is mostly very small, typically, A is between
1 and 15. The initial population is constructed randomly in most cases, however,
it can be seeded with a known solution as well (evolutionary optimization) [4].
In each generation, the best individual or a sibling with the same fitness value is
passed to the next generation unmodified along with its A offspring individuals
created by means of point mutation operator. The mutation rate m is usually set
to modify up to 5% randomly selected genes. Usually, no crossover operator is
used in CGP, however, for particular problems (e.g. symbolic regression), special
crossover operators have been investigated [21]. None of them has been confirmed
as useful for other problem classes so far.

In the case of combinational circuit design, the fitness function is given by
the number of correct output bits compared to a specified truth table. All com-
binations of input values (2™ test vectors for a circuit with n; inputs and n,
outputs) have to be fetched to the primary inputs in order to obtain a fully
working circuit. ne - 2™ output bits have to be verified so as to compute the
fitness value.
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4 Bent function synthesis by means of CGP

The principle of bent function synthesis by means of CGP is very similar to the
case of combinational circuit design, since every Boolean function can be imple-
mented by a combinational circuit. The difference lies in the fitness function.
Unlike combinational circuits having fitness value equal to the total number of
wrong output bits, the fitness value of a bent function candidate is its nonlin-
earity, i.e. the lowest Hamming distance from a linear function. Despite the fact,
that bent Boolean functions have single output comparing to combinational cir-
cuits having arbitrary many outputs, the fitness calculation is computationally
more intensive, since the number of linear functions being compared with the
candidate individual grows exponentially with the number of variables.

10
i1
12
0o
3
14

15

Fig. 2. Example of an CGP individual representing the Boolean function f(is,...,%) =

00 = ((’Ll D (’i1 + 13)) (&) i2i5) D10 + (’io + ’i4) with the truth table TTf =
0011110001101001001100110110011011110000101001011111111110101010. This func-
tion has nonlinearity NL; = 28 and thus it is bent.

Figure 2 depicts an example of an CGP individual representing a Boolean
function. Note that the representation is not optimal in terms of area or delay,
since the only significant property is the truth table.

While evaluating an individual’s fitness value, all active genes of the chromo-
some need to be traversed and their output values need to be calculated. The
single output is then compared against all linear functions simply by X0Ring the
values and counting the number of ones. There is no need to compare the values
to the remaining affine functions (the complements of linear functions), since the
following always holds true:

d(fa g) + d(f7 gc) =2", (1>

where f, g are arbitrary n-variable Boolean functions and g is complementary
to g.

The entire evolutionary design process can be accelerated in the same way
as it has been done in the case of combinational circuits [3]. The test vectors
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can be fed to the CGP individual in parallel, from 64 test vectors within a
standard x86-64 register up to 256 test vectors using AVX extension. Moreover,
the population can be split over a number of threads, each thread handling a
portion of the population. Nevertheless, the number of threads is substantially
limited by the population size, which is usually very small in CGP. In order
to take advantage of multicore processors or even computer clusters, additional
level of parallelism has to be exploited. By introducing spatially structured EA
principle, one can scale the evolutionary process onto arbitrary sized computer
cluster. Unfortunately, the absence of crossover operator in CGP is a very limit-
ing factor, since most parallel algorithms are based on combining genotypes from
different spatially isolated populations. Thus, simple isolated islands model with
periodical exchange of the best individual is used [3].

5 Experimental results

In this section, experiments regarding the ability of the proposed approach to
synthesize bent functions are presented. All the experiments were performed on
a computer cluster of 112 nodes with the following hardware configuration: 2x 8-
core Intel E5-2670, 128 GB RAM, 2x 600 GB 15k scratch hard disks, connected
by gigabit Ethernet and Infiniband links.

The performance of the CGP based approach has been examined in terms
of the evolution time. The CGP parameters were set as follows on the basis
of previous experiments with combinational circuits [3]: the functions set I' =
{BUF, NOT, AND, OR, XOR, NAND, NOR, XNOR}, population of 5 individuals, mutation

Table 3. Bent Boolean functions CGP based synthesis times.

n nodes hosts/ time [s]
Nr X Ne threads mean median std

6 1 x50 1/1 0.000819 0.000685 0.000668

8 1 x 100 1/1 0.00470 0.00343 0.00410

10 1 x 150 1/1 0.0602 0.0442 0.0483
1/1 2.0443 1.4057 1.9579

12 1 % 200 1/4 1.1291 0.8392 1.0610
4/1 0.8240 0.6267 0.5405
40/1 0.3859 0.3618 0.1080
1/1 133.202 91.765 146.839

14 1 % 250 1/4 76.040 54.954 72.808
4/1 44.680 35.700 34.165
40/1 15.806 15.255 4.853
1/1 6223.66 4666.82 4734.02

16 1 % 300 1/4 3880.06 3744.23 2571.49
4/1 1855.79 1543.12 1329.10
40/1 636.13 565.68 229.06
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rate 5%. The number of rows was set to n, = 1 and the [-back parameter was
maximal, enabling the greatest connectibility (there were no requirements on the
propagation delay). The size of the grid was empirically chosen for each variable
count n as a optimal choice with respect to the evolution time (about 10x larger
than the average individual found). No limitations on the number of generations
were imposed, each run was successful. The spatially structured implementations
exchanged the best individual over all populations every 100 generations.

The achieved results can be seen in Table 3, four different configurations
of the algorithm were compared — basic single threaded variant, accelerated 4-
thread parallel version, 4-island and 40-island spatially structured variants. For
each configuration, 100 independent runs were performed and common statisti-
cal metrics were calculated — the mean time, the median value and the standard
deviation. The evolution times for functions of less than 12 variables are negli-
gible and cannot be improved by means of thread or process level parallelism,
because there is not enough work to distribute. For higher numbers of variables,
the computational effort grows rapidly and the parallel implementations help
significantly to reduce the evolution time. For example, the design of 16-variable
bent functions can be sped up 10x on the computer cluster in comparison with
the basic single threaded implementation. It shows that even a small number of
isolated populations can more efficiently utilize the power of a multicore proces-
sor than the multithreaded single population approach. Not only the mean and
median times, but also the standard deviations of the evolution times are lower,
increasing the probability of finding a bent function in a limited time.

An example of a bent Boolean function of 16 variables synthesized by means
of CGP can be seen in Figure 3. Its nonlinearity is 32,640 and the CGP repre-
sentation has 24 active nodes with the maximum delay of 7.

Fig. 3. CGP representation of a 16-variable bent Boolean function.
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6 Conclusions

In this paper, a new approach to synthesize bent Boolean functions based on
CGP has been proposed. Bent functions have applications in cryptography due
to their significant properties — when used in a cipher, their nonlinearity makes
cryptanalysis harder. The relative frequency of bent functions among all Boolean
functions of the same arity is rapidly decreasing with the number of variables
and designing such functions is harder and harder.

It was shown, that by using CGP, we are able to routinely design bent
Boolean functions of up to 16 variables. The evolutionary process was sped
up by employing various levels of parallelism in both fitness calculation and the
search algorithm, which gives a great scalability to the proposed approach. Sev-
eral algorithm configurations were experimentally compared and it was shown,
that by using a simple isolated island model, one can significantly reduce the
evolution time. Additional effort has to be made in order to investigate potential
common features shared by bent functions found using independent CGP runs.

Even though bent Boolean functions themselves have great properties, in or-
der to achieve maximum confusion in real cryptographic systems, there should be
a balance between bits that are changed and that are not. This can be achieved
by using balanced functions; however, no bent function is balanced and thus
a trade-off between nonlinearity and balance has to be sought [17,14]. In our
future research, we want to focus on designing such functions by means of evo-
lutionary algorithms. Further work will be also devoted to the optimization of
the synthesized functions in terms of area and delay inspired by fast SAT-based
optimization methods for complex combinational circuits [4].
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Abstract. A new approach to synthesize bent Boolean functions by
means of Cartesian Genetic Programming (CGP) has been proposed
recently. Bent functions have important applications in cryptography due
to their high nonlinearity. However, they are very rare and their discovery
using conventional brute force methods is not efficient enough. In this
paper, a new parallel implementation is proposed and the performance
is evaluated on the Intel Xeon Phi Coprocessor.

1 Introduction

Evolutionary algorithms (EA) have been recently successfully applied to a num-
ber of challenging real-world problems as design and optimization methods. Sev-
eral types of EAs have been successfully employed in the task of evolutionary
circuit design, excellent results have been achieved with the use of Cartesian Ge-
netic Programming (CGP) [1]. CGP has been used to design and optimize com-
binational circuits [2, 3], digital image filters [4, 5], artificial neural networks [6]
and many others.

Recently, CGP has been applied to synthesize bent Boolean functions [7]. It
was shown, that by using CGP, it is possible to routinely design bent Boolean
functions of up to 16 variables. The evolutionary process was sped up by em-
ploying various levels of parallelism in both fitness calculation and the search
algorithm, however, the computational demands were still high.

A continued rise in transistor density allowed the processor manufacturers to
integrate more processor cores; recently, a new many-core architectural concept
emerged. An example of this approach, the Intel Xeon Phi coprocessor, promises
to reach high performance without the need to change the programming model,
at least for well parallelizable problems. We propose a new approach to speed up
the fitness computation by exploiting the massive parallelism of the Xeon Phi
COProcessor.

The paper is organized as follows. Section 2 introduces bent Boolean func-
tions from the mathematical perspective. The principles of evolutionary design
of bent functions and the new approach are discussed in Section 3. Section 4
deals with the Intel Xeon Phi coprocessor. Section 5 is dedicated to experiments
and the achieved results, final conclusions can be found in Section 6.
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2 Bent Boolean functions

Boolean functions are of great importance for various cryptographic algorithms.
Special attention is paid to nonlinear Boolean functions, because their use can
increase the resistance to linear cryptanalysis [8]. This section presents necessary
mathematical definitions to introduce bent Boolean functions [9, 10].

Definition 1 A Boolean function is a function of the form f : D" — D,
where D = {0,1} s a Boolean domain and n > 0 is the arity of the func-
tion. For a function f, let fo = £(0,0,...,0), f1 = f(0,0,...,1), ..., fon_q =
f(1,1,...,1). TT¢ = (farn—1--- fifo) is the truth table representation of the
function f.

Definition 2 A linear (Boolean) function is either the constant 0 function or
the exclusive OR (XOR) of one or more variables. An affine (Boolean) function
s a linear function or the complement of a linear function.

Definition 3 The Hamming distance d(f,g) between two functions f and g
is the number of truth table entries with different values.

Table 1. Examples of 4-variable Boolean functions and their nonlinearities.

function f truth table TTy nonlinearity NLy
0 0000000000000000 0
o 1010101010101010 0
1 1100110011001100 0
1 B To 0110011001100110 0
T2 1111000011110000 0
T2 B To 0101101001011010 0
T2 D21 0011110000111100 0
g T2 D x1 P xo 1001011010010110 0
.5 T3 1111111100000000 0
T3 D To 0101010110101010 0
T3 D11 0011001111001100 0
3 Bz B xo 1001100101100110 0
T3 D T2 0000111111110000 0
T3 D x2 P X0 1010010101011010 0
x3 D x2 ® 1 1100001100111100 0
T3 D2 D a1 P xo 0110100110010110 0
5 T3T0 1010101000000000 4
z T2x121 P T3 B To 1101010100101010 2
% T3T0 D T1 0110011011001100 4
= xr3T2 P xr1 D X0 0110011011001100 4
s T3T2 B T1T0 0001000100011110 6
2 | x3m0 @ (22 ® x0)T1 B 2 ® o | 1011100000010010 6
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Definition 4 The nonlinearity NLy of a function f is the minimum Hamming
distance between the function f and all affine functions.

Definition 5 Let f be a Boolean function of even arity n, f is a bent function
iff its nonlinearity NLy is mazimum among n-variable functions.

Affine functions are not suitable for the use in cryptography, since their usage
leads to a linear attack vulnerability [8]. Therefore, we seek functions that are
as far away (in the Hamming distance) as possible from all the affine functions.
These are the bent functions, their nonlinearity is NL; = 2"~! — 221 where n
variables [11].

Examples of Boolean functions of 4 variables can be seen in Table 1, the
linear functions are listed in the first 16 rows, followed by several nonlinear and
bent functions. The maximum nonlinearity of 4-variable functions is NL; =
21-1 _23-1 = ¢,

The number of different Boolean functions grows exponentially with the num-
ber of variables: N¢(n) = 22". However, the relative frequency of bent functions
decreases very fast (see Table 2).

Table 2. Relative frequency of n-variable bent functions [9].

variables n 2 4 6 8
Boolean functions 24 216 04 2256
bent functions 23 ~ 298 ~ 2323 A 21063

relative frequency 271 x 9762 oTBLT 91497

Recently, various approaches to find bent functions based on the brute force
search method have been proposed [12, 10]. In some special cases, bent functions
can be constructed directly [8]. The evolutionary design has been shown for bent
functions with up to 16 variables [7].

3 Evolutionary design of bent functions

The evolutionary design of bent functions is based on Cartesian genetic program-
ming, it is very similar to the combinational circuits design [2,7]. This section
deals with the main principles of bent functions synthesis by means of CGP and
introduces a new approach to efficient fitness computation.

3.1 Cartesian Genetic Programming

Cartesian genetic programming has been introduced by Miller [1], since then
a lot of challenging problems have been solved by means of CGP [13]. Unlike
GP which uses tree representation, an individual in CGP is represented by a
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Fig. 1. Cartesian genetic programming scheme.

directed acyclic graph, which enables the candidate solution to automatically
reuse intermediate results and have multiple outputs. Thanks to that, CGP is
very suitable for the design of digital circuits.

A candidate program in CGP is composed of the cartesian grid of n, X n.
programmable nodes interconnected by a feed-forward network (see Figure 1).
Node inputs can be connected either to one of n; primary inputs or to an output
of a node in preceding I columns. Each node has usually a fixed number of inputs
nyi = 2 and can perform one of ny;-input functions from the set I'. Each of n,
primary circuit outputs can be connected either to a primary input or to a node
output. By changing the grid size and the [-back parameter, one can constrain
the area and delay of the circuit.

The fixed topology of CGP programs allows to use a fixed-sized array of
Ny * Ne - (Npi + 1) + e integers to encode the chromosome. Each primary input
is assigned a number from {0,...,n; — 1} and the nodes are assigned numbers
from {n, ..., ni + ny - nc — 1}. The phenotype is of variable size depending on the
number of active nodes (i.e. nodes which are necessary to compute the primary
outputs), which implies the existence of individuals with different genotypes but
the same phenotypes.

CGP uses a simple mutation based (1 + ) evolutionary strategy as a search
algorithm. The population size 1 + A is often very small (X is typically between
1 and 15). The initial population is constructed either randomly or it can be
seeded with a known solution as well (evolutionary optimization) [3]. In each
generation, the best individual or a sibling with the same fitness value is passed
to the next generation unmodified along with its A mutants. The mutation rate
m is usually set to modify up to 5% randomly selected genes.

3.2 Fitness function

The principle of bent function synthesis by means of CGP is very similar to
the case of combinational circuit design [2], since every Boolean function can
be implemented by a combinational circuit. The difference lies in the fitness
function. Unlike combinational circuits having fitness value equal to the total
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number of wrong output bits, the fitness value of a bent function candidate is
its nonlinearity, i.e. the lowest Hamming distance from all affine functions:

f(g) = NLy. (1)

The fitness calculation is computationally very intensive, since the number
of affine functions being compared with the candidate individual grows expo-
nentially with the number of variables and the size of the truth table grows
exponentially as well.

3.3 Efficient fitness evaluation

While evaluating an individual’s fitness value, all active genes of the chromosome
need to be traversed and their output values need to be calculated. The single
output is then compared against all linear functions simply by X0Ring the values
and counting the number of ones. There is no need to compare the values to
the remaining affine functions (the complements of linear functions), since the
following always holds true:

d(fvg)+d(f7gc) = 2", (2)

where f, g are arbitrary n-variable Boolean functions and g. is complementary
to g.

The entire evolutionary design process can be accelerated in the same way as
it has been done in the case of combinational circuits [2]. The test vectors can
be fed to the CGP individual in parallel, from 64 test vectors within a standard
x86-64 register up to 256 or 512 test vectors using AVX extension or AVX-512
respectively.

In our previous work, the linear functions had to be precalculated and they
had to reside in the memory [7]. However, the memory requirements of this
approach are increasing rapidly with the number of input variables. The total
memory requirements including the primary inputs, all linear functions and the
CGP nodes are equal to M bytes (see Table 4). While increasing the
number of input variables, the memory portion allocated for the linear functions
becomes major.

Significant memory savings can be achieved by introducing a new approach to
evaluate the function’s nonlinearity. Let L. = Lo be a n-variable linear Boolean
function given uniquely by its code ¢ € {0, ...,2" — 1}, alternatively represented
as a binary string C = ¢, _1...co € {0,1}". The function L. is then given by
the equation:

LC(.’L’n,h...?.’L’()) =Ty, @”’@l’im, (3)

where i; € {0,...,n — 1} denote all positions in C, such as ¢;; = 1.

Note that all linear Boolean functions of n variables have an unique code
c €{0,...,2" — 1} and vice versa, each ¢ € {0,...,2" — 1} is a valid code for an
n-variable linear function. Thus, while evaluating the function’s nonlinearity, all
the codes ¢ € {0, ...,2" — 1} have to be processed. The computed nonlinearity is
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Table 3. Function g nonlinearity computation with the use of Gray encoding.

gray code function ‘ XOR ‘ result

o | 00002 =0 Lo=0 0 g Lo
"% 00015 =1 L1 =wx0 To g Ly
,_% 00115 =3 Ly =21 ® x0 1 g® L3
* 1 00102 =2 Lo =z o gD Lo
fe g® Le

; 01102 =6 L6 2332@1‘1 T2 g@Lﬁ
§ 0111, =7 L=z x1 D xo Zo Q®L7
ﬁ 01012 =5 L5 = x2 @ xo Tl g (&) L5
01002 =4 Ly = x2 Zo g® Ly

fa | gD fa
2 11002 =12 L12 = x3 P x2 T3 g (&) L12
§ 1101, =13 L3 = x3 ® 22 ® 20 Zo gD L3
S| 1111 =15 | Lis=23P 2P x1 P 0 1 g@ Lis
1110, = 14 Lis =23 12 D21 Zo Q@LM
f1a g® Lia
S; 10102 =10 L10 =x3PD X1 D) g D L10
§ 1011, =11 L1 =x3® 21 ® 20 Zo Q@Ln
<= | 10012 =9 Ly =1x3® o X1 g® Lo
10002 = 8 Lg = x3 Zo g® Ls

not dependent on the order, in which we proceed, but there is a permutation we
can use with advantage. If we proceed in the order of the Gray code, each two
successive linear functions differ in just one variable. The evaluation process is
illustrated in Table 3. Starting with the function Lgggg, the subsequent functions
are Looo1, Looi1, Looto, Lo11os Lo111, -

By following the proposed procedure, one can compute the Hamming dis-
tances of the candidate function from all the linear functions (and their comple-
ments). There is no need to store the linear functions in memory, since all the
XOR operations are performed with the candidate function’s truth table and the
input variables. This leads to a significant reduction of memory requirements,
this approach needs only M bytes of memory. Even for a high number
of input variables, the required memory portion fits to the cache! (see the com-
parison in Table 4), resulting in a performance increase. Moreover, the number
of load operations is substantially reduced due to the sequential nature of the
evaluative process.

The advantage of the sequential calculation is not noticeably eliminated even
in the case of a parallel implementation. The linear functions can be uniformly
divided between the threads, such that each thread processes the same number
(except for indivisible cases) of successive linear functions (ordered with the Gray

! Considering a Xeon E5-2665 processor with 32kB L1, 256 kB L2 and 20 MB shared
L3 cache.
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Table 4. Memory requirements (for 10 % active nodes in average).

active | without optimization | with optimization
n nodes

nodes memory ‘ fits to memory ‘ fits to
8 | 1x100 10 8.56 kB L1 0.56 kB L1
10 | 1 x 150 15 131.13kB L2 3.13kB L1
12 | 1 x 200 20 2.02MB L3 16.00 kB L1
14 | 1 x 250 25 32.08 MB M 78.00kB L2
16 | 1 x 300 30 512.36 MB M 368.00kB L3
18 | 1 x 350 35 8.00GB M 1.66 MB L3

code). The only drawback of the parallel implementation lies in the initialization
of the threads — each thread has to start with the last linear function of the
preceding thread (but it is possible to precalculate it).

4 Intel Xeon Phi coprocessor

After a few decades of increasing the transistor density together with the op-
erating frequency, the processor manufacturers had to come with a new ap-
proach to increase the performance due to the so called ”Power Wall”. While
the single-threaded performance grew up rather slowly, the power consumption

%) %)
AE
core L2 ceeen core L2 8 8
PCle
on-die ,

S4aan

Sdaan

[

- H II
/s.
mguuo”"a
II H -

GDDRS

GDDR3S

71 Q100 | 1 2100

S4aan
S4aan

Fig. 2. Xeon Phi overall architecture.
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of the last processors of the ”era of higher processor speeds” exceeded reasonable
limits. Since then, a greater emphasis was put to multi-core and power efficient
processor architectures along with new parallel programming models and tools
(libraries, compilers etc.) [14].

A continued rise in transistor density allowed to introduce even more paral-
lelism; besides general-purpose computing on graphics processing units (GPGPU),
a new many-core architectural concept emerged. Intel Xeon Phi coprocessor is
an example of this approach, it has been designed for applications that can ex-
ploit vector instructions and are scalable enough to efficiently run in a huge
number of threads [15]. Unlike GPGPU, the user can exploit standard program-
ming model and thus reuse a lot of CPU optimized code. However, to reach the
maximum performance, one has to seriously deal with manual optimizations. A
deep knowledge of the microarchitecture is needed to achieve that.

The overall architecture of Xeon Phi coprocessor is depicted in Figure 2. The
first generation code-named Knights Corner is made at a 22 nm design process,
featuring 57-61 cores clocked at 1 GHz or more depending on the coprocessor
model. The cores are interconnected by a high-speed bidirectional ring providing
cache coherency across the entire coprocessor using a distributed Tag Directory
(TD) mechanism. The communication over the on-die interconnect is transparent
to the code allowing to employ the shared memory programming model. Up to
16 GDDR5 memory channels can be accessed over the ring [15].

The core’s microarchitecture (see Figure 3) is based on the Intel Pentium
P54c in-order superscalar architecture, significantly enhanced with the 64b sup-
port, 512b wide vector instructions (AVX-512), multithreading (up to 4 threads

thread 0 IP . .
read 1TP instruction
thread 2 IP L1 TLB
thread 3 IP 32 kB cache
pipe U pipe V TIjB
! ! s L2 512kB L2
: : * * L2 ctrl
| VPU RF x87 RF| | scalar RF | TLB
x87 ALU 0| [ALU 1
VPU
512b SIMD data
L1 TLB
32 kB cache ; 1
COre|  on-die interconnect

Fig. 3. Xeon Phi core architecture.
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per core), power management and much more. Two instructions can be executed
in parallel, one on the U-pipe and one on the V-pipe, if there is no conflict ac-
cording to the pairing rules. The vector processing unit (VPU) is only available
on the U-pipe. Scalar instructions have 1-cycle latency, while most vector in-
structions have 4-cycle latency with 1-cycle throughput. In order to fully utilize
the execution units, at least two threads should be executed on each core due to
a two-cycle latency of the instruction decoder.

The VPU is supplemented with a large register file containing 32 512b vector
data registers and 8 16b vector mask registers for each HW thread separately.
Each core includes 32kB L1 data and instruction caches and an inclusive 512kB
L2 cache with a cache coherency protocol. The data caches don’t implement
any sophisticated prefetching mechanism, but there are special instructions for
manual prefetching.

4.1 Optimizations

The evolutionary design of bent functions is based on computing the nonlin-
earities of candidate functions, which involves two main operations — XOR and
POPCNT (population count, the number of ones). Despite the existence of a spe-
cial POPCNT instruction, it can be implemented more efficiently on Xeon Phi.
The principle is demonstrated in the Figure 4, the following listing shows a
basic implementation [16]:

uint32_t popcnt(uint32_t x)

{
x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x & OxOFOFOFOF) + ((x >> 4) & OxOFOFOFOF);
x = (x & OxOOFFOOFF) + ((x >> 8) & O0xO0FFOOFF);
x = (x & 0x0000FFFF) + ((x >> 16) & O0x0000FFFF);
return x;

}

The algorithm is based on the divide and conquer strategy, in which the
original problem (summing 32 bits) is divided into two subproblems (summing
16 bits); the subresults are then summed. This strategy is applied recursively,
breaking the 16b fields into 8b, 4b, and so on [16]. This code can be further opti-
mized by removing some unnecessary AND operations and shifts and vectorizing
the code. The resulting implementation uses intrinsic AVX-512 instructions, 4x

[01 01 101 100101 1 1 0] 0+1+0+1+1+0+1+1+0+0+1+0+1+1+1+0
[0 1Jo 1Jo 1]t oo oo 1]1 oJo 1] 1+1+1+2+0+1+2+1
[0 01 0fo o1 1Jo oo 1Jo o 1 1] 2+3+1+3

[00 0001 01Jo0o000T100] 5+4

[00o0000000000100T] 9

Fig. 4. Counting 1-bits using the divide and conquer strategy.
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loop unrolling and memory prefetching. To compute the Hamming distance be-
tween two bit arrays, only 24 AVX, 8 load, 4 store and 8 prefetch instructions
are needed for each 2048b block.

5 Experimental results

In this section, experiments regarding the performance (in terms of the evolu-
tion time) of the proposed approach to synthesize bent functions are presented.
The CGP parameters were the same as for our previous experiments [7]: the
functions set I" = {BUF, NOT, AND, OR, XOR, NAND, NOR, XNOR}, population of 5 indi-
viduals, mutation rate 5 %. The number of rows was set to n, = 1 and the I-back
parameter was maximal. No limitations on the number of generations were im-
posed, each run was successful. Each experiment was run 100x and the mean
times were computed.

First, the comparison of the efficient fitness calculation approach (see Section
3.3) and the former implementation [7] is given in Table 5. For smaller number of
variables (8-12), the former version is faster, but after exceeding the cache size
(see Table 4), the new approach clearly outperforms the former implementation.

Table 5. Efficient fitness calculation analysis.

nodes mean time [s]
n speedup [-]
Nr X Ne former ‘ new
8 1 x 100 0.00470 0.00784 0.599
10 1 x 150 0.0602 0.1099 0.548
12 1 x 200 2.0443 2.1019 0.973
14 1 x 250 133.202 67.242 1.981
16 1 x 300 6223.66 1156.96 5.379

The performance of the Intel Xeon Phi 5110P (60 cores, 1.052 GHz) has been
compared with a typical computer cluster node consisting of two Intel Xeon E5-
2665 processors (8 cores, 2.4 GHz) and the impact of the manual optimizations
according to Section 4.1 has been analysed. The evolutionary design utilized all
available processor cores, i.e. 16 threads in the case of CPU and 240 threads

Table 6. Xeon Phi performance in terms of evolution time.

" nodes mean time [s] speedup [-]

e X ne CPU MIC | MICopt. | MIC | MIC opt.
12 1 x 200 0.73 6.75 0.84 0.11 0.87
14 1 x 250 9.51 53.17 3.62 0.18 2.63
16 1 x 300 109.62 122.03 40.88 0.89 2.68
18 1 x 350 2536.15 1764.32 814.02 1.44 3.12
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in the case of Xeon Phi implementation. The achieved speedup of 3.12 for 18-
variable bent functions is excellent considering the usual speedup of 2-3 reported
by the literature [17]. The performance of the non-optimized version (the exactly
same implementation as the CPU version) was very poor, clearly demonstrating
the need for manual tuning.

6 Conclusions

Recently, a new approach to synthesize bent Boolean functions has been pro-
posed [7]. However, the proposed implementation was not efficient enough for
higher numbers of variables because of high memory requirements and compu-
tational demands.

Bent Boolean functions are of great importance for various cryptographic al-
gorithms due to their properties — their nonlinearity makes cryptanalysis harder.
The relative frequency of bent functions among all Boolean functions of the same
arity is rapidly decreasing with the number of variables. Designing such functions
is a computationally demanding task, but it has been shown that the evolution-
ary design can significantly outperform the state of the art methods [7].

In this paper, a new approach to speed up the evolutionary design of bent
Boolean functions has been proposed. Besides the performance of the sequen-
tial implementation, which has been improved significantly for higher numbers
of variables, the parallel efficiency of the new approach is substantially better
allowing to exploit the many-core architecture of the Intel Xeon Phi coprocessor.

The performance of the Xeon Phi has been compared with a typical com-
puter cluster node consisting of two Intel Xeon processors. Thanks to the same
programming model (shared memory), the same implementation can be run on
both targets. However, in order to reach the peak performance of the Xeon
Phi, additional manual optimizations are needed. The simplified Knights Corner
microarchitecture (especially the in-order character of the superscalar pipeline)
is obviously a trade-off between the system complexity and user effort. Better
code portability could be expected from the upcoming generation of Xeon Phi
(Knights Landing) hopefully based on an out-of-order microarchitecture.
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ABSTRACT

Evolutionary design of digital circuits has been well estab-
lished in recent years. Besides correct functionality, the de-
mands placed on current circuits include the area of the
circuit and its power consumption. By relaxing the func-
tionality requirement, one can obtain more efficient circuits
in terms of the area or power consumption at the cost of an
error introduced to the output of the circuit. As a result,
a variety of trade-offs between error and efficiency can be
found. In this paper, a multi-objective evolutionary algo-
rithm for the design of approximate digital circuits is pro-
posed. The scalability of the evolutionary design has been
recently improved using parallel implementation of the fit-
ness function and by employing spatially structured evolu-
tionary algorithms. The proposed multi-objective approach
uses Cartesian Genetic Programming for the circuit repre-
sentation and a modified NSGA-II algorithm. Multiple iso-
lated islands are evolving in parallel and the populations
are periodically merged and new populations are distributed
across the islands. The method is evaluated in the task of
approximate arithmetical circuits design.

Categories and Subject Descriptors

B.6.0 [Hardware]: Logic Design—General; 1.2.8 [Comput-
ing methodologies]: Artificial intelligence—Problem Solv-
ing, Control Methods, and Search

Keywords

Cartesian Genetic Programming; Parallel Evolutionary Al-
gorithms; Multi-objective Optimization; Cluster; Combina-
tional Circuit Design; Approximate Circuits

1. INTRODUCTION

While evolutionary design of digital circuits has been well
established in the past, the correct functionality has always
been an essential requirement put on the circuits. The other
parameters, like the area, delay or power consumption, have
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been considered as secondary and have not been optimized
as long as a fully working solution has been found. Recently,
power efficiency has become the most important parameter
of many real circuits. At the same time, a wide range of
applications capable of tolerating imperfections (e.g. multi-
media) has spread out. As a consequence, a new research
field has been brought into being — the approzimate comput-
ing [3].

The approximate digital circuits are designed in such a
way that the functionality specification is not fully met in
exchange for savings in terms of area, delay, power consump-
tion etc. Although the circuit is not working properly, it can
still be suitable for applications in which certain level of error
is not recognizable (e.g. human perception and multimedia
applications). Moreover, in some cases (e.g. low battery),
the users could knowingly tolerate even more inaccuracy in
order to extend the battery life.

After the first manual attempts to circuit approximation
suffering from low scalability and efficiency [2, 7], a new class
of systematic methods has been developed. The Systematic
methodology for Automatic Logic Synthesis (SALSA) uses a
quality function which decides whether a predefined quality
constraint is met. The algorithm is allowed to modify the
circuit as long as the quality constraint is not exceeded [19].
Another approach, Substitute-and-Simplify (SASIMI), looks
for signal pairs having similar values with a high probability.
By substituting one signal for the other, a part of the circuit
can be removed resulting in area and power savings at the
cost of an error introduced to the output [18].

The aforementioned methods have to be applied repeat-
edly with different error constraints if a set of trade-offs is
demanded. In this paper, we propose a multi-objective evo-
lutionary design approach which is capable of providing a
whole set of trade-offs between a set of conflicting objec-
tives. The proposed method is based on Cartesian Genetic
Programming (CGP), widely used for the design of digital
circuits, and a modified NSGA-IT algorithm providing the
multi-objective approach.

Since the evolutionary design is very computationally de-
manding [6], much emphasis has been put to the parallel
implementation of the method. In order to make full use
of a computer cluster, a spatially structured evolutionary
algorithm has been introduced to the design process.

The proposed method has been evaluated in the task of
approximate arithmetical circuits design with respect to three
objectives — error, area and latency.



2. EVOLUTIONARY DESIGN OF DIGITAL
CIRCUITS

In our previous work, we used Cartesian genetic program-
ming to either design digital circuits from scratch [6] or to
optimize existing circuits [14]. CGP, a branch of genetic
programming, has been introduced by Miller [9]. While GP
uses tree representation, an individual in CGP is represented
by a directed acyclic graph of a fixed size. The candidate
solution can have multiple outputs and intermediate results
can be reused, which makes CGP very suitable for the design
of digital circuits, e.g. arithmetic and logic circuits, digital
filters, cryptography related Boolean functions, etc. [10, 5].

CGP uses a fixed-sized cartesian grid of n, X n. nodes
interconnected by a feed-forward network (see Figure 1).
Node inputs can be connected either to one of n; primary
inputs or to an output of a node in preceding | columns.
Each node has a fixed number of inputs ny; (usually nn; = 2)
and can perform one of the functions from the set I". Each
of n, primary circuit outputs can be connected either to a
primary input or to a node’s output. The area and delay of
the circuit can be constrained by changing the grid size and
the [-back parameter.

The genotype is of fixed length, whereas the phenotype
is of variable length depending on the number of inactive
nodes, i.e. nodes whose output is not used by any other
node or primary output. This implies the existence of indi-
viduals with different genotypes but the same phenotypes,
which is usually referred to as neutrality [20]. It was shown
that for certain problems the neutrality significantly reduces
the computational effort and helps to find more innovative
solutions [8].

CGP uses a simple mutation based (1 + \) evolutionary
strategy as a search mechanism. The population size 1+ A
is mostly very small, typically, A = 4. The initial popula-
tion is constructed either randomly (evolutionary design) or
by mapping of a known solution to the CGP chromosome
(evolutionary optimization). In each generation, the best in-
dividual is passed to the next generation unmodified along
with its A offspring individuals created by means of point
mutation operator. In case more individuals with the best
fitness exist, a randomly selected one is chosen. The mu-
tation rate m is usually set to modify up to 5% randomly
selected genes.

In the case of digital circuit evolution, the fitness function
usually corresponds to the quality of the candidate circuit
measured as the number of correct output bits compared to
a specified truth table (i.e. the Hamming distance). In order
to obtain a fully working circuit, all combinations of input

n, columns
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Figure 1: Cartesian genetic programming scheme.
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values have to be evaluated. For a circuit with n; inputs
and n, outputs, 2™ test vectors need to be fetched to the
primary inputs and ne - 2™ output bits have to be verified
so as to compute the fitness value.

The fitness calculation is computationally very intensive,
since the number of test vectors grows exponentially with
the number of primary inputs. Recently, it has been sped
up by applying parallelism at various levels (data, thread,
process) [6, 5] or by introducing formal methods, e.g. SAT
solvers [14] or Binary Decision Diagrams (BDD) [16].

Besides the correct functionality, the demands placed on
current digital circuits include the area of the circuit and
its power consumption. The power consumption of digi-
tal circuits consists of two major components — the static
and the dynamic power dissipation. The dynamic dissipa-
tion occurs while changing the state of the gates and thus
it is highly dependent on the character of the gate’s input
signals. On the contrary, the static power consumption is
rather constant and depends on the area of the circuit. The
static dissipation has been substantially reduced by intro-
ducing the CMOS technology, which uses complementary
connected transistors. However, with the decreasing size of
the semiconductor technology process, the static dissipation
is increasing due to rising leakage currents and is becoming
the major component of the power consumption. Therefore,
when evolving digital circuits with respect to the power con-
sumption, the area of the circuit can be used to estimate the
power consumption [13].

Another important characteristic of a digital circuit is the
latency, i.e. the interval between the stimulation of the in-
puts and the response on the outputs. The latency can be
determined by finding the longest path from the inputs to
the outputs with respect to particular latencies of the gates
along the path. Since the propagation delay of a gate differs
for different transitions on the inputs, computing the total
circuit latency would require simulating all possible input
transitions on the whole circuit. The number of different
transitions Ny grows rapidly with the number of primary in-
puts ni: Ny = 2™-(2™ —1). Applying all these combinations
is computationally intensive, therefore, an estimation must
be used instead. In this paper, we assign each node function
a fixed latency. When computing the overall circuit latency,
the longest path from an input to an output considering the
latencies of all gates along the path is considered.

2.1 Approximate circuits

Many computer systems or programs have the ability to
tolerate some loss of accuracy or quality in the computa-
tional process and still produce meaningful and useful re-
sults. Significant area or energy-efficiency improvements can
be achieved by relaxing the functionality requirement. For
example, the growing popularity of portable multimedia de-
vices offers a great scope for approximate computation, since
human perception is limited and the users are ready to tol-
erate degraded quality of the multimedia content (e.g. video
playback) in exchange for longer battery life. Automatic
approximate computing techniques are being developed to
speed up the design process and to find the trade-offs be-
tween the resources being shrunk (e.g. energy, time, area)
and the inaccuracy of the computation.

Recently, several single-objective evolutionary approaches
to design approximate circuits have been introduced [12].
Different error metrics have been utilized, starting with the



Hamming distance and introducing new metrics more suit-
able for arithmetical circuits, e.g. the worst case error, mean
absolute error, relative error etc. [15]. In this paper, we use
a compromise error metric which penalizes both the mean
error and the isolated deviations — the mean squared error:

. . 2
zVi (Ot()r)ig - Oi(iP)PTOX)

fmsc = on; )

(1)

where O

orig
correct output and OQQPTOX is the individual’s i-th output.
The choice, which error metric to use, always depends on a
concrete application.

Although several attempts to use multi-objective evolu-
tionary algorithms exist [11], recent techniques have been
based mainly on multi-phase single-objective approaches [15]
or have used constrained resources in order to find approx-
imate circuits with smaller area or power consumption [12,
17].

is the decimal representation of the i-th circuit

3. MULTI-OBJECTIVE CGP

Unlike the single-objective optimization, which enables to
compare any two candidate solutions and decide which one
is better, the multi-objective optimization leads to the exis-
tence of a whole range of trade-off solutions, if the objectives
are conflicting. In the case of digital circuits design, the bet-
ter the circuit works, the larger area and power consumption
it has.

Many multi-objective evolutionary algorithms have been
proposed, most of them are based on the idea of Pareto
dominance. The solution p dominates the solution ¢ if p
is no worse than ¢ in all objectives and p is strictly better
than ¢ in at least one objective. The principle can be seen
in Figure 2, the Pareto optimal solutions are not dominated
by any other solutions and form the so called Pareto front.

3.1 NSGA-II and its modifications

One of the most popular multi-objective evolutionary al-
gorithms is the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [1]. It is based on sorting individuals according to
the dominance relation into multiple fronts. The first front
Fy contains all Pareto optimal solutions. Each subsequent
front F; is constructed by removing all the preceding fronts
from the population and finding a new Pareto front. Each
solution is assigned a rank according to the front it belongs
to, the solutions from the front F; have the rank equal to i.
The NSGA-II fast non-dominated sort (see Algorithm 1) is

£ e Pareto optimal
2 .
° o dominated
o
. o o
.
o
) o
°
.
Ji

Figure 2: Pareto optimal and dominated solutions.
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very efficient, the overall complexity is O(MN?), where N
is the population size and M is the number of objectives.

fast-non-dominated-sort(P)
foreach p € P do

Fo=10
Sp=0
ny =0
foreach ¢ € P do
if p < ¢ then
| Sp=25pu{q}
end

else if ¢ < p then
| np=mnp+1

end
end
if ny, = 0 then
Prank = 0
Fo = Fy U {p}
end
end
i=0
while F; # () do
Q=10

foreach p € F; do
foreach q € S do

ng =nqg—1
if ng = 0 then

Grank = i+ 1
Q=QU{dq}
end
end
end
t=1414+1
F,=Q
end
F=(Fo, I,...)
return F'

Algorithm 1: Fast non-dominated sort.

The solutions within the individual fronts are sorted ac-
cording to the crowding distance metric, which helps to pre-
serve a reasonable diversity along the fronts [1]. The crowd-
ing distance is the average distance of two solutions on either
side along each of the objectives. The boundary solutions
are assigned an infinite crowding distance, which ensures
that these solutions will dominate the inner solutions (see
Algorithm 2).

crowding-distance-assignment(P)

L= 1|

foreach p € P do
| Ppaist =0

end

foreach objective m do
P = sort(P, m)
P [O]dist =
[l —1]g =00 foriin 1 tol—2do
Plilgisr = Plilaiss + )
(Pli+ 1], — Pli—1],)/(fm™ = fn™)
end
end

Algorithm 2: Crowding distance assignment.

Any solution from the front F; always dominate any solu-
tion from Fj, j > 4. Within the fronts, solutions with higher
crowding distance are preferred.

Most real applications require to be able to constraint the
solutions on particular objectives. NSGA-II offers a sim-



ple way to handle the constraints and keep the algorithm

complexity low. Each solution can be either feasible or in-

feasible, the infeasible solutions are assigned a constraint vi-

olation according to the Algorithm 3. The constraints on

the objective m are denoted by <c§‘,‘f", ci‘,‘f‘x>.
constraint-violation-assignment (P)
foreach p € P do

Peonstr_viol = 0
foreach objective m do

if prm < c™ then
‘ Pconstr_viol = Pconstr_viol + (Cﬁm - pm)/frrrrllax

end
if pm > c®* then
‘ Pconstr_viol = Pconstr_viol 1 (p’m - Cmax)/f’,nrzax
end
end

end

Algorithm 3: Constraint violation assignment.

When comparing two solutions, a feasible solution is al-
ways preferred. If both solutions are infeasible, the solution
with smaller constraint violation is better. In the opposite
case, when both solutions are feasible, the dominance de-
pends on the rank and the crowding distance.

Since the original NSGA-II algorithm was based on a ge-
netic algorithm, there must have been changes to use it with
CGP [4, 11]. Firstly, due to the absence of the crossover op-
erator in CGP, the offspring population is constructed only
using mutation. Secondly, the crowding distance is often
not sufficient for CGP to maintain the diversity of the pop-
ulation. The neutrality present in CGP causes a premature
convergence, the Pareto fronts are flooded by individuals
that are genotypically distinct but phenotypically identical.
We propose to introduce a new equivalence rank, which en-
ables to put the equivalent solutions in an order and preserve
the neutrality character of the CGP. The principle can be
seen from Algorithm 4. At the beginning, the population
is randomly shuffled. Then, for each individual, the equiv-
alence rank of all individuals (except for already processed
ones) with the same fitnesses is incremented.

equivalence-rank-assignment(P)

foreach p € P do
‘ Peq_rank = 0
end
random_shuffle(P)
Q=P
foreach p € P do
Q=0Q\{p}
foreach q € Q do
if p = ¢ then
‘ Geq_rank = Gdeq_rank +1
end
end
end

Algorithm 4: Equivalence rank assignment.

When comparing two individuals, the individual with a
lower equivalence rank always dominates the other one. Two
individuals with the same equivalence rank are compared
using the standard constrained-domination rules. As a con-
sequence, none of the fronts contains individuals with the
same fitness and the dominance relation among the individ-
uals with the same fitness is random.
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Figure 3: NSGA-II algorithm scheme.

Unlike the original NSGA-II algorithm, which uses a pop-
ulation of parents P and an offspring population @, both
of size N, our modification enables us to set the offspring
size independently. In each generation, N, individuals are
selected as parents and Ny offspring individuals are created
by means of mutation. Besides the tournament selection, we
use a new deterministic selection mechanism, which cycli-
cally takes the individuals from the parent population P
and creates mutants.

The aforementioned principles make the multi-objective
approach even more similar to the standard CGP. The over-
all algorithm works as follows:

nsga-ii( Py, Q)
Ry =P UQ:
equivalence-rank-assignment (R¢)
constraint-violation-assignment(Ry)
F = fast-non-dominated-sort(Ry¢)
Py1=0
=0
while IPt+1| + IFZI < Np do
crowding-distance-assignment (F;)
Piy1 = P41 UF;
1=1+1
end
crowding-distance-assignment (F;)
sort(F;, <n)
Pip1=Py1 UF[0: (Np — |Prga]| — 1)
Qt4+1 = create-offspring(Pry1)
t=t+1

Algorithm 5: Modified NSGA-II.

In each generation ¢, the populations P; and @ form an
unified population R;. The individuals in R; are assigned
the equivalence rank and the crowding distance. Then, the
Pareto fronts are identified and the new parental population
P44 is filled with the individuals from the first fronts until
P41 is not overcrowded. The individuals from the last used
Pareto front are sorted using the crowding distance and a
fraction of them is selected just to fill the population Py
(Figure 3).

4. PARALLEL MULTI-OBJECTIVE CGP

The evolutionary design is a very computationally de-
manding approach. In order to reduce the design time, one
has to deal with a parallel implementation of the fitness
function or search algorithm modifications. In our previous
work, we have introduced parallelism at various levels (in-



struction, data, thread and process) to the CGP and sped
up the design process significantly [6, 5]. However, the work
was focused on single-objective design of (non-approximate)
digital circuits having several specifics, e.g. small population
size or the Hamming distance as the fitness function.

In the case of approximate arithmetical circuits, the fit-
ness function (Equation 1) is much more computationally
demanding and the implementation much less efficient. On
the other hand, the population size of the multi-objective
approach is much bigger, which makes the parallel process-
ing of the individuals more efficient.

Besides the parallel implementation of the fitness evalua-
tion, additional speed-up can be achieved by employing spa-
tially structured evolutionary algorithms. Since CGP does
not use any crossover operator, there is not a large scope of
methods. However, a simple isolated islands model with a
periodical exchange of the best individuals across the islands
has been confirmed to be beneficial [6].

We propose to extend the multi-objective approach by
introducing the isolated islands model. Unlike the single-
objective case, the multi-objective algorithm requires to ex-
change the whole population. The Algorithm 6 is very sim-
ilar to the single-population case, the only difference is that
each G, generations the populations are unified across the
islands and a common Pareto front is identified on each is-
land. Since the equivalence rank is assigned randomly to
the individuals with the same fitness, the Pareto fronts on
individual islands are phenotypically identical, but genotyp-
ically distinct. This principle should avoid the algorithm
to converge prematurely and help to preserve the diversity
across the populations.

nsga-ii-islands( P, Q+)
Ry =P UQ:
if t mod G, = 0 then
| R: = MPI_Allgather(R:)
end
equivalence-rank-assignment (Ry)
constraint-violation-assignment (R )
F = fast-non-dominated-sort(R¢)
Piy1=10
i1 =0
while ‘Pt+1| + |F7,| S Np do
crowding-distance-assignment (F;)
Py =P UF;
i=1+1
end
crowding-distance-assignment (F;)
sort(Fj, <n)
Py =P UF; [0: (Np = |Prya| — 1))
Qt4+1 = create-offspring(Pry1)
t=t+1

Algorithm 6: NSGA-II with the isolated islands model.

5. EXPERIMENTAL RESULTS

In this section, experiments regarding the multi-objective
design of arithmetical circuits are presented and the pro-
posed modifications to the NSGA-II algorithm are exam-
ined. All experiments were performed on a computer cluster
of 180 nodes with the following hardware configuration: 2x
8-core Intel E5-2665, 64 GB RAM, connected by Infiniband
links. Each node was fully loaded with 16 threads, the eval-
uation of the population was parallelized using OpenMP.

The circuits were design with respect to 3 objectives — the
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mean squared error (as defined in Equation 1), the area of
the circuit (approximate number of transistors considering
common CMOS gates) and the latency (see Section 2). The
CGP parameters were set similarly to the single-objective
case [6], i.e. T' = {BUF, NOT, AND, OR, XOR, NAND, NOR, XNOR} and
the mutation rate was set to 5%, we used a linear CGP
(n: = 1). The number of columns was n. = 800 in the
case of the 4-bit multiplier and n. = 100 in the case of the
adder. All experimental results were obtained by running
100 independent evolutionary runs.

5.1 Selection type

In Section 3.1, we have proposed a modification to the
NSGA-II selection mechanism — a new deterministic selec-
tion. Furthermore, the offspring size Nq is not necessarily
equal to the parental population size N;,. In order to draw a
comparison between the original tournament selection and
the new deterministic selection, a number of experiments
were carried out, the task was to design a combinational
4-bit multiplier.

The parental population size was set to N, = 50 and
the offspring size was Ngq € {50, 60, ...,150}, the generation
count was G = 5000. The same experiments were run for
both tournament and deterministic selection.

The results can be seen in Figure 4. The quality of the
resulting Pareto front was measured in terms of the Pareto
front size (number of individuals) and the best error achieved.
No matter how imperfect such comparison is, some trends
can be inferred. The tournament selection is beneficial in the
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cases, when N is not an integer multiple of N,. Otherwise,
both selection types evince about the same performance.

Similarly to the single-objective case, one can adjust the
number of generation and the population size so as the com-
putational effort is the same. In our second experiment, the
population size was fixed (N, = 50, Nq = 50), but the num-
ber of generations was G € {5000, 6000, ...,15000}.

As can be seen in Figure 5, there is no conclusive differ-
ence between the two selection types. However, when com-
paring with the previous experiment (Figure 4), increasing
the offspring size seems to be slightly more advantageous
than increasing the number of generations.

5.2 Number of Islands

Recently, we have shown that a spatially structured evo-
lutionary algorithm can speed up the evolutionary design of
combinational circuits in comparison with a single-population
process [6]. The Figure 6 shows the influence of the number
of islands on the mean error achieved during the evolution-
ary design of a 4-bit multiplier. The single-population ap-
proach was compared to the multiple islands model with 2,
4 and 8 islands. The populations (each of N, = 100 parental
and Nq = 100 offspring individuals) were exchanged every
Gr = 500 generations across the islands. It can be seen
that increasing the number of islands significantly reduces
the mean error during the whole evolutionary process. The
more islands, the less generations is needed to achieve com-
parable results.
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Figure 6: The influence of the number of islands.

5.3 Examples of Evolved Circuits

In this section, the proposed multi-objective approach is
demonstrated on two examples of arithmetical circuits. Fig-
ure 8 shows the Pareto front of approximate 4-bit multipliers
obtained after 1000000 generations. The population size was
set to Np = 100 parental and Nq = 300 offspring individu-
als and tournament selection was used to create the offspring
population. Eight islands were exchanging the populations
every G, = 1000 generations. At the end of the evolution,
66 trade-off solutions were found having the mean squared
error from 46.16 to 153.75, the area from 0 to 512 transistors
and the latency from 0 to 19 gates. The extremely erroneous
solutions are not shown in the Pareto front in Figure 8. Ta-
ble 1 shows the output errors for all input combinations.

The same experimental setup was used for the design of
combinational 4-bit adders. Since combinational adders are
much less complex circuits than the multipliers, the number
of generations was set to 100000. The resulting Pareto front
can be seen in Figure 9, Table 2 shows the output errors for
the individual with the lowest error. In comparison with the
multiplier, the error is significantly smaller and the circuit
has much smaller area (70 transistors) and latency (3 gates).
The wiring diagram is depicted in Figure 7.

Figure 7: The best 4-bit adder diagram.
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6. CONCLUSIONS

Recently, a new application area for evolutionary algo-
rithms has emerged, EAs have been confirmed to be com-
petitive in the task of approximate circuits design [17]. The
evolutionary design is a computationally demanding task,
therefore, several approaches to speed up the entire process
have been proposed [6].

In this paper, a new multi-objective evolutionary method
for designing approximate digital circuits has been presented.
The method is based on the well-known NSGA-II algorithm
modified in order to be more suitable for the use with CGP.
Besides a parallel implementation of the population fitness
evaluation, a simple spatially structured algorithm is intro-
duced for the purpose of speeding up the evolutionary pro-
cess.

The proposed method has been evaluated in the task of
approximate combinational multiplier and adder design. In
comparison with existing methods, the multi-objective ap-
proach enables to obtain a set of Pareto optimal solutions
in a single run.

In our future research, we will focus on increasing the scal-
ability of the method in order to be able to design more com-
plex circuits. For that purpose, the fitness function needs to
be accelerated.
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Abstract—Recently, power efficiency has become the most
important parameter of many real circuits. At the same time,
a wide range of applications capable of tolerating imperfections
has spread out especially in multimedia. Approximate computing,
an emerging paradigm, takes advantage of relaxed functional
requirements to make computer systems more efficient in terms
of energy consumption, speed or complexity. As a result, a variety
of trade-offs between error and efficiency can be found. In this
paper, a design method based on a multi-objective evolutionary
algorithm is proposed. For a given circuit, the method is able to
produce a set of Pareto optimal solutions in terms of the error,
power consumption and delay. The proposed design method uses
Cartesian Genetic Programming for the circuit representation
and a modified NSGA-II algorithm for design space exploration.
The method is used to design Pareto optimal approximate
versions of arithmetic circuits such as multipliers and adders.

I. INTRODUCTION

Approximate computing, an emerging paradigm, takes ad-
vantage of relaxed functional requirements to make computer
systems more efficient in terms of energy consumption, com-
puting speed or complexity. Error resilient applications can
achieve significant savings while still serving their purpose
with the same or a slightly degraded quality.

The complexity of computer systems is permanently grow-
ing and thus, automated design tools have to deal with more
and more complex problems specified on higher level of
abstraction than before. The same holds true for approximate
computing. Even though new methods are emerging, there
is a lack of methods for approximate computing offering a
numerous set of trade-off solutions.

Evolutionary algorithms (EAs) have been confirmed to bring
innovative solutions to complex problems. Recently, complex
digital circuits have been optimized by means of EAs while the
scalability of the methods has been improved substantially [5],
[12]. Multi-objective EAs have been used to design simple
approximate circuits from scratch [4].

In this paper, we propose an evolutionary based approach to
design approximate circuits starting from a set of conventional
fully working circuits. The method is evaluated in the task of
approximate 8-bit adders and multipliers design.
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II. APPROXIMATE COMPUTING

Recently, power efficiency has become the most important
parameter of almost every computing platform. At the same
time, a wide range of applications capable of tolerating imper-
fections in computations has spread out. As a consequence, a
new research field — approximate computing — has emerged
to investigate how computer systems can be made more
efficient in terms of energy consumption, computing speed
or complexity assuming that some errors are acceptable. It
has been believed, that significant savings can be achieved
by relaxing the requirement of perfect functionality thanks
to the error resilience of some applications. Therefore, the
accuracy of the system can be used as a design metric and
inaccurate solutions can be accepted if an improvement in
other parameters occurs.

The approximation can be introduced at various levels
including the entire computer system architecture [6], particu-
lar components (e.g. ALU) [3], operating system, algorithm
or even programming language [1]. As the complexity of
today’s computer systems grows, manual approximation is
not an efficient design method. Hence, several automated
approximate design methods have been introduced. The design
of approximate circuits is typically based on modifying fully
functional circuits.

The Systematic methodology for Automatic Logic Synthesis
(SALSA) uses a quality function which decides whether a
predefined quality constraint is met or not. The algorithm is
allowed to modify the circuit as long as the quality constraint
is not violated. SALSA has been applied to a number of
problems, e.g. 32-bit adders, 8-bit multipliers, FIR filters, DCT
blocks and others [18].

Another approach, Substitute-and-Simplify (SASIMI), looks
for signal pairs having similar values with a high probability.
By substituting one signal for the other, a part of the circuit
can be removed resulting in area and power savings at the
cost of an error introduced to the output. Moreover, SASIMI
further extends the approach to synthesize quality configurable
circuits, where at runtime, processing of selected input vectors
is given an additional cycle to correct errors due to approxi-
mations [17].

Unlike the aforementioned methods, ABACUS (Automated



Behavioral Approximate Circuit Synthesis) operates directly
on the behavioral descriptions of circuits. ABACUS automati-
cally generates approximate circuits from input behavioral de-
scriptions by performing global transformations on an abstract
synthesis tree (AST) created from the behavioral description.
The outcome approximate circuits are still expressed in be-
havioral code and can be synthesized by means of standard
synthesis tools. Complementary approximate computing meth-
ods, e.g. voltage over-scaling or manually created approximate
components, may be still used [9].

Although most of the design methods deal with combina-
tional circuits, there are methods capable of approximating
sequential circuits. As an example, the Automatic Method-
ology for Sequential Logic Approximation (ASLAN) creates
an approximate version of a sequential circuit that consumes
lower energy, while meeting a specified quality constraint.
ASLAN identifies combinational block in the sequential circuit
that are amenable to approximation and iteratively approx-
imates the entire sequential circuit using a gradient-descent
approach [10].

III. EVOLUTIONARY DESIGN AND OPTIMIZATION

In our previous work, we used evolutionary algorithms to
either design digital circuits from scratch [5] or to optimize
existing circuits [12]. Recently, the evolutionary approach has
been applied in the task of approximate circuits design with
respect to multiple objectives [4].

A. Cartesian Genetic Programming

The proposed method is based on CGP, in which a circuit
is represented as a fixed-sized cartesian grid of NV, X N. nodes
interconnected by a feed-forward network (see Figure 1). Node
inputs can be connected either to one of V; primary inputs or
to an output of a node in preceding L columns. Each node
has a fixed number of inputs V,; and outputs N,, and can
perform one of the functions from the set I'. Each of N,
primary circuit outputs can be connected either to a primary
input or to a node’s output. The area and delay of the circuit
can be constrained by changing the grid size and the L-back
parameter.

The genotype is of fixed length, whereas the phenotype is of
variable length depending on the number of inactive nodes, i.e.
nodes whose output is not used by any other node or primary

n, columns

4 F| 4 F| 4 F|_ 1 FL 1 F[
Ny — N T T T B N _—— 2
HE CE
El—+_ |4 FL 4 FL_ 4 F[_ 4 F[_ | F| — |3
g :§h: _: _: _: [ - | _:: g
I : P&

4 F| 4 F|_ 4 F|_ 4 F[ 1 F[

Fig. 1. Cartesian Genetic Programming.
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Fig. 2. Example of a CGP representation of 3-bit ripple-carry adder.

output (see Figure 2). This implies the existence of individuals
with different genotypes but the same phenotypes, which is
usually referred to as neutrality. It was shown that for certain
problems the neutrality significantly reduces the computational
effort and helps to find more innovative solutions [7].

Standard (single-objective) CGP uses a simple mutation
based (1 + \) evolutionary strategy as a search mechanism,
the population size 1 + A is mostly very small, typically,
A = 4. The initial population is constructed either randomly
(evolutionary design) or by mapping of a known solution to
the CGP chromosome (evolutionary optimization). In each
generation, the best individual is passed to the next generation
unmodified along with its A offspring individuals created by
means of point mutation operator. In case more individuals
with the best fitness exist, a randomly selected one is chosen.
The mutation rate m is usually set to modify up to 5%
randomly selected genes.

B. Multi-Objective CGP

Unlike the single-objective optimization, which enables to
compare any two candidate solutions and decide which one is
better, the multi-objective optimization leads to the existence
of a whole range of trade-off solutions, if the objectives are
conflicting. In the case of digital circuits design, the better the
circuit works, the larger area and power consumption it has.

Many multi-objective evolutionary algorithms have been
proposed, most of them are based on the idea of Pareto
dominance. The solution p dominates the solution ¢ if p is
no worse than ¢ in all objectives and p is strictly better than
q in at least one objective. The Pareto optimal solutions are
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Fig. 3. Non-dominated Sorting Genetic Algorithm II.



not dominated by any other solutions and form the so called
Pareto front.

One of the most popular multi-objective evolutionary al-
gorithms is the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [2]. It is based on sorting individuals according
to the dominance relation into multiple fronts. The first front
Fy contains all Pareto optimal solutions. Each subsequent
front F; is constructed by removing all the preceding fronts
from the population and finding a new Pareto front. Each
solution is assigned a rank according to the front it belongs
to, the solutions from the front F; have the rank equal to .
The NSGA-II fast non-dominated sort is very efficient, the
overall complexity is O(MN?), where N is the population
size and M is the number of objectives. The principle of
the algorithm can be seen in Figure 3. NSGA-II was recently
applied to design approximate digital circuits from scratch, the
convergence of the method was improved by using multiple
islands [4]. The multi-objective approach was compared to
the single-objective CGP in the task of approximate circuits
design, however, the estimation of power consumption and
delay of the circuits was rough [15].

C. Function set

Since the goal of this paper is to optimize the circuits as
much as possible, we use a subset of functions from a 180nm
technology process library. The function cells have one, two or
three inputs (e.g. full adder) and one or two outputs. Complete
list of the functions including their area and leakage power can
be found in Table I.

Function | Description Area [um?] | Leakage power [nW]
BUF | Buffer (2x/4x) 24/32 0.066/0.113
INV | Inverter (1x/2x/4x/8x) 16/16/24/40 | 0.022/0.036/0.073/0.147

AND?2 | 2-input AND (1x/2x) 32/32 0.075/0.090

OR2 | 2-input OR (1x/2x) 32/32 0.075/0.090
XOR2 | 2-input XOR (1x) 56 0.161
NAND?2 | 2-input NAND (1x) 24 0.039
NOR?2 | 2-input NOR (1x) 24 0.035
XNOR?2 | 2-input XNOR (1x) 56 0.161
NAND?3 | 3-input NAND (1x) 36 0.056
NOR3 | 3-input NOR (1x) 64 0.055
MUX2 | Multiplexor (1x) 48 0.087
AOI21 | 3-input AND/NOR (1x) 32 0.052
OAI21 | 3-input OR/NAND (1x) 23 0.048
FA | Full adder (1x) 120 0.231
HA | Half adder (1x) 80 0.161

TABLE I

LIST OF USED FUNCTION CELLS.

Some of the functions (e.g. BUF, INV) have multiple
sizes which differ in the maximum output load, area, power
consumption and delay. During the evaluation, proper size is
selected depending on the output load of the gate. The dynamic
power and delay of the gates depend on the output load as well.

D. Output Error

In the case of digital circuit evolution, the output error
of the candidate circuit is often measured as the number of

correct output bits compared to a specified truth table (i.e. the
Hamming distance). In order to obtain a fully working circuit,
2Ni test vectors have to be evaluated so as to compute the
fitness value. It can be sped up by applying parallelism at
various levels [5] or by introducing formal methods, e.g. SAT
solvers [12] or Binary Decision Diagrams (BDD) [14].

In the case of approximate circuits, Hamming distance is
often not suitable. Instead, metrics based on the arithmetical
distance, such as the worst case error, mean absolute error,
relative error or others are usually used [13]. In this paper, we
use the mean relative error:

ZVi

oW _oW

orig ~ Papprox
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where Oéir)ig is the decimal representation of the i-th circuit

correct output and O;Qprox is the individual’s ¢-th output. In
addition to that, we constrain the worst absolute and relative
€erTors.

E. Power Estimation

In order to estimate the power consumption of a candidate
circuit, we propose to use a method based on the switching
activity.

The power consumption of digital circuits can be divided
into two different parts: dynamic and static power components.
The first one occurs every time the output of a gate changes
its logic value. In fact a low resistance path between the power
rails is created during switching. Static power consumption is
caused mainly by the leakage current which exists even when
the circuit is in a stable state, i.e. not switching. Although the
static power component has always been present, it has gained
importance in sub-micrometer and nanometer devices [20].

Thus, the total power consumption has to be optimized
by reducing static as well as dynamic part of the power
consumption.

The power consumption P = P;+ P4 of a candidate circuit
is calculated as follows. Because the static part of the power
consumption depends only on a function of a logic gate, the
total static power consumption Py can be obtained by summing
static leakage for all gates of the candidate circuits. The
leakage of each gate is defined by the technology specification
file (so-called liberty file) for the target technology. The
dynamic part P, is defined as follows:

P; = 0.5 X Cloadq X Vde x f x E(transitions), 2)

where Cloaq is the total load capacitance of the output (i.e. the
sum of all input capacitances of the connected inputs defined
in the liberty file), Vaq is the supply voltage, f is target
frequency and E(transitions) is the expected value of the
output transitions per global clock cycle (switching activity)
[8].

We have used zero-delay model, i.e. glitches are not con-
sidered. Thus, the switching activity can be obtained using
simulation of all input vectors, which is done during the



function verification. Total switching activity of a gate is
calculated as follows:

E(transitions) =2-(po -p1) =2-p1- (1 —p1), (3)

where pg is probability that output of a considered gate is
equal to logical zero, similarly p; is probability that the output
is equal to logical one. There are more ways to determine
transition probabilities. The simplest approach is to use the
simulation and count the number of cases for which the output
value was equal to 1.

F. Propagation Delay Estimation

The delay of a candidate circuit is calculated using the
parameters defined in the liberty timing file available for
the utilized semiconductor technology. The delay tq of a
cell ¢; is modeled as a function of its input transition time
ts and capacitive load C; on the output of the cell, i.e.
ta(ci) = f(t$, CT"). The delay of the circuit C' is determined
as the delay of the longest path:

Delay(C) = max ta(ci)- “

Vp€Epath
Cc; EP

The capacitive load on the circuit outputs is chosen to be
equal to the input capacitance of a buffer cell. The transition
time on primary inputs corresponds to the transition time on
the output of a buffer cell.

IV. EXPERIMENTAL RESULTS

In this section, experiments regarding the multi-objective
design of arithmetical circuits are presented. The method
was evaluated in the task of approximate 8-bit adders and
multipliers design. The CGP parameters were set as follows:
500 individuals in the population, 5000000 generations, 10
islands, mutation rate 5%, number of rows N, = 1. The
number of columns was N, = 200 in the case of the adders
and N, = 1000 in the case of the multipliers.

The circuits were designed with respect to 3 objectives —
the mean relative error (MRE), the power consumption of
the circuit and the delay. The MRE was constrained to be
at most 10 %, the worst case error was constrained to be at
most 5 % of the output range and the worst case relative error
was limited to 1000 %, i.e. all candidate solutions violating
these requirements are discarded.

A. Initial population

In our previous research, we used random initial population
to design simple digital circuits from scratch [5], [4]. For
complex circuits, we seeded the initial population with a single
known solution and optimized the circuit using CGP [12], [11],
[15].

In this paper, we use a set of conventional circuits as the
initial population. CGP chromosomes for 13 different adder
and 6 different multiplier architectures were generated [19].
The power, area and delay estimates of those circuits can be
found in Tables II, III. The adders include Ripple-Carry Adder
(RCA), Carry-Select Adder (CSA), Carry-Lookahead Adder

Architecture Power Area Delay
Ripple-Carry Adder | 100.00 % | 100.00 % | 100.00 %
Carry-Select Adder | 201.18% | 174.78 % 61.15%
Carry-Lookahead Adder | 414.74% | 334.78 % 61.99 %
HVTA (Brent-Kung) | 286.00% | 201.74 % 68.52 %
HVTA (Han-Carlson) | 286.00% | 201.74 % 68.52 %
HVTA (Kogge-Stone) | 371.48% | 257.39 % 59.77 %
HVTA (Sklansky) | 305.07% | 215.65% 60.45 %
TA (Brent-Kung) | 282.99% | 201.74 % 67.25 %
TA (Han-Carlson) | 295.74% | 212.17% 61.87 %
TA (Knowles) | 362.25% | 257.39% 59.94 %
TA (Kogge-Stone) | 34220% | 243.48% 57.68 %
TA (Ladner-Fischer) | 282.99% | 201.74 % 67.25 %
TA (Sklansky) | 298.34% | 212.17% 57.84 %

TABLE II

POWER, DELAY AND AREA OF VARIOUS CONVENTIONAL 8-BIT ADDERS
COMPARED TO RIPPLE-CARRY ADDER.

Architecture Power Area Delay
Ripple-Carry Array | 100.00 % | 100.00 % | 100.00 %
Carry-Save Array using RCA | 102.30 % 100.00 % 71.16 %
Carry-Save Array using CSA | 108.42% | 106.16 % 62.03 %
Wallace Tree using RCA | 104.29 % 107.39 % 68.91 %
Wallace Tree using CLA | 116.10% 148.48 % 51.26 %
Wallace Tree using CSA | 120.12% 122.35% 53.28%
TABLE III

POWER, DELAY AND AREA OF VARIOUS CONVENTIONAL 8-BIT
MULTIPLIERS COMPARED TO RIPPLE-CARRY ARRAY MULTIPLIER.

(CLA), multiple Tree Adder (TA) and Higher Valency Tree
Adder (HVTA) architecures. The multipliers include Ripple-
Carry Array, multiple Carry-Save Array and Wallace Tree
architectures. All parameters in this section are related to the
Ripple-Carry Adder and Ripple-Carry Array Multiplier archi-
tectures, since they are the most power efficient conventional
architectures.

B. Results

Figure 4 shows 473 Pareto optimal 8-bit approximate adders
evolved from the initial population of 13 conventional adders.
Parameters of 9 selected evolved circuits can be found in
Table IV. It can be seen that the Ripple-Carry Adder is optimal
in terms of power consumption among the conventional archi-
tectures, but significant savings can be achieved when relaxing

MRE Power Delay
0.000% | 244.78% | 38.92%
0.135% | 89.81% | 79.93%
0273% | 8599% | 99.73 %
0396% | 79.08% | 96.29 %
0.678% | 71.89% | 73.06 %
0942% | 61.70% | 59.59 %
1918% | 47.66% | 46.12%
2939% | 3597% | 33.92%
4280% | 3339% | 33.92%

TABLE IV

PARAMETERS OF EVOLVED APPROXIMATE §-BIT ADDERS.
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the requirement of perfect functionality. The delay of the Tree
Adder with Sklansky architecture was overcome with multiple
evolved circuits (at the cost of increasing the delay). The most
efficient 8-bit adders have power consumption 33-36 % of the
RCA with MRE of 3-4 %.

Similarly, Figure 5 shows 433 Pareto optimal 8-bit ap-
proximate multipliers that were evolved from 6 conventional
circuits. Table V shows the parameters of 11 selected evolved
multipliers. The Ripple-Carry Array Multiplier architecture
was not overcome in terms of the power consumption when
considering no error. The delay of Wallace Tree multipliers
was improved to 48.23% at the cost of a higher power
consumption. The power savings are lower in comparison with
the adders, for the same savings the error must be higher.

MRE Power Delay
0.000 % 110.52% | 48.23%
0.813 % 88.70 % 130.51 %
0.951 % 83.69 % 113.02 %
1.511 % 76.15 % 120.06 %
3.092 % 71.61 % 96.79 %
4.177 % 66.19 % 90.54 %
5.334 % 59.66 % 80.60 %
6.579 % 51.01 % 84.70 %
8.218 % 40.98 % 33.94%
10.000% | 33.74% 38.02 %

TABLE V

PARAMETERS OF EVOLVED APPROXIMATE 8-BIT MULTIPLIERS.

V. CONCLUSIONS

Recently, complex digital circuits were optimized by means
of evolutionary algorithms [12]. Both single-objective and
multi-objective approaches were applied to design approxi-
mate circuits from scratch [16], [4].

In this paper, the multi-objective approach was improved by
seeding the initial population with a set of conventional fully
working circuits instead of starting with a single conventional
circuit or a random initial population. The method uses CGP
for circuit representation and NSGA-II algorithm to handle
multiple objectives.

The proposed method was evaluated in the task of approx-
imate 8-bit adders and multipliers design. The circuits were
designed with respect to three objectives — mean relative error,
power consumption and delay. Contrasted to previous work,
the method was able to evolve hundreds of Pareto optimal
circuits with significant power consumption savings.

In our future research, we will focus on increasing the scal-
ability of the method in order to design complex circuits. For
that purpose, the use of formal methods will be investigated.
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Error Mitigation using Approximate Logic Circuits:
A Comparison of Probabilistic and Evolutionary
Approaches

Antonio J. Sanchez-Clemente, Luis Entrena, Radek Hrbacek, Lukas Sekanina

Abstract—Technology scaling poses an increasing challenge to
the reliability of digital circuits. Hardware redundancy solutions,
such as Triple Modular Redundancy, produce very high area
overhead, so partial redundancy is often used to reduce the
overheads. Approximate logic circuits provide a general frame-
work for optimized mitigation of errors arising from a broad
class of failure mechanisms, including transient, intermittent and
permanent failures. However, generating an optimal redundant
logic circuit that is able to mask the faults with the highest
probability while minimizing the area overheads is a challenging
problem. In this work we propose and compare two new
approaches to generate approximate logic circuits to be used in a
TMR schema. The probabilistic approach approximates a circuit
in a greedy manner based on a probabilistic estimation of the
error. The evolutionary approach can provide radically different
solutions that are hard to reach by other methods. By combining
these two approaches, the solution space can be explored in depth.
Experimental results demonstrate that the evolutionary approach
can produce better solutions, but the probabilistic approach is
close. On the other hand, these approaches provide much better
scalability than other existing partial redundancy techniques.

Index Terms—Approximate logic circuit, error mitigation,
evolutionary computing, Single-Event Transient, Single-Event
Upset.
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CGP Cartesian Genetic Programming

DWC Duplication With Comparison

EDAC Error Detection And Correction

MA Mandatory Assignment
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I. INTRODUCTION

The impact of transient, intermittent and permanent failures
on digital circuits is steadily increasing with technology scal-
ing. Circuits manufactured on advanced technologies are more
prone to errors due to several reasons, which are primarily
related to the shrinking of transistor dimensions and the
increase in the total number of gates per chip [1].

On the one hand, manufacturing process variations are a
dominant source of static variability which may significantly
affect yield. As a consequence, it is now common practice
to use error correction codes or hardware redundancy in
circuits with a regular internal structure, such as memories or
programmable logic devices (FPGAs). In the past, variations
were mostly due to imperfect process control, but now in-
trinsic atomistic effects, such as Random Dopant Fluctuations
(RDF) or Line Edge Roughness (LER) have become relevant
in sub-45-nm technologies, as devices of atomic sizes are
achieved [2]. Due to the increasing difficulty of testing, some
defects may escape manufacturing test and may cause inter-
mittent failures resulting in errors during normal operation.
Furthermore, transistor aging effects, such as negative-bias
temperature instability (NBTI), also increase intermittent gate
failures during the lifetime of a chip. Manufacturing variations,
supply voltage variations, temperature variations and aging-
related effects in digital circuits pose an increasing challenge
to reliability [3].

Radiation-induced soft errors caused by ionizing particles,
mainly neutrons at the atmospheric level and other particles
in space environments have also become a big concern. In the
past, transient effects in memory elements, known as Single-
Event Upsets (SEUs), were the primary concern. However,
for advanced technologies SEU protection is not enough, as
transient effects in combinational logic gates, known as Single-
Event Transients (SETs), are becoming very relevant [4].
Protection against SETs is much more difficult to achieve and
typically involves a large amount of redundancy. Finally, post-
silicon technologies such as carbon nanotubes are intrinsically
less robust and require fault-tolerance [5].

Hardware redundancy is often used in safety- and mission-
critical applications to mitigate the effects of transient errors,



permanent errors or configuration errors in FPGAs. Duplica-
tion With Comparison (DWC) or Triple Modular Redundancy
(TMR) are well-known examples of techniques that provide
concurrent error detection and correction capabilities, respec-
tively. However, these techniques typically introduce very large
overheads, which is more than 200 % in the case of TMR.
When such overhead is not acceptable, partial redundancy is
used in order to find a good balance between the reliability
requirements and the area, power and performance require-
ments [6].

Approximate logic circuits provide a general framework
for optimized mitigation of errors arising from a broad class
of failure mechanisms, including transient, intermittent and
permanent failures. An approximate logic circuit is a circuit
that performs a possibly different but closely related logic
function to the original circuit. As it is not required to exactly
match the original circuit, the approximate circuit can be
smaller but it can still be used to detect or correct errors where
it overlaps with the original circuit. Approximate logic circuits
can be used in TMR instead of exact copies of the original
design and the designer can select the level of approximation.
A closer approximation provides higher fault tolerance but
also increases the area and power. In contrast, this continuous
trade-off is not possible when exact TMR is used. However,
generating an optimal redundant logic circuit that is able to
mask the faults with the highest probability while minimizing
the area and power overheads is a challenging problem.

In this work we propose and compare two new approaches
to generate approximate logic circuits to be used in TMR.
First of all, a probabilistic approach is proposed which is
based on dynamic probability estimations. This approach takes
advantage of strongly coupling the approximation method and
the error estimation method by using stuck-at faults. Departing
from the original target circuit, approximate logic circuits are
built by iteratively forcing original circuit lines to constant
values. The reduction in error mitigation that is produced by
this type of transformations can be related to the probability
of detecting associated stuck-at faults, which is the metric
commonly used to estimate the error coverage. This approach
can be used in a greedy manner to remove the logic with the
lowest probability of producing an error while the required
reliability target is met. However, it is well-known that greedy
algorithms may often produce suboptimal results because they
may get stuck in local minima. The second approach we
propose in this work is based on evolutionary algorithms.
Evolutionary algorithms are used in many applications to
solve hard optimization and design problems. As the method
is intrinsically based on the trial and error approach, it is
usually very time consuming, but, on the other hand, capable
of discovering solutions hard to reach by other methods. One
of the major advantages of evolutionary algorithms is the
ability to get out from local minima and increase the chances
to reach global minima. Thus, evolutionary algorithms can
provide radically different solutions. A comparison with the
probabilistic approach is carried out in this work in order to
contrast their respective capabilities.

This paper is organized as follows. Section II summarizes
previous work and introduces approximate logic circuits and

evolutionary circuit design. Section III describes the prob-
abilistic approach. Section IV deals with the evolutionary
approach. Experimental results are presented in Section V.
Conclusions are given in Section VI.

II. PREVIOUS WORK

Fault-tolerance techniques are classically classified into
hardware redundancy, information redundancy and time re-
dundancy techniques [7]. Among the hardware redundancy
techniques, Triple Modular Redundancy (TMR) is a well-
known error masking technique that is widely used in critical
applications. TMR can be used at different levels of abstrac-
tion, from system to transistor level, and can protect against
transient and permanent errors. Information redundancy tech-
niques, such as Error Detection and Correction (EDAC) codes,
can be very effective for single or double errors. Thus, EDAC
codes are typically applied to memories or communication
protocols, but they cannot be used in the general case because
a low multiplicity of errors cannot be guaranteed. Finally, time
redundancy is intrinsically non-robust to permanent failures
and may introduce severe performance penalties.

The capability of TMR to mitigate both transient and
permanent errors makes it a good technique to tackle the
variety of potential failure mechanisms that must be con-
sidered for advanced technologies. However, TMR suffers
from high overhead in terms of area and power (more than
200 %). To alleviate this overhead, alternative techniques have
been proposed based on partial error masking. Without loss
of generality, we will focus on combinational circuits. The
extension to sequential circuits is trivial by applying TMR to
the sequential elements along with the combinational elements.

An early partial error masking approach is proposed in [8]
which consists on triplicating and voting the nodes with
the highest soft error susceptibility. Subsequent approaches
attempt to insert redundancies that protect against the most
common errors or to resynthesize the circuit to improve reli-
ability. In [9], an approach is proposed to provide protection
for the most common output combinations. In [10], the authors
propose the use of implications to build redundant logic that
checks for violation of behavioural constraints.

In a recent work [11], small sub-circuits have been ex-
tracted and resynthesized using two-level techniques and fast
extraction algorithm. The resynthesized circuits have been then
merged to produce the final fault-tolerant circuit. Combina-
tional restructuring has been used in [12] to improve the
masking properties of a circuit. This approach takes advantage
of conditions already present in the circuit, such as observ-
ability don’t-cares. Other approaches use wire addition and
removal for combinational restructuring [13]. Finally, there are
approaches that use approximate logic circuits [14] for partial
error detection and masking. These approaches are reviewed
in the following section.

A. Approximate logic circuits

The concept of approximate logic circuit or function pro-
vides a systematic framework for the implementation of fault-
tolerant combinational logic circuits. Given a logic function G,



an approximate logic function is a function G that performs
a possibly different but closely related function. The approxi-
mation divides the input space into two subspaces: the subset
of input vectors for which G' and G produce the same output
(correct subspace) and the subset of input vectors for which
G and G produce different outputs (incorrect subspace). The
quality of an approximation is evaluated as the relative size of
the correct subspace.

Approximations can be classified as unidirectional or bi-
directional [15]. An approximation is called unidirectional if
the incorrect subspace is either a subset of the on-set or a
subset of the off-set of (5. In the first case, G is called an under-
approximation or on-set unidirectional approximation of G.
Similarly, in the second case G is called an over-approximation
or off-set unidirectional approximation of G. In the sequel, the
under-approximations and over-approximations of a function
G will be denoted respectively as F' and H.

By definition, a unidirectional approximation satisfies an
implication relationship. If F' is an under-approximation of
G, then F =1 = G =1 and, conversely, G = 0 = F = 0.
The incorrect subspace corresponds to the input vectors that
produce G = 1 and F = 0, i.e., all input vectors in the
incorrect subspace produce unidirectional 1 — 0 errors. If
H is an over-approximation of G, then H = 0 = G = 0 and,
conversely, G = 1 = H = 1. In this case, the incorrect sub-
space corresponds to the input vectors that produce G = 0 and
H =1, i.e., all input vectors in the incorrect subspace produce
unidirectional 0 — 1 errors. Bidirectional approximations do
not satisfy an implication relationship and can produce both
0 — 1 and 1 — O errors.

Partial logic masking can be obtained by using a TMR
schema in which two of the copies are replaced by ap-
proximate logic circuits, as shown in Fig. 1. Note that the
approximate logic circuits may produce incorrect outputs even
in the absence of faults. To ensure these incorrect outputs are
masked, it is required that the incorrect subspaces of the two
approximations do not overlap, so that at most one of the
circuits is allowed to produce an incorrect output for any input
vector. This condition is met by using an under-approximation
F' and an over-approximation H in the TMR schema.

F

™|  (under)

!

G
(Original)

Voter —>

Inputs
Outputs

H
(over)

Fig. 1. Error masking schema using approximate logic circuits

The error masking capabilities of this schema can be better
explained using the diagram shown in Fig. 2 [14], where the
on-sets of the original and the approximate logic functions are
represented. In the areas where the original and the approx-

imate logic functions overlap (correct subspace), all circuits
produce the same output value. Because the three circuits are
implemented separately, a single fault can only affect one of
them at a time and its effect will be masked. In the areas where
the approximate functions do not overlap (incorrect subspace),
one of the approximate functions produces an incorrect result.
This incorrect result is masked, but a fault in any of the
other two circuits may cause an additional incorrect result
which cannot be masked by the majority voter. Therefore,
the probability of error is directly related to the probability of
faults that can propagate errors to the outputs for input vectors
in the incorrect subspace of any of the approximate circuits.
The goal is to find approximate circuits that minimize this
probability and can be implemented with a reduced amount
of logic.

It must be noted that approximate logic circuits are suscep-
tible to errors that may not be masked. This may happen in the
incorrect subspace, if a fault in an approximate circuit causes
the two approximate circuits to agree on an incorrect result.
However, this situation is detectable, because it is impossible
by construction that the two approximate circuits disagree with
the original circuit unless there is a fault. Thus, all errors
produced in the approximate logic circuits are either masked
or detectable. Generally, the contribution of the approximate
logic circuits to the error rate is compensated by the error
masking on the original circuit. However, if this is not the
case, the voter can be complemented with an error detector.
This way, it is guaranteed that the failure probability always
reduces as the quality of the approximation increases.

Fig. 2. Graphical representation of the relationship among the original and
the approximate functions

An algorithm for technology-independent synthesis of ap-
proximate logic functions is proposed in [16]. This algorithm
utilizes technology-independent networks and tries to approx-
imate the local logic function of a node by moving minterms
from its off-set or on-set into don’t-cares. Minterm selection is
based on the logic function of the node or, alternatively, local
observability don’t-cares can be used to expand the space from
which minterms can be selected. However, as this approach
may lead to an incorrect approximation, a SAT solver is used
to ensure correctness. This approach is extended in [15] by
considering predictor-indicator bidirectional approximations.
This type of approximations use a predictor function, that pre-
dicts the value of the function, and an indicator function, that
indicates uncertainty about the predicted value. The advantage
of this approach is that the predictor and indicator functions are
not required to have implication relationships with the original



function G. However, predictor-indicator bidirectional approx-
imations cannot be used when the bidirectional approximate
circuit is vulnerable to errors [15].

Other implication-based approximation methods are pro-
posed in [14], [17]-[20]. The approach in [18] considers
the failure probabilities of the gates and uses a two-level
representation. Finally, [19] approximates a circuit by remov-
ing circuit lines with low testability. However, this method
does not allow to estimate the error probability produced by
the approximation transformations. An improved probability
estimation method is proposed in [20], but it does not take into
account the possible faults that may occur in the approximate
circuits. The probabilistic approach proposed in this work
extends these techniques by considering a dynamic probability
analysis and considering all faults that may occur in the
original and the approximate circuits to estimate the total error
probability.

B. Evolutionary Circuit Design

Since the very beginning of the research in evolutionary
computation, evolutionary algorithms have been applied for
purposes of hardware optimization. Several monographs [21],
[22] summarize the applications from the field of electronic
circuits design, diagnostics, and testing. Later, evolutionary
algorithms were applied to generate complete circuit structures
(i.e., not only to optimize parameters of existing circuits)
and dynamically adapt circuit structures [23]. For example,
in the area of dependability, an evolutionary repair method
was proposed for TMR implemented into FPGAs [24]. It
employs an evolutionary algorithm to repair one damaged
module of TMR by using the two healthy modules as sources
of golden data for the fitness function. An analysis has shown
a significant improvement of reliability for small benchmark
circuits.

The evolutionary design of combinational circuits has been
well established in the past. Majority of designs in this area
is conducted by Cartesian genetic programming (CGP) or
methods similar to CGP. CGP is a branch of genetic program-
ming (GP) introduced by Miller and Thomson [25]. Unlike
GP, which uses tree representation, an individual in CGP is
represented by a directed acyclic graph of a fixed size. The
candidate circuits can have multiple outputs and intermediate
results can be reused (see details in Sect. IV). CGP can be
used to design various types of circuits as surveyed in [26].

The trickiest component of the evolutionary circuit design is
formulating the fitness function. It usually contains several ob-
jectives (functionality, area, delay etc.) where the functionality
is typically understood as the quality of the candidate circuit
measured as the number of correct output bits compared to
a specified truth table (i.e. the Hamming distance). In order
to obtain a fully working circuit, all combinations of input
values have to be evaluated. For a circuit with n; inputs and
ne outputs, 2™ test vectors need to be fetched to the primary
inputs and n, - 2" output bits have to be verified so as to
compute the fitness value. The fitness calculation is computa-
tionally very intensive, since the number of test vectors grows
exponentially with the number of primary inputs. Recently,

it has been sped up by applying parallelism at various levels
(data, thread, process) [27] or by introducing formal methods
based on, for example, SAT solving [28].

When designing digital circuits with respect to multiple
secondary objectives, e.g. area, latency, power consumption,
or with the goal to approximate circuit behavior, one can
make use of several approaches. The single-objective approach
can be extended to deal with multiple objectives either by
combining the objectives in a single fitness function just by
summing the particular fitnesses weighted with a constant or,
in a more sophisticated way, by introducing a multi-stage
fitness function activating the particular objectives step by
step. Thanks to the fixed size of the CGP genotype, resources
can be constrained in order to find circuits with smaller area
or power consumption [29]. Recently, a truly multi-objective
approach to the design of (approximate) digital circuits has
been proposed [30]. None of these methods, however, has been
used to approximate TMR circuits.

III. PROBABILISTIC GENERATION OF APPROXIMATE
LogGic CIRCUITS

In our proposed approach, approximate logic circuits are
obtained from the original circuit by iteratively performing
some logic transformations. Note that these transformations
are not required to preserve the original logic functionality, but
rather to simplify the logic at the expense of deviating from the
original behaviour and hence reduce the error coverage. Thus,
the quality of an approximation transformation is characterized
by two major parameters: the error probability increment and
the area savings. Previous works mostly focus on the latter and
use synthesis techniques to simplify the logic. However, the
impact of approximations on the final error probability can
hardly be estimated during the synthesis process and hence
these methods offer limited scalability.

In our approach, the error probability and the synthesis
transformations are linked through the stuck-at fault concept.
The stuck-at fault model is commonly used to model per-
manent faults. Stuck-at fault simulation is also a common
approach to estimate the error rate [11], [16]. For each fault,
the error probability is estimated as the fraction of input
vectors that test the fault. For a set f; of N possible faults,
the total error probability P can be computed as the average
probability of testing every possible fault:

op_ LPU)
N

This average can be weighted by the probability of each
fault occurrence, if such information can be estimated. In the
case of SETs, we can use derating factors to take into account
timing and electrical masking.

On the other hand, the stuck-at fault concept is in the foun-
dation of a class of powerful logic synthesis techniques [31],
[32]. If a line stuck-at fault cannot be tested by any input vec-
tor, then the line is redundant and can be removed. Otherwise,
if a line stuck-at fault is testable, the removal of the line creates
a discrepancy with the original circuit. In exact synthesis,
such discrepancy must be removed by adding some logic
elsewhere [32], [33]. However, in approximate synthesis, the



discrepancy is allowed. A preliminary approach that exploits
this technique has been proposed in [19].

A. Line approximation

If a stuck-at fault in a line has low testability, it means
that there are few input vectors that can test the fault. Then,
a good approximate circuit can be built by assigning the
line to a constant value. We refer to this transformation as
line approximation. The error probability associated to this
transformation is proportional to the probability of the input
vectors which test the stuck-at fault. On the other hand, the
area savings can be estimated as the logic that is removed by
assigning the line, including the logic previously used to drive
the line and the logic that can be simplified by propagating
the constant value from the line.

The error produced by a line approximation is unidirectional
if all the propagation paths from the line to the primary
outputs have either an even or odd number of inversions.
A line that meets this condition is said to have parity. The
approximation of a line with no parity does not produce an
under-approximation or an over-approximation. However, it is
possible to approximate a circuit in lines with no parity by
applying a simple transformation to the circuit. All lines in a
circuit can be forced to have parity, except for possibly the
primary inputs, by duplicating the gates and splitting the lines
with no parity into two subsets with even and odd parities
respectively [34]. This temporarily creates a larger circuit that
allows the application of line approximations. Duplications
that are not removed after approximation can be removed later
on by resynthesizing the approximate logic circuit.

If a line [ with even parity is approximated by assigning
it to a logic 0, then the incorrect subspace is made up of
the input vectors that test the fault [ stuck-at 0. For these
vectors, a 1 — 0 error is propagated without inversion to at
least one output. Thus, the result is an under-approximation. If
the line is assigned to a logic 1, then the incorrect subspace is
made up of the input vectors that test the fault [ stuck-at 1. In
this case a 0 — 1 error may be propagated without inversion
and the result is an over-approximation. If the line [ has odd
parity, the under-approximation and over-approximation are
obtained with the opposite logic assignments. In conclusion,
the two stuck-at faults of each line in a unidirectional circuit
can be associated to either the under-approximation or the
over-approximation, respectively.

Fig. 3 shows a logic circuit example and its K-map. Two
approximations are shown on the right of the figure. The
first one is obtained by making d = 1 and the incorrect
subspace is highlighted in the resulting K-map. The result is
an over-approximation because all errors are 0 — 1 errors.
The second one is obtained by making g; = 0. This is an
under-approximation because all errors are 1 — 0 errors.

Approximate circuits can be built in this way by selecting a
subset of lines for approximation. In [19], all lines whose fault
probability is below a selected threshold are approximated. In
this work we follow an iterative approach. In each iteration,
the least testable fault is selected for approximation and the
effect of the line approximation on the error probability £ P
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Fig. 3. Circuit approximation example

and the area are estimated. Iterations continue until the error
probability or the area estimation reach the required target.
The approximation space can be traversed with fine resolution,
because each single line approximation produces a small
impact on both the error probability and the area.

B. Dynamic Probability Analysis

It must be noted that after performing an approximation
by making a line of the circuit constant, the testability of the
remaining faults change. This can be illustrated with a very
simple example.

Consider a 4-input AND gate, as shown in Fig. 4, and
assume all of the 16 input vectors are equally likely. For a
stuck-at 1 fault at any of the inputs, there is only one input
vector that can test the fault, so that the detection probability
is 1/16. We can then approximate the circuit by forcing one
of the lines to a constant 1. The resulting approximate circuit
is a 3-input AND gate. If we want to approximate additional
inputs, we must take into account that the detection probability
of the stuck-at 1 faults at the remaining inputs is no longer
1/16 but 1/8. Subsequent approximations at the inputs will
further increase the probability to 1/4, 1/2 and 1 (when all
the inputs are removed). Thus, the initial error probability
estimation is less and less accurate as more approximations
are taken. This requires a dynamic probability update every
time an approximation is taken.
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Fig. 4. Dynamic probability with successive approximations.

The problem of estimating the probability of testing a
fault is generally related to testability analysis. The goal



of testability analysis is to measure the difficulty of testing
a fault. This measure is typically used to identify hard-to-
test faults and to predict the quality of random test pattern
generation. Many algorithms for testability analysis have been
proposed [35]-[38] which mainly use probabilistic approaches.
As the estimation of probabilities has to be updated for
every circuit approximation, we need a fast and incremental
algorithm. The approach used in this work was originally
proposed in [20]. We summarize it here for the sake of
completeness.

The notions of signal probability were established by Parker
and McCluskey in [39] and are well-known in the literature.
The probability that a stuck-at fault is detected by a random
input vector, also called detectability, can be formulated in
terms of signal probabilities [40]. The detection of a fault
requires an input vector that is able to set a control value
at the fault site (controllability) and to sensitize at least
one propagation path (observability). These conditions can
be expressed as Mandatory Assignments (MAs), so that the
probability of testing a fault f can be computed as the joint
probability of these MAs [41].

For instance, let us consider again the example in Fig. 3
and the fault d stuck-at 1. For this fault, the controllability
assignment is d = 0 and the observability assignments are
b=1,c=1 and gy = 0. Thus, the probability of testing this
fault can be expressed as

P(f)=P(SMA;) = P(b=1,c=1,d =0,go = 0)

where SMA ¢ is the Set of Mandatory Assignments for the
fault f. From here on we will use indistinctly P(f) or
P(SMAy) to denote the probability of testing a fault f.

Signal probabilities in a combinational network can be
easily computed by traversing the circuit from inputs to
outputs [39]. At each node, the signal probability of the output
is obtained as a function of the probability of the input signals
according to the node type. Fault detectability can be computed
as the product of the probabilities of all MAs [42]. However,
this approach is only correct if all MAs are independent.
To improve the accuracy of probability estimations, we use
implication reasoning. Implications are actually a consequence
of the existence of signal dependencies, so that signal depen-
dencies can be removed by implying the MAs backward and
forward. Then, the fault detection probability is computed as
the joing probability of the final set of backward implications
which cannot be further justified. If the implication of the
SMA leads to an inconsistency, then we can conclude that the
fault is redundant and its probability is 0. The experimental
results shown in [20] demonstrate that this approach produces
good estimations in comparison with stuck-at fault simulation.

In the example of Fig. 3, let us consider now the fault g;
stuck-at 0. In this case we have SMA; = {go =0, g1 = 1}. If
all inputs are equally likely, then P(go = 0) = 0.75, P(g1 =
1) =0.125 and P(f) = P(SMAy) = 0.75-0.125 = 0.09375.
This result is not accurate, but we can use implications to
obtain the correct probability. In particular, g; = 1 implies
b=c=d=1andb=1justifies go = 0. Therefore, SMAy =
{b=1,¢=1,d = 1}. The product of the probabilities of these
MAs gives the correct result P(f) = 0.125.

C. Probability-based approximation

To generate approximate logic circuits, we depart from a
TMR circuit using three exact copies of the original circuit.
In this circuit, when no approximation has been taken yet, any
error is masked by the voter and EP = 0.

Consider the circuit in Fig. 1 which consists of the
original circuit G, an under-approximation F' and an over-
approximation H. F' and H have been obtained from G by
approximating some lines. Let Ar and Ay be the set of faults
that have been approximated to obtain F' and H, respectively.
The incorrect subspace is the set of input vectors that test a
fault in Ap or Ag. Note that the test vectors for the faults in
Ap and Ap do not overlap. Because of the approximations,
some input vectors can produce a 0 — 1 error in £’ and some
others can produce a 1 — 0 error in H, but it is guaranteed by
construction that at least one of the two approximate circuits
produces the correct value. Therefore, no error is observed in
the absence of faults even though one of the approximations
may produce a wrong value for some input vectors.

When a fault occurs in one of the three circuits, it may
produce an error. In the correct subspace, this error is masked
because the other two circuits are correct. However, in the
incorrect subspace, one of the two approximate circuits, F'
or H, is also producing an error. Therefore, two of the three
circuits are wrong and the error is unmasked. More precisely,
errors may happen in the following three cases:

1) A fault fo in the original circuit G may produce an error
only if it propagates to the output for an input vector that
tests a fault in Ap or Ay. The error probability in this
case is P(fc N (Ar U Ap)). Because Ap and Ay are
disjoint, this probability can be computed as the sum of
two terms, P(fc NAp) + P(fa N An).

2) A fault fr in F that produces an error 0 — 1 in F
for an input vector that tests a fault in Ay. The error
probability in this case is P(fr N Ag).

3) A fault fy in H that produces an error 1 — 0 in H
for an input vector that tests a fault in Ag. The error
probability in this case is P(fg N Ap).

Note that faults that occur in an approximate circuit, F'
or H, may contribute to an unmasked error only in one
direction. It is guaranteed by construction that faults that
occur in the opposite direction either correct the error created
by the approximation or cannot propagate in the incorrect
subspace. On the other hand, the number of faults in ' and H
becomes smaller as more approximations are performed. As a
consequence, the contribution of the last two cases is typically
smaller than the first one. Notwithstanding, we consider all
three cases in our algorithm.

To compute the probabilities in each case, we keep the
SMA of each approximated line. Then, the probability of the
incorrect subspaces given by Ar and Ay can be computed
as the probability of the union of these SMAs. When a new
approximation is performed, the new SMA is added to the set.

Fig. 5 shows the pseudo-code of the approximation algo-
rithm. In the initialization step, we create F' and H which are
exact copies of the original circuit, so the total error probability
EP is 0 and the estimated area E'A is three times that of



Inputs: Original circuit (G), Estimated Area (EA),
Error Probability Target (EP_T), Area Target (EA T)
Outputs: Under-approximate circuit (F), Over-approximate circuit (H),
Estimated Error Probability (EP), Estimated Final Area (EA)
// Initialization
F=G AF = ¢, EAp = EA
H=G AH = ¢, EAg = EA
EP =0
EA = EAp+ EAg+ EAn
// Compute initial fault probabilities
foreach faultf; in G
Imply SMA(f)
Compute P(f;)
Copy SMA(f;) and P(f;) to equivalent faults in /7 and H
/I Approximation loop
while (EP < EP_Tor EA > EA_T)
select fault f; with min probability;
if f4 is an under-approximation fault then
Ar=Ar VU ﬁ1
foreach fault f5 in G
P(fg) = P(fG nAF)
foreach fault /i in H that propagates as / — 0
P(fy) = P(fun Ap)
Update EP
Approximate f in
foreach fault fr in I
Update SMA(fr)
if fr is redundant, then approximate fz in F’
Update E4
else // f4 is an over-approximation fault
Ag=Ag VU ﬁq
foreach fault fg in G
P(fe) = P(fa N An)
foreach fault f in F that propagates as 0 — /
P(fp =P(frn Ap
Update EP
Approximate fy in H
foreach fault fz;in H
Update SMA(fy)
if fz is redundant, then approximate f in
Update E4

Fig. 5. Probabilistic approximation algorithm

the original circuit. We also compute the initial SMA of each
fault and the fault probabilities, which are equivalent in the
three circuits. Then, we enter the approximation loop. In each
iteration, we select for approximation the fault f4 with the
minimum probability. This fault can result either in an under-
approximation or in an over-approximation. Depending on the
type of fault, we add it to Ap or Ay, respectively. Then we
compute the new fault probabilities for all possible faults and
update the total probability estimation. Note that if the fault
results in an under-approximation, the second case does not
apply and only one of the terms in the first case needs to be
computed because the other does not vary. Similarly, if the
fault results in an under-approximation, the third case does
not apply and only the other term in the first case needs to

be computed. Finally, the approximation is performed and we
update the SMA of all faults in the approximate circuit. Along
this process we also eliminate possible redundancies that the
approximation may have created elsewhere. The process is
repeated until the EP target and the EA target are met.

IV. EVOLUTIONARY DESIGN OF APPROXIMATE LOGIC
CIRCUITS

The proposed method is based on CGP, in which a circuit
is represented as a fixed-sized cartesian grid of n, X n. nodes
interconnected by a feed-forward network (see Figure 6). Node
inputs can be connected either to one of n; primary inputs or
to an output of a node in preceding L columns. Each node has
a fixed number of inputs n, (usually n, = 2) and can perform
one of the logic functions from a predefined set I'. Each of n,
primary circuit outputs can be connected either to a primary
input or to a node’s output. The area and delay of the circuit
can be constrained by changing the grid size and the L-back
parameter.

n, columns
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Fig. 6. Cartesian genetic programming schema.

While the search is conducted at the level of genotypes
(arrays of integers representing the circuit), the fitness function
evaluates phenotypes (circuits established according to the
genotypes). The actual encoding is as follows: The primary
inputs and the outputs of nodes are labeled 0. ..n.-n,+n; —1
and considered as addresses which connections can be fed
to. In the genotype, each two-input node is then encoded
using three integers (an address for the first input; an address
for the second input; a node function). Finally, for each
primary output, the genotype contains one integer specifying
the connection address. The genotype size is (ng,+1)n,ne.+n,
genes (integers). While the genotype is of fixed length, the size
of the phenotype depends on the number of inactive nodes,
i.e. nodes whose output is not used by any other node or
primary output. Since the inactive nodes have no influence on
the phenotype, there are individuals with different genotypes
but the same phenotypes.

An example of a CGP individual with its chromosome can
be seen in Figure 7. It has three inputs, one output and three
active nodes.

CGP uses a simple mutation based (1 + \) evolutionary
strategy as a search mechanism. The population size 1 + A is
mostly very small, typically, A = 4. The maximum number of
generations created in a single run is N,. The initial population
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Fig. 7. CGP individual example.

is constructed either randomly (in the case of evolutionary
design) or by mapping of a known solution to the CGP
chromosome (in the case of evolutionary optimization). In
each generation, the best individual is passed to the next
generation unmodified along with its A offspring individuals
created by means of a point mutation operator. In case more
individuals with the best fitness exist, a randomly selected
one is chosen. The mutation rate m is usually set to modify
up to 5% randomly selected genes. The role of mutation is
significant in CGP (see detailed analysis in [43], [44]).
Based on our previous experiences, we decided to use
a multi-stage single-objective approach with constrained re-
sources to obtain desired approximations. The fitness function
funder used to find under-approximations is defined as follows:

l?;?‘r}l(m + ( ;;Irlea; - farea) if fhamm =0,
funder = }?;?r’fm - fhamm if foﬂ? =0, (1)
ot — Joft otherwise,

where fhamm 1S the total Hamming distance between the
outputs generated by the candidate solution and the original
circuit for all possible input combinations, fi3X = ny2™,
farea 18 the area of the circuit, fioX is the maximum area
according to chosen number of rows n, and columns n., fof is
the number of 0 — 1 errors for all possible input combinations
and fJF* is the number of zeros in the truth table of the
original circuit. All individuals with fitness funder > fig™
represent a valid under-approximation.

Similarly, the fitness function foye, used to find over-
approximations is defined as follows:

}?}11?1)1(11’1 + ( ;rlg; - farea) if fhamm =0,
fover i= }III:IL;I(H] — fhamm if fon =0, (2
on — fon otherwise,

where f,, is the number of 1 — 0 errors for all possible
input combinations and fJ** is the number of ones in the
truth table of the original circuit. All individuals with fitness
fover > fI28% represent a valid over-approximation. One
can observe that since all possible input vectors have to be
generated, the approach is not scalable. In order to speed
up the design, the parallelism at various levels (data, thread,
process) can be introduced [27]. In practice, it is applicable for
circuits containing less than approximately 20 inputs and 200
gates. More complex circuits can be optimized by introducing
formal methods, e.g. SAT solvers or Binary Decision Diagrams
(BDD), however, an initial fully working solution is needed

in this case [45].

V. EXPERIMENTAL RESULTS
A. Experimental setup

The experiments were conducted with two groups of bench-
marks extracted from LGSynth93 set. The first group was
intended to compare the results of both probabilistic and
evolutionary approaches. Therefore, the size of the circuits in
this group was limited to the capabilities of the evolutionary
approach. With the second group of benchmarks the goal was
to show the efficiency of the probabilistic approach for other
circuits and to compare it with other approaches. Benchmarks
b12, rd73 and t481 were selected for the first group, and apex3,
apex4, m3, misex3, table3 and table5 for the second. The orig-
inal version of each benchmark was obtained by synthesizing
the circuit with Synopsys using the Nangatel5Snm synthesis
library [46]. Table I shows the size of each benchmark as
provided by the synthesis tool both in the number of cells and
the area, as well as the number of primary inputs (PIs) and
outputs (POs).

TABLE 1
SYNTHESIS RESULTS FOR SELECTED BENCHMARKS

Benchmark | #PIs  #POs  #cells area
apex3 54 50 799 192.77
apex4 9 18 1191 279.77
b12 15 9 58 12.93
m3 8 16 205 46.55
misex3 14 14 1285  290.14
rd73 7 3 20 5.90

t481 16 1 32 6.98
table3 14 14 478 116.59
table5 17 15 420 103.61

The generation of approximate logic circuits for the experi-
ments was done in the following way. For the probabilistic ap-
proach, a set of arbitrary error targets was set for each circuit,
covering a significant range of cases between conventional
TMR (full protection) and trivial approximation (no redundant
logic). Each error target generated a pair of approximate
circuits (over-approximation and under-approximation), which
were resynthesized in order to remove logic constants. Each
pair of approximate circuits was combined with the original
circuit to build an error masking schema.

With respect to the evolutionary approach, a large set
of approximate circuits was generated for each benchmark.
Table I summarizes the CGP parameters whose values were
set up as recommended in the literature [26].

TABLE II
CGP PARAMETERS

Parameter bl2 rd73 481

ng 15 7 16

No 9 3 1

Ne 6 5 5

Ny 1...10

L 6 5 5

T all 2-input gates

A 4

m 5%

Ng 2000000 2000000 1000000

For each configuration of the CGP grid (as n, varies from
1 to 10), a total of 100 over-approximations and 100 under-



approximations were generated. In total, 1000 approximate
circuits of each type were generated for each benchmark.
According to the fundamentals of the proposed technique,
any over-approximation can be combined with any under-
approximation to conform a valid error masking scheme.
Therefore, there are 10° possible solutions to test for each
benchmark. Testing the whole set of solutions would take
too much time, and therefore it was studied if there was any
representative data that allowed to select the best solutions
in terms of error masking capabilities. This is discussed in
section V-B. Figures 8 and 9 show, in the form of box plots, a
statistical analysis of multiple CGP runs for selected circuits
evolved as the under-approximations and over-approximations.
The box plots give the Hamming distances obtained for in-
creased amount of resources available for the implementation.
A clear trade-off between the Hamming distance (quality) and
the area can be observed.

b12 over-approximations
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Fig. 8. Statistical results for b12 approximations evolved by CGP.

Once approximate circuits were generated, masking
schemas were built for testing. Voters were placed at the output
of circuits, and the list of stuck-at faults was generated for each
circuit. This list included all faults on every input of each gate
in the circuit, plus the faults on the outputs of the circuit before
the voter. This allowed to introduce simple voters, as there is
full control of fault injection points.

For each error masking schema under test, a fault simulation
with random input vectors was performed by means of the
parallel simulator HOPE [47]. A total of 50000 randomly
generated input vectors were applied for each design under
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Fig. 9. Statistical results for rd73 approximations evolved by CGP.

test, and all faults in the list previously generated were tested
for each input vector. The total error probability was computed
as the average number of faults detected per input vector,
divided by the size of the fault list. For simplicity, all faults
were considered equally likely.

At the time of estimating the probability of circuit failure,
it must be taken into account that the number of faults
hitting a circuit is correlated with the circuit area. Thus,
as the area increases by using larger approximations, the
fault probability increases as well. However, all faults in the
approximate circuits are either masked or detectable, so that
the probability of circuit failure always decreases as the quality
of the approximation increases.

B. Selection of candidate Approximate Logic Circuits from
evolutionary approach

As stated before, 1000 approximate circuits of each type
were generated with the evolutionary approach for the experi-
ments, which made a total of 10® combinations to test. For the
first benchmark (b12) an exhaustive analysis was performed.
The whole process is very time consuming, therefore data
collected for b12 were studied in order to properly select the
most promising candidates for the rest of the benchmarks.
The objective was to find the combination with the highest
error masking rate. The more functionally similar are the
approximate circuits with respect to the original circuit, the
more protection against faults is achieved. Therefore, approx-



imate circuits with low Hamming distance compared with the
original circuit are good candidates, in principle. To validate
this hypothesis, the correlation between the sum of Hamming
distances of both approximate circuits and the experimental
error probability was computed. The results are shown in
Table III, grouped according to the size of the configuration
matrix for both under- and over-approximate circuits. The
results show that there is a significant correlation between both
metrics. The average correlation index is 0.831. Therefore, for
the rest of the benchmarks only the circuits with a Hamming
distance below the average of each group were selected for
experiments.

C. Comparison between probabilistic and evolutionary ap-
proaches

First, the results of experiments aimed to compare both
techniques are shown here. Fig. 10 graphically represents
the tradeoff between error probability and area overhead for
several solutions found by using either the probabilistic or the
evolutionary approach. This probability is related to the num-
ber of faults in the original circuit in order to take into account
the area increase. For the latter technique, only the cases with
the best error masking rate for each possible combination in
the sizes of under-approximate and over- approximate circuits
are represented. The same applies for Fig. 11 and 12 with
respect to rd73 and t481 benchmarks, respectively.

Analyzing the results in Fig. 10, it can be seen that
the evolutionary approach achieves in general slightly better
results than the probabilistic one for bl2 benchmark. This
is reasonable, because evolutionary approach can explore a
much larger range of solutions, although at a much larger
computational cost. However, the probabilistic approach can
still obtain good solutions, close to the evolutionary approach.
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Results for rd73 benchmark are shown on Fig. 11. This is an
example of a circuit with a high degree of binateness, which
means that small expansions on either the on-set or the off-set
have a high cost in terms of resources. This leads to sub-
optimal solutions with overheads greater than 200 % in both
approaches, which are uninteresting. On the other hand, under
the 200 % overhead limit the same tendency is observed. The

evolutionary approach produces slightly better solutions than
the probabilistic approach, but with much more computational
effort.
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With respect to t481 benchmark (Fig. 12), it can be observed
that the probabilistic approach presents more scalability than
the evolutionary one. This is due to the fact that t481 is a
circuit with just one output with high onset probability. Under
such conditions, the evolutionary approach tends to generate
onset circuits which behave like logic constants due to the
limited size of the configurable logic array, thus limiting both
area overhead and error masking rate. On the other hand, the
probabilistic approach is based on gradually degrading the
logic function of the circuit, which allows to reach more robust
solutions in the region close to conventional TMR.
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D. Comparison with other approaches

A second group of experiments was performed with the aim
of showing the applicability and scalability of the probabilistic
approach for larger circuits. In addition, the results from
this group were compared with the sub-circuit resynthesiz-
ing method recently proposed in [11]. The results of the
experiments are shown in Fig. 13. The graphics show for
each benchmark the tradeoff between the P improvement,

e., the improvement in the F P with respect to the original



TABLE III

ERROR MASKING RATE VS. HAMMING DISTANCE CORRELATION INDEXES

Over/Under [ 1 [ 2 [ 3 | 4 [ 5 [ 6 [ 7 ] 8 | 9 ] 10

1 0.700 [ 0.686 | 0.739 | 0.754 [ 0.708 [ 0.707 | 0.674 [ 0.646 [ 0.688 | 0.667
2 0.792 [ 0772 | 0.803 | 0.843 | 0.818 | 0.840 | 0.838 | 0.820 [ 0.845 | 0.839
3 0.717 | 0626 | 0.653 | 0.732 | 0.704 | 0.766 | 0.770 | 0.763 [ 0.786 | 0.797
4 0.802 | 0734 | 0.820 | 0.875 | 0.833 | 0.867 | 0.890 | 0.879 | 0.887 | 0.875
5 0.806 [ 0737 | 0.799 | 0.847 | 0.815 | 0.849 | 0.867 [ 0.857 [ 0.868 | 0.861
6 0.836 | 0.818 | 0.871 | 0.903 | 0.885 | 0.900 | 0.916 [ 0910 [ 0.914 | 0.913
7 0.823 | 0.814 | 0.861 | 0.897 | 0.882 [ 0.897 | 0.913 [ 0.905 [ 0911 | 0.912
8 0.811 | 0.805 | 0.853 | 0.893 | 0.880 | 0.896 | 0.912 [ 0902 [ 0911 | 0.914
9 0.795 [ 0751 | 0.795 | 0.854 | 0.834 | 0.867 | 0.887 | 0.875 | 0.888 | 0.893
10 0.815 [ 0.840 | 0.865 | 0.901 | 0900 [ 0.913 | 0.929 | 0923 [ 0.930 | 0.938
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unprotected circuit, and the area overhead for different targets.
For the probabilistic approach, the additional area due to the
approximate circuits and single voters is taken into account.
The graphics also include data from [11] for the sake of
comparison. It must be noted that these data were obtained
with a different synthesis tool and a different technology.
Notwithstanding, with the necessary precautions, the results
can be used for a general comparison.

The results show that the synthesis approach tends to
produce slightly more efficient solutions with respect to the
probabilistic approach, although the probabilistic approach can
produce better results in some cases. On the other hand, the
synthesis approach evinces a very limited scalability, while
the probabilistic approach is able to reach any level of error
protection, as high as desired. As a matter of fact, the synthesis
approach cannot significantly improve the E'P by increasing
the area overhead.

Finally, it must be noted that a single particle strike can
generate a multiple fault in adjacent cells due to charge
sharing. This effect is critical in the synthesis approach, as
a multiple fault can invalidate the logical masking. However,
our approach provides protection against this effect by con-
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13. Simulation results and comparison with synthesis-based approach [11]

struction, because the three circuits are built separately. Thus,
a multiple fault caused by charge sharing can only affect one
of the circuits and the multiple error can be masked at the
voter.

VI. CONCLUSIONS

In this work we proposed and compared two different
approaches to generate approximate logic circuits for error
mitigation using a TMR schema. The probablilistic approach
uses a greedy algorithm based on line approximations and
dynamic error probability estimations. The evolutionary ap-
proach is based on CGP and can generate radically different
solutions. The experimental results show that the evolutionary
approach is generally able to find slightly better results, but
at the expense of a higher computational effort. On the other
hand, the probabilistic approach can handle large circuits in
an efficient manner. Notwithstanding, the current progress in
evolutionary computing techniques suggests that they will be
able to process larger circuits in the near future [45].

The two proposed methods are widely scalable and can
provide solutions for any required trade-off between reliability



and area overhead. This is a major advantage to cover a variety
of application scenarios and technologies. In comparison,
recently proposed synthesis-based methods can occasionally
produce slightly better results but they cannot explore the
design space in depth.
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Abstract—Approximate circuits and approximate circuit design
methodologies attracted a significant attention of researchers
as well as industry in recent years. In order to accelerate
the approximate circuit and system design process and to
support a fair benchmarking of circuit approximation meth-
ods, we propose a library of approximate adders and mul-
tipliers called EvoApprox8b. This library contains 430 non-
dominated 8-bit approximate adders created from 13 conven-
tional adders and 471 non-dominated 8-bit approximate mul-
tipliers created from 6 conventional multipliers. These imple-
mentations were evolved by a multi-objective Cartesian ge-
netic programming. The EvoApprox8b library provides Verilog,
Matlab and C models of all approximate circuits. In addition
to standard circuit parameters, the error is given for seven
different error metrics. The EvoApprox8b library is available
at: www.fit.vutbr.cz/research/groups/ehw/approxlib

I. INTRODUCTION

Approximate circuits are becoming a viable alternative to
conventional accurately operating circuits if energy efficiency
is crucial and target application is error resilient [1]. This is the
case of many, for example, image and video processing circuits
that are predominantly composed of adders and multipliers. In
order to approximate circuits such as adders and multipliers
for a particular application, a designer can either perform a
single purpose (ad hoc) approximation or apply some of the
circuit approximation methods available in the literature. We
will only deal with functional approximation in which logic
function implemented by the original circuits is simplified.
Other approximation techniques enabling power reduction
such as voltage over scaling are not considered in this paper.

Unfortunately, almost all papers dealing with circuit ap-
proximation show some of the following features that are
undesirable from a practical point of view: (1) The approx-
imation method is described, but a corresponding software
implementation is not available. (2) An implementation of
the original (accurate) circuit is not available. (3) The quality
of approximation and other parameters of approximate cir-
cuits are expressed relatively to parameters of the original
circuit. If the original circuit is not available, it is hard or
even impossible to obtain real parameters of the approximate
circuits and reproduce the results. (4) Implementations of the
resulting approximate circuits are not available. (5) Only a
few approximate versions created from the original circuit are

978-3-9815370-8-6/17/$31.00 ©2017 IEEE

reported, forming thus a sparsely occupied Pareto front. (6) It
is unclear if a given number of test vectors used to evaluate
approximate circuits is sufficient for obtaining a trustworthy
error quantification if the error is determined using simulation.
(7) A given approximation method is only rarely compared
against competitive approximation methods.

To the best of our knowledge, paper [2] and related software
is the only one which does not suffer from the aforementioned
problems. However, the paper is solely devoted to 16 bit adders
and still only a few approximate adders can be downloaded.

The undesirable properties (1) — (7) are resulting in a situ-
ation in which the user does not know which approximation
method is the most suitable one for his/her problem because
the quality of available approximation methods cannot fairly
be compared. If the user does not want to apply any of the
approximation methods, its intention could be to use just a
resulting approximate circuit showing desired parameter val-
ues. However, the chance of direct downloading a circuit with
desired parameters is very low, because only a few approxi-
mate versions of the original circuit exist in the corresponding
repository. On the other hand, it has to be emphasized that
a fair comparison of approximation methods is difficult as
they should be compared under the same conditions (under
the same error metrics, fabrication technology, synthesis tools,
available run-time etc.) and start with the same original circuit,
which is difficult to ensure in the progressively developing
field of approximate computing.

In order to address at least some of the aforementioned
challenges, the objective of this paper is to introduce a rich
and well-focused library of approximate components (called
EvoApprox8b) that can be downloaded and immediately used
in various applications or for benchmarking of circuit ap-
proximation methods. The library consists of approximate 8-
bit adders and 8-bit multipliers that are crucial components
of, for example, approximate image and video processing
applications. In addition to circuit parameters (error, area,
delay, power etc.), the library contains Matlab, C and Verilog
implementations for all components which allows the user
not only to immediately use the components, but also to
calculate the error for a new target error metric or obtain
desired parameters by performing a synthesis for a fabrication
technology different to the reported one. In addition to that
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these circuits can be utilized as building blocks of more
complex approximate arithmetic circuits (as shown e.g. in [3]).

There are 430 different approximate 8-bit adders and 471
different approximate 8-bit multipliers forming a Pareto front
in a three-dimensional space defined using the error, delay,
and power metrics. These implementations were obtained
by a multi-objective Cartesian genetic programming (CGP)
according to [4]. As a starting point for the CGP-based
approximation process, 13 different adder and 6 different
multiplier accurately-operating architectures were employed.
The adders include Ripple-Carry Adder (RCA), Carry-Select
Adder (CSA), Carry-Look-ahead Adder (CLA), multiple Tree
Adder (TA) and Higher Valency Tree Adder (HVTA) archi-
tectures. The multipliers include Ripple-Carry Array, multiple
Carry-Save Array and Wallace Tree architectures. These ac-
curate implementations are also included in the library.

CGP has been adopted as our design method because
papers [5], [6], [7] revealed that it can provide much better
implementations of accurate as well as approximate circuits
than common circuit design and optimization tools. The
EvoApprox8b library is provided as an open source project,
see the EvoApprox8b web site [8].

The rest of the paper is organized as follows. Section II sur-
veys the methods developed for approximation of adders and
multipliers. Section III describes the approximation method
used to create the EvoApprox8b library. The library is pre-
sented in Section IV. Conclusions are given in Section V.

II. APPROXIMATE ADDERS AND MULTIPLIERS

Software-oriented benchmark sets such as AxBench [9]
were developed for evaluation of approximate software and
corresponding approximation methods. Regarding circuit ap-
proximation, several approximate circuits can be downloaded
from KIT CES web site, including Generic Accuracy Config-
urable Adders (GeAR) [2]. The remaining papers dealing with
circuit approximation methods suffer from problems discussed
in Section I and, hence, performing a fair comparison of
approximation methods or resulting approximate circuits is
difficult. In this section, we will briefly survey approaches
developed for adders and multipliers approximation.

Adders and multipliers are approximated by either general-
purpose approximation methods or problem-specific methods.
In the case of general-purpose methods (e.g. SALSA [10]
and SASIMI [11]), adders and multipliers serve as one of
many circuit classes that can be approximated. Problem-
specific methods exploit the structure of conventional adders
and multipliers. Another class of circuits are quality config-
urable circuits (e.g. GeAR adders) which allow for a dynamic
approximation according the expected quality of result [2].

Four types of approximate adders are considered in [12]: (1)
Speculative adders in which it is presumed that the probability
that the carry propagation chain is longer than & bits (k << n)
is very low for n-bit adders. Hence, according to k bits the
carry is speculated for each sum bit. (2) Segmented adders,
where an n-bit adder is divided into k-bit sub-adders and
the carry is then generated by using different methods. (3)
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Carry-select adders in which multiple sub-modules are used
to compute the sum for different carry values, and the result
is determined according to the carry of a sub-module. (4)
Approximate full adders where the full adder (an elementary
adder’s component) is approximated.

Approximate multipliers are based on the following prin-
ciples [13]: (1) Approximation in generating partial products
utilizing a simpler structure to generate partial products [3].
(2) Approximation in the partial product tree by ignoring
some partial products or dividing partial products into several
modules and applying approximation in the less significant
modules. (3) Using approximate counters or compressors in
the partial product tree. (4) Using approximate Booth mul-
tipliers. (5) Composing complex approximate multipliers by
means of simple approximate multipliers as shown in [3].

Recently, an evolutionary approach was applied in the
task of approximate circuits design with respect to multiple
objectives [6], [7], [4]. Conventional circuits were used as
an initial population. The circuit approximation problem is
formulated as a multi-objective search problem and solved
using the state-of-the art CGP method [14] combined with the
NSGA-II algorithm [15]. In many cases, CGP-based approach
is capable of optimizing accurate circuits in such a way that
they remain accurate, but they show better parameters (e.g.
area) than approximate circuits [4].

There are many error metrics developed to evaluate the
quality of approximate arithmetic circuits [16]. While most
methods apply test vectors to estimate the error (e.g. 108
test vectors were used to evaluate 16 bit adders in [12]), the
exact error calculation based on formal models such as binary
decision diagrams is rarely used. The accuracy of simulation-
based error calculation (which depends on the number and
quality of test vectors) can significantly influence the whole
approximation process.

III. CIRCUIT APPROXIMATION METHOD

The method used to obtain the library follows the method-
ology introduced in [4]. It is a general-purpose approximation
method for combinational circuits based on a multi-objective
CGP. It represents candidate circuits as directed acyclic graphs
and tries to simultaneously minimize delay, power consump-
tion and error to discover a set of approximate circuits along a
Pareto front. Moreover, various constraints can be formulated
to reduce the search space.

A. Circuit representation

In CGP, candidate solutions are represented in a two-
dimensional array of programmable nodes [14]. An n;-input
and n,-output combinational circuit is modelled using an array
of n. - n, programmable nodes forming a Cartesian grid. A
set of available n,-input/n;-output node functions is denoted
I". The primary inputs and programmable node outputs are
uniquely numbered. For each node the chromosome contains
(nq+1) values that represent (i) node function and (ii) ad-
dresses specifying the input connections. The chromosome
also contains n, values specifying the gates (node outputs)
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connected to the primary outputs. The chromosome size is
neny-(ng + 1) + n, integers.

In our case, I' contains functions implemented by standard
components (such as gates and adders) of technology library.
We used a subset of componets from a TSMC 180 nm
technology library. A complete list of technology components
including their area and leakage power can be found in [4].
There are multiple implementations of the same component
differing in the implementation cost. During the circuit approx-
imation, a proper size was selected for each gate depending
on the output load of the gate.

B. Search method

New candidate circuits are created by means of a point
mutation operator which modifies a given number of integers
of the chromosome. The multi-objective search is conducted
by the NSGA-II algorithm which is based on the idea of Pareto
dominance relation. The individuals in each generation are
sorted according to the dominance relation into multiple fronts.
The solutions within the individual fronts are sorted according
to the crowding distance metric, which helps to preserve
a reasonable diversity along the fronts [15]. The crowding
distance is the average distance of two solutions on either side
along each of the objectives. A new population is then created
by exploiting appropriate Pareto fronts as defined in [17]. The
result of a single evolutionary run is not just one solution, but
a set of non-dominated solutions occupying the Pareto front.
The search method is implemented as a parallel evolutionary
algorithm operating with multiple populations distributed on
several islands and the best individuals are allowed to migrate
among the islands.

C. Fitness functions

A selection of the error metric significantly influences ob-
tained results [6]. As the error metric is usually an application-
specific function there is no reason to prefer one over another
in our library. We decided to optimize according to the mean
relative error, but we also quantified the errors according to
other commonly used error metrics for all evolved circuits
(Section 1V). The mean relative error is calculated accurately,
i.e. for all possible 2™ input vectors, as:

(i) i
Z ’Ourig_oégprox
Vi @
S 1= — ot Ot (M
: o ,
where O((fr)ig is the decimal representation of the ¢-th circuit

correct output, Oggpmx is the individual’s i-th output, and n; is
the number of primary inputs (i.e. the operand’s width is n;/2
bits). In addition to that, we constrained the worst absolute
and relative errors to reduce the search space.

The circuit area is a sum of the areas of components used
in the circuit. Power consumption is estimated according to
the algorithm given in [4]. The delay of a candidate circuit is
calculated using the parameters defined in the liberty timing
file available for the utilized semiconductor technology. The
delay tq of a cell ¢; is modeled as a function of its input
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Fig. 1. Pareto fronts with parameters of evolved approximate 8-bit adders,
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Fig. 2. Pareto fronts with parameters of evolved approximate 8-bit multipliers.

transition time ¢g and capacitive load C| on the output of the
cell, i.e. tq(c;) = f(t$,C"). The delay of the circuit C is
determined as the delay along the longest path.

D. Parameters setting

The CGP/NSGA-II parameters were set as follows: 500
individuals in the population, 100,000 generations, 10 islands,
mutation rate 5 %, number of rows n, = 1. The number
of columns was n. = 200 in the case of the adders and
n. = 1000 in the case of the multipliers.

The circuits were designed with respect to three objectives
— the mean relative error (MRE), power consumption and
delay. The MRE was constrained to be at most 10 %, the
worst case error was constrained to be at most 5% of the
output range and the worst case relative error was limited to
1000 %. All candidate solutions violating these requirements
were discarded.

IV. EVOAPPROX8B LIBRARY

The EvoApprox8b library contains 430 non-dominated 8-bit
approximate adders evolved from the initial population of 13
conventional adders and 471 non-dominated 8-bit approximate
multipliers that were evolved from 6 conventional implemen-
tations. In addition to the conventional implementations, the
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library also contains 43 exact adders and 28 exact multipliers
that were obtained by CGP and that are not dominated by
any accurate implementation. All Pareto fronts are shown in
Figure 1 and 2. All parameters are related to the Ripple-
Carry Adder and Ripple-Carry Array Multiplier architectures
(considered as 100% in the figures). Figure 1 also provides
parameters of 8-bit approximate adders created according
to [2]. Evolved adders show quite competitive properties under
the metrics used in the figure.

All approximate circuits and their various parameters can
be found at the EvoApprox8b web site [8]. It contains circuit
models for Verilog, Matlab and C. This enables the user to
integrate the circuits to hardware as well as software projects
and design tools. All circuits can thus be simulated in order to
obtain their other parameters that are not listed on the web site
(e.g. errors under different error metrics or power consumption
for another fabrication technology). The circuits can be sorted
according to a chosen parameter which is useful when the user
is looking for a circuit satisfying particular constraints.

The following list gives parameters that are provided for all
circuits in the library: Area, delay, power (all estimated accord-
ing to [4] which was validated against Cadence Encounter RTL
Compiler and TSMC 180 nm library), nodes (the number of
nodes, where a gate, a half adder and a full adder are counted
as one node), HD (Hamming distance), EP (error probability),
MAE (mean absolute error), MSE (mean squared error), MRE
(mean relative error), WCE (worst case error), and WCRE
(worst case relative error). Note that as n; is the number of
primary inputs, the operand’s width is n;/2 bits.

HD = Z OnesCount(OéQprox a0 ) (2)

orig
Vi
2 vi:0( o0 1
Ep = el 3)
i |Otiprox — Ol
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ZVi ng?prox - Oor)ig
MSE — - , 5)
10808,
ZVi max(l,Oiizg)
MRE = = : ©)
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‘Oz(iip)prox - 0(1)
WCRE = max - ———— )
Yi max(1, Oozig)

V. CONCLUSIONS

In this paper we presented a rich library of approximate
8 bit adders and multipliers which is primarily intended for
creating approximate blocks of image and video processing
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circuits. The Matlab, C and Verilog models that are available
from [8] can allow software as well as hardware developers
to integrate the approximate adders and multipliers to their
designs. As we are aware of, this is the first open-source library
containing hundreds of approximate components that allows
for reproducible comparisons across various layers of design
abstraction. These components can be utilized as building
blocks of more complex approximate adders and multipliers
as demonstrated for multipliers in [3].
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