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Abstract
The work presents a methodology of fault tolerant system design into an FPGA with
the ability of the transient fault and the permanent fault mitigation. The transient fault
mitigation is done by the partial dynamic reconfiguration. The mitigation of a certain
number of permanent faults is based on using a specific fault tolerant architecture occupying
less resources than the previosly used one and excluding the faulty part of the FPGA from
further use. This inovative technique is based on the precompiled configurations stored in
an external memory. To reduce the required space for a partial bitstream the relocation
technique is used.

Abstrakt
Tato práce popisuje navrženou metodologii pro návrh systémů odolných proti poruchám
v FPGA schopnou ochránit systém před projevy přechodných a trvalých poruch. Oprava
přechodné poruchy je prováděna částečnou dynamickou rekonfigurací. Oprava omezeného
počtu trvalých poruch je založena na použití odolných architektur využívajících menší
množství zdrojů než předchozí použitá architektura. Vadná část FPGA tak není dále
využívána. Tato technika je založena na použití předkompilovaných konfigurací uložených
v externí paměti. Pro snížení paměťových nároků pro uložení konfiguračních bitových
posloupností je použita technika relokace.
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Chapter 1

Introduction

This chapter brings a brief introduction to the topic of this thesis. It is focused on fault
tolerant aspects of electronic devices and it is describing the methodology for fault tolerant
system design developed specially for Field Programmable Gate Arrays (FPGA). Before the
methodology is proposed in the following chapters, contemporary state of the knowledge in
this topic and known approaches for solving issues connected with it are discussed.

1.1 Preface
The progress in manufacturing electronic devices mainly stands on shrinking its parts such
as chips and transistors. The Moore’s law says that every two years the power of new
computer chips will be doubled. Although this idea was formed in 1965 it withstanded as
the truth for 50 years. In these days when the shrinking of integrated circuits achieves the
14-nm resolution (half-node shrink) [42], it is clear that the law will be void very early.

The scaling of transistors to such small sizes provides high performance, low power and
also lower costs per unit but has also very strong drawbacks. From the system dependability
viewpoint, the rapid downsizing of circuitry brings increased defect rates because the wires
and devices made of few atoms and bonds are more susceptible to the occurrence of defective
parts. These small devices are also very fragile on overstress and other environmental
influences during operational lifetime. Additionally, small changes inside fabric caused
by these factors can lead to large impact on device performance. It also brings bigger
susceptibility to transient upsets. Small nodes use less charge to hold state or data and can
be easily altered and upset by noise from outside environment such as radiation.

This implies the motivation to make electronic devices dependable even in very harsh
environmental conditions. This is very recent topic. Besides others, it is deeply connected
with space exploration. In 2016, the spacecraft from NASA New Frontiers mission came to
the orbit of one of Jupiter’s months, Juno. This mission is specific also because of its high
demands to electronic devices of spacecraft. The radiation in radiation belts of this planet
is much stronger then on the Earth’s orbit [8]. The electronic devices in spacecraft has to
be hardened against such a dose of radiation but it has to be also made fault tolerant to be
able to survive the time of mission even if some fault occurs. As an example of its increased
dependability, Juno spacecraft’s data handling system is based on RAD750 processor from
BAE Systems company which is designed to accommodate as much single event effects as
possible to survive them for at least 15 years without intervention from Earth [51]. The
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loose of money in case of unsuccessful mission will be very big and repeating of mission will
be time-demanding because the flight to Juno’s orbit takes almost 5 years.

It is clear now, that one of the key system indicators is its dependability. It is an
integrated measure consisting of several attributes such as the availability and relibility of
system, its maintainability and durability and also its safety and security. All together
it expresses the ability of system to produce outputs that can justifiably be trusted. To
increase the dependability of system, several mechanism can be adopted. One of the most
popular approaches is Fault Tolerant (FT) system design which enables a system to continue
its intended operation when some part of the system fails. The operation after the fault
occurrence can be at a reduced level, but it should not fail completely. Many FT techniques
use hardware redundancy in order to reduce the probability of failure. By replicating the
desired circuitry and comparing the results, fault in one or more replicated system units
can be detected and reported or the fault mitigation process of faulty unit can be triggered.

Nowadays, developers implementing a particular system can select from various elec-
tronic devices. There are many fabrics starting from simple integrated circuits, universal
purpose microprocessors, custom chips or programmable microcontrollers and more com-
plex logic devices available on the market. For rapid prototyping and implementing sys-
tems consisting of small number of units, the FPGA technology became very popular and
frequently used. They provide high logic density and possibility to easily upgrade the im-
plemented designs in order to comply with the latest standards or to modify the function
or the structure of implemented system. Another benefit of FPGA design in comparison
with custom chips is their relatively short design cycle supported by the possibility of using
existing low cost design tools. These benefits together result in low non-recurring engineer-
ing costs (NRE) for FPGA design. On the other side, their drawback is their vulnerability
to radiation effects [61]. This mainly concerns SRAM-based FPGAs which are becoming
increasingly popular for many applications due to their high-throughput capabilities and
relatively low cost. The use of fault tolerant system design can be the solution to overcome
their higher rate of fault occurrence.

The ability of FPGA to be configured many times also brings new possibilities from
the perspective of system fault tolerance. When the system in FPGA is affected by fault,
the reconfiguration can be used to overcome its effects. Partial dynamic reconfiguration
capable to reconfigure only some parts of implemented system while the others can run
without interruption and also to change their layout and connections in FPGA can be used
to implement the new advanced fault localization and mitigation methods. This flexibility
allows the use of same FPGA for multiple missions without the need of replacement. When
some resources of FPGA are permanently damaged, the custom circuit designs can be
created to avoid these resources and the implemented application can continue to run further
in the same piece of FPGA. With this approach, we can achieve very good dependability
and extend the operational time of the system in harsh environmental conditions.

The aim of this work is to propose alternative methodology for fault tolerant design
into FPGA. This methodology can be used in systems with limited redundant area where
no spare resources can be activated during the system lifetime, only the resources dedi-
cated at the system design time can be utilized. To mitigate the faults which will appear
during the system operation the partial dynamic reconfiguration of FPGA will be used.
The methodology will focus on recovering from errors caused by transient and also several
independently appearing permanent faults. The SEU faults will be simulated by injecting
faults into configuration memory of FPGA. In the end of this work the hardware overhead
of this solution is evaluated and the quality of the design of secured system is tested.
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1.2 Structure of thesis
The introduction to the topic of fault tolerant system design in FPGAs and brief motiva-
tion is described in the first chapter. The second chapter will focus on the presention of
current technologies which can be used for electronic device implementation together with
their benefits and known drawbacks. This chapter also presents the problem of system
depedendability and its impact on system operational lifetime and introduces the concept
of fault tolerance of system. The introduction to typical problems in the field of fault tol-
erant system design and known approaches for coping with them are described in the third
chapter. This chapter includes many known techniques, starting with the fault tolerant
techniques which can be used universally for all typical fabrics of which electronic devices
can be made through to special techniques for SRAM-based FPGAs. The motivation for
the research in this topic together with the goals of research are described in the fourth
chapter. The fifth chapter is focused on the description of the proposed methodology. At
the beginning, the key parts of methodology are presented. The way, how the original
system has to be modified to extend its operational lifetime is described. The following
sections include the description of utilizing the FPGA features such as partial dynamic
reconfiguration to achieve this. The methodology involves specific FT architecture design.
The design of these architectures based on the user requirements on dependability indica-
tors and occupied resources on chip can be automated. The FT architecture design together
with developed tool for its automated design and implementation is the content of chapter
six. In the seventh chapter, the experimental results and their evaulation are presented. In
the last chapter of thesis, the obtained results are summarized and the benefits of research
are stated. It includes also the possible ways for the subsequent research orientation in this
area.
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Chapter 2

Common knowledge

In this chapter, the digital systems technologies and concept of fault tolerance will be
presented.

2.1 Digital systems
The circuit implementing certain function can be designed using two basic approaches - as
an analog or a digital system. While the analog systems use continuous set of input and
output values, the digital system is based on the use of finite number of discrete values.
Usually, two values are used - logical one and logical zero. These two approaches are often
mixed in real systems. While the analog part of the system can be used for processing the
signal on system input the digital part is performing the computation. Although the first
mass-produced electronic devices were analog, during the last decades the digital system
became more popular. The main drawback of analog design is its susceptibility to noise
where small change in the signal can cause a significant change in the information present
in the signal and can cause the information to be lost. Since digital signals take on one
of only two different values, a disturbance would have to be about one-half the magnitude
of the digital signal to cause an error. This property of digital circuits can be exploited
to make signal processing noise-resistant. With proper techniques such as securing and
detection codes the corrupted digital signal can be easily reconstructed [43].

Digital systems mostly use signals with 2-level logic. It means that voltage value on
signal should be assignable one of two logical values according to their tolerance intervals
stated by the manufacturer of digital circuit. Two possible implementations of logical values
then exist:

∙ In positive logic the logical one is represented by higher voltage and logical zero by
lower voltage.

∙ In negative logic the logical one is represented by lower voltage and logical zero by
higher voltage.

In 2-level logic the voltage values between lower voltage tolerance interval and higher voltage
tolerance interval represent undefined or forbidden values. This undefined values can cause
problems in digital circuit since the implemented functions are defined only for two possible
logical values (zero and one) on input signals. For other values on inputs the output
will be undefined. Signals with two levels can be used in Boolean logic for digital circuit
design or analysis. The basic building blocks for digital systems are gates implementing
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basic Boolean functions such as negation (NOT), conjunction (AND), disjunction (OR) and
exclusive disjunction (XOR). These blocks transform the input vector of binary values to
output vector of binary values. The complex digital systems can be built by connecting
these simple gates.

Other types of digital circuits using 3-level logic gates with the third logical value of
high impedance [21] or more levelled logic exist (e.g. [1]). New gates can be built also
with polymorphic electronics where the gates can implement different functions according
to the state of environment (temperature, power supply voltage, light) [54].

The digital circuit can be split into two classes:

∙ Combinational logic refers to the circuits the output of which is a function of the
present values of the inputs only. Combinational logic circuits do not contain any
memory elements and thus when the inputs are changed, the information about the
previous inputs is lost. The behaviour of combinational circuits is described by the
set of output functions.

∙ Sequential logic refers to the circuits the outputs of which are also dependent upon
past inputs and outputs to them. Thus they implement some form of memory. They
consist of two parts. The function is implemented by combinational logic and its
outputs are stored in registers. The values in these memory elements are called state
variables and can be used in the subsequent cycles of computation. The behaviour of
sequential circuit is described by the set of next-state functions and the set of output
functions.
Sequential circuits can be divided according to the way in which the circuit changes
its output.

– Asynchronous sequential circuits change their state (and outputs) immediately
when input vector changes. The state time of this circuit depends only on the
internal logic circuit delays. As an example, asynchronous counter can serve.

– Synchronous sequential circuits use the synchronisation signal usually called
clock signal. The input vector is sampled just with the change of clock sig-
nal. The concept of the global clock signal for all units in the system can be
used or several independent clock signals can exist.

In complex digital systems, both combinational and sequential subsystems can be identi-
fied. Last decades brought still the growing effort of creating an integrated circuit (IC) by
combining millions of gates and billions of transistors into a single chip. This process is
known as Very Large Scale Integration (VLSI). It is a structured design flow that enables
a great number of transistors to sit together and work on a single microchip by saving
microchip area.

According to requirements on system reconfiguration we can distinguish between two
approaches: fixed logic devices for specific applications and programmable logic devices.

2.1.1 Fixed logic devices

For a specific usage in some applications, the Application Specific Integrated Circuit (ASIC)
can be developed. These types of circuits stand on the opposite side to the usage of circuit
for general purpose such as microcontrollers or other programmable logic devices. The
ASICs have fixed configuration of gates and interconnections and they perform one function

8



x1 x2 x3

f2

f1

AND PLANE

(a) PAL scheme

AND PLANE

x1 x2 x3 f2f1

OR PLANE

(b) PLA scheme

Figure 2.1: Simple programmable logic devices

or a set of functions forever. Once they are manufactured, they cannot be changed. The
time required to go from design to prototypes and to a final manufacturing run can be
several months depending on the complexity of the device. Every error in design phase or
change of requirements can cause the necessity of developing a new design. Specific design
is often not reusable in other circuit designs. On the other hand, ASIC can be very well
optimized to satisfy requirements of specific application (for timing, space, cost, etc.).

2.1.2 Programmable logic devices

A Programmable Logic Device (PLD) is an integrated circuit with internal logic gates and
interconnects. These gates can be connected to obtain the required logic configuration.
The circuit can be configured by the end user to realize various designs. Programming of
such a device often involves placing the chip into a special programming unit, but modern
chips can be often configured in-system which means that its configuration can be modified
directly in application where this chip is used. Another (more modern) term for PLD used
in literature is Field-Programmable Device (FPD).

The term PLD includes several specific concepts of reconfigurable devices:

∙ Simple PLD (SPLD) is the simplest, smallest and least-expensive form of programmable
logic devices.

– Programmable Logic Array (PLA) is a small PLD which can realize a sum-of-
product functions by implementing them using a set of input inverters, AND-
gates and OR-gates. Both planes, AND-plane and OR-plane can be programmed
to realize a function (see Figure 2.1b).

– Programmable Array Logic (PAL) is a small PLD that has the same components
as PLA with the difference in fixed OR-plane (see Figure 2.1a).

∙ Complex PLD (CPLD) consists of an arrangement of multiple SPLD-like blocks on a
single chip (see Figure 2.2).

∙ Field-Programmable Gate Array (FPGA) is a PLD featuring a general structure that
allows very high logic capacity. While CPLDs offer logic resources with a wide number
of inputs (AND planes), FPGAs have more narrow logic resources with higher ratio
of flip-flops to logic resources.
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2.2 FPGA
The semiconductor industry makes a huge progress in last decades. From the first expansion
when the transistor was introduced over the spread of integrated circuits to the era of ASICs
the evolution of electronics was driven forward in order to get the fastest, smallest and
cheapest system implementations. In parallel with fixed logic devices, the programmable
logic devices have been developed with the beginning of 1970’s. This approach started to
play bigger role with the introduction of field-programmable gate arrays in late 1980’s. The
first FPGA (XC2064) was constructed by Ross Freeman in 1985. The FPGA chip spread
across all industries is now driven by the fact that FPGAs combine the best parts of ASICs
and processor-based systems. FPGAs can reach up to hardware-timed speed and reliability,
but they do not require so big effort and expenses to create custom ASIC design.

The application in FPGA is defined by the configuration memory which determines the
function of its blocks and also how these blocks are connected together. This configuration
can be programmed after manufacturing, there are some one-time programmable FPGAs
available, but the dominant types are SRAM-based which can be reprogrammed as the
design evolves. The most of FPGA market is divided between Xilinx and Altera company.
In 2015, they together occupied more than 85% of it [44].

2.2.1 FPGA structure

FPGAs are programmable logic devices that are based around a matrix of configurable logic
blocks (CLBs) connected via programmable interconnects (see Figure 2.3). The application
can be implemented by designing configuration for the matrix of CLBs (configure their
implemented functions) and interconnection between them.

The configurable logic block is the core of the logic structure of FPGAs. The logic blocks
within a CLB reside slices that consist of look-up tables (LUTs), carry chains, and registers.
These slices can be configured to perform logical functions, arithmetic functions, memory
functions, and shift register functions. Their stucture differs in construction between diffent
families of FPGAs. The structure of CLB from Xilinx Virtex 7 FPGA family is shown in
Figure 2.4. The function of CLB is determined by its configuration which is a small part
of overall configuration bitstream. The first FPGA XC2064 contained only 64 configurable
logic blocks, each of them consisting of two three-input lookup tables. Nowadays, in high
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Figure 2.3: FPGA architecture

end FPGAs there are hundreds of thousands of CLBs on single chip with four six-input
LUTs.

FPGAs are reffered to as the coarse-grained architectures because besides the config-
urable matrix of CLBs they also include different types of resources implementing frequently
used system functions. These resources are reffered to as hard blocks and they are added
to FPGA to avoid the need to implement these units in CLBs and also due to fact that
they can be optimized to give better performance and spare some logic on the chip. Typi-
cal examples of these hard blocks in FPGAs are Block RAM memories (BRAMs), Digital
Signalling Processor (DSPs) units, high speed I/O blocks (IOBs), clocking manager mod-
ules such as Digital Clock Managers (DCMs) in Xilinx FPGAs, communication modules
(Ethernet, RS232), etc.

The matrix of CLBs is connected with outer environment by programmable I/O blocks.
They provide the interface between package pins and the internal configurable logic. They
can be used for enhanced source-synchronous interfacing. With this, the optimizations such
as clock dividers, data serializers/deserializers, per-bit deskew for input and output signals,
dedicated I/O and local clocking resources become available [67]. Signals from the input of
FPGA travel through the global routing network and are processed in the CLBs or other
hard blocks. Processed signals are then routed back to the IOB as an output or routed to
another destination for further processing. The Programmable Interconnect Points (PIPs)
provide the routing paths used to connect the inputs and outputs of IOBs and CLBs into
logic networks. A PIP is a CMOS transistor switch that can be configured to be turned on
or off.

2.2.2 Storing bitstream configuration

Configuration bitstream can be stored in FPGA using various technologies:

∙ SRAM-based FPGAs use the SRAM memory cells based on array of latches to store
configuration data for CLBs and other resources settings. They are popular due to
their high throughput and ability to be reconfigured many times. They are also usu-
ally cheaper option to other types of memory. Their drawback is the fact that this
memory is volatile and thus the configuration has to be loaded again to FPGA when
it is powered on. Modern SRAM-based FPGAs have highest densities, but consume
a lot of power and need an external non-volatile memory to store configuration bit-
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Figure 2.4: LUT and flip-flops connections inside CLB (Xilinx Virtex 7)

stream. This can be done by two different approaches. When master mode is used,
the FPGA itself reads configuration data from an external source (ie. flash memory).
In the slave mode some external controller is used to load the configuration from
external bitstream memory to SRAM memory in FPGA. Frequently some dedicated
configuration interface or boundary-scan (JTAG) interface is used to load the config-
uration into FPGA’s configuration memory. SRAM-based FPGAs include most chips
of Virtex and Spartan families from Xilinx and Stratix and Cyclone families from
Altera.
Some SRAM-based FPGAs can be equipped with an internal flash memory. This non-
volatile memory can be used to store the configuration when the FPGA is not powered
and thus this FPGA does not need any external configuration memory. In addition,
there can be more stored configurations from which the current one is chosen during
the FPGA startup. This approach can be used to prevent unauthorized bitstream
copying. This can be found for example in Spartan-3AN FPGAs from Xilinx [64].

∙ Flash-based FPGAs use flash memory as a primary resource for configuration storage.
There is no SRAM memory to hold configuration data in FPGA. This technology has
an advantage of being less power consumptive. Flash-based FPGAs are also more
tolerant to radiation effects and due to their volatility they also can be a solution
to prevent unauthorized bitstream copying. To flash-based FPGAs belongs families
such as Igloo and ProASIC3 manufactured by Actel [4] [5].

∙ Antifuse-based FPGAs are different from the previous types since they can be pro-
grammed only once. After manufacturing the antifuse FPGA is not set by any con-
figuration. The function of CLBs and other blocks and the interconnection is set
permamently when the configuration is loaded to FPGA and the antifuse is burned.
After this moment, the antifuse-based FPGA cannot be reconfigured. As an example
of these FPGAs the Axcelerator family manufactured by Actel can be mentioned [62].

2.2.3 Xilinx Virtex family

Virtex is high-performance family of FPGA from Xilinx company. They are SRAM-based
FPGAs and they can offer a great number of logic blocks together with the variety of
built-in hard macros and can be used for high-performance applications. During the last
two decades this family evolved with the shrinking node size enabling to add more logic to
single chip. The comparison of number of resources available in different Virtex families
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can be seen in able 2.1. Virtex families are further divided into subfamilies according to
their desired application. According to it, they have different row and column count in
their matrix of CLBs and different variety of hard macro resources. The LXT subfamily
is designed for advanced logic applications, SXT for signal processing, TXT systems with
double density for advanced serial connectivity and FXT for embedded systems.

FPGA family Technology Slices Distibuted RAM Block RAM DSPs
[nm] [#] [Kb] [Kb] [#]

Virtex 4 90 5472 - 63168 86 - 1392 648 - 9936 32 - 512
Virtex 5 64 3120 - 51840 210 - 3420 936 - 18576 24 - 1056
Virtex 6 40 11640 - 118560 1045 - 8280 5616 - 38304 288 - 2016
Virtex 7 28 51000 - 178000 4388 - 17700 28620 - 50760 1260 - 2520

Table 2.1: The comparison of Virtex FPGA families

In this research, FPGA XC5VSX50T from Virtex 5 SXT subfamily was mainly used for
design implementation. This subfamily contains CLBs based on 6-input LUT, 36 Kbit du-
alport BRAM modules which can be also configured as two independent 18 Kbit dual-port
RAM blocks and in addition these BRAMs can be connected in cascade to form a larger
memory block. There is also a possibility to utilize cascadable embedded DSP48E slices
with two’s complement multipliers and 48-bit adder/subtracter/accumulator for parallel
computing or to use each of DSP slices to bitwise logical functions. The CLB is divided
into two different slices, the first type is referred to as SLICEL and has only capability to
implement logic function and the second type SLICEM can be used as a memory and imple-
ment 32-bit shift register or 64-bit distributed RAM. The maximal operational frequency
of FPGAs from this family is 550 MHz.

2.2.4 FPGA reconfiguration

A considerable part of the FPGA (in terms of its area) is used for configuration mem-
ory which defines the implemented hardware circuitry (application) in FPGA. It contains
the configuration of CLBs, IOBs, DSPs, BRAMs and other resources and also the routing
between these blocks. The process of loading the configuration bitstream through reconfig-
uration interface to the configuration memory is called reconfiguration of the FPGA.

Depending on the structure of reconfigurable device, we can divide reconfiguration ac-
cording to its granularity. The granularity of reconfiguration is defined as the size of the
smallest block of reconfigurable device which can be addresed by mapping tools. Fine-
grained architecture offers greater flexibility for the implementation of design. The draw-
back of using these architectures can be the increase of power, area and delay because of
greater quantity of routing. Corse-gained architecture uses bigger configurable blocks which
can be optimised for its intended use and are typically oriented on word-width datapaths.
This can reduce the area, time and routing requirements and the reconfiguration time. The
drawback can be seen in possible inefficient utilisation of resources such as in case when
the operands width of implemented function unit does not meet with the building block
of reconfigurable architecture. Also the implementation of design into coarse-grained ar-
chitecture is usually more difficult due to the need of sufficient number of specific building
blocks. Typical FPGA combines these approaches together by using the array of CLBs
with interconnection matrix and specific hard blocks (DSPs, BRAMs, etc.).

The important measure of reconfiguration is the deployment time. This means the time
needed to finish this process and bring the FPGA application back into running mode. The
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deployment time depends at most on the size of configuration bitstream and the width of
datapath between the bitstream storage and reconfiguration interface. Typical time for
reconfiguration of entire medium sized FPGAs such as Virtex 5 SXT 50 FPGA is several
milliseconds. Several ways how to burst the process of reconfiguration exists. These include
the partial reconfiguration of just a small portion of FPGA which has to be changed or the
use of compressed configuration bitstream.

In modern FPGAs, several different types of reconfiguration can be identified:

∙ Full reconfiguration is the process of changing configuration of all resources in device.
While the full reconfiguration process takes place, the device is running only in idle
mode. The implemented application begins to run immediately after this process is
finished. Typically, the full reconfiguration is done after power-up of device.

∙ Partial reconfiguration is the process of changing a portion of reconfigurable hard-
ware circuitry while the rest of design is not changed. Just the partial configuration
bitstream is written to configuration memory. Partial reconfiguration can be divided
according to its influence on the run of application in FPGA:

– Partial static reconfiguration process stops the running application (circuitry)
even if only a part of it is changed. The application in device is brought up after
this process is completed.

– Partial dynamic reconfiguration (PDR) process changes a portion of implemented
circuitry without any intervention to the rest of it. This requires a special FPGA
design flow where each part of FPGA allowing PDR has to be encapsulated by
adding special macros on buses going inside or outside from this part to isolate
it from the unchanged (static) part.

FPGA can be configured via different configuration interfaces. Xilinx FPGAs from
Virtex family offer the following interfaces:

∙ Serial Peripheral Interface (SPI) is an external configuration interface of FPGA con-
taining only two single bit signals (clock and data). The FPGA is configured by
loading single bit of data per clock cycle. This interface is typically used for devices
in a serial daisy chain or in case when single device is configured by an external micro-
processor or CPLD. The connection of configuration controller and FPGA is shown
in Figure 2.5a.

∙ Byte-wide Peripheral Interface (BPI) is similar to SPI with one difference, data signal
is 8-bit or its multiplies wide.

∙ JTAG (Joint Test Action Group) is external interface based on serial data transfer.
It is primarily used for testing and debugging purposes defined by IEEE standard
1149.1. It contains a Test Access Port (TAP) and boundary-scan architecture. In
programmable devices such as FPGA, it can be used for in-system programming
(configuration). Several devices can be connected in daisy chain and then they can
be configured at once. This interface has bigger priority than others. When the
JTAG controller is loading data serially on Test ClocK (TCLK) signal edge the run
of other interfaces is stopped. The connection between JTAG controller (or other
device implementing its function) and FPGA is shown in Figure 2.5b.
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Figure 2.5: The configuration interfaces of FPGA

∙ SelectMap is external configuration interface which supports bidirectional communi-
cation with FPGA device by an 8-bit, 16-bit, or 32-bit data bus. It can be used either
for configuration of device or for bitstream readback from device. Data bus width
is automatically detected. There are three possible modes of configuration: single-
device, multiple devices connected as daisy-chain where each device can be configured
by different bitstream and multiple devices connected in parallel where every devices
are configured by the same bitstream. FPGA and configuration controller connected
via SelectMAP is shown in Figure 2.5c.

∙ ICAP (Internal Configuration Access Port) is a fast internal parallel interface. The
ICAP interface is a subset of the SelectMAP interface and thus they cannot be used
simultaneously. The process of configuration of device and its bitstream readback is
essentially the same as with the use of SelectMAP. Since ICAP provides ability of
partial self-reconfiguration of FPGA the care must be taken during reconfiguration
to avoid the change of reconfiguration controller and all circuitry performing the
reconfiguration process. These parts of FPGA should be made static (not dynamically
reconfigurable). Thus, the ICAP cannot be used for full reconfiguration of FPGA and
it is designated to perform partial dynamic reconfigurations.
When implementing the FPGA design with PDR ability, the ICAP primitive can be
instantiated in FPGA and it can be driven by reconfiguration controller which will
read the partial bitstream from non-volatile memory and transfer it to ICAP interface
during PDR process. This controller can be located in different fabric as shown in
Figure 2.5d or it can be instantiated in the same FPGA as shown in Figure 2.5e.

2.2.5 FPGA design synthesis and implementation

To implement the digital system into FPGA the series of steps are needed. These steps can
be grouped to design entry and its synthesis and implementation. These steps can be done
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separately but modern advanced design tools such as Xilinx ISE offer the possibility to do
all these steps in one development environment.

At the beginning, the system description has to be specified in some programming lan-
guage or some visual editor. To simplify this process, special Hardware Definiton Languages
(HDL) were introduced. They accent the parallelism in digital circuits and they offer the
possibility to specify the system by its behaviour and structure. VHDL and Verilog belong
to most known HDLs and they are used as an open standards of Institute of Electrical
and Electronics Engineers (IEEE) to describe the digital circuits on different levels and for
simulation purposes. They can be used for digital system design not only for FPGAs but
also for CPLDs. The common level of abstraction in HDL is Register Transfer Level (RTL).
It is based on the premise that synchronous systems can be described as a set of registers
which are connected between themselves and with inputs and outputs by combinational
logic.

As the optional step after the design entry in HDL, the simulation of design can be run
in some simulation tool such as ModelSim or ISim and it can uncover the design faults or
timing limitations. A set of testbenches is needed to perform the simulation.

After succesful simulation, the design synthesis is performed. This process converts the
HDL input to netlist files which describe the system as a set of logical gates and their
connections. The synthesis is consisted of several steps. After parsing of HDL file, the
synthesis tool tries to infer specific design building blocks (ie. MUXes, RAMs, adders,
etc.) for which it is able to create efficient technology implementations. The next step is
Finite State Machine (FSM) recognition. When some FSM is identified in the design, the
most efficient encoding algorithm for its implementation can be chosen according to the
specified optimization goal (i.e. area, speed). The synthesis tool also tries to reduce the
amount of inferred macros and share some resources which can lead to a reduction of the
area as well as the increase in the clock frequency. Finally, the low level optimization is
made including implementation of macros, timing optimization, technology mapping and
register replication. The output of synthesis are files with netlists described most often
by Electronic Design Interchange Format (EDIF) or some vendor specific file format such
as NGC from Xilinx. This file can also contain the contraints specified by designer which
will be used in further steps of design implementation. In constraints file, the designer can
specify timing, placement, and other design requirements.

Some design tools such as Xilinx ISE also offer the possibility to add to system design
pre-synthetised macros which are optimized for its purpose (memories, bus controllers, etc.)
and can be also customized (bus widths, memory sizes, etc.). These macros can be added
as an additional input to the synthesis tool and synthetised together with the HDL sources.

When the design is synthetised it has to be implemented to specific FPGA. This means
that the logical design is converted into a physical file format that can be downloaded to
the selected target FPGA. The implementation can be customized by setting custom goals
and strategies in constraints file which are taken into account by implementation tool.
Adding constraints can cause the situation that the implementation tool will not be able
to implement design due to insufficient number of resources in specified FPGA and timing
or routing issues.

The implementation of design consists of several consecutive steps. These steps are
often done as a batch by the design tool.

∙ The translate process merges all netlist files from synthesis together with design con-
straints and create Native Generic Database (NGD) file. This file contains the logical
design reduced to FPGA primitives.
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∙ The map process is mapping the logic primitives from previous step into available
resources on the target FPGA such as CLBs and IOBs. The output design is a
Native Circuit Description (NCD) file that physically represents the design mapped
to the components of FPGA.

∙ The Place And Route (PAR) process takes as an input a mapped NCD file and it places
and routes the design. An NCD file with routing prepared for bitstream generation
is created as an output of this step.

∙ The bitstream generation process encodes the NCD file with routing into configuration
bitstream for the target FPGA. The output bitstream can be directly used for target
FPGA reconfiguration.

The FPGA design workflow used by Xilinx ISE tool is show in Figure 2.6.
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Figure 2.6: Design workflow by Xilinx ISE tool

2.2.6 Design workflow with partial dynamic reconfiguration

This paragraph describes the changes to standard design workflow when PDR is used. It
is shown in Figure 2.7.

In Xilinx design workflow, the hierarchical design must be strictly used. This means the
design has to be partitioned into modules which create hierarchical structure where on the
top of hierarchy is one top-level module. In this module, the static and dynamic components
can be identified. While design floorplanning, the Partial Reconfiguration Regions (PRRs)
for each Partial Reconfiguration Module (PRM) have to be determined. There can be
more PRMs assigned to one PRR enabling the dynamic change of implemented circuitry in
FPGA. The size of PRR and its shape is limited according to FPGA architecture structure.
Typically, the FPGA is divided into several tiles containing the same number and type of
resources and the same relative position of resources in tile. PRR can consist of one or
more of these tiles.
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The implementation of design using PDR begins with top-level module which consists of
static modules and PRMs. While implementing top-level design, the PRMs are instantiated
as black-boxes. On the boundary between PRMs and static part of design, the logic for
isolating these modules during PDR is added. Previously, Xilinx FPGAs were using the
bus macros for this purpose. Bus macro is interface consisting of two LUTs applied to each
single signal. The first LUT is placed in PRM next to its boundary and the second is place
next to it but outside (in the area neigbouring with this PRM). Nowadays, the proxy logic
is used [66]. Proxy logic is using single LUT for each signal and it is placed automatically
by implementation tool. When top-level module is implemented with PRMs instantiated
as black-boxes, constraints for static part and PRMs are determined and full design with
chosen startup PRMs is implemented. In the next phase, each PRM is implemented in
turn. The MAP and PAR process is constrained by one or several constraint files.The last
phase is merging of each PRM created with static design. Their interfacing correctness is
verified and partial reconfiguration bitstreams are created. Finally, the full configuration
bitstream which will be used after power-up of FPGA is created.

Design source codes 
(top-level and 

static modules)

Design
partitioning

Design
floorplanning

Design constraints
(including PRMs

placement)

PRMs source codes 

Top-level module
implementation

Placement and 
context constraints

Static design
implementation

PRM imple-
mentation

Merged bitstream
generation

Implemented
PRMs

Implemented
static design

routed
NCDVHDL

Verilog

Partial bitstreams
for PRMs

Full bitstream
(static design+
starting PRMs)

routed
NCDVHDL

Verilog

routed
NCDrouted

NCD

routed
NCDBIT

BIT

routed
NCD

Figure 2.7: Design workflow with PDR by Xilinx

2.2.7 Configuration bitstream structure

The configuration bitstream contains the necessary data for configuration of FPGA re-
sources, i.e. definition of routing between components via setting the programmable inter-
connect points, enabling of flip/flops or LUTs inside CLBs, definition of LUT functions,
etc. The configuration data of Xilinx FPGAs is arranged into configuration frames. One
frame is the smallest unit of the configuration which can be addressed and handled by the
reconfiguration interface of FPGA and its internal reconfiguration logic. The size of one
configuration frame varies according to FPGA family, in Virtex 5 FPGAs family the size is
1312 bits and it is formed by 41 32-bit words [67].

As the single frame configures (partially) 20 CLBs located in one FPGA column at
once, the smallest possible PRM which can be created must contains multiples of these 20
CLB columns. To configure these 20 CLB completely, the set of 36 frames is needed (see
Figure 2.8).
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The complete configuration bitstream can be divided into three parts.

∙ The header is composed of the mixture of synchronizing words, dummy words and
32-bit commands used to initialize the reconfiguration process by setting internal reg-
isters. The main goal is to prepare the FPGA to receive the subsequent configuration
data organized in frames. These commands include the initialization of Cyclic Re-
dundancy Check (CRC), setting the configuration and control options, setting the
Frame Address Register (FAR) with the address of the first configuration frame. At
the end of header there is the write configuration command starting the process of
loading configuration frames.

∙ The configuration data is consisted of the bulk of configuration frames. Due to the fact
that the frames are typically organized to configure consecutive blocks of resources,
the frame address is automatically incremented when the next frame is recognized.

∙ The footer is used to issue the commands to finish the reconfiguration (i.e. CRC) and
prepare the FPGA for the start (i.e. the reset of flip-flops).

The mapping between the bits in the configuration bitstream and the specific FPGA
resource is typically not documented by the manufacturer. This relation is not needed for
the standard system design flow in FPGA but it makes some task difficult such as precise
fault injection via bitstream manipulation [50].

2.3 Faults in digital systems
Very fast scaling of technology in last decades has an adverse impact on the reliability of
components for digital systems. An increasing error susceptibility for disturbances from the
operational environment can be identified but the components also become more vulnerable
to permanent faults. Faults occur in a digital system in all phases of its existence - from
the design and fabrication phase through the whole lifetime.

2.3.1 Terms

In this paragraph the difference between the terms fault, failure and error is presented.

∙ A fault is a difference in hardware configuration between correctly configured system
and its current state. If there is no difference, fault is not present.
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∙ An error in a system is a deviation from the required operation of system or subsystem
which causes the difference between actual processed data and expected correct data.
The reason of error occurrence is fault presence in the system.

∙ A failure of the system means that it is not producing correct outputs and thus the
system is working with the behaviour which differs from the required one. A failure
is caused by an error.

Not every fault has to manifest itself necessarily by an error which can be detected.
Errors that are present in a system but not detected are latent errors.

2.3.2 Fault classification

Faults in digital systems can be classified according to their time of occurence:

∙ Design faults are present in the system from the beginning of its lifetime. They can be
inherited from the existing system on which the new one is built, created by human
designer or by design tool. These faults are present in every piece of final system.

∙ Fabrication faults can be present in the final solution due to an imperfect manu-
facturing process (i.e. short-circuits, opens, incorrect transistor threshold voltage,
improper doping profiles, mask alignment errors, poor encapsulation in VLSI circuits
etc.). Accurate identification of fabrication defects is important in improving the
manufacturing yield.

∙ Operational faults are caused by external disturbance during the digital system life-
time. The sources of these faults can be operator mistakes, environmental extremes,
electromagnetic interference and wear-out failures when the product exceeds its design
lifetime.

Faults in digital systems are usually classified according to their duration:

∙ Transient faults appear in the system for a short time, they are mostly caused by
random environmental disturbance such as radiation, pollution, humidity, temper-
ature, pressure, vibration, power supply fluctuations, electromagnetic interference,
static electrical discharges, ground loops etc. The physical resource is not damaged.
These faults are not correlated with each other and it is nearly not possible to detect
them due to their hardly predictable influence on the system behavior.

∙ Permanent faults affect the functional behavior of a system permanently. They refer
to a physical damage of system resource. This resource cannot be used any more
without physical repair or replacement. The error caused by permanent fault is also
called hard error.
The permanent faults can arise as a result of various physical phenomenons, such as:

– Time Dependent Dielectric Breakdown (TDDB) is the result of long-time appli-
cation of relatively low electric field. It is an opposite to immediate breakdown
which is caused by strong electric field. TDDB comes with reduction in gate
oxide thickness. The charges are trapped in oxide that creates electric field. The
charge flow through the oxide results in a breakdown after some time.
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– Electro-mitigation is causing permanent failure of interconnect. It develops voids
in metal line due to heavy current densities over time period.

– Hot Carrier Effects are parasitic effects at the drain side of channel and they are
caused by hot carriers traveling with saturation velocity. It is attributed by slow
creation of traps at the oxide surface. Their impact is the change of the transis-
tors threshold voltages which consequently affects the power and performance of
the device.

The permanent fault can manifest as permanent logical value 1 or 0 on signal which is
called stuck-at fault. Another manifestation can be short-circuit between two or more
signals, delayed propagation of signal through the circuit compared to specification
or delayed level transition from logical 0 to 1 or inversely.

∙ Intermittent faults appear, disappear, and reappear repeatedly. They are difficult to
predict, but their effects are highly correlated. Most intermittent faults are caused
by the optimistic design or manufacturing not counting with all circumstances which
can affect its run. The system works well most of the time, but fails under atypical
environmental conditions.

2.3.3 Faults in FPGA

All common faults of digital systems can also occur in FPGAs. There are also other specific
faults which can appear in specific FPGA resources such as configuration memory. Most of
the modern FPGAs are based on SRAM which is vulnerable to radiation. Alpha-particles
as the part of the radiation is the main reason of transient faults presence in FPGA. Errors
caused by transient faults are frequently called soft errors.

Very often we are faced with two types of faults:

∙ Single-Event Upset (SEU) causes a random change in the state of a digital memory
element (or other sequential element) by an ionizing particle that collided with this
element. SEU can be very critical in case of SRAM-based FPGAs and can lead to
undesirable change of function implementation. The system can be turned to correct
operation by correcting the attacked element to its proper state. The probability of
the SEU for one memory cell is extremely small for typical conditions on earth. But
with increasing memory size or exposure in harsh environment the probability can
considerably increase. This can become a real problem for example in the space or
aircraft designs.

∙ Single-Event Transition (SET) causes one or more voltage pulses (i.e. glitches) on
signals which can be then propagated through the circuit. There is no need to correct
this erroneous state due to its short and temporary existence.

In ASICs, SEU faults are considered as transient. If they hit combinatorial logic, the
error on the output lasts only until the next value is processed by the logic. In case they
hit sequential logic, the errors exists in storage cell until next value is written into it.

The variety of effects in FPGAs after SEU occurence is bigger as shown in Figure 2.9. In
FPGAs, the combinational and sequential logic of implemented circuit is set by the values
of configuration memory cells. The combinational logic of final circuit is implemented by
LUTs and routing settings. The SEU occurence in LUT changes its implemented function.
In routing settings, the impact of SEU can be the change in the connection of logic gate
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output or input to interconnection matrix. Both faults can be restored by reconfiguration
of FPGA by the original configuration bitstream. The sequential logic of final circuit can
be implemented by flip-flops in CLBs or by hard blocks such as Block RAMs. The effect of
SEU on flip-flops is transient. With the next write operation to memory cell implemented
by flip-flop the error disappears. When the SEU fault occurs in Block RAM cell, the
reconfiguration of FPGA is needed to restore its state [28].

Lookup table

M

f1

f2

f3

f4

M

M

MFlip-Flop

M M M M

M

SEU

Block RAM

Configuration memory cellM

CLB ROUTING HARD BLOCKS

Figure 2.9: Bits in configuration memory and resources of FPGA sensitive to SEUs (Xilinx
Virtex FPGA family) [28]

In this work, the fault in configuration memory is considered as transient in case it can
be corrected by reconfiguration of FPGA with using the original configuration bitstream
and restoring its state by synchronization process. If the reconfiguration of FPGA does not
correct the fault, it is considered as permanent fault.

2.4 Dependability of systems
The dependability is the ability of a system to deliver its intended level of service to its
users [6]. In other words, the dependability of system (service) can be expressed as the
system ability to work without failures at least for the given period and without more
severe failures than it is acceptable. With the fact that the computing becomes common
in all parts of human life, its dependability plays an important role in all its applications.

The system dependability is an integrated measure consisting of several attributes and
it cannot be counted as a single number. It can be evaluated from the availability and reli-
ability parameters of the system, its maintainability, safety and security and other adjacent
attributes such as repairability or durability. To summarise, the dependability expresses
the ability of system to produce outputs that can justifiably be trusted.

To be able to evaluate dependability attributes, some system fault model has to be
adopted. The most frequently used model is using only two states. At the given time
the system (component) is either working properly or it is faulty and producing incorrect
outputs. The system state can change as the time evolves and this change is done instantly.
The change from a functioning to a failed state is referred to as failure and the change from
failed state to the functioning state is referred to as repair [25].

The systems can be divided according to their survivability of occured faults to re-
pairable and non-repairable ones. Survivability in this context means that the system can
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be used again to produce the correct outputs after fault occurence (not necessarily immedi-
ately, time for fault mitigation may be needed). The non-repairable system will stay after
the first fault occurence in failed state forever. The repairable system can be brought from
failed state to functioning state when repair process is completed (if it is possible). It is
assumed that the repair process will bring the failed system back to the state where it will
produce correct outputs and it will be able to recover from the same variety of possible
faults as in the beginning of its lifetime.

The changing of system states according to fault occurences and their repairs is shown
in Figure 2.10. The lifetime of system (𝑇𝑙𝑖𝑓𝑒) describes the time from the first run of system
to the moment when unrepairable fault (or faults) occurs. System operational time (𝑇𝑜𝑝)
is reffered to as the time for which the system is working properly. For the non-repairable
system we can state that the operational time before the first and only one fault occurence
𝑇𝑜𝑝1 is equal to system lifetime 𝑇𝑙𝑖𝑓𝑒. When the system is affected by fault the time needed
to its detection and localization by system test equipment should be assumed before fault
mitigation is started. If Figure 2.10, the time needed to detect fault is denoted as 𝑇𝑑𝑒𝑡, time
needed for fault localization as 𝑇𝑙𝑜𝑐 and fault mitigation time as as 𝑇𝑚𝑖𝑡. The time needed
for system repair consists of these 3 parts.

To simplify the evaluation of system dependability, several dependability statistic indi-
cators have been introduced.

Mean Time To Failure (MTTF) is the expected (mean) time for a system to fail. It is
a statistical value and the length of the observation interval for the calculation of MTTF
must be infinite. This parameter can be evaluated as the average of all operational time
periods (2.1).

𝑀𝑇𝑇𝐹 =
1

𝑛

𝑛∑︁
𝑖=1

𝑇𝑜𝑝i (2.1)

Failure intensity (𝜆) shows the mean frequency of system failures. It can be derived
from MTTF indicator (2.2).

𝜆 =
1

𝑀𝑇𝑇𝐹
(2.2)

Mean Time To Repair (𝑀𝑇𝑇𝑅) is the expected (mean) time for a system to be repaired.
This can be evaluated as the average of all repair time periods (2.3).

𝑀𝑇𝑇𝑅 =
1

𝑛

𝑛∑︁
𝑖=1

𝑇𝑑𝑒𝑡i + 𝑇𝑙𝑜𝑐i + 𝑇𝑚𝑖𝑡i (2.3)

Repair intensity (𝜇) shows the mean frequency of system repairs. It can be derived from
MTTR indicator (2.4).

𝜆 =
1

𝑀𝑇𝑇𝑅
(2.4)

Mean Time Between Failures (𝑀𝑇𝐵𝐹 ) is the mean elapsed time between inherent
failures of a system (2.5).

𝑀𝑇𝐵𝐹 = 𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅 (2.5)
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Figure 2.10: The chain of system states during its lifetime

2.4.1 Reliability

The reliability 𝑅(𝑡) of a system at time 𝑡 is the probability that the system operates without
a failure in the interval [0, 𝑡] under given operational conditions. The correct operation
of system at time 0 is a premise. In other words, the reliability can be understood as
an ability to continuously deliver correct service and meet requirements of implemented
function during the given time period. This correct service ends in the moment of failure
occurence. High reliability means that long time interval elapses before the first system
failure occurs.

Since the reliability can be expressed as the probability of system run without failures
before or at time 𝑡, we can define a random variable 𝑇 as the time to failure and then
express it by formula 2.6.

𝑅(𝑡) = 𝑃 (𝑇 > 𝑡) (2.6)

As the opposite to the reliability which expresses the probability of success, the unre-
liability 𝑄(𝑡) of a system at time 𝑡 can be defined. It expresses the probability that the
system will fail in the interval [0, 𝑡]. Again, the correct operation of system at time 0 is a
premise. The reliability and the unreliability are related as shown in 2.7.

𝑄(𝑡) = 1 −𝑅(𝑡) = 𝑃 (𝑇 ≤ 𝑡) (2.7)

Reliability is a function of time but the specification of time period can vary according
to the system under consideration. The time of correct operation can be specified in time
units such as hours, days or years or it can be stated for example as the number of correctly
processed outputs until a fault can appear.

To model the reliability of (non-repairable) system, an exponential distribution is fre-
quently used (2.8). There is also the possibility of using other distributions to model system
reliability but this typically requires more detailed information on the system and a more
detailed analysis. For most situations the exponential distribution is adequate.

𝑅(𝑡) = 𝑒−𝜇𝑡 (2.8)

When the reliability function of system 𝑅(𝑡) is known, the failure probability 𝑄(𝑡) (the
unreliability of system) can be evaluated (2.7) and used to derive the failure density function
𝑓(𝑡) (2.9). The failure density function 𝑓(𝑡) is defined as the probability per unit of time
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that the first failure of system will occur at time 𝑡. The correct operation of system at
time 0 is a premise. Besides others, this density function can be used to determine the
probability of failure occurence within time interval bounded by time 𝑡0 and 𝑡1 as shown at
2.10.

𝑓(𝑡) =
𝑑𝑄

𝑑𝑡
= 𝜇𝑒−𝜇𝑡 (2.9)

𝑄(𝑡0 → 𝑡1) =

∫︁ 𝑡1

𝑡0

𝑓(𝑡)𝑑𝑡 = 𝜇

∫︁ 𝑡1

𝑡0

𝑒−𝜇𝑡𝑑𝑡 = 𝑒−𝜇𝑡0 − 𝑒−𝜇𝑡1 (2.10)

In practice, the failure rate function is used to describe the reliability of system. The
failure rate 𝜆(𝑡) is defined as the probability per unit time that the failure of system will
occur at time 𝑡, given that the system was correctly operating at time 0 and has survived
to time 𝑡. To define failure rate for the repairable system, this premise can be extended as
the systems that do not need to survive in original state, but then they have to be repaired
to fully operating state at time 𝑡.

𝜆(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=

𝑓(𝑡)

1 −𝑄(𝑡)
(2.11)

To evaluate the failure rate function 𝜆(𝑡), the failure density function 𝑓(𝑡) can be used
(2.11). In practice, the failure rate is often measured by observing the correct operation of
a system. Due to fact, that the failures do not occur frequently, it is often measured using
many identical copies of a component or system. As the failure rate of a system depends
on time, it can vary a lot over the life cycle of the system. It is often reported, that the
failure rate has the shape of bathtub curve as shown in Figure 2.11.

Normal working life Wear-outλ(t)

t

Infant
mortality

Random failures

Early failuresWearout failures

Figure 2.11: The failure rate of a system during its lifetime

At the beginning of system lifetime, there is a high failure rate which is decreasing in
time. This period is often called infant mortality or wear-in mode. Failures occuring during
this period are typically caused by a variety of factors such as the occurence of defective
parts, defects in materials, damages in handling, out of manufacturing tolerance, etc. To
avoid this situation, manufacturers frequently perform burn-in process of the product in
their factory to avoid such situations when failures from wear-in mode will happen in
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customer premises. The mitigation of these failures includes design improvement, care in
materials selection and tightened production quality control.

When early failures pass away the failure rate typically becomes nearly constant and
its amplitude is the lowest during this time. This part of system lifetime is considered as
normal life period. The failures occuring in this period are typically considered as random
and externally induced. It is difficult to predict which failure mode will manifest, but the
failure rate is predictable. This part of system lifetime should be the longest one.

When system is coming to the end of its lifetime, failures typically occur at increasing
rates. This period is reffered to as wear-out mode. Wear-out mode failures are mostly
caused by material fatigue or by strength deterioration due to cyclic loading. When these
failures begin to predominate it is considered that the system has aged beyond its useful
life.

For the reliability considerations, the random failure rate (the middle part of bathtub
curve) is widely used. The wear-in mode failures are often considered as an issue of quality
control, the wear-out mode failures are assumed as the result of poor maintenance.

With the knowledge of system reliability function, MTTF for the first system failure
can be derived (2.12).

𝑀𝑇𝑇𝐹 =

∫︁ ∞

0
𝑅(𝑡)𝑑𝑡 (2.12)

2.4.2 Availability

The availability 𝐴(𝑡) of a system at time 𝑡 is the probability that a system is in operational
state (not in failure) at a given time. Its unavailability can be caused by the fault occurence
in the system, its mitigation or system maintanance of any kind. Thus, it does not just
incorporate the frequency of fault occurence but also the time needed for its repair and for
the system maintanance.

The availabilty function 𝐴(𝑡) for repairable (and non-repairable) system for given time
𝑡, last repair time 𝑢 with renewal density function 𝑚(𝑢) can be derived as shown in 2.13.

𝐴(𝑡) = 𝑅(𝑡) +

∫︁ 𝑡

0
𝑅(𝑡− 𝑢)𝑚(𝑢)𝑑𝑢 (2.13)

In practice, operational availability 𝐴𝑂 as the measure of system availability that in-
cludes all possible sources of downtime (failure repair, maintenance, etc.) is frequently used
(2.14).

𝐴𝑂 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
=

𝜇

𝜇 + 𝜆
(2.14)

Availability is frequently used as a measure of dependability for systems where short
out-of-order states can be tolerated.

2.4.3 Safety

To define safety, we need to split possible failure states in system to fail-safe and fail-unsafe
ones according to fact if they create safety hazards to the system or its environment. Then,
the safety 𝑆(𝑡) of a system at time 𝑡 can be described as the probability that the system
is not in failure state or it is in its fail-safe state in the interval [0, 𝑡]. The non-fail state of
system at time 0 is a premise.
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Safety is required in safety-critical applications such as medical, transportation or mil-
itary systems where a failure can result in human injury, loss of life, or environmental
disaster [11].

2.4.4 Maintainability

The maintainability is dependability attribute concerned with the ease of repairing the
system after a failure occurence or changing the system to include new features. It is
distinct from other dimensions of dependability because it is a static and not a dynamic
system attribute. High maintainability means a short downtime for the system repair or
its upgrade to new version.

Estimation of maintainability can highlight if the predicted maintanance factors such
as downtime, the quality and quantity of maintanance staff or tools are adequate and
consistent with the needs of the system operational requirements.

2.4.5 System dependability analysis

To analyse the system dependability parameters, many methods were introduced. From the
most popular ones, fault tree analysis, reliability block diagram, reliability graph, Markov
chain and Monte Carlo simulation can be mentioned.

∙ Fault tree analysis (FTA) is widely used method for the analysis of system reliability,
safety and maintainability. It can be used to determine the cause of undesired event
at system level such as hardware failure, human errors, etc. An undesired state
of a system is further analyzed using Boolean logic to combine series of lower-level
events. Failure states are depicted by square signs in diagram and states where
system is operating properly are depicted by circles. Only one fault event is analyzed
by single fault tree. FTA has expression power but its construction is not an intuitive
process and it requires skilled designer. Enhanced techniques based on FTA such as
dynamic FTA were introduced to enable dependability attributes analysis of complex
and dynamic systems [15].

OR

Subsystem
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OR

OR

OR

1 2 3

4 5 6 7 8

9 10 11 12

Figure 2.12: Fault tree analysis method

∙ Reliability block diagram (RBD) enables the system reliability and availability analysis
for large and complex systems using block diagrams which show the relationship
between the components of system. System components can be displayed as series of
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Figure 2.13: Reliability block diagrams

blocks which can be connected in series, in parallel connection or as the combination
of series and parallel. Each block can be assigned by rates of desired dependability
attributes such as reliability or availability value, failure or repair rates, etc.
RDB is frequently used to evaluate how much the reliability (availability) of each
component contributes to the overall value for entire system. On the basis of RBD,
enhanced method such as dynamic RBD were introduced enabling the analysis of such
complex systems as multiprocessors [15].
In RBD, system can be modelled as series of connections ( 2.13a) if it consists of
components where a failure of each component will cause the failure of entire sys-
tem and their MTTF rates are mutually independent. In the series connection, the
most important component to the overall system reliability is that one with the least
reliability because the overall reliability is always less than the reliability of this com-
ponent. Overall reliability can be evaluated as a product of all component reliability
values (𝑅𝑖).
To be able to model a system as a set of components connected in parallel, the
condition that the system has correct output is met in case when at least one of the
component in parallel connection has correct output ( 2.13b). A parallel connection
is used to show redundancy of components and the fact that several paths from start
node to end node exist. Overall reliability can be evaluated as the unity complement
to the product of all component unreliability values (𝑄𝑖).
More complex system can be represented by components connected by combination
of series and parallel ( 2.13c). To create this model, the appropriate decomposition
of entire system to subsystems which can be represented either in a series connection
or in a parallel connection is needed. Overall reliability can be gained by evaluating
partial reliabilities of these subsystems.

∙ Reliability graph model is composed of nonempty sets of nodes and arcs. A node can
be used to model a component in a system and an arc can be used to model the
transition between two components. A system reliability graph fails when there is
no path from the start node to the end node. It is considered as intuitive method
for analyzing system reliability because the bijection between the actual structure of
the system and the system model can be stated. The drawback of this method is
its limited expression power. In Figure 2.14, the sample system delivering data from
node 1 to node 4 with 5 transmission lines modelled by 5 arcs is shown [29].

∙ Markov chain models are used to model random processes with the Markov property.
This property refers to the memoryless property of the stochastic process. The mod-
elled random process can be described by a set of states and transitions with their
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Figure 2.14: The reliability graph of system delivering data from node 1 to node 4

probabilities where the next state only depends on the current state but not on the
past state. Markov chain models can be graphically shown as the state transition
diagrams comprised of various possible states of the system where the transitions
between various states are described in terms of the rates of transition probabilities.
For a state, the transition probabilities must be positive and they must sum to unity.
The state model can be solved by state space approach predicting the probability of
system ending in various states after specified time interval. The availability of such
system can be evaluated as the sum of the probabilities of system ending in non-failure
states. Several techniques for creating Markov models for the reliability analysis of
system exist [30].
The states in Markov chain model reflects the operability of the modelled system in
the same way as reliability graphs. The circle sign is used to model non-failing states
of system, the square sign depicts the failure of system.
In Figure 2.15, the Markov chain model for system with three replicated modules and
with repair done by bitstream scrubbing technique is presented [32]. The directed
edges between the states are marked either with failure rate (𝜆) or repair rate (𝜇).

3F 2F 1F

1-(2λF+µF) 11-3λF

2λF

3λF

µF

Figure 2.15: Markov chain for TMR system with bitstream scrubbing repair [32]

∙ Monte Carlo is a simulation method useful for modeling phenomena where uncertainty
in inputs is significant. The properties of desired phenomena are determined by
repeated sampling. Instead of studying few discrete scenarios, Monte Carlo method
uses random sampling by chosen probability distribution function to create inputs
and acquire many possible outputs which can be further analyzed. The reliability
analysis of complex system based on Monte Carlo method was studied in [39].

2.4.6 Dependable system design

Several strategies can be adopted while designing the digital system to make it (more)
dependable:

∙ Fault prevention is a set of techniques aiming at careful design based on approved
development methodologies in order to prevent incorporation of faults into system.
These methodologies typically contain processes such as design reviews, component
screening and testing [60].
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∙ Fault forecasting is a set of techniques focused on the estimation and prediction of
system reliability to determine whether the effort to increase dependability of system
will be needed. This includes the estimation of fault presence and the occurence of
failures and their consequences in a system. To be able to do the estimation, the
relation between the faults and failures has to be known, the reliability models have
to be designed and applied to gathered failure data and analysed. It can lead to
decision about making the system fault tolerant to meet the system dependability
requirements.

∙ Fault tolerance is the ability of a system to continue to perform its specified tasks even
if the fault is present. The main goal is the masking of fault what means that the
error caused by the occured fault is not propagated though the system to its outputs.
These techniques work in real time. As an example, the system with replicated unit
and voting can serve. This strategy is studied more deeper in the next chapter.

∙ Fault removal is a set of techniques aiming at reducing the number of faults which are
present in the system. This can be done in development phase by verification. The
verification of design checks if the system meets the given conditions. If it does not,
the fault causing the incorrectness has to be diagnosed and corrected. The fault can
be removed also during the operation phase by maintanance in two ways. Preventive
maintanance is based on removing possible damaged parts of system before the fault
appears. When this approach is not used or it fails to avoid the fault occurence, the
corrective maintanance is applied removing the fault at as short time as possible.

In this work, the fault tolerant design will be the main topic.
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Chapter 3

Related areas of topic

In this chapter other approaches in the field of fault tolerant system design are presented.

3.1 Fault tolerant systems
A fault tolerant system is that one which can perform its function and produce correct
outputs even when it is affected by a hardware or software fault. Various conditions can
exist that tell us whether the system is working correctly. In [25], three condition to state
that system is fault tolerant are considered:

∙ The system computation for given dataset was not interrupted when a fault occured
and complete batch of input data was processed.

∙ The outputs produced by the system are correct.

∙ The length of computational process did not exceed the predefined time limit.

In fault tolerant systems, the key goal is to prevent the errors from propagating to observable
outputs of computation process. To achieve this behaviour, some kind of redundancy is a
mandatory prerequisite. According to [27], the redundancy used for tolerating faults can
be classified into four categories.

∙ Space (hardware) redundancy is probably the most frequently used one because of
its easy use. Components of original systems are duplicated and special logic imple-
menting some kind of voting strategy is added. This approach can be used for both
fault detection and localization. This category will be discribed later in this text.

∙ Time redundancy is based on several repetitions of unit computation with the same
input data. The interval between two repetitions can vary. This type of redundancy
can be used to distinguish between the transient fault which can disappear after the
execution of recovery process and permanent fault which persists over time. The input
data used for several computational repetitions can be encoded in different ways to
enhance the error detection capability.

∙ Information redundancy is based on the addition of information to the basic data
structure. These additional data (referred to as control bits) can be used to check the
validity of received data and can be used to restore the original data if maximal num-
ber of tolerable faults is not exceeded. From among the most popular approaches, the
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Figure 3.1: TMR scheme with single and triplicated voter

single parity check, M-out-of-N coding, computing checksum and codes with residue
and inverse-residue can be mentioned [71].

∙ Software redundancy is combined with the expansion of the use of microprocessors.
It is based on the implementation of some additional software to provide FT features
such as validity check of operational unit outputs or periodical self-test which exercises
the hardware units repeatedly after a certain period.

Very often the fault tolerance techniques based on space redundancy are classified into
two categories - static and dynamic.

3.1.1 Static fault tolerance

Because the size, energy consumption and price of hardware components is being decreased
during the time, it is acceptable in most cases to increase the level of hardware redundancy
to provide the possibility to detect and overcome one or more occurred faults. The majority
voting mechanism is provided by n identical modules (n is always odd) and one or more
voting units (voters).

The simplest example with 3 identical modules is called Triple Modular Redundancy
(TMR) (see Figure 3.1). TMR is able to detect one affected module and tolerate its error
output. Maximal number of tolerated faults for n-modular redundancy is 𝑛−1

2 . The weak
point of using this FT scheme is the voter which is not usually secured against the presence
of fault. Several strategies exist how to make the probability of system failure smaller.
The voter unit can be also replicated and thus have better chance to survive the fault
occurence. This situation is shown in Figure 3.1b where all voters examine all results. All
data paths remain triplicated in as many system units as possible. At the end of the chain
of TMR architecture single result has to be reached. Another method for improving the
voter resistance against faults is to implement it into more resistable fabric or by more
reliable technology. Also the granularity of system plays an important role. When the
coarse-grained strategy is used, the voter size is relatively much smaller and therefore the
chance that fault will affect it is also much smaller. These TMR schemes with different
granularity are shown in Figure 3.2a, Figure 3.2b and Figure 3.2c. It is clear that the
relative probability of fault occurence in voter is biggest in case of single unit replication
because of its size ratio.
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Figure 3.2: TMR scheme with different level of granularity

3.1.2 Dynamic fault tolerance

Active replication methods are not based only on masking faults but they also provide fault
detection, its localization and recovery from fault ability. The switching faulty components
with spare ones or some kind of system reconfiguration can be used by this approach. The
full operational capability of system can be brought back but a disruption in processing
may be necessary during the reconfiguration process. Hot sparing techniques can be used
to eliminate the disruption. In this case the spare unit is operating in parallel to original
unit and it is ready everytime to substitute the unit affected by fault. The configuration
with spare units operating in parallel together with n-to-1 switch is shown in Figure 3.3.

OUTPUTINPUT

FU1

Checker1

FU2

Checker2

FUn

Checkern

n to 1
switch

Figure 3.3: Active redundancy based on hot sparing

3.2 Fault detection and localization techniques
For fault detection, the capability of systems to mitigate faults which appear during their
operation is an important feature. It should be signaled in some way to the supervising
process running the application that a problem exists which needs to be solved. In most
cases, the next step in mitigation process, the fault localization, is done together with fault
detection. Although several fault mitigation techniques exist which do not need these two
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steps to be performed, as e.g. bitstream scrubbing (see section 3.3.1), the fault localization
is a very important prerequisity for starting the fault recovery process.

The fault detection always requires some kind of redundancy. In last decades, many
techniques were introduced and many of them are used till nowadays. Many of these
techniques were based on increasing information redundancy. The main principle is to
encode the given data vector to the form which will allow error detection, its localization or
even its mitigation by some control logic. These techniques are still frequently used mainly
during data transfers between two logic devices in non-reliable environment.

From among the most widely used techniques based on information redundancy, the
parity code, cyclic redundancy check and checksum methods can be mentioned.

∙ The parity code is based on adding extra information, mostly a single bit, to each
input data vector. The value of this bit is determined to respect the required parity
for the resulting code. When even parity is used the number of logical ones in code
has to be even. For the odd parity the code has to contain the odd number of logical
ones. This technique is able to detect the odd number of errors in code. When the
even number of errors appear the error detection is impossible and the received code
is considered as non-faulty.

∙ The checksum can be counted by some aggregation function both on side of trans-
mitter and the receiver and then these two values are compared. If they disagree the
error is present. The bit size of the checksum when compared with data vector has
to be bigger because of the carry bit which can appear when the sum is counted.

∙ CRC is the method which uses the generator polynomial to count the check code for
the input data vector. It is the enhancement of the checksum counting based on cyclic
codes. CRC can be easily implemented by blocks with XOR logic function. The code
word consists of original data vector and the counted code. CRC is based on dividing
the original data vector by the generator polynomial in a polynomial long division.
The remainder of the computation becomes the result. The polynomial coefficients
are calculated by a finite field arithmetics and thus the addition operation can be
performed bitwise-parallel. The ability to detect errors depends on the proper choice
of the generator polynomial. [40]

When the information redundancy is increased the Hamming distance between the data
word and encoded word can be counted and can be used to find the detection parameters
of used method such as maximum number of errors which can be detected or repaired. The
codes with the ability to detect errors are reffered to as Error Detection Codes (EDCs). If
they can also repair the error, they are reffered to as Error Correction Codes (ECCs). Fault
detection and localization methods can be also based on space redundancy. These are also
very popular widely used when dealing with FPGAs. The main techniques from this group
can be roughly divided into three categories:

∙ Methods based on replication and concurrent error detection

∙ Methods for off-line testing

∙ Methods based on roving areas in FPGA
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Figure 3.4: CED based on different techniques

3.2.1 Replication and concurrent error detection

These methods are based on the fact that for fault detection some kind of space redundancy
is needed.

The simplest form is 𝑛-modular redundancy with 𝑛 replicated modules connected in
parallel. Their outputs are compared and any difference indicates the presence of fault.
As an example, TMR system can be mentioned (see Figure 3.4c). The redundancy of this
system is always more then (𝑛−1)*100%. As its benefit, the ability to detect every distinct
error can be seen. The problem can arise only when the same error will be produced by all
replicated units.

In many solutions, the technique of Concurrent Error Detection (CED) is adopted be-
cause of the minimization of performance impact. Parallel to operational unit, there is a
unit computing some function as can be seen in Figure 3.4a. Its output can be continuously
used to check the correctness of the output. When the outputs of the units are not equal,
it means there is a fault in the system which caused an error to occur. The drawback of
this approach is that we cannot distinguish whether the error is produced by operational
unit or its concurrent unit. One of the most popular CED techniques is the computation
of parity code (see Figure 3.4b).

If the functional unit implements bijective function, the unit implementing inversion
function can be added to compute back the input vector value and compare it with the
original one. This approach can be seen in Figure 3.5. This is a more reliable technique
than replication of functional units because there is no risk that the same fault will appear
in more replicated units at the same time. Another drawback besides the limitation that
the inversion function cannot be created for non-bijective function is the delay extension of
resulting system when compared with the original system. This is caused by the fact that
the new system is consisting of two units, the first is implementing the desired function and
the second its inversion, and they are connected in series.

In common, the methods based on redundancy and CED provide a very fast solution of
fault detection, as the fault can be detected immediately or very early after the functional
unit finishes the computation. There is just the latency of voting, parity or similar logic.
Besides the extension of space overhead, their drawback is also the resolution of detecting
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Figure 3.5: Fault detection based on the use of function inversion

and localizing the fault in system. Only entire replicated unit can be localized, not particular
affected resource inside this unit.

3.2.2 Off-line testing

Off-line fault detection is a widely used technique which is checking the fault occurrence
while the application in the FPGA is not running. This method can be based on external
testing equipment outside FPGA or the test equipment can be configured into FPGA.
The second approach is known as Built-In Self-Test (BIST). For configuring internal test
equipment the complete reconfiguration of FPGA is frequently used.

The offline testing methods for FPGA can be divided into two categories according to
their relation to currently configured application:

∙ The objective of application-independent testing is to check as great number of pos-
sible configurations of programmable logic components and their connections as pos-
sible. No information about application which will be run in FPGA is available. This
type of testing is very often employed by chip manufacturers. The main drawback
of this approach is low efficiency of detection of timing-related faults because during
this testing it is not possible to examine all possible interconnection patterns which
can be designed by user.

∙ The objective of application-dependent testing is only to test the resources used by a
specific application implemented in the FPGA. This is done by decomposing the user
designed system into blocks and exercise each block by using the another ones. These
blocks have to provide the data path between tested block and the external interface
of FPGA in case of using external test equipment or they have to implement the test
equipment by themselves. As the configuration memory has low dependence on the
structure of the FPGA, this testing scheme can be often used for the same design in
different FPGAs. To implement reliable BIST is more difficult than the use of the
external testing equipment because the test equipment such as test vector generators
and response analyzers are not implemented in fault-free fabric.

Firstly, BIST technique for FPGAs was introduced for testing PLBs [58], and then it
was extended for testing programmable interconnect [57]. It uses several test configurations
which consist of three main blocks - Test Pattern Generator (TPG), Block Under Test
(BUT) and Output Response Analyzer (ORA). The main principle of BIST methods is
that one part of the FPGA is configured to be under test (BUT) and the other parts are
configured to generate testing vectors for it (TPG) and to analyze the results (ORA). When
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the testing is finished, the resources of the FPGA change roles and the other part of FPGA
is tested. Thus, in several steps the entire FPGA can be fully tested. This technique can be
seen in Figure 3.6. The start of BIST can be triggered either during the system start-up,
as part of a maintenance schedule or in response to detected error.

The main advantage of BIST in comparison with other fault detection techniques is
that there is no impact on FPGA during the normal operation. Just the storage for test
configurations which are not typically very big must be provided. After the manufacturing
phase, testability can be achieved without any cost, because the BIST can be configured
into the FPGA at the beginning and then reconfigured by the desired design. When BIST is
complete, an FPGA needs to be reconfigured for its normal operation. For BIST in FPGA,
the only cost is the additional memory required for the BIST configurations which are not
typically very big. Another benefit of BIST is the fact that it allows the complete coverage
of the FPGA fabric [16].

There are also several drawbacks of BIST technique. One of them is its limitation that
it can only detect faults during the test mode when the FPGA is not operating. Thus,
some timing-dependent faults or similar may not be detected.

FPGA

FU1 FU2 FU3

Normal operation

FPGA

TPG
FU2

(BUT)
ORA

Test (mode 1)

FPGA

FU1
(BUT)

ORA TPG

Test (mode 2)

FPGA

ORA TPG
FU3

(BUT)

Test (mode 3)

Figure 3.6: Testing of entire FPGA using BIST and PDR

3.2.3 Bitstream readback

Present FPGAs offer the possibility of reading the actual contents of their configuration
memories as well as the contents of flip-flops in CLBs in form of configuration bitstream.
This process can be considered as the inversion of FPGA configuration. To perform bit-
stream readback, external controller outside FPGA under test is needed which uses some
FPGA configuration interface. Bitstream readback is available in two modes - readback
verify and readback capture [69].

In readback verify mode, the controller reads the configuration of memory cells. This
mode is mainly used to verify the success of previously done configuration. It is performed
by comparing the original bitstream used for configuration and the bitstream read back
from FPGA.

Readback capture mode also reads configuration memory cells data but in addition to
that it also acquires the current states of all internal flip-flops inside CLBs and the state of
IOBs. With these gained data from FPGA and the knowledge of data which are expected
to be in the configuration memory of FPGA and other resources in the moment of readback,
the diagnosis algorithms can be used to detect and localize faults in FPGA [52] [53]. Possible
test system based on bitstream readback is shown in Figure 3.7.

3.2.4 Roving STAR

This technique capable to detect and localize faults in FPGA is based on the dividing the
array into tiles with the same number of resources and their structure. Some techniques for
off-line testing are then used on tiles which are not used by the current design for performing
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Figure 3.7: Test system of FPGA based on bitstream readback [53]

the function. When the testing is finished the partial reconfiguration of FPGA is used to
change the layout of design and another tiles previously used to implement the function are
configured as BIST and tested. This technique and its extensions have been described in
many publications [3] [2]). The tiles of FPGA which are currently implemented by BIST
and which are performing the fault detection and localization are referred to as Self-Testing
AReas (STAR). While one STAR is tested off-line the remaining blocks of system which
are not utilizing resources from actual STAR continue in run and the aplication in FPGA is
not interrupted. Testing is focused on logic blocks and connecting wires. If fault is present
in the implemented circuit, the greatest possible latency of its detection will be equal to
time needed to test a number of blocks STAR throughout the FPGA.

Figure 3.8 shows how the circuit is partitioned between the STAR areas and areas where
the desired function of the design is performed. In the first version of this technique, only
1-dimensional STAR areas were implemented. Nowadays, typically 2-dimensional areas are
used - vertical STAR (V-STAR) and horizontal (H-STAR). Thus, the working area may
be contiguous or it may be divided into two or four disjoint regions. All horizontal wire
segments in H-STAR and all vertical segments in V-STAR are reserved for testing. The
interconnection signals connecting separated parts of working areas can pass STARs. But
only horizontal wires can go through H-STAR and only vertical wires through V-STAR. A
STAR tests both the PLBs and the programmable interconnect within its area. The size of
the STAR depends on the number of resources needed to implement BIST circuit which will
be used for testing. The testing of PLBs is performed in cells of FPGA in the intersection of
H-STAR and V-STAR. They are tested using off-line BIST which was configured to this tile
by partial dynamic reconfiguration. When testing interconnection wires, the whole length
of H-STAR is used to test horizontal wires and length of V-STAR to test vertical wires. At
the same time when STARs are testing logic blocks and interconnection wires the working
area of FPGA continues in work without interruption. After the testing of a STAR has
been completed, the STARs are reconfigured back to the original function and testing areas
are moved to the following area which was previously used as a part of working area.

The fault coverage of this approach can be 100% because every tile of FPGA is tested.
The maximal latency of fault detection for the worst case can be counted by multiplying
the number of possible STAR locations and the time needed to complete the tests in STARs
(plus time for the reconfiguration of STARs to new location). Hardware overhead of this
approach is formed by tiles needed for STARs and the reconfiguration controller logic which
is used for roving the STAR through the FPGA. The fault localization of this method is
scalable depending on the size of the FPGA. The space overhead for FPGA divided into
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tiles with 𝑛 columns and 𝑛 rows can be counted by formula 1−(𝑛−2)2

𝑛 [2], which is usually
less than for techniques based on unit replication.
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Figure 3.8: Configurations applied by roving star technique

3.2.5 Summary

All presented fault detection methods have both positive and negative features. Table 3.1
is showing the results of detection methods when they are evaluated by several criteria.
Granularity criterion means how specific the method can be when detecting an error. Space
overhead shows how much additional resources will be needed when the method will be
applied. The additional latency of computing caused just by the fault detection is evaluated
by criterion named performance overhead. Detection speed is evaluating the time needed
from fault occurence to its detection. Finally, criterion fault coverage shows how many
faults from all possible faults can be detected by the method.

Detection method Granularity Detection speed Fault coverage

Unit replication
coarse

only module
can be detected

fast
with error occurence

good
all error occurences

CED
coarse

only module
can be detected

fast
with error occurence

medium
can be impractical

for some functional units

Off-line methods
fine

exact error
can be detected

slow
during periodical test

very good
can detect also faults

not manifested by error

Bitstream readback
fine

exact error
can be detected

slow
after bitstream is read,

parsed and analysed

very good
can detect also faults

not manifested by error

Roving star
fine

exact error
can be detected

medium
after STAR moves to

faulty tile

very good
can detect also faults

not manifested by error
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Detection method Space overhead Performance overhead

Unit replication large
resources for n-1 modules + voter needed

small
voting logic latency

CED medium
trade-off with coverage

small
additional latency of checker unit

Off-line methods small
testing controller

small
just start-up delay

Bitstream readback small
readback and testing controller

small
just start-up delay

Roving star medium
resources for STARs + testing controller

large
latency of switching tiles,

can cause long critical paths

Table 3.1: The comparison of fault detection methods

3.3 Transient fault mitigation
The use of FPGAs in harsh conditions has significantly risen the number of transient faults
mainly caused by ionization radiation. These faults can be mitigated but this requires
additional logic.

The susceptibility to these kinds of faults can be lowerred by the special fabrication
design to produce radiation-hardened FPGAs. This radiation hardened design is based
on protecting the configuration cells at transistor or silicon level. As FPGAs become more
and more complex with large number of resources and processing capabilities, the radiation-
hardenning becomes excessively expensive in comparison with non-protected ones. Radi-
ation hardened FPGA has slower operating frequency and increased power consumption
when compared with its commercial off-the-shelf FPGA counterpart [41].

When a transient fault occurs in FPGA it can be repaired by reconfiguration of af-
fected part of configuration memory. This can be done by complete (static) reconfiguration
of FPGA or by PDR of affected reconfigurable region. Static reconfiguration causes the
stopping of running design in FPGA and possible loss of current status information of im-
plemented modules. Due to complete reconfiguration of FPGA, this technique does not
require the localization of the affected part of FPGA. Nowadays in most cases, the ap-
plication running in FPGA cannot be stopped during the recovery process and therefore
techniques based on PDR are preffered.

3.3.1 Configuration bitstream scrubbing

Configuration bitstream scrubbing was introduced to correct configuration memory after
SEU occurences. This method is based on periodical reconfiguration of PRM by correct
partial bitstream while the FPGA is in operation. The scrubbing approach is typically com-
bined with some fault tolerant technique which ensures that the implemented application
can stay operating properly even during and after scrubbing process.

There are two common configuration scrubbing strategies:

∙ Blind scrubbing stategy is based on periodical reconfiguration of PRM by golden
copy of designated partial configuration bitstream. The reconfigurated region is not
searched for the SEU occurences and reconfiguration is done also in case when PRM
is working correctly. This method is easy and fast to implement due to its simplicity.
The drawback of it is its waste of processing time because it performs scrubbing also
in times when it is not needed.
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∙ Scrubbing with configuration readback stategy is based on the use of read bitstream to
detect SEUs and on reconfiguring the PRM only in case when it is affected by SEUs.
According to the type of error, the detection and the source of configuration data
for reconfiguration, three variations of configuration scrubbing with readback can be
identified.

– Readback and reconfiguration with golden copy of configuration bitstream - this
method uses the comparison between the read bitstream data and the golden
copy from external memory to detect and optionally localize the errors.

– Readback with ECC check and reconfiguration with golden copy configuration
bitstream - this method is based on error detection by parsed ECC from read
bitstream and reconfiguration by golden copy of bitstream.

– Readback with ECC check and reconfiguration with corrected configuration bit-
stream - this method uses the read bitstream where the error is corrected by the
ECC technique. This option can be used only when no more than maximum
number of faults is present. On the other hand, this approach eliminates the
need of external memory with golden copies of partial bitstreams.

Configuration scrubbers can be also divided into two groups according to their implemen-
tation:

∙ Internal scrubbers are implemented inside the FPGA where the scrubbing is per-
formed. They are also reffered to as self-scrubbers. They have to use the internal
configuration interface as the access to configuration memory. This solution does not
require any external device to host the scrubber but the recovery process is limited.
The internal scrubber cannot reconfigure the reconfiguration region where it is imple-
mented or where the storage for golden copies of partial configuration bitstreams or
its memory driver is placed.

∙ External scrubbers are implemented in different devices and they access the con-
figuration memory of FPGA by external configuration interface such as JTAG or
SelectMAP. With this approach, each part of configuration can be scrubbed. The
drawbacks are: 1) increased power consumption, and 2) lower possible frequency due
to fact that external scrubbers are connected by longer wire connections than internal
scrubbers.

The main drawback of configuration scrubbing method is the need of continual use of
the configuration port. This prevents other forms of configuration port using such as its
utilization for dynamic design change by partial reconfiguration. In [20], the technique
to overcome this issue via integrating partial dynamic reconfiguration into configuration
scrubbing is presented.

The configuration scrubbing works only with SEUs causing a bitstream corruption, it is
unable to determine if a SEU has occurred in the memory used by implemented design for
computation. The scrubbing period should be stated according to failure rate of system.
This period implies a fault detection latency.

3.3.2 Recovery by partial dynamic reconfiguration

Methods based on partial dynamic reconfiguration are dependent on some kind of detection
and localization technique implemented in design which in case of fault detection triggers the
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process of recovery. Unlike in the configuration scrubbing, this process is started only in case
of fault detection event. The process of recovery is shown in Figure 3.9. The detection and
localization of faulty module is typically done by the design itself implementing techniques
such as CED or unit replication with checker units. The error signals are supplied by some
kind of PDR controller which will trigger the reconfiguration process using appropriate
configuration bitstream downloaded from configuration bitstream storage.

PDR controller can be implemented in the same FPGA where it performs the mitiga-
tion process or it can be implemented in external reliable fabric. This controller is often
implemented in FPGA as an IP core processor such as MicroBlaze or LEON. It can be also
implemented as dedicated module and optimized to achieve better performance and lower
space overhead.

In [9], mitigation technique able to cope with the SEU effects is presented. Errors in
PRMs are detected by CED technique and they are mitigated by PDR. The effects of SEU
in configuration memory and also in user SRAM memory can be mitigated.

In [10], the design with enhanced TMR implementation providing error localization is
used and the faulty module is reconfigured by golden copy of configuration bistream. The
implemented TMR scheme ensures the fault tolerance of the system.

The scheme with TMR and utilization of PDR to mitigate the effects of SEUs can be
also applied to entire softcore processor [23].
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Figure 3.9: Using PDR to recover system after SEU occurence

3.4 Techniques for system recovery after permanent fault
occurence

In this work, as the permanent fault is considered, each fault causes a damage of FPGA
resource in that way that it cannot be used in FPGA design anymore. This happens
mostly by outside damaging or during the wear-out phase of FPGA or by the impact of
harsh environment on FPGA. The recovery of this fault can be done on various levels:
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∙ Hardware level recovery - the FPGA fabric can be designed and manufactured with
spare resources which can be utilized in case of fatal fault occurence in currently used
set of resources. This approach for array based resources (i.e. CLBs) is based on
using multiplexers or other switching logic at the ends of lines of cells. This allows
the remapping of a row or a column with damaged component into some spare row
or column [19]. For hardenning the interconnection of CLBs and other hard blocks in
FPGA, the fine-grain redundancy in the interconnect blocks can be introduced [72].
All hardware level recovery approaches based on hardware switching of connected
blocks or connection routing guarantees that the recovery is transparent to the con-
figuration. This means that the current design loaded in configuration memory can be
used further. Also the timing performance of the design before the permanent fault
occurence will be not changed as the physical layout and connections of resources are
replaced with the new ones utilizing the spare resources with predefined timings.
The drawback of the approach is in the limited number of faults which can occur
in distinct rows or columns in the FPGA. These spare rows or columns create the
necessary area overhead. When all these spare lines of resources are utilized another
approach has to be used.

∙ Configuration level recovery - the damaged resource causing permanent fault is still
accesible for reconfiguration controller but it is excluded from the further utilization.
This approach needs the existence of reconfiguration controller which will control the
mitigation process. From the most known techniques, the use of precompiled alter-
native configurations, evolutionary algorithms and incremental mapping and routing
of design can be mentioned.

∙ Application level recovery - this category incorporates all higher level aproaches where
the fault is mitigated without using different physical resources or other design con-
figuration. These approaches can be commonly used and they are not limited only to
FPGAs. The fault can be overcome by the system design which can be able to use
spare functional block instead of the faulty one without the need to modify design
configuration or continue in computation with some performance degradation [70].

Since hardware level recovery is dependent on the manufacturer design of each single
type of FPGA and the application level recovery is a wide problem not focused only to
FPGA, this thesis is aiming at implementing the approaches manipulating with FPGA
configuration to mitigate the occured fault. From these approaches, three categories can
be identified - incremental rerouting, the use of alternative configurations and evolutionary
algorithms.

3.4.1 Incremental mapping and design routing

One possible approach to deal with permanent fault occurence is the modification of current
design configuration to exclude the affected resources when a fault occurs. The incremental
change of configuration may consist of several steps: re-mapping, re-rerouting and bitstream
generation. Some methods using this approach do not require to perform all these steps.
This approach can in theory utilize all spare resources which are currently not used by
implemented application for logic or routing affected by faults. It can also handle occured
faults in various patterns in FPGA where other approaches not using online change of
configuration will fail. The drawback of this method is the need of adaption of FPGA
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mapping, placement and routing tools to operate autonomously with considering existing
faults in implementation area. The incremental change of design requires not negligible
time for processing, it can increase power consumption and area overhead.

The incremental change of design can be computed remotely and then downloaded to
FPGA or it can be performed by tools implemented in the device which is under repair.

One of possible fault recovery methods mentioned in [37] focus on swapping faulty
resource to non-utilized one within single logical block. This repair has typically only small
impact on the global routing or other resources outside the block. It is not always possible
to use this approach.

When the logic block is faulty and it needs to be replaced by a spare one, the pebble
shifting technique can be used [45]. The allocated blocks are shifted according to cost of
shifting move. The basic principle is shown in Figure 3.10.
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Figure 3.10: Pebble shifting approach

In [47], the approach consisting of the instantiation of logic and routing resources at run-
time according to application data-flow graph and constraints, such as fault regions that
cannot be allocated, is presented. It uses implementation tools run on the host system.
The basic principles of this approach are shown in Figure 3.11 and Figure 3.12.
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Figure 3.11: Resource instantiation in FPGA without faults [47]

3.4.2 Approach based on precompiled alternate configurations

While the previous approach is designed to be able to solve the fault presence in system
after it really occurs, some other approaches are trying to prepare the possible solutions
before the fault appears, in the design phase. The basic requirement is to exclude the
damaged resource from the further use. There is a possibility to divide the complete
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Figure 3.12: Resource instantiation considering faults[47]

implementation space in some reconfigurable region into several tiles, split the desired
design into modules which will be configured into different tiles leaving one or more tiles
unused. The configurations with these alternative implementations are precompiled and
created partial configuration bitstreams are stored in some type of memory. The basic
principle of generating alternative configurations implementing different module layouts is
shown in Figure 3.13. When a fault is detected and localized in some tile, the reconfiguration
of the entire design is performed with this precompiled configuration which does not utilize
the resources from this tile. Since each configuration contains the implementation of the
same function and the interface between the entire reconfigurable module and the rest of
design is fixed and the same in all cases, all partial bitstreams are interchangeable and can
be configured to this partial reconfigurable region. With this approach, a fault in logic
block and in local interconnections can be handled. Recovering from faults to global and
overlapped segmented interconnect is discussed in [36].
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Figure 3.13: The alternative layouts of sample system with 4 tiles

This technique minimizes the recovery time since the process consists of alternative
configuration selection and PDR with its precompiled bitstream.

One of the first implementations of this approach is presented in [36]. The FPGA
implementation area is segmented into static tiles at design phase.

In [73], the method using alternative configuration and degradable design to recover
from multiple permanent faults is presented. When there are no fault-free tiles available in
the design, the design is degraded in terms of its fault tolerance to achieve lower number
of utilized tiles.

The drawbacks of this approach can be seen in its poor area efficiency and complicated
mitigation of mutliple faults but the main one is the requirement of external storage for
precompiled partial configuration bitstreams. This can be reduced by some techniques such
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as bitstream compression but there is always a trade-off with increased time and complexity
of recovery process.

3.4.3 Evolutionary algorithms

The ability of modern FPGAs to be reconfigurated dynamically can be used by evolutionary
methods. They can recover the system correct operation through evolution when faults
occur. These methods offer a large degree of flexibility in the number and distribution of
faults which can be mitigated. There is no need to preciselly localize the fault. Evolutionary
methods attempt to facilitate repair through the reuse of damaged resources. The fitness
function of implemented Genetic Algorithm (GA) is able to internally evaluate the residual
functionality of the design in FPGA and assess the fitness value. This value is used for the
upcoming selection phase.

In [14], the fault recovery method referred to as competitive runtime reconfiguration
with competing two half-configurations (left and right) gradually modified by GA is used.

The drawback of this method is complexity and flexibility what can result in very time-
demanding search of satisfactory design with unpredictable duration and its result. The
logic for evolutionary algorithms can cause unnegligble area overhead.

3.4.4 Summary

Although many different approaches to system recovery after permanent fault occurence
exist, none of them is considered as universally applicable. Frequently used method based on
spare resources or predefined alternatives are demanding device resources, other methods
with lower requirements can have problem with speed of recovery process or can cause
performance overhead.

Table 3.2 is showing the comparison of recovery methods from different aspects. Trans-
parentness to configuration means the fact that recovery is done in device by itself and
user does not have to change the configuration in FPGA. Recovery speed determines the
required time for permanent fault recovery. Resource overhead shows how much additional
resources (physical or logical/configurable) will be needed when the method is applied. Per-
formance overhead describes the additional latency of recovered system. Finally, criterion
flexibility of recovery highlights how flexible and effective these methods are.

Recovery
method

Transparent
to user design Recovery speed Resource overhead

Hardware
level yes

very fast
just switching lines

in hardware

low
spare physical resources
needed, no requirements
for implementation space

Alternative
configurations no

medium
configuration selection

and reconfiguration delay

very high
reconfiguration controller

and configuration selector needed
& storage for configurations

Incremental
remapping

& rerouting
no

poor
time demanding remapping

and rerouting

high
design implementation

and reconfiguration controller

Evolutionary
algorithms no

poor
may take long time

to evolve

high
after bitstream is read,

parsed and analysed
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Recovery
method Performance overhead Flexibility of recovery

Hardware
level

low
no design change

low
big loss of usefull physical resources while

switching from affected row/column to spare one

Alternative
configurations

low
alternative configuration

can be optimized

medium
the loss of usefull configurable resources

when excluding the affected part,
trade-off with the number of configurations
(depends on the granularity of partitioning)

Incremental
remapping

& rerouting

medium
trade-off with implementation

controller complexity

high
non-faulty resources can be

effectively utilized

Evolutionary
algorithms

low
can be optimized

by setting fitness function

high
non-faulty resources can be

effectively utilized

Table 3.2: The comparison of permanent fault recovery methods

3.5 Fault injection techniques
With the introduction of new fault detection, localization and mitigation techniques, ef-
fective techniques and methods for debugging and verification of the correctness of their
fault tolerant design and their performance is needed. This is done by purposely injection
of faults into implemented design or emulation of its impact. Fault injection can be done
on different levels in FPGA. The fault occurence can be emulated by implemented software
(e.g. by simulating the altering of inputs of system components) or it can be injected as a
bit flip of configuration memory cell on hardware level.

In FPGA, the fault emulation in application is not sufficient since it is only able to test
the faults that occur on the design level rather than the hardware level such as faults in
routing. The faults also cannot be emulated in locations of FPGA not utilized by design.

The fault injection on the lowest hardware level can be done by the exposure of FPGA
with implemented system design to radiation with heavy ion beams. This is the most
realistic way of injecting faults since it simulates the physical phenomemon occuring in real
application. The drawback of this approach is its price and time demands when compared
with other approaches. Another important disadvantage is the fact that it is not possible to
precisely inject a fault into desired destination such as to flip only single bit in configuration
memory [22].

Another approach aims at manipulation of configuration bitstream loaded in FPGA.
The scheme of this approach is shown in Figure 3.14. The correct configuration bitstream
is altered with a single or multiple bit flips driven by some injection controller (injector).
Typically, the injector reads a correct configuration bitstream of the FPGA and creates a
bit flip in the stream at the desired bit in the bitstream. Due to fact, that the injection
of every possible bit flip can be very time demanding (up to several tens of minutes [18])
and it can cause cause peformance bottleneck in FPGA, the FPGA configuration bistream
can be divided to the important bits of design and don’t care bits. The list of important
bits to be flipped can be generated by some software tool incorporating the knowledge of
relation between the utilized resources and their real position inside configuration bitstream.
The manipulated configuration bitstreams are one by one loaded via PDR into FPGA and
the simulation is done by providing input stimuli. The outputs of the system to each
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configuration with specified placement of fault can be gathered and compared with the
outputs of the correctly operating system (the golden copy of system configuration). The
sensitive bits can be coupled with the parts of system design which they implement and
reliability parameters of these parts and entire system can be evaluated. The fault injector
can be implemented as external tool and utilizing external configuration interface of FPGA
such as JTAG or SelectMAP [18] or it can be instantiated in FPGA which is beeing injected
using the ICAP interface [12].
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Figure 3.14: The scheme of fault injection approach based on configuration modification

In [74], the fault injection combined with fault emulation to reduce the performance
bottleneck caused by injecting faults by frequent reconfiguration of FPGA is presented.
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Chapter 4

Motivation and goals of the
research

Previous chapters presented the topics of fault tolerant system design in FPGA and some
open issues were mentioned. This information can be seen as the key inputs of this thesis.

4.1 Motivation
The scaling of electronic devices and still less robustness of components bring the strong
need for more complex securing against the occurence of faults. The use of electronic devices
in new rough and noisy environment is also another source of problems. For example, in the
aerospace industry there are requirements on electronic devices for their resilience against
radiation and on hardenning them against negative effects of material aging during long
term missions.

In recent decades, new possibilities and new challenges in the area of system design
appeared. Programmable electronic devices such as CPLDs and FPGAs allowed rapid
prototyping and started the era of reconfigurable computing. Faulty design can be easily
fixed after the first deployment and the same hardware can be also used to perform various
tasks during the lifetime where some of these can be unforeseen. The FPGAs came up with
new possibilities in the field of fault tolerant hardware design. The dynamic reconfiguration
can be now used for changing the mapping and routing inside FPGA in order to mitigate
the faults which have occurred. The new challenges with fault tolerance in FPGAs are
connected with their configuration saving. Very often the FPGAs which have configuration
stored in SRAM memory are used [28]. They are popular because of their lower price and
easy use they offer. Higher susceptibity to SEU faults in comparison with other FPGA
types can be seen as their drawback.

Many approaches for making digital systems more dependable were presented. Fault
tolerant system design offers the possibility to overcome the impact of fault occurence while
the use of detection and localization methods together with fault mitigation based on PDR
can offer to restore the fully operational state of system. This can be done autonomously
without the need of user intervention and without stopping system operation. Nowadays,
the utilization of FPGAs is not only in rapid prototyping but they are used frequently
also in long term missions. Thus, the study of system dependability has to focus also on
permanent faults which occur more likely with the increasing age of FPGA. Many techniques
for mitigation of SEU effects in FPGA and also several mitigation techniques for permanent
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damage of resources in FPGA are available. None of them is universally applicable due
to their high demands on memory (e.g. precompiled alternative configurations), time-
demanding fault recovery (e.g. evolutionary algorithms), area overhead (e.g. incremental
change of design), etc. Thus, it makes sense to focus on optimization of these techniques
and creating such methodology which will describe how to create design with effective fault
recovery ability.

4.2 Goals of the research
In various applications of fault tolerant systems, different levels of dependability are required
to be achieved by the implementation. It can be stated that the range of hardware to which
the failing design can be implemented plays an important and maybe even decisive role.
This holds especially for longtime missions in which it is important the hardware to operate
correctly for long periods (in terms of years).

The effort to develop a methodology for fault tolerant systems design was driven by the
goal to satisfy the following aspects.

∙ The localization of the FPGA part (PRM) affected by fault.

∙ The determination of the fault type and its classification according to considered fault
model.

∙ The driving of repair proccess to return the system

– to the exactly same state as there was before - in case of transient fault,
– to the state when the functions of system are producing correct outputs - in case

of permanent fault.

∙ Keeping the design running during the reconfiguration process if it is possible.

∙ Enabling the support for synchronization process after reconfiguration is completed.

∙ The effort to shrink the number of the FPGA resources needed as hardware overhead
because of the system design according to proposed methology.

The goal of this thesis is to combine the existing well known techniques together with
new approaches. As an example, the CED technique together with online checkers can be
used not only to ensure the fault tolerance in system but also to localize the module affected
by a fault in FPGA if it is possible. This localization information will point at specific
reconfigurable module of FPGA which is faulty. Then some reconfiguration controller will
use this information to process fault mitigation in it.

The key goal of the research is to develop this specific controller which will control the
reconfiguration of FT architecture when the fault will be localized in it. The process of
fault mitigation will vary for different types of faults specified in the fault model. The
determination of the type will be also the task for reconfiguration controller and it will be
based on the knowledge of the history of the reconfigurable module errors.

The fault mitigation process will be limited in such way that it can use only the re-
sources of FPGA which were reserved for the implementation at the beginning of system
lifetime. Before the first configuration of system into FPGA the implementation area will
be defined by the user. During the system lifetime the permanent fault can be detected
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and localized and then the need of resource mapping change can arise. Since the limitation
of FT system implementation to the allocated area is needed, the new resource mapping
can only utilize the resources from this constrained area. These resources will be called a
limited implementation area.

So the two requirements for new system which will be configured in FPGA after fault
mitigation procedure are as follows:

∙ System is utilizing the resources in given implemementation area only.

∙ System is producing correct outputs - the implemented function of original system
was not changed.

In case of transient fault mitigation the third requirement can be to preserve the capability
of fault tolerance on the same level as in the original system. This means when for example
the original system is capable to cope with two indepedent faults inside it, then the new
system has to be able to overcome the same two faults too. Permanent fault mitigation
can cause the reduction of fault tolerance capability to the situation when the system will
cease to be fault tolerant.

Another goal of the research will be to enable the synchronization of reconfigurable mod-
ules in which the FT system designed by methodology is implemented. Since immediatelly
after the partial reconfiguration of reconfigurable module in FPGA its state is undefined,
its synchronization with other untouched modules can be required. Thus in such cases, the
synchronization has to be the last phase of fault mitigation process. The synchronization
procedure itself is not defined by the methodology since many approaches for it exist [48],
[59], [35]. The designed FT architecture with reconfiguration controller will be able to
cooperate with external synchronization controller.

The chosen strategy of fault mitigation in the methodology requires to store the con-
figuration bitstreams needed for dynamic reconfiguration in external storage outside the
FPGA. Since the size of bitstreams for modern FPGAs with many resources can be very
large, it is crucial to bring some strategy to reduce their aggregated size. Not only the
requirement on sparing the space must be taken into account but also on reduction of re-
configuration time, since the reconfiguration controller is loading the bitstream through the
reconfiguration interface of FPGA serially. Thus, the total count of bitstreams and also the
size of each bitstream has to be reduced to minimum.

The goals of the research can be summarized in the following way:

1. To propose the methodology for the FT design of digital system into FPGA with the
ability to recover after transient and permanent fault occurence which satisfies these
conditions:

∙ The designed architecture of system is operating in limited implementation area
which means that it can only utilize the resources from the area of FPGA which
was designated for the system at the begining of its lifetime.

∙ The occured transient fault in one system module is mitigated while the rest of
modules in FPGA are not affected by it.

∙ If the architecture of implemented system has to be modified to recover after
permanent fault occurence, the new one has to keep producing correct outputs
and it should remain fault tolerant if it is possible.
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2. To design the reconfiguration controller which will control the mitigation process in
FPGA after fault occurence done by PDR. It supplies the information about the
detection and localization of fault, it determines its type and controls the reconfigu-
ration process. Alternatively, it can also trigger the sychronization process when it is
needed.

3. To create test platform which will enable the evaluation of methods and procedures
described by the proposed methodology. For the FT architectures designed by means
of methodology principles, the ability to survive will be tested by fault injection.

The proposed methodology covering these points is described in the following chapter.
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Chapter 5

Methodology for fault tolerant
system design into limited
implementation area in FPGA

In this chapter the principles of the proposed methodology which aims at securing system
by implementing its parts as fault tolerant systems into the limited implementation area in
FPGA are described. The methodology incorporates fault mitigiation technique based on
the use of several sets of precompiled configurations which are developed for this purpose.

The limited implementation area from the perspective of this research means the set
of FPGA resources assigned for implementation of some system parts which are important
from the dependability point of view. This implementation area is specified during the de-
sign phase of system implementation and it cannot be modified during system lifetime. This
assessment limits the fault mitigation technique during permanent fault recovery process.
The statement of limited implementation area simplifies the fault mitigation procedure
for both transient and permanent faults based on precompiled configurations due to the
possibility of building a deterministic fault mitigation scenarios. Thus, it can decrease hard-
ware and performance overhead of fault mitigation techniques application due to enabling
optimization efforts during the offline implementation.

5.1 Methodology basic principles
The proposed methodology defines the process of securing digital system designed and
implemented in FPGA. In other words, it can be understood as the recipe how to redesign
the given architecture of a system in FPGA and how to prepare the system for recovery after
fault attack and thus make its lifetime longer. Such methodologies have their justification
e.g. in long term missions where the implementation area becomes smaller after every
permanent fault which occurs in the design. In this methodology, the desired goal is achieved
by combining the approaches for detection, localization and mitigation of the occured faults.

The original system design is splitted into several parts from which the chosen ones are
redesigned as FT architectures. The detection and localization process is then based on the
comparison of replicated functional units in FT architectures and on other CED techniques.
No specific methods are intended. The mitigation technique requires the localization on
the PRM level. When the faulty PRM is localized, it must be determined to which type
of fault defined by fault model this particular fault belongs. Mitigation process is different
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for both types of fault - transient and permanent. Both of them are driven by developed
controller unit - Generic Partial Dynamic Reconfiguration Controller (GPDRC). This unit
has a crucial role in the system because it is responsible for the task of fault mitigation
and is able to control the reconfiguration performed through ICAP interface. It will be
described in details in Section 5.2.

The developed methodology allows to detect and repair transient faults caused by SEU
occurrence in FPGA configuration memory which can cause an incorrect operation of the
system implemented into FPGA. The transient fault mitigation is based on the existence
of relocatable golden copy of bitstream for affected PRM with the given unit type. When
the fault is localized in one of the FT architecture units, GPDRC will execute the recon-
figuration of PRM corresponding to this unit. After this process and unit synchronization
process (when it is needed), the system is back to fully operational state as it was before
the fault occurence.

The methodology also describes the process of detection and repair of permanent faults
occurring in the configuration memory or in the physical resources (CLBs, interconnection
resources, etc.) of FPGA. The main idea of permanent fault mitigation is based on the
existence of alternative FT architecture sequences, all of them covering the same function.
The functional units and the components supporting fault tolerant features of the design are
implemented as single PRMs which are interconnected by means of a predefined interface.
The repair mechanism in case of permanent fault occurence is based on downloading the
configuration of another FT architecture covering the same function but with reduced
range of support diagnostic circuitry into the same location of FPGA. With this new FT
architecture the part of FPGA affected by fault is excluded from further use. The selection
of FT architectures which implements one system unit in different number of PRMs and
thus enabling the exclusions of the remaining PRM is called a degradation strategy of this
unit in the following text.

5.1.1 System design based on the methodology

To be able to apply the methodology to system design, it has to be described in a hardware
description language (VHDL) and its source codes have to be available. The output of
this process is a new system which is secured by means of FT architecture to guarantee
the resilience against both independently occurring transient faults and given number of
permanent faults which affect the FT system correct operation.

Inputs

On the input of securing process the designer has to specify the following informations:

1. The design of system described by hardware language.

2. The definition of desired FPGA.

3. The user constraints for the implementation.

4. The assignment of implementation area in FPGA for given system.

Outputs

The outputs of the securing process are these:
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1. The FT system design of the secured system described by hardware language with all
neccessary equipment.

2. The complete configuration bitstream for initial configuration of FPGA.

3. The set of partial configuration bitstreams used by fault mitigation process.

The process of FT system design by means of the proposed methology is a complex
process starting with the selection of parts intended to be secured against transient or
permanent faults, the allocation of implementation area for secured parts, the decision
about the strategy for permanent fault recovery and ending with the set of generated PRBs
to be stored in external memory and to be used by GPDRC during the fault mitigation
process. This process is described in details in Chapter 6.

5.1.2 Structure of fault tolerant system under design - basic principles

In the developed methodology, the design is protected by means of FT architecture to
guarantee the resilience against both independently occurring transient faults and given
number of permanent faults which affect the FT system correct operation. The methodology
suggests to divide the implementation into certain number of PRMs. This set of PRMs
put together is called a configuration in the following text. Each unit of FT system is
placed in one PRM in a uniform way which means that relative position of all sources,
connections and proxy logic inside PRM was identical for the particular type of the unit.
This is required for relocation process, which will be described later in Section 6.1.2.
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Figure 5.1: The main structure of the proposed methodology

In Figure 5.1, an example of the complete FT system design in FPGA based on the prin-
ciples of methodology is shown. It consists of dynamic part in which FT architectures are
placed and static part which contains GPDRC. The GPDRC utilizes the information about
detection and localization of faults from the CED logic units of FT architectures. The set
of error signals from PRMs (assigned in PRR1 - PRR4) are the inputs to GPDRC. Splitting
FT architecture into several PRMs gives the possibility to exclude from the implementa-
tion one or several PRMs when they are affected by permanent fault. The interconnection
signals between modules and the connections between the particular module and the rest
of FPGA pass through single PRM assigned to PRR0 which is neighbouring with all other
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PRRs. The other 4 PRRs can be assigned by PRMs of different units of the selected FT ar-
chitecture. The number of these uniformly sized and structured PRRs can vary. The small
count of PRR (3,4) can be used to implement only simple FT architectures (e.g. TMR
with simple voter, duplex with checker) and can be used to recover system after permanent
faults only very few times. On the other hand, the number of alternative configuration is
smaller. The higher number of available PRRs allows to overcome more faults but brings
much more alternative configurations.

To illustrate the application of methodology for securing a real system, several FT
architectures were proposed which can be used in degradation strategy of some system
unit. The first, most robust FT architecture, is TMR architecture with doubled voter
which enables the detection of errors also in the voter. The next TMR architecture uses
just simple non-protected voter unit. The last architecture is based on Duplex system with a
comparator. This architecture is not fault tolerant since there is no possibility to distinguish
which output of two replicated units is incorrect. But this system can run correctly until
the first fault occurs and then it is detected by compare unit. The exact implementation of
these architectures will be presented in Section 7.2. The utilization of them and assignment
of their PRMs into allocated PRRs in system design by means of proposed methodology
is shown in Figure 5.2. Each replicated functional unit is implemented in single PRM
referred to as PRM_FU, complex voter unit is implemented in its own PRM referred to as
PRM_VOTER and the routing between replicated units and the FT architecture external
interface is constrained into PRM referred to as PRM_ROUTE.
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Figure 5.2: The assignment of PRRs by different PRMs

5.1.3 Generations of alternative FT architecture configurations

The methodology is based on the existence of precompiled configurations of an FT design
which are applied when a permanent fault occurs. These configurations are divided into
several generations. Configurations from one generation contain the same FT architecture
but with different PRM placement. The enumeration of all possible generations for such
FT architectures is shown in Figure 5.3.

The number of unused PRMs (PRMs excluded from use) in configurations of each
generation reflects the generation number. The code of configuration is assembled from
flags indicating if the corresponding PRR is assigned by PRM (see legend in Figure 5.3).
The configuration with code 1111 from generation 0 represents the starting configuration
for this system part. After the first permanent fault is detected and affected PRM is
localized, the new configuration excluding the faulty PRM from the next generation is

56



ROUTING

PRM

FU1 PRM

VOTER PRM

FU2 PRM

FU3 PRM

PRR0

PRR1

PRR2

PRR3

PRR4

Configuration code:   [ b1 b2 b3 b4 ]

Is PRR1 

assigned?
(1/0)

Is PRR4 

assigned?
(1/0)

...

[1111]

Legend

Generation 0

ROUTING
& VOTER

PRM

FU1 PRM

FU2 PRM

FU3 PRM

[1110]

Generation 1

ROUTING
& VOTER

PRM

FU1 PRM

FU2 PRM

FU3 PRM

[1011]

ROUTING
& VOTER

PRM

FU1 PRM

FU2 PRM

FU3 PRM

[1101]

ROUTING
& VOTER

PRM

FU1 PRM

FU2 PRM

FU3 PRM

[0111]

ROUTING
& COMP.

PRM

FU1 PRM

FU2 PRM

[1100]

Generation 2

ROUTING
& COMP.

PRM

FU1 PRM

FU2 PRM

[1001]

ROUTING
& COMP.

PRM

FU1 PRM

FU2 PRM

[1010]

ROUTING
& COMP.

PRM

[0011]

ROUTING
& COMP.

PRM

FU1 PRM

FU2 PRM

[0110]

ROUTING
& COMP.

PRM

FU1 PRM

FU2 PRM

[0101]

FU1 PRM

FU2 PRM

Figure 5.3: The generations of FT architectures and their alternative configurations

chosen to be used for system implementation. This principle is applied again when a
new fault affects another PRM. The number of possible variants of configurations is rising
with the number of PRMs affected by fault. To reduce the memory requirements for the
configuration, bitstream relocation method is used to avoid the existence of several copies
of PRM containing the same type of unit. Only one copy of PRM bitstream for each type of
PRM except PRM_ROUTE is needed. Only the bitstream designated as PRM_ROUTE
is stored for each configuration in the memory.

5.1.4 Reducing the number of configuration bitstreams via bitstream re-
location technique

Due to the specifics of design and implementation flow adopted by Xilinx tools, the gen-
erated partial configuration bistream of PRM cannot be assigned to different PRR than it
was originally designated to. One PRB has to be generated for each PRR where the PRM
will be configured. Thus, if there is a need to apply 𝑁 PRMs of different types to any of
𝑀 PRRs, 𝑁 *𝑀 PRBs have to be produced and stored in external memory for run-time
partial reconfiguration.

With the adoption of bitstream relocation technique, the number of generated PRBs is
reduced to 𝑁 . These PRBs can be used then for reconfiguration of all PRRs satisfying the
conditions for the application of relocation technique. These conditions are applied in the
design phase and the implementation phase. One of the main limitations of this technique
is the need to have all PRRs with identical FPGA resources.
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In common, this technique always starts by generating the PRBs for all types of PRMs
in one chosen location of PRR. Before the run-time reconfiguration, the bitstream manipu-
lation modifying the information related to its location to apply it into other different PRR
is needed.

The implementation of this technique in proposed FT system design process is described
in details further in the text of the Section 6.1.2.

5.1.5 Synchronization issues

When the reconfiguration of a faulty PRM in an FT architecture with replicated units is
done, the problem with synchronization between these units can arise. While the state
of reconfigured unit is initialized after reconfiguration, the other units operate and their
states are different from the reconfigured ones. This issue is typical for PDR of PRM
implementing sequential circuits which is done during the transient fault mitigation process.
Another problem with the synchronization can arise when the change of FT architecture
configuration is done and all its PRMs are reconfigured to overcome the permanent fault
occurence. The state of its functional units is reset while the other system parts connected
to input or output of this architecture are stopped in some accumulated state. Solving of
the synchronization issues was not the goal of the research but it was also studied as a
consequence of using PDR in fault mitigation process.

Several synchronization techniques were presented in order to restore the reconfigurated
unit in TMR scheme. They differ in the type of target system. When a sequential circuit
is implemented as a Finite State Machine (FSM), checkpoint stategy presented in [49] can
be used. It is based on setting the state of the reconfigured unit to often reached one and
holding it until other units reach this state again. Another method for complex sequential
circuits (i. e. softcore processors) was presented in [24]. The state of all internal registers
of the chosen correctly working unit can be saved to memory after reconfiguration, all units
stopped then and the content of registers from memory writen back to all units. Other
techniques of synchronization are designated for the packet processing circuit. In this case
it is sufficient to mask the output of reconfigured unit until the next packet comes to process.
In [13], a method is presented where for the stated minimal time (longest period between 2
arrivals of consecutive packets) the function of fault detection unit of the system is disabled,
so the incorrect outputs of the reconfigured unit do not cause the new reconfiguration of
the unit. During this minimal time, the local reset will be generated which will result in
the synchronization of units.

In this methodology, a specific synchronization method for complex sequential circuits
based on copying the state of other replicated unit was tested. The architecture with
synchronization capability incorporates voter unit with fault detection and localization
ability and implements simple control mechanism of unit synchronization. The proposed
architecture for TMR scheme is shown in Figure 5.4.

Because the used synchronization technique is based on copying the state from correctly
working unit to the reconfigured one, all units are connected by oriented point-to-point
(source-destination) connections to the ring. Functional units are modified in such a way,
that they expose synchronously the values of state registers one by one starting when enable
signal is disabled. On the other side, the unit with enabled receive signal is saving at the
same time the values from antecedent unit into its state registers. When all register values
are saved, the unit with enabled receive signal triggers the sync end signal to inform the
voter unit about the end of synchronization process. To prevent the new reconfiguration of
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Figure 5.4: FT architecture with the unit synchronization

unit which is not yet synchronized and can be considered as faulty due to its undefined state,
the error signals of this unit connected to GPDRC are masked by voter until the impulse
on sync end signal appears. During the synchronization process all units are stopped.

When needed, this synchronization method can be applied to FT architectures which
we propose later in the text. The implementation for FT systems based on duplex scheme
which was not mentioned in previous paragraph can be designed in a similar way as for the
TMR scheme. Control mechanism for state copying can be implemented in detection logic
in PRM_ROUTE instead of voter unit.

The overhead which this technique brings, depends on the number and the width of
FUs state registers. This technique was presented in [33].

5.2 Generic partial dynamic reconfiguration controller
Many works dealing with partial dynamic reconfiguration are using microprocessor to con-
trol this process. There could be a significant waste of computational power when such
universal processor is used to drive the reconfiguration. Moreover, the wasted performance
causes higher power consumption and higher complexity of the solution which increases the
probability of failures. The microprocessor can perform another computation, however, an
error in any software module may delay or even stop the reconfiguration process. There-
fore, the decision to implement generic reconfiguration controller of PDR as a hardware
unit to reduce resource utilization and thus reduce the failure probability in the controller
was made.

The concept of the first GPDRC for transient fault mitigation was presented in [56]. The
first implementation within system with counter and SEU injection was presented in [26].
Previous GPDRC design has been extended to be able to perform reconfiguration of entire
FT system (several PRMs) when the permanent fault occurs in its PRM. New issues such
as choosing the proper configuration from the next generation of configurations, performing
the relocation process on loaded PRBs and the synchronization of the complete FT system
were solved and implemented into controller. The GPDRC for transient and permanent
fault mitigation was presented in [34].
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5.2.1 The design goals of GPDRC

Before the development of GPDRC, several design goals to be achieved were defined:

∙ The resource utilization of new controller has to be lower than the standard controller
units implemented by universal softcore processors.

∙ The controller must be built in generic way to be able to perform PDR in the systems
with the different number of PRMs. The size of controller should be related to the size
of the system - if the system is small and it consists of few PRMs only, the controller
should be much smaller than for complex systems with plenty of PRMs.

∙ The controller should be autonomously able to determine the type of fault which
occured in a PRM, whether it is a transient or a permanent one - for this purpose the
information on whether the fault occurred during n successive reconfiguration cycles
(the reconfiguration cycle consists of faulty PRM detection, PRM reconfiguration,
PRM synchronization) can be used. If the fault occurrence is equal or lower than
n, the fault is seen as a transient one, otherwise it is concluded that the fault is a
permanent one.

∙ The PDR will be done via internal reconfiguration interface (ICAP in Xilinx FPGAs)
and utilize its full speed (up to 100MHz).

∙ To reduce the number of needed precompiled PRBs the controller has to implement
the technique to use the same PRB for the PDR of several PRMs where it is possible
(e.g. the same type of PRM but different physical assignment to PRR).

∙ The controller should allow the synchronization of reconfigured PRMs by ignoring
the error output of reconfigured PRM until it is synchronized. The synchronization
can be done autonomously in the concerned FT architecture or it can be driven by
external sychronization controller.

∙ The controller should be able to cooperate with different types of external memories
serving as a bitstream storage. The bitstream data transfer interface must be so
general as to allow the connection to different external memory controllers.

5.2.2 GPDRC unit design

The detailed architecture of GPDRC can be seen in Figure 5.5. Its interface contains
an error vector of FT architectures as input. Its width depends on the number of FT
architectures and the available number of PRMs for each of them. The next interface
signals such as bitstream address, bitstream data and their validity indicators are designated
to communication with external bitstream storage via connected memory controller when
bitstream is transported through ICAP interface of FPGA. The sync done and rec done
signals are intended mainly for controlling the synchronization of reconfigured PRMs in FT
architectures. While the arch. index vector contains the index of current FT architecture
where the fault mutigation process is done, PRM error index vector expose the specific
PRM which is currently handled by GPDRC. The hard signal indicates, if current PRM is
affected by permanent. The fatal signal announces the situation when the FT architecture
cannot be repaired by GPDRC because the number of available PRMs has fallen below the
required minimum.
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Figure 5.5: Fault tolerant system structure for SRAM based FPGA

The GPDRC contains nine main units, one FIFO unit and several Look Up Tables
(LUT) and multiplexers (MUX). The information about errors on input vector is captured
during one reconfiguration cycle in input register and then loaded into error register. The
GPDRC works sequentionally, thus one reconfiguration cycle is composed of looping over
FT architectures error signals. To be able to determinate the type of fault, the value of
error vector from previous reconfiguration cycle is also kept available. Hard error detection
unit can designate the fault as permanent on the basis that the same error was detected
during two consequent cycles.

When there is no permanent fault detected, the roundrobin unit looks for any transient
error in register and together with encoder unit returns its index when some is found. This
index is used to choose the type of unit in the selected faulty PRM. The relationship between
PRM index and its type for each configuration and FT architecture is known because it
is stored in PRM type LUT. After resolving the PRM type, the address of its bitstream
in memory is looked up and used in address counter. When the index is equal to 0, the
address of bitstream of appropriate PRM with routing is used.

If a permanent fault was detected, each PRM of actual FT architecture will be recon-
figured. Thus, the value of PRM index signal loops from 0 to PRM number - 1. The
configuration code supplied by LUTs is formed from error signals of actual FT architecture
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in this way: error n-1 error n-2 ... error2 error1. The error 0 signal is generated by PRM
which contains routing and does not affect the choice of FT architecture configuration. The
resolving of indexed PRM bitstream address follows the same steps as it was described in
the previous paragraph.

The address counter unit is used to address data words in bitstream storage from the
starting to the ending address. Due to the use of one copy of the bitstream for all units
of the same type, the relocation process of bitstream must be performed. This is done by
relocation unit, which uses the address of actual reconfigured PRM from Frame Address
LUT to modify the value of frame address in bitstream.

When the PDR of all faulty PRMs in one FT architecture is finished, the value of corre-
sponding rec done signal in FT Architecture Status unit is set. This means, that GPDRC
will ignore the errors coming from this architecture, until its PRMs are synchronized by
some external unit or mechanism. After activating the appropriate sync done signal, the
error signals from FT architecture will be no more ignored by GPDRC. This approach based
on excluding the synchronization from GPDRC allows to use different and more suitable
techniques of synchronization for each FT architecture.

5.2.3 Implementing GPDRC unit as fault tolerant

The GPDRC as the important part of this reconfigurable architecture which should be
protected from the impact of SEUs. One solution is to move it outside FPGA to radiation
hardened fabric. Other possibility is to implement it as FT system. In this case, the
GPDRC must be moved into dynamic part of FPGA and its units will be designed as FT
architectures and divided into PRMs and their error signals connected to the error input
of the GPDRC. Then, the fault mitigation of GPDRC itself is possible because of its FT
design. This process will have higher priority than the fault mitigation in other PRMs.
This approach requires excluding the instance of ICAP outside of the GPDRC instances
because only one ICAP instance is available.

5.3 Fault mitigation procedure
In Figure 5.6 the behavior of the system after a fault is detected in PRM is shown in flow
diagram. The fault is detected by the FT architecture. The FT architecture generates a
set of error signals which identify the faulty PRM (step 0). This is possible due to the fact
that the functional units and voters are implemented into separate PRMs and the relation
between the units and PRMs where they are placed is known.

When the faulty PRM is localized, the GPDRC determines, if the occured fault will be
considered as transient or permanent one. The solution used in the case of transient fault
occurence is denoted as the option A further in this text. If the fault is seen as a permanent
one, then the subsequent steps depend on whether the current configuration comes from
the final generation (Generation 2 in this case). The GPDRC stores the configuration code
of actual configuration so it is able to identify that it is from final generation. If it is
from final generation, there is no additional option to continue in mitigation of this new
permanent fault and the FT architecture will indicate this to GPDRC unit. Then, the
intervention from outside is needed (e.g. physical placement of configuration is moved to
another locality of FPGA or the FPGA is replaced with a new one). In the situation when
actual configuration is not from final generation, it is possible to mitigate the occured fault
and the solution is denoted as the option B.
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Figure 5.6: Reconfiguration flow diagram

Option A - recovery from a transient fault: After a transient fault is detected,
GPDRC reads from external memory the PRB which responds to the type (PRM_FU,
PRM_VOTER, PRM_CHECKER, etc.) of the identified faulty PRM. The type of the
unit is known because the GPRDC knows which configuration is configured actually and
the distribution of PRMs in it. The downloaded PRB is originally designated to the first
suitable PRR (typically to PRR1, see Figure 5.7). Therefore, the next step of mitigation
process (step A1) will be the relocation of this bitstream in such way that it can be used
for reconfiguration of the affected PRM. The reconfiguration process of this PRM with the
relocated PRB is driven by GPDRC (step A2).
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of FT architecture in the FPGA

After the reconfiguration is finished, in some cases the PRM must be synchronized
with other components of FT architecture. The synchronization can be also controlled by
GPDRC (step A3).

Option B - recovery from a permanent fault: After a permanent fault is detected
in PRM and the actual configuration does not belong to the final generation, new configu-
ration from the following generation is selected. This configuration will not use the faulty
PRM. The GPDRC will choose configuration according to configuration code which will
respond to bitwise negation of the vector of error signals from FT architecture (B1 step).

An example: let us say that the currently used configuration has the 1111 code (genera-
tion 0) and permanent fault affecting the operation of the voter unit occurs. The vector of
error signals from FT architecture appearing on the PRM error signal vector on GPDRC
will be 1000. The bitwise negative of this value will be the code 0111 of the new selected
configuration from generation 1.

The PRB for PRM_ROUTE (PRM with the interconnections) of selected configuration
is stored in the external bitstream storage. This bitstream is designated to reconfigure
resources of PRR0 (the only PRR of FPGA where this bitstream of PRM_ROUTE can be
assigned). This implies that there is no need to relocate this PRB (step B2).

The downloading of PRB copies implementing all remaining PRMs will be the next
action. The number of needed bitstream copies and their type (if it is implementing
PRM_FU, PRM_CHECKER or PRM_VOTER) is determined by the selected config-
uration. The PRBs of all PRM types are downloaded from the same destination, as in
the case of reconfiguration after transient fault. Each of these downloaded PRBs will go
through relocation process which will make them suitable for appropriate PRRs (step B3).

An example: if the configuration with 0111 code is selected as the new one, as the
first step the PRB of PRM_CHECKER will be downloaded and because all of these PRB
types are designated to PRR1, it has to be relocated to PRR2 and then used for PDR.
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Subsequently, PRB of PRM_FU is downloaded, relocated to PRR3 and used for PDR. The
final step will be similar as the previous one with the only difference that the new destination
will be PRR4.

The downloaded and relocated PRBs are used for the reconfiguration of PRMs, which
are used in the configuration (step B4). After completion of the reconfiguration, local reset
of units in newly configured PRMs is performed. Also some kind of synchronization (state
recovery of all units in affected PRMs) can be performed in this step.

5.4 Summary
In this chapter, the basic principles of methodology were presented. It describes the process
of securing a given system design to become less vulnerable to fault occurences and the steps
of fault mitigation when some fault is detected and localized.

The system is divided according to designer decision to several parts which are imple-
mented as FT architectures. Fault detection is mainly based on CED and requires additional
logic to localize faulty PRM. The fault mitigation is driven by dedicated reconfiguration
controller (GPDRC) which determines the scenario of fault mitigation process according to
the fault type and taking into account the previously occurred faults.

The transient fault is mitigated by PDR and during its performance the FT architecture
ensures the production of correct outputs. To reduce the number of stored precompiled
PRBs, the relocation of the golden copy of the PRB for the needed PRM type is performed.
When a permanent fault is identified and some alternative configuration which does not
utilize the resources from faulty region of FPGA exists, then the reconfiguration of entire
FT architecture is performed. With this approach many alternative configurations can
arise. Therefore they are grouped into the generations of configurations according to the
number of faulty PRM they can handle. With their setup, GPDRC can determine which
configuration will be used to recover the system after permanent fault occurence.
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Chapter 6

Design of fault tolerant
architecture by means of developed
methodology principles

The process of FT architecture system design to meet requirements defined by the proposed
methodology is described in this chapter. The tool developed for automatic FT architecture
generation is presented in this chapter as well.

6.1 Prerequisities
This section describes the methods which are used or can be alternatively used during
design phase.

6.1.1 PRM isolation

The modules of FT architecture have to be implemented into separate PRMs according
to the proposed design principles. This means that FPGA resources from given PRM can
be used only to implement the function of designated FT architecture module. At the
same time, all pieces of module logic and connections (except of connections between the
module and the rest of design) have to be implemented by these resources only. This is
not ensured by current design tools which are processing optimizations such as redundacy
removal what can lead to unwanted utilization of FPGA resources in non-designated areas
of FPGA (some part of module is implemented outside the restricted area for its designated
PRM) or leading crossing wires through the area restricted for some PRM which is not using
them.

When the modules are implemented into separate PRMs as isolated partitions of FPGA,
it enables later partial reconfiguration in single PRM where the implemented module can be
changed while the remaining modules remain unchanged and correctly working. To ensure
this, several design strategies can be adopted:

∙ Post-implementation adjustment of implemented design created by automated tool
can be done by designer. The output of synthesis and implementation tool can be
modified in such way that the PRM partitions are isolated by remapping conflicting
resources and rerouting conflicting connections. This method can be very costly and
time demanding.
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∙ Custom built PAR tool can be created to replace the entities of static design from
PRM and reroute the connections between static logic going through PRM. This
tool can be a part of standard design flow or it can be used to preprocessing design
implemented by some other design implementation tool. This tool will need a set of
constraints specifying the PRM partitions location.

∙ Blocking macros can be added to design to prevent the utilization of PRM resources
while implementing the static design. This hard macro inserted to design utilizes
all resources and connections within the stated area in FPGA which is reserved for
PRM. The GoAhead tool which is implementing this strategy can be taken as an
example [7]. The steps of synthesis and implementation are as follows. First, the
hard macros generated by GoAhead tool for desired PRM partitions are added to the
implementation and the static design configuration is generated. This ensures the
logic and connections of static design will not use the resources from PRM partitions
because they are utilized by dummy logic and connections of generated hard macros.
The next step consists of generating configuration of the design with proper PRMs
included. The main drawback of this method is its binding to specific FPGA type. For
each FPGA family, the complete description of FPGA resources has to be delivered.

∙ Isolation Design Flow (IDF) is a strategy available for FPGAs from Xilinx to ensure
the isolation of logic, routing and utilization of IOBs of the specified module design.
The designer has to consider floorplanning earlier than in standard design flow. The
design has to be partition based. This involves several goals which have to be achieved
[68]:

– each module which should be isolated must be in its own partition,
– each partition must consist of a single module instantiation,
– a special restricted area (fence) must be used to separate isolated partitions

within a single chip. The fence is a set of unused tiles in which no routing or
logic is present,

– IOBs used by isolated partition must instantiated inside this partition (not in
top-level entity of design),

– communication between isolated functions in FPGA is achieved through the use
of trusted routing (user defined route between isolated partitions) or through
off-chip communication.

To ensure that unwanted optimization will not appear, IDF consists of two steps.
First, each isolated module is synthesized and implemented independently of the
other partitions. After this step is done for all partitions, the design is merged into a
flattened FPGA design for device configuration.

6.1.2 Bitstream relocation technique

The PDR design flow adopted by Xilinx design tools determines that each PRM has to be
designed before PAR phase is performed and also dynamic reconfigurable modules have to
be dedicated to specified PRRs in this phase. This flow implies that the partial configuration
bitstream of PRM is designed specifically for a certain location in the FPGA which is
defined by the PRR. This complicates the use of one partial bitstream of one PRM for the
configuration of different PRRs. This is caused due to the fact that the bitstream contains
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information about the starting position of the block of resource which it configures. This
position is written in frame address part of bitstream (see Section 2.2.7). The modification
of this value requires the change of Cyclic Redundancy Check (CRC) code in the footer of
bitstream. CRC can be recalculated again when the frame address is changed or it can be
invalidated.

To be able to perform the relocation, the design of PRMs has to satisfy the following
conditions for all PRRs where the given bitstream will be used for their reconfiguration:

1. The amount and the relative layout of reconfigurable resources is identical. The
restriction to amount of resources means that the number of each resource type (e.g.
CLBs, BlockRAMs, DSPs, etd.) as well as the number of allocated rows and columns
of FPGA resources has to be same in all PRRs. The layout of all different types of
FPGA resources in these allocated regions has to be the same, too.

2. The relative placement of proxy logic has to be the same. The proxy logic is automat-
ically added to each signal of the design which is crossing the PRM and its placement
is typically not the same in all PRRs where the relocatable PRM can be placed.

3. The routing path between proxy logic of each PRM and the static region have to
cross the boundary between PRR and the static part of design in the same relative
position to current PRR layout. Even in the case when the proxy logic is placed in
all PRRs in the same relative location the wires connecting them with the static area
can be led along with different routing in each PRR.

4. The wires of static part crossing the PRR (without any junction inside) have to be
excluded.

To satisfy condition 1, the PRRs are contrained to areas which consist of the same
resources. This is done by setting AREA_GROUP constraint to the set of resources (each
resource type are constrained separately) for top-level entity of each PRM. The setting of
this constraint to region bounded by rectangle defined by the position of two oposite corner
points ([a,c] and [b,d]) is shown by in the following code.

AREA_GROUP "entity_name" RANGE=<logic_resource1>_XaYc:<logic_resource1>_XbYd
AREA_GROUP "entity_name" RANGE=<logic_resource2>_XaYc:<logic_resource2>_XbYd
...

This constraint can be applied to all types of FPGA logic such as SLICEs, RAMB16s,
IOBs, PLLs, DCMs, BUFGs, DSP48Es, etc. According to Xilinx application note [63], it
is recommended to include (constrain with AREA_GROUP) also all unused resources of
any type if they are physically located within the same area as the utilized resources to the
region constrained with AREA_GROUP .

The assignment of PRM top-level entity to the set of resources by AREA_GROUP
constraint which will create the PRR suitable for relocation is shown in Figure 6.1.

For the correct placement of proxy logic on the boundary of PRM (condition 2), the
several placement constraints can be used. They can be specified in User Constraints File
(UCF) which is supplied by Xilinx ISE implementation tool. The useful constraints for this
task are as follows:

∙ PIN - the constraint is applied to nets connecting the proxy logic of PRM and the
rest of design. As the PRMs are placed in the successive columns of FPGA, only
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Figure 6.1: The example of regions suitable to host the same relocatable PRM

the location of proxy logic in first PRM is selected by designer (or design tool).
The position of proxy logic and its connecting nets for the remaining PRMs can
be determined by adding the constant value. This increment is evaluated from the
difference of the position of two successive columns.

∙ LOC - the constraint is needed to specify location of entity in some FPGA resource
component (e.g. SLICEs, BRAMs, IOBs, etc.).

∙ BEL - the constraint is used to specify the utilizitation of a particular slice or part of
components (SLICEs, BRAMs, IOBs, etc.). As an example, it is possible to specify
the specific LUT inside CLB in specific SLICE.

∙ LOCK_PINS constraint is used to force the utilization of the same inputs in all
proxy by implementation tool.

The use of these constraints to bind single signal to specific LUT in specific SLICE is
shown by the following code.

PIN "PRM_entity_name.signal" LOC=SLICE_X1Y2;
PIN "PRM_entity_name.signal" BEL=A6LUT;
...
INST "PRM_entity_name" LOCK_PINS=ALL;

The example of constrained proxy logic in several PRRs which is possible to be config-
ured by one relocatable PRM is shown in Figure 6.2.

The same (relatively to PRR layout) routing between proxy logic and static area (con-
dition 3) can be enforced by adding single LUT to static area for each proxy logic block
implemented in all PRRs. This technique simulating the use of bus macros in older FPGAs
was presented in [17]. The added LUT is placed on the opposite side of PRR boundary
very close to proxy logic I/O to compell the router to route the connection in all PRRs in
the same way (see Figure 6.3).
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The probably most complicated is the satisfaction of condition 4. The wires of static
area crossing the reconfigurable region can be solved by PRM isolation techniques described
in previous section. First, the blocking macros created by GoAhead tool [7] were used in
this work to implement the static logic without interfering the stated PRMs. This technique
requires the specific implementation of blocking macros for each type of FPGA and therefore
this cannot be transferred between FPGAs. Another drawback is the need to convert
files in NCD format (generated from Xilinx ISE implementation tool) to XDL format (its
alternative in human readable format) and back repeatedly. This conversion can be very
time demanding when implementing design for large devices. The IDF strategy is a new
concept for newer FPGAs and therefore it was not addressed by this work. The adoption
of this strategy in older FPGAs and older design tools is possible but there are some bugs
which complicate its use. With the careful placement of the entities from the static part
of the design, the probability of the occurence of these unwanted wire crossings can be
dramatically reduced. The remaining crossings can be mitigited by designer intervention
in tools like FPGA Editor from Xilinx ISE toolkit or RapidSmith [38]. RapidSmith is an
open-source design CAD tool, but it also requires the conversion to XDL format to perform
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changes on the design. After the change of static design is done, the bitstream can be
generated from the modified design implementation.

When the design of PRMs is following these four defined restrictions, the relocation of
final partial configuration bitstreams is possible. There is no need to be familiar with the
device bitstream compositions. The bitstream relocation can be impossible in some cases.
This can happen for example in situation when the PRMs are too large and there is a lack
of similar regions with the same set of resources and their relative position inside the region.

6.2 Fault tolerant architectures design
The application of the methodology requires the specific process of system design. When
this design is adopted, it is ensured that faults appearing subsequently in functional modules
or other FT modules (containing voters, checkers, etc.) of design can be mitigated.

The system design according to the methodology contains several required steps. First,
the user system design on the input is splitted into the set of important parts designated
for securing and the set of remaining parts to be left as they are (i.e. unsecured). For each
important part, the degradation strategy to overcome permanent fault occurence is chosen
and some part of the implementation area of FPGA is allocated. Finally, the GPDRC unit
is added into modified system design to provide the control of fault mitigation process.
These steps are described in more details in the following sections.

6.2.1 System design partitioning

The original system design delivered from a designer for securing has to be divided into
important parts in terms of required dependability and the remaining parts which may
remain unsecured (from the methodology point of view) or they are secured in some other
way. From the chosen important system parts every single part will be secured as single
FT architecture with fault mitigation capability according to the methodology.

The process of partitioning has to be driven by designer knowledge of importance of
each system part. This can be gained as the result of modelling reliability of system parts
and the impacts of faults occured in specific system part to entire system. In FPGA, fault
injection is frequently used to examine the system endurance to impacts of possible faults.

The partitioning can be done with different granularity as shown in Figure 6.4. These
approaches can be categorised into 3 groups.

∙ Coarse-grained partitioning - One possibility of system partitioning is to take the
system as one single part. It is the easiest option of securing the system when just
one set of FT architectures will be created. Therefore, the resulting replicated modules
and the other FT modules of FT architectures will be very big as well as the partial
configuration bitstreams of these modules. For these reasons, this option should be
preffered only in some cases, such as the situation when the original system is small
sized or when the system has to be taken only as a black box (e.g. hard macro).

∙ Fine-grained partitioning - Other option in partitioning is dividing the system into
more smaller parts. With this approach for each single part custom set of FT archi-
tecture can be chosen and the resulting modules of FT architectures will be smaller
(see Section 7.3). The time needed to fully recover after fault occurence (whether
transient or permanent) will be lower since it is mostly affected by partial configura-
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Figure 6.4: Design partitioning with different granularity

tion bitstream size. The drawback of this approach is the slightly increased size of
GPDRC due to increased number of PRMs which it controls (see Section 7.1.1).

∙ Mixed partitioning - The possibility to combine two previous approaches and divide
the system into some small parts small and some bigger parts also exists. These bigger
parts can consist of several (or many) small units. The application of methodology
demands the wrapping of these smaller units by top-level entity (in VHDL) to create
the mentioned bigger part.

6.2.2 Selection of the degradation strategy for recovering from perma-
nent faults

From the dependability point of view, not all of the chosen important parts must be cate-
gorized to the same level of importance. Permanent fault occurence in system is mitigated
by downgrading the FT architecture from the robust one to less robust one. This step is
required every time the permament fault occurs in currently occupied PRR containing the
PRM of FT architecture. The less robust FT architecture will exclude this PRR from the
further use. The number of PRRs which can be excluded at the same time then specifies
the number of permanent faults which can be handled by this secured part of the system.

With the increasing number of permanent faults which can be handled, the number of
posibble variations of PRMs dislocation into available PRRs is increasing almost twice (see
generations of configurations in 5.1.3). This results in higher demand on external bistream
memory capacity. Thus, it makes sense to research the probability of permament fault
occurence in current secured system part and its impacts and based on this consideration
choose the sequence of FT architectures for the degradation strategy.

As an example, the key part of system can be secured by implementating it as TMR with
triplicated voter unit. When a permanent fault appears, the TMR with single voter which
excludes one PRR from utilization will be used. The next step will be the degradation to the
duplex architecture with checker units and finally it will end as simple duplex architecture
without the possibility of recovering from the next permanent fault occurence. Another part
of the system which is not so crucial for securing from any reason (i.e. the low probability
of fault occurence due to its small size), can start with the TMR architecture with simple
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voter. The rest of degradation strategy will be the same as in previous case. The ommiting
of one step in degradation strategy for non key part of system will reduce the number of
partial bitstreams to be stored and reduce the size of GPDRC (because its size is dependent
on the number of error inputs).

VOTER
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FU1

CHECKER2

FU2

CHECKER3

FU3

=

CHECKER1

FU1

CHECKER2

FU2

CHECKER1

FU1

Figure 6.5: The set of FT architectures as a sample of degradation strategy

6.2.3 The allocation of implementation area for FT architectures

From the previous steps the set of important parts together with their chosen possible
degradation strategies for permanent fault recovery was adopted for securing. From the
reconfigurability point of view, the implementation area in FPGA can be divided into a
dynamic reconfigurable area and a static area without possibility to be modified by PDR.
The set of important parts of original system (chosen in previous steps) will be implemented
in dynamic area to be able to be modified by PDR and the remaining parts will be placed
in static area. For each chosen important part of system, several PRRs will be created.
To these PRRs, the PRMs of currently used FT architecture will be assigned according to
stated procedure.

The location and the size of PRRs for implementing one system part has to be chosen
with respect to this conditions.

∙ The number of PRRs is the same or bigger than the number of PRMs of the starting
(the most robust) FT architecture for given system part. When the number of PRRs
is bigger than the number of PRMs, the remaining PRRs can serve as spares and it
will increase the number of tolerable permanent faults. In this case, the degradation
strategy has to be modified in that way, that in the case of permanent fault occurence,
these spare PRRs to substitute the excluded PRR will be utilized first.

∙ The set of created PRRs will contain one specific PRR for PRM with routing
(PRM_ROUTE). This PRR has to be located in the neighbourhood of all other
PRRs. This means that there is a direct interconnection between this PRR and the
other PRRs not utilizing resources from the remaining part of FPGA outside these
two PRRs.

∙ Every PRR from the set of created PRRs (except of the PRR designated to be con-
figured by PRM with routing) has to have the same size, the same structure and the
same local placement of the FPGA resources. This requirement must be satisfied to
be able to apply the bitstream relocation technique.

∙ The placement of PRR and also the size of the smallest possible PRR (𝑃𝑅𝑅𝑚𝑖𝑛)
is limited by the fact that the reconfiguration is done per configuration frames (see
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Section 2.2.7). As the configuration frame is modifying the configuration of speci-
fied number of resources at once, the location and the size of PRR has to respect
these principles and can only allocate resources corresponding to one 𝑃𝑅𝑅𝑚𝑖𝑛 or its
multiples.

The variants with different number of PRRs allocated for simple TMR architecture is
shown in Figure 6.6.
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Figure 6.6: Several possibilities with area allocation for simple TMR architecture

6.2.4 The instantiation of GPDRC

The process of transient fault mitigation and recovery from permanent fault relies on
GPDRC unit. This controller supplies the error signals from all PRMs of implemented
FT architectures, it reads the configuration data from the external bitstream storage and
controls the PDR process via instantiated ICAP interface. The GPDRC has to be placed
into static part of the design because it cannot be reconfigurated by PDR (PDR is driven
by GPDRC and it cannot reconfigure itself).

With the instantiantion of GPDRC, some external memory controller has to be instan-
tiated too. The GPDRC is independent on the type of configuration bitstream storage and
its controller. It only provides interface for configuration bistream read operation.

Alternatively, when the synchronization of replicated modules in some implemented
FT architecture is needed, the separate synchronization controller can be instantiated and
connected via the synchronization interface of GPDRC which provides information about
the end of reconfiguration process and the index of reconfigured module (the one which has
to be synchronized).

6.3 Design tool for automatic generation of fault tolerant
architectures

The process of creating FT architectures based on the described methodology can be auto-
mated. This tool can faciliate the work of system designer who can focus on tasks such as
design partitioning, chosing the degradation strategies or the optimization of implementa-
tion area allocations. The design tool is able to process the given VHDL entity and create
another entity described in VHDL which will contain the definition of FT architecture
where the input entity will be replicated to several functional modules. This output FT
architecture will have the same interface as the original system with addition to output
signals needed for GPDRC to be able to detect faults in its modules and perform their
reconfiguration.
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6.3.1 Inputs

In this paragraph, the required inputs for the developed design tool securing the given
system entity are summarized.

1. The design of system described as an entity written in VHDL. This will allow to
describe any system design from the simple entity with behavioral description to the
top-level entity of complex processor.

2. The type of FT architecture to be created. It can be chosen from existing template
or the new template.

3. The location of desired PRRs (placement constraints).

4. The implementation script for the given design written in Tool Command Language
(TCL) for PlanAhead tool from Xilinx ISE Design Suite.

6.3.2 Outputs

In this paragraph, the outputs of developed design tool are summarized. These files are
further used for implementing the secured system and for creating the partial configuration
bitstreams.

1. The set of VHDL files with all entities of FT architecture.

2. The set of VHDL files with entity wrappers which have the required interface and can
be used as PRMs.

3. The modified implementation script in the TCL format. This script contains the
commands for the creation of PRR according to stated locations (in constraints file),
their assignment by implemented entities and commands for starting runs which will
create partial configuration bitstreams for all PRMs.

6.3.3 The process of FT architecture generation

In this section, the process performed by the developed design tool will be described.
The main principle of creating FT architecture from the input entity and a set of tem-

plate files is shown in Figure 6.7. In this case, the building modules for TMR architecture
with duplicated voter will be created. The use of generated PRMs to create the desired FT
architecture is shown in Figure 6.8.

The input entity provided by designer is wrapped into new entity from which the PRM
will be created. This PRM is referred to as Function Unit (FU) PRM as only this unit
performs the original function of system. This PRM entity has input defined as a single
input vector which was gathered by joining the inputs of original FU. The same gathering
to single vector is done also with its outputs. This allows to define the templates of FT
architecture modules in generic way as it can be seen in Figure 6.7 in case of PRM with
voter.

Due to the fact that the interface of original FU should be retained in the final FT
architecture entity, the template of routing for current architecture has to be wrapped. It
is done in the opposite way, the joined input and output vectors for replicated FUs in FT
architecture are scattered to form the same set of inputs and outputs as the original FU.
Except these vectors, the interface of FT architecture also contains the error vector where
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each logic signal carries the information about error status of specific PRM to input error
vector of GPDRC (see Section 5.2).

In Figure 6.9, the process of creating different FT architecture is shown. This architec-
ture is less robust then the previous one and uses different routing scheme with the addition
of simple voter. In this case, the voter is not secured against the impact of fault occuring in
it. Therefore there is no designated PRM with voter, one PRR of the PRRs designated for
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the given FT architecture can remain unused. All variations of the FT architecture PRRs
assignment are shown in Figure 6.10.
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6.4 The implementation of generated FT architectures
The complete process starting with the entry of unsecured system design to the final step of
configuration of FPGA with the equipment to tolerate the fault impacts and their mitigation
consists of several steps. These steps are shown in Figure 6.11.
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Figure 6.11: The process of generating FT architecture and its implementation for given
system unit

The steps of this process have the following meaning:

1. Design entry - the designer describes the desired system in VHDL and sets his con-
straints for the design.

2. The specification of the system parts to be secured - the designer chooses the parts of
the system which is implemented in entered VHDL files to be secured and chooses the
degradation stategy for each of these parts. Each selected part has to be described
as a single entity in VHDL and none of these parts can be included inside another of
these parts.

3. The generation of FT architectures for the use in degradation strategies - The devel-
oped tool for designing system part as FT architecture is executed for each system
part and each FT architecture from its degradation strategy.

4. The creation of secured FT system - the original system design is modified by re-
placement of selected parts by their implementations as FT architectures. This can
be done without much effort because the interface of original part (unit) is a subset
of the interface of the generated FT architecture. Further, the GPDRC instance has
to be added and the error signals from all FT architectures have to be gathered and
connected to its error input. The controller for some external memory device (e.g.
the developed SD card controller) has to be added, too. This unit is needed to pro-
vide the configuration bitstream data for GPDRC. Alternatively, the synchronization
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controller and logic to perform synchronization of the modules of FT architectures
can be added as well in this step.

5. The implementation of static design with the starting configuration - for the complete
(static) reconfiguration of FPGA, the system design where all chosen important parts
are secured with most robust FT archictures from generation 0 is used. This im-
plementation run is also used for generating partial bitstreams for all PRMs utilized
by FT architectures in generation 0 (Xilinx implementation tool implements both
static design and PRMs in one batch). From these partial bitstreams, one from each
PRM type is chosen as golden copy to be stored in external memory storage. These
bitstreams can be later relocated and used during fault mitigation process.

6. The implementation of all partial configuration bitstreams - to create partial bit-
streams which can be used by GPDRC for recovery from permanent fault, PRBs for
each PRM with routing for all possible alternative configurations in each FT archi-
tecture must be created. The number of needed implementation runs to create all
neccessary PRBs does not depend on the number of implemented FT architectures
but on the maximal number of alternative configurations existing for some FT archi-
tecture implemented in the system. This is caused by the fact that one alternative
configuration is generated in each FT architecture per single implementation run.
Table 6.1 shows the number of design runs for the FT architectures consisting of
different number of PRMs (excluding PRM_ROUTE) and available PRRs to be as-
signed by these PRMs. Note that this table can be only used for the degradation
strategies which ends with only one correctly operating PRM.

6.5 Summary
In this chapter, the process of the design of secured system by means of proposed methodol-
ogy was described in a series of neccessary steps. Altough some steps such as the generating
of FT architectures or the implementation of final design and partial bitstreams is auto-
mated, the most important tasks in the process must be done by a designer.

The original system design which is intended to be more secured against transient and
permanent fault occurences must be divided into the set of entities (parts) which affect
the overall system dependability at most and therefore they will be implemented as FT
architectures. For these parts, the strategies based on degradation of FT architecture
robustness are stated and the chosen FT architectures are generated by developed design
tool. For each part, the area of FPGA for its implementation is allocated. The final
secured system where the chosen parts are substituted with FT architectures implementing
same function and which are stated in a degradation strategy is implemented in a series of
implementation runs to acquire PRBs of all alternative configurations. The resulting set of
PRBs contains only one implementation of each PRM type (except PRM with routing) and
one PRB of PRM with routing for each alternative configuration in each FT architecture.

The output of this process is the bitstream for static configuration of FPGA which is
done at the beginning and the set PRBs which are stored in external memory and used
during fault mitigation process.
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Design run 3-PRM achitecture
(3 PRRs)

4-PRM achitecture
(4 PRRs)

5-PRM achitecture
(5 PRRs)

[#] [config. code] [config. code] [config. code]
1 (static design) [111] (Gen. 0) [1111] (Gen. 0) [11111] (Gen. 0)

2 [110] (Gen. 1) [1110] (Gen. 1) [11110] (Gen. 1)
3 [101] (Gen. 1) [1101] (Gen. 1) [11101] (Gen. 1)
4 [011] (Gen. 1) [1011] (Gen. 1) [11011] (Gen. 1)
5 [100] (Gen. 2) [0111] (Gen. 1) [10111] (Gen. 1)
6 [010] (Gen. 2) [1100] (Gen. 2) [01111] (Gen. 1)
7 [001] (Gen. 2) [1001] (Gen. 2) [11100] (Gen. 2)
8 - (don’t care) [0011] (Gen. 2) [11010] (Gen. 2)
9 - [0110] (Gen. 2) [11001] (Gen. 2)
10 - [1010] (Gen. 2) [10110] (Gen. 2)
11 - [0101] (Gen. 2) [10101] (Gen. 2)
12 - [1000] (Gen. 3) [10011] (Gen. 2)
13 - [0100] (Gen. 3) [01110] (Gen. 2)
14 - [0010] (Gen. 3) [01101] (Gen. 2)
15 - [0001] (Gen. 3) [01011] (Gen. 2)
16 - - [00111] (Gen. 2)
17 - - [00011] (Gen. 3)
18 - - [00110] (Gen. 3)
19 - - [00101] (Gen. 3)
20 - - [01100] (Gen. 3)
21 - - [01010] (Gen. 3)
22 - - [01001] (Gen. 3)
23 - - [11000] (Gen. 3)
24 - - [10100] (Gen. 3)
25 - - [10010] (Gen. 3)
26 - - [10001] (Gen. 3)
27 - - [00001] (Gen. 4)
28 - - [00010] (Gen. 4)
29 - - [00100] (Gen. 4)
30 - - [01000] (Gen. 4)
31 - - [10000] (Gen. 4)

Table 6.1: Planning design runs to create all neccessary PRBs for FT architectures with
different number of allocated PRRs
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Chapter 7

Implementation and experimental
results

This chapter describes the implementation results of systems where the methodology was
applied to their design and implementation phase. It reveals the implementation specifics
and the hardware overhead added to unsecured design or design secured by known ap-
proaches such as TMR implementation. Separately, the implementation results of GPDRC
for different secured systems are examined.

For implemented FT architectures and the possibility of the secured system to recon-
figure its implementation to a different one (using the stated degradation strategy), the
dependability of the system is modelled by Markov models.

The ability to detect, localize and mitigate transient faults is examined in developed test
platform where the SEU faults are simulated by configuration manipulation performed by
external SEU injector. Finally, the permanent fault occurences in implemented system are
simulated and the ability to avoid the use of faulty modules by reconfiguration to different
FT architecture is tested.

All experimental systems were implemented in VHDL and synthetised and implemented
by tools from Xilinx ISE Design Suite 14.7. The targeted FPGA was XC5VSX50T from
Xilinx Virtex 5 family which is a component on ML506 development board.

7.1 Implementation of GPDRC
In the secured system design, a very important role is designated to GPDRC unit. The
reason for its development as the alternative to controllers implemented into softcore pro-
cessor is its smaller size and lower reconfiguration latency due to its specialization. Its size
(the number of utilized FPGA resources) is mainly affected by the number of PRMs into
which the system is implemented.

7.1.1 Generic implementation of GPDRC and its scaling

The GPDRC can be used in systems with different types of partitioning. To be able to
instantiate it in different designs, it was developed as a generic unit with the possibility to
define several of its attributes.

The number of system parts which are implemented as single FT architecture is de-
noted as ARCH_COUNT. This is the most important generic parameter which affects the
number of PRBs to be stored. The number of available PRMs in each FT architecture for
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implementing its units is denoted as PRM_COUNT. The number of all PRMs in system de-
sign and also the width of error signal vector entering the GPDRC is the product of these
generic values. The GPDRC can handle different types of FT architecture with various
PRM types. The number of specific PRM types is important to fault mitigation process as
only one copy with each PRM type must be stored. To be able to choose the proper type
of PRM, the width of the vector with type index must be stated. It can be counted as the
square root of the number of PRM types and it is denoted as PRM_TYPE_WIDTH. The
last generic parameter is the width of bitstream address vector (ADDRESS_WIDTH ).

For the evaluation of GPDRC resource utilization results for different system partition-
ing approaches, a design with counters, registers, decoders and other logic was created.
The complexity of this implemented system does not play any role in the evaluation of
GPDRC size. It is mainly influenced by the overall number of PRMs and other attributes
mentioned in above paragraph. Thus, the entire design in FPGA was divided into several
FT architectures and they were divided into the same number of PRMs. The experiments
were done for 3 to 6 PRMs. When the number of 5 or 6 PRMs per architecture was used,
then the starting configuration of FT architecture was the one with TMR scheme with
duplex voter. For 4 PRMs, the TMR scheme with simple voter was used and for 3 PRMs
the duplex alternative with checker was chosen as the starting configuration. The size of
GPDRC for various numbers of FT architectures and the number of PRMs is presented in
Figure 7.1.
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Figure 7.1: GPDRC size vs. the number of FT architectures for various numbers of PRMs
per FT architecture

The size of GPDRC and its units together with the comparison with the size of Mi-
croBlaze IP core used as PDR controller is shown in Table 7.1. These results are valid for
32 FT architectures with 6 PRMs per each controlled by the GPDRC. The meaning of the
columns is as follows: the name of unit (column 1), the size of unit in slices (2), the number
of occupied LUTs (3) and FlipFlops (4) and the size of TMR alternative (5).

7.1.2 The reconfiguration time of PRM

The time needed for the reconfiguration of one PRM is an important metric of the controller.
In Table 7.2, the measured values for the GPDRC according to the PRM bitstream size are
presented. The reconfiguration time is related to the size of PRB which reconfigures the
PRM and the utization of the resources inside PRM does not influence this time. Thus, the
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ML506 - Virtex5 Size LUTs F/Fs TMR
192 PRMs [slices] [#] [#] [slices]

Input Capture Register 49 (0,6%) 97 192 127 (2,6x)
Actual Error Register 48 (0,6%) 101 101 124 (2,6x)

Previous Error Register 48 (0,6%) 192 192 124 (2,6x)
Hard Error Unit 3 (0,1%) 4 0 9 (3,0x)

Round Robin Unit 5 (0,1%) 6 6 14 (2,9x)
Error Encoder 3 (0,1%) 3 0 6 (2,0x)

Relocation Unit 7 (0,1%) 16 1 20 (2,9x)
Architecture Status Unit 2 (0,1%) 49 32 6 (3,0x)

Address Counter 22 (0,3%) 52 21 56 (2,5x)
FSM 22 (0,3%) 48 17 59 (2,7x)

Others (LUTs, MUXs...) 135 (1,7%) 317 186 414 (3,1x)
GPDRC total 344 (4,2%) 885 748 959 (2,8x)

MicroBlaze 628 (7,7%) 1414 1491 1664 (2,8x)

Table 7.1: The numbers of FPGA resources for GPDRC (32 FT architectures, 6 PRM per
FT architecture)

table contains the multiples of the smallest possible PRM (the set of CLBs in one FPGA
column and in the same FPGA row) which can be created in Virtex 5 FPGA and contains
20 CLBs. The meaning of the table columns is as follows: the multiple of smallest PRM
(column 1), the size of PRM in CLBs (2), the size of PRM partial bitstream in kBs (3) and
reconfiguration time in miliseconds (4).

ML506 - Virtex5
multiples of the size of

smallest PRM with CLBs

CLBs

[#]

Bitstream size

[kB]

Reconfiguration
time
[ms]

1x 20 6,6 0,35
2x 40 12,7 0,67
3x 60 18,8 0,99
4x 80 25,0 1,33
5x 100 30,5 1,67
6x 120 36,5 2,02
7x 140 43,1 2,35
8x 160 49,5 2,74

Table 7.2: The reconfiguration time of one PRM according to its bitstream size

7.2 Evaluation of hardware overhead of FT architectures de-
veloped to secure a given part of system

This section presents the basic features of FT architectures which were developed for each
generation (0, 1 and 2) together with the specification of their properties and constraints.
Please note that these architectures serve as models for the description of the methodology
application to some system. Different FT architectures which have the ability to detect
and localize faults on PRM level can be used.

In this case, the proposed FT architectures utilize 5 PRMs and thus 5 error signals can
be identified on the output of PRM_ROUTE block. These signals are connected to the
inputs of GPDRC where they indicate the occurrence of a fault.
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7.2.1 FT Architecture of Generation 0

The initial FT architecture of Generation 0 is based on TMR scheme in which the out-
puts of all FUs are checked by the majority element (voter). This architecture consists
of 5 PRMs (3 PRM_FUs, PRM_VOTER and PRM_ROUTE). Figure 7.2 presents the
proposed structure of this architecture.
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Figure 7.2: The FT Architecture of Generation 0 based on TMR

Each FU of the architecture is implemented as a standalone PRM without any additional
diagnostic logic. The outputs of all PRM FUs are connected into PRM_VOTER block
which is implemented as a PRM as well. PRM_VOTER block contains voter and additional
diagnostic logic (e.g. comparators and logic gates) for the fault detection in FUs. The voter
is implemented as a duplex architecture because of the need to detect fault occurrence
in its structure, this information is used for the reconfiguration of PRM_VOTER block.
Note that the voter architecture can be implemented also in two-rail logic instead of duplex
architecture. The error outputs from PRM_VOTER block are processed by GPDRC which
selects the appropriate bitstream from bistream storage and performs the reconfiguration
of specific PRM. The PRM_ROUTE block provides the interface between PRMs in FT
architecture and other parts of FPGA. In this architecture, the PRM_ROUTE block does
not contain any additional diagnostic logic or FPGA logic elements, therefore this block is
not protected against fault occurrence and the error signal err_route is set to logic zero
value permanently.

Therefore, if a fault occurs in the detection logic of duplex architecture in majority
element then the architecture may become inoperable. This threat is lowered to minimum
due to the size of the logic which is much smaller than the size of other units.

During PRM_VOTER and PRM_ROUTE reconfiguration, incorrect values can appear
on the outputs of FT system. They must be ignored.

7.2.2 FT Architecture of Generation 1

The FT architecture of Generation 1 is based on a duplex scheme with the addition of
one PRM with CHECKER unit (PRM_CHECKER). As can be seen in Figure 7.3, this
architecture consists of four PRMs (2 PRM_FU, PRM_CHECKER and PRM_ROUTE).
Each FU of the architecture is implemented as a single PRM and their outputs are switched
by output multiplexor which is controlled by error signal from diagnostic logic. The checker
unit is implemented as a standalone PRM as well.

In this architecture, the PRM_VOTER block is missing so that the additional diagnos-
tic logic and the output multiplexor are relocated into PRM_ROUTE block. Diagnostic

84



CHECKER

PRM

FU2

PRM

Mx

in

FU1

PRM

cmp

cmp

&

&

&

err1

err_ch

err2

out

PRM_ROUTE
  PRM

ROUTE

err_voter

err_route
’0’

Figure 7.3: The FT Architecture of Generation 1 based on Duplex with checker

logic consists of two comparators and three AND logic gates, the area overhead is smaller
than the area overhead in PRM_VOTER block of Generation 0. The outputs from units
implemented in both PRM_FUs and PRM_CHECKER are compared by comparators and
the output logic gates uniquelly identify the faulty PRM. If a failure is recognized in PRM
implementing the first FU then the output multiplexer is switched on the output of the
second FU. In this architecture, the PRM_VOTER block is missing, therefore the error
signal err_voter is set to logical zero value permanently. The error signal err_route is
set to logical zero value permanently as well because in this architecture the possibility to
detect any fault in the PRM_ROUTE block is not available.
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Figure 7.4: The alternative FT Architecture of Generation 1

In order to detect any fault in PRM_ROUTE block, this block is supposed to be
implemented as duplex architecture with comparator. The alternative of FT architecture
of Generation 1 can be seen in Figure 7.4. The comparator output is connected to error
signal err_route, the occurrence of logical one value on error signal will cause the start of
PDR process.

7.2.3 Non-FT Architecture of Generation 2

The final architecture of Generation 2 is based on classical duplex scheme. This architecture
is not FT and it has only 3 PRMs (2 PRM_FU and PRM_ROUTE). Each FU of this
architecture is implemented as a standalone PRM without additional diagnostic logic. The
structure of this architecture can be seen in Figure 7.5.

As can be seen, PRM_ROUTE block with additional diagnostic logic for fault detection
is included in the architecture. Because it is not known if the fault occured in one of
the two PRM implementing FUs or in PRM with routing, the reconfiguration process is
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Figure 7.5: The architecture of Generation 2 based on Duplex

applied to both of FU PRMs or to PRM with routing. Therefore, the output from the
comparator is connected to error signals err1, err2 and err_route. In this architecture,
the PRM_VOTER block and FU3 PRM block are missing, the error signals err_voter and
err3 are set to logical zero values permanently.

7.2.4 Evaluation of resource overhead

The sizes of FT architecture components which cause hardware overhead in FPGA are
shown in Table 7.3. In this table, the overhead of only those units which were utilized and
extended by our methodology when compared to the standard use of these units are taken
into account. For the generation 0, the overhead includes the size of PRM_ROUTE and
PRM_VOTER units. The sizes of any of three FUs were not considered into overhead as
they are present also in the standard TMR scheme. The size of PRM_VOTER unit was
decremented by the size of standard majority voter unit without the ability of faulty unit
localization to get only the overhead caused by the use of our methodology. For both types
of the generation 1 and for the generation 2, the overhead includes only PRM_ROUTE
unit for the same reasons as for the generation 0. The meaning of the columns is as
follows: column 1 - the width of each FU output in bits; column 2 - the overhead in slices
in the generation 0 configurations; column 3 - the overhead in slices in the generation 1
configurations; column 4 - the overhead in slices in the generation 1 (variant with duplex
logic) configurations; column 5 - the overhead in slices in the generation 2 configurations.

XC5VSX50T Generation Generation Generation Generation
data width 0 1 1-variant 2

[bits] [slices] [slices] [slices] [slices]
2 12 5 12 1
4 22 11 24 2
8 36 17 39 3
16 68 31 68 7
32 126 57 122 12
64 206 111 210 23

Table 7.3: The overheads of Generations in slices

7.2.5 Modelling reliability of proposed FT architectures

This section contains the description of Markov models which can be further used in the
evaluation of reliability for FT architectures which were described in previous sections
(Section 7.2.1, 7.2.2 and 7.2.3). Due to their complexity and big number of states, they
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have been simplified to be able to draw them. The situation is explained and discused by
each figure of Markov model.

In all graphs showing Markov models, the name of state is usually prefixed by S and
followed by the number of correctly operating functional units. This number is followed by
a set of characters, each character is indicating that the unit encoded under this character
works correctly. The codes of units are as follows: voter unit (V), checker unit (C), GPDRC
unit (G) or routing logic (R). For example, the starting state of the model from Figure 7.6
is S_3VG. It means that the FT architecture consists of 3 functional units, a voter and a
GPDRC. Each unit which has error signal connected to error input vector of GPDRC can
be distinguish as faulty and its state can be shown in Markov model. In addition to these
units, the fault occurence in GPDRC can be modelled as the loss of repair ability of the
secured system.

The oriented edges corresponding to failures caused by transient fault are labelled by 𝜆
and these caused by permanent faults by Λ. Both of these labels are followed by the symbol
of the failing unit. As an example, in the model in Figure 7.6 the edge going from state
𝑆_3𝑉 𝐺 to state 𝑆_2𝑉 𝐺 with label 3𝜆𝐹 is showing the transition between these states in
case that one of three functional units has been affected by transient fault. The oriented
edges describing the transient fault repair are labeled by 𝜇 and edges designated to the
process of the recovery from permanent fault occurence are labeled by 𝑀 . Since the time
needed for PDR depends on the size of configured PBR there are two different values of
repair rate in graphs. The first rate 𝜇 is dedicated to the reconfiguration of one PRR from
the set of relocatable PRRs where replicated FUs, checker or voter unit are implemented.
These PRRs have the same sized PBR and thus the repair rate is the same for all of
them. The second repair rate 𝜇𝑅 is dedicated to PRR where the routing is implemented
(PRM_ROUTE).

The states in which the system is producing correct outputs are shown as circles and
these ones which not are shown as rectangles. There are 3 special states connected with
permanent fault recovery process. The permanent fault (correct operation) state is describ-
ing the situation when permanent fault appears in one unit but at the same time it is
still able to produce correct outputs and a possibility to recover from this fault still exists.
When the system is in the permanent fault (failure) state, it can still recover from the fault
but it is not producing correct output in that moment. The special double circle shape
is dedicated to the starting state of the FT architecture from the next generation. The
entire state graph describing Markov model of this FT architecture can be imagined in this
place instead of the next generation state. This simplification was not only used to simplify
the state graph drawing but also to show that the final reliability of secured system by
means of proposed methodology is influenced by the selection of each FT architecture in
its degradation strategy.

To be able to model the reliability by the Markov model, several conditions have to be
defined:

∙ The priority of reconfiguration (repair) by the GPDRC is as follows from the biggest
priority: PRM with routing, PRM with voter, PRM with checker and PRM with
functional unit.

∙ The fault type (transient or permanent) is determined by the GPDRC according to
the success of the first repair of affected PRM. If it fails, the occured fault is considered
as permanent.
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Figure 7.6: The simplified Markov model of the FT architecture of the Generation 0 with
TMR scheme

∙ The GPDRC will not trigger the repair process if it is meaningless. This means
that the repair would not bring the system to the state where it will produce correct
outputs or to the state where further repair to bring the system to this correct state
will be possible.

∙ Any repair is possible when the GPDRC is affected by a fault.
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Figure 7.7: The simplified Markov model of the FT architecture of the Generation 1 with
duplex scheme with simple voter unit

The simplified Markov model for FT architecture from generation 0 based on TMR
architecture with doubled voter unit (see Section 7.2.1) is shown in Figure 7.6. As the
correct states are considered these ones which certainly produce correct outputs. To ensure
this, at least two functional units and the voter have to be working without errors. This
state graph was simplified by not considering the faults occuring in PRR implementing
routing between modules. If these states are shown, the overall number of states will
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be approximately doubled. Due to the fact that the faults in routing are considered as
undetectable, the recovery from this state is not possible. On the other hand, the failure
intensity of this module (𝜆𝑅) is negligible small since the routing is defined by very few
configuration bits setting just several PIPs.

The simplified Markov model for FT architecture from generation 1 based on duplex
architecture with checker unit and voter unit implemented in the same PRR as the routing
(see Section 7.2.2, the alternative version) is shown in Figure 7.6. In Figure 7.4 there are 3
types of PRMs: PRMs with FU, PRM with checker unit and PRM with routing and voter
(compare) logic. As there is no difference (for the modelling of dependability) between
checker unit and function unit (it does not matter if error apears in FU or checker unit),
these units are counted together in state label (e.g. state 𝑆_3 describes situation when
both FUs and checker unit are working correctly). This simplification was used to avoid
unnecessary increase of the number of system states. Final model is quite similar to the
previous one with TMR but it differs in the toleration of permanent fault occurence. In
this architecture, the voter logic is implemented in PRR with routing and it is not possible
to recover the system when a permanent fault appears here. The increase of the utilized
resources in this PRR is also the reason to explicitly model the fault occurences in it.
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Figure 7.8: The Markov model of the FT architecture of the Generation 2 with simple
duplex scheme

The Markov model for FT architecture from generation 2 based on simple duplex archi-
tecture with simple compare logic (see Section 7.2.3) is shown in Figure 7.8. Since there is
no way to distinguish in which PRR the fault appears, each fault triggers the reconfiguration
of all PRMs. No permanent fault repairs are considered in this model.
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7.3 Implementation results of different approaches to the
partitioning of original system

The key step in design process of securing a given system is its partitioning into parts
which will be implemented as standalone FT architectures. To examine the properties of a
secured system such as hardware overhead or the size of PRBs used for the reconfiguration
after fault occurence for different types of its partitioning, the test design of system with
MB-LITE softcore processor (see [31]) was developed.

The MB-LITE processor is the light-weight implementation of MicroBlaze processor [65].
The MicroBlaze processor is a RISC architecture with 32-bit wide instruction and data
words. It is also based on MIPS architecture and implements a pipeline with 5 stages:
Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory (MEM) and Write-
back (WB). Due to this pipelining in the processor, the most instructions have a latency of
one cycle. Thanks to additional prefetch buffer, the MB-LITE processor has reduced the
rate of instructions which can be fed into it. Therefore, the execution time was dropped by
10% when compared with MicroBlaze [31]. The design with MB-LITE was chosen for the
reason that thanks to its structured and straightforward design it can be easily partitioned
in different ways.

The test design consists of MB-LITE processor connected to Wishbone bus by Wishbone
adapter as shown in Figure 7.9. Altough the top-level design contains only two main units
- the instance of MB-LITE and Wishbone adapter, the processor can be further divided
into 4 functional units - IF, ID, EX and MEM.

MB-LITE

IF

Wishbone adapter

DATA

INSTRUCTION

ID EX MEM

FPGA

Figure 7.9: The original system design

This design was able to achieve the operating frequency of 229 MHz in Virtex 5 (XC5VSX50T)
FPGA. The implementation results for the same FPGA used for the decision about the par-
titioning of design is shown in Table 7.4. The meaning of the table columns is as follows:

XC5VSX50T Slices LUTs F/Fs
Design FU # (% of design) # (% of design) # (% of design)
MB-LITE - IF 20 (3%) 45 (3%) 16 (4%)
MB-LITE - ID 94 (13%) 185 (12%) 191 (50%)
MB-LITE - EX 532 (71%) 1203 (76%) 93 (25%)
MB-LITE - MEM 55 (8%) 110 (7%) 44 (12%)
Wishbone adapter 21 (3%) 35 (2%) 33 (9%)∑︀

723 1579 377
(9% of all in FPGA) (4% of all in FPGA) (1% of all in FPGA)

Table 7.4: The resource utilization of original system with MB-LITE processor and Wish-
bone adapter
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the unit of design (column 1), the size of unit in slices (2), LUTs (3) and flip-flops (4).
The implementation results show that the unit performing the execute stage of pipeline

(MB-LITE - EX) utilizes much more slices than other units which is caused by a big number
of used LUTs. Therefore, the following possibilities for partitioning based on different
granularity were proposed:

∙ 1 FT architecture - all functional units are grouped together and replicated (coarse-
grained partitioning), see Figure 7.10a.

∙ 2 FT architectures - EX unit of MB-LITE processor is implemented as one FT archi-
tecture, the remaining units are grouped together and implemented as the second FT
architecture, see Figure 7.10b.

∙ 5 FT architectures - each unit mentioned in the above provided table is implemented
in a single FT architecture (fine-grained partitioning), see Figure 7.10c.

Table 7.5 shows the implementations of all variants of the secured system. They were
compared by their resource utilization (column 1), hardware overhead in comparison to
original design (column 2) and the sizes of their PRBs (column 3).
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Figure 7.10: The variants of differently partitioned secured systems

XC5VSX50T PRMs Slices HW overhead Bitstream sizes
The variant of secured system # # % [kB]
Original design 0 723 0 -
TMR design (without PDR) 0 2287 216 -
1 FT architecture 5 2421 235 PRM_ROUTE: 6,6

PRM_FU : 408
2 FT architectures 10 2484 244 PRM_ROUTEs: 6,6; 6,6

PRM_FUs: 92,4; 39,6
5 FT architectures 25 2572 256 PRM_ROUTEs: 6,6; 6,6; 6,6; 6,6; 6,6

PRM_FUs: 6,6; 19,8; 92,4; 13,2; 6,6

Table 7.5: The comparison of resource utilization and hardware overhead for different
implementations of the given system

The results summarized in the table show that the HW overhead is slightly lower for
the variant with 1 FT architecture. This is caused by the smaller GPDRC unit due to lower
number of PRMs. On the other side, this is degraded by bigger PRB size which causes
longer reconfiguration time. The table shows that there could be a tradeoff between HW
overhead and the overall size of all PRBs (and the time of reconfiguration).

7.4 SEU testing platform for the evaluation of FT system
design by means of methodology principles

To evaluate the quality of secured FPGA to cope with transient and permanent fault
occurence, the special test platform was developed. The testing was based on fault injection
into configuration bitstream to simulate an SEU fault occurence. The platform allows to
observe the behaviour of entire secured system implemented in FPGA when a fault occurs.
All components of the test platform are shown in Figure 7.11.

7.4.1 The implemented test and evaluation equipment

The test platform contains several parts which are creating together the necessary test and
evaluation equipment. The FPGA is configured by the implementation of system secured by
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Figure 7.11: Dependability evaluation platform with SEU injection test platform

the means of the methodology. The remaining parts of the test platform are implemented
and run on PC.

The FPGA device under test (DUT) contains these units:

∙ The functional unit (FU) - The unit which is implementing the given function (the
same function as original unsecured system).
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∙ The FT architecture - The fault tolerant implementation of original system. It is
implemented according to methodology principles with error output for each of its
PRM.

∙ The test vector generator - This unit generates inputs for tested FT architecture as
well as for the standalone FU.

∙ The GPDRC unit - The controller unit driving the fault mitigation process and the
PDR.

∙ The memory controller - The SD card controller which is creating an interface between
the GPDRC and SD memory card with stored partial bitstreams.

∙ The evaluation unit - In this component the outputs from FU and FT architecture
are gathered and together with GPDRC status information they are sent to PC for
further analysis.

∙ The UART controller - The unit interfacing the evaluation unit and serial interface
of FPGA.

The test and evaluation equipment in PC consits of several tools:

∙ The FPGA reconfiguration tool - The script using Impact tool from Xilinx ISE toolkit.

∙ The XDL conversion tool - The tool for the conversion of the fully implemented design
from NCD to XDL format.

∙ The PRM bit-list generator - The application based on RapidSmith framework for
generation of the list of bits to be injected (reversed) by SEU injector.

∙ The SEU injector - The tool for manipulating the configuration. The SEU is simulated
by making bit-flip. The process of injection is described in following section.

∙ The evaluation tool - The script collecting the results from DUT for further processing.

7.4.2 Process of SEU faults injection

For the SEU injection into configuration memory, the external SEU injector presented
in [32] was used. It uses PDR to simulate the radiation-induced upsets by artificially
changing the contents of the configuration memory. This injector is written as TCL script
and is run on PC. It accesses the JTAG external reconfiguration interface of FPGA. It uses
the ChipScope library function of Xilinx ISE toolkit to perform the upset in configuration
memory by toggling some bit value in the configuration bitstream.

Due to the fact that the relation between the FPGA resource and the configuration bits
which configure its settings is not known in general, all bits in PRM should be tested by
injecting the SEU into it. In the Department of Computer System at Brno University of
Technology, the relation between utilized LUT resources and configuration bits for Virtex 5
was uncovered. According to this fact, the application for bit-list generation was extended
to be able to generate the list of configuration bits which is used to set the function of
utilized LUTs. Although the SEU injection to only these bits is not sufficient for complete
test of unit dependability, it can be used to reduce the time of SEU injection campaign to
test the detection, localization or fault mitigation ability of the secured system.
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One simulation step for testing a secured design consists of one SEU injection into one
of FT architecture PRMs and checking its output for error. When the fault is detected by
the compare logic in the evaluation unit or by detection and localization logic implemented
in FT architecture, the status message is sent via RS-232 to the evaluation tool in PC. If
the reconfiguration is performed, the GPDRC status is observed and after rec. done signal
is set, the next status message is sent to the evaluation tool.

7.4.3 Experimental results of GPDRC transient fault mitigation process

The test platform described in the above section was implemented and tested with Virtex 5
FPGA (XC5VSX50T) on an ML506 development board. To implement the system design
for FPGA and for bitstream generation, the Xilinx ISE 14.7 toolkit was used. The FU
contains several 8-bit counters, decoders and multiplexers, the data width of input was 6
bits and the data width of output was 16 bits. The design contains one FT architecture
with 5 PRMs and the FT architectures described in Section 7.2 was used in the degradation
strategy. The size of a PRB for PRMs with FU, PRM with doubled voter and PRM with
checker unit was 6632 bytes, the sizes of PRBs for each PRM with routing were 26582
bytes.

The meaning of the columns in Table 7.6 is as follows: column 1 - the type of PRM;
column 2 - the utilization of PRM; column 3 - the number of the detected SEUs in FU;
4 - the number of SEUs detected by checkers in FUs; column 5 - the number of incorrect
data on the outputs of FT architecture; column 6 - the number of missed SEU faults by
the detection logic of FT architecture, column 7 - the number of successfully performed
reconfigurations of PRM performed by the GPDRC.

XC5VSX50T PRM SEU injected SEU detected FT arch. output SEU missed GPDRC
utiliz. in PRM by FT arch. data errors by FT. arch reconf.

PRM type % # # # # #
PRM with FU
(all generations) 45% 47232 7806 552 25 7826

PRM with 2xVOTER
(generation 0) 30% 47232 3345 1571 105 3345

PRM with CHECKER
(generation 1) 45% 47232 6901 552 11 6900

PRM with routing
(generation 0) 1% 188928 0 21 21 0

PRM with routing
(generation 1) 12% 188928 3542 1243 234 3541

PRM with routing
(generation 2) 6% 188928 2432 1056 351 2430

Table 7.6: The number of detected SEUs in FUs of the architecture

From the results, it can be seen that the FT architecture of generation 0 and 1 can
detect and repair more than 97% SEUs in PRM with FU, voter or checker unit. Except the
FT architecture from generation 0 which do not have ability to detect faults in PRM with
routing, this PRM type in the FT architectures from other generations was able to detect
faults in more than 85% cases. Almost all detected faults have triggered the mitigation
process done by GPDRC. In all cases, the PRM with routing was able to survive most of
the SEU faults injected inside it due to very low utilization of FPGA resources.
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7.4.4 Testing and evaluating recovery from permanent fault occurence

The developed evaluation platform was also used to test and evaluate the process of recovery
from permanent fault occurence. For its simulation, the above described fault injector
was used again. According to the results of SEU injection campaign during transient
fault simulation process only some configuration bits of FT architecture PRMs were used
for permanent fault simulation. A specific bit was chosen for permanent fault injection
campaign, if the fault that it creates in the unit implemented in PRM was detected by the
detection logic of FT architecture or it has been manifested as an error on FT architecture
output during the transient fault simulation campaign.

The process of the simulation consists of these steps:

1. The first (next) bit from the set of SEU sensitive bits of FT architecture PRMs is
taken and inverted.

2. When the GPDRC finishes the reconfiguration and indicates the end of reconfiguration
by setting rec_done signal, the same bit is inverted again.

3. The GPDRC should localize the fault again and determine it as permanent fault
and start the permanent fault recovery process. This action can be identified by
setting hard_error sig while the index of PRM with the fault can be observed on the
PRM_index signal. The operation of all units in PRMs are stopped during this step.

4. The end of a permanent fault recovery is indicated by the combination of active
rec_done and hard signals and the set values of arch. index and PRM error index
vectors.

5. The impulse on rst_sig is done to reset and synchronize the reconfigured FT archi-
tecture.

6. The output of FT architecture is compared with the stored correct value and the
result is sent via UART to the evaluation tool.

7. When the simulated permanent fault is not repaired the starting FT architecture
design is configured back to the appropriate PRMs.

The experimental results for a permanent fault injection campaign to the same FT
architectures as in previous experiment are shown in Table 7.7. The meaning of the columns
in the table is as follows: column 1 - the type of FT architecture and which generation it
belongs to; column 2 - the number of injected SEU faults; column 3 - the number of incorrect
data on the outputs of FT architecture; column 4 - the number of permanent faults detected;
column 5 - the number of performed permanent fault recoveries by the reconfiguration to
a different FT architecture; column 6 - the mean time to repair the system to the correctly
operating state.

The results summarized in Table 7.7 show that the number of detected faults is decreas-
ing with the number of PRMs which are used by FT architecture. This is caused mainly by
masking the faults which are injected into excluded PRMs. The repair process is shorter
for less robust FT architectures due to the fact that the reconfiguration of fewer PRM is
performed.
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XC5VSX50T Injected FT arch. output Permanent fault Recovery MTTR
faults data errors detected done

Generation # # # # [ms]
Generation 0 (TMR-2xVOTER) 12768 2144 12515 12480 512
Generation 1 (TMR-simple) 12575 1796 12287 9802 351
Generation 2 (Duplex) 7987 708 156 0 -

Table 7.7: The number of successfully detected permanent faults and the MTTR for per-
manent fault recovery

7.5 Summary
This chapter summarized the implementation results of the securing system according to the
methodology. The possible implementation of FT architecture was presented in details and
the hardware overhead was compared with the TMR solution. For these FT architectures
used in the proposed fault recovery mechanism, the Markov models for the evaluation of
the system dependability were derived. The experiment with the partitioning the system
with pipelined microprocessor was done to compare three different approaches in terms of
hardware overhead and the size of all necessary PRBs which have to be stored. The last
experiments were focused on testing the given system by injecting SEU faults by external
SEU injector and evaluating the fault mitigation ability of the proposed method in the
developed test and evaluation platform.
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Chapter 8

Conclusions

In this work, the methodology of FT system design with the ability to mitigate transient
faults caused by SEUs and to recover from several permanent fault occurences was pro-
posed as the alternative to existing methods or methodologies. This methodology benefits
from the ability to PDR in modern FPGAs which can be used for the run-time repair or
the change of current FPGA configuration. The production of correct outputs from the
system implemented in FPGA even during its PDR is ensured by its designing as an FT
architecture.

At the beginning of this thesis, the basic principles, technologies and methods important
for the methodology proposal are described. As the FPGAs themselves, their manufacturing
process and technologies around them are still evolving very fast, some principles and tech-
niques can become early outdated and overcomed. In this work, this part served to describe
the state-of-the-art and the motivation at the beginning of the work on the methodology.

The main part of this paper presents the basic principles of the proposed methodology.
The methodology was developed to satisfy the conditions stated in the goals of the research
part. It is based on the designing of FT system into SRAM-based FPGA with the use of
PDR and limited into specified implementation area. The next chapter then describes the
entire procedure of designing this FT system step by step from the entering the original
system design and finishing with the generation of the configuration bitstream of imple-
mented FT system design which is ready to configure the FPGA device. Together with
this bitstream, the set of PRBs which are designated to be stored in external memory is
generated. This final system implementation is then ready to survive many transient and
several permanent fault occurences.

At the end of the thesis, the implementation and experimental results are presented.

8.1 Benefits of this research
As the main benefit of this research, the proposal of alternative methodology for the FT
system design with the ability of fault mitigation can be mentioned. This methodology
brings some new features such as the use of dedicated reconfiguration controller or the
application of the relocation technique in transient fault mitigation and also in the recovery
process from permanent fault occurence. This greatly suppresses the main disadvantage of
the use of precompiled configurations to mitigate faults which is space demanding storing
of many configuration bitstreams.
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The benefits of the use of the proposed methodology for FT system design can be
summarized into several points.

∙ In the proposed methodology, the exact procedure of transformation the system de-
sign entered by designer to secured system where selected important parts are im-
plemented as FT architectures with the mechanism of transient fault mitigation and
recovery from permanent fault was described. The standard PR design flow defined
by Xilinx as well as its standard design and implementation tools were used and thus
the methodology is applicable to system design for all its FPGA families adopting the
same design flow.

∙ The key component for this methodology, the dedicated reconfiguration controller
(GPDRC) with the ability to determine the type of fault and perform the correct
mitigation procedure, was developed. It was designed with the effort to reduce the
necessary area and performance overhead. The overhead of final GPDRC design was
compared with other alternative controller.

∙ When the system is designed by the means of the proposed methodology, it is possi-
ble to define the level of importance for every system part (which is designated to be
secured) by specifying the degradation strategy. This strategy is used when the recov-
ery after permanent fault occurence is performed. Several types of FT architecture
possible to be used in some degradation strategy was presented. The methodology is
not bounded just to these particular ones but many other architectures satisfying the
stated conditions can be used.

∙ The final system design can be extended with synchronization mechanism for re-
configured units. The GPDRC is designed to cooperate with the synchronization
controller.

∙ To examine the proposed methodology, complex FT system was designed according
to its principles and included into the test platform to prove its ability to repair
the modules after transient fault occurence and the recovery from permanent fault
occurence by degrading the affected FT architecture to less robust one. The fault in-
jector inserting the SEU faults into configuration was used to test the fault detection,
localization and mitigation process. The experiments proved that the final system
design is able to work correctly after transient fault occurence thanks to the FT ar-
chitecture design and that the recovery after permanent fault is possible by excluding
the affected PRM from further use.

8.2 Possible enhancements of methodology
This complex methodology is based on many principles and incorporates many methods
which can be further enhanced to achieve better performance of final secured system, to
lower the neccessary area overhead in FPGA or to lower the necessary capacity of external
bitstream storage. In next sections, some of them are discussed.

8.2.1 Bitstream compression

Data compression is known approach to reduce the space for storing the data. On the
other hand, it can add area overhead due to the need of compressor and decompressor
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implementation. Moreover, the performance overhead can be caused by the compression
and decompression process. Some methods for data compression can be also applied to
configuration bitstream data. When the bistream compression is applied to PRBs and
used together with the PDR the requirements for compression and decompression will be
different. While the bitstream compression is typically done offline immediately after its
generation by some software tool in computer the decompression has to be done online
directly in the FPGA (in the case when ICAP is used for PDR) or in the external device
where the reconfiguration controller is located (when some external configuration interface
is used). Thus, the main focus when chosing the compression method should be put among
the compression ratio also on the simplicity of the decompressor. Although the throughput
of the decompressor is also important, frequently the overal throughput between memory
and reconfiguration controller is more limited due the low speed of reading the external
memory.

The application of well known compression techniques such as arithmetic or Huffman en-
coding, LZ78, LZW, RLE and other for configuration bitstream data was presented in [55].
According to this paper, the compression ratio for bitstream data typically vary from 40%
to 60%. The througput of decompressor (implemented in Virtex 4 device) can from several
hundreds be up to several thousands Mbps. In [46], the method designed specially for
bitstream data which is taking into account its composition of frames and the correlation
between them is presented. Often, there are only small difference between the neighbouring
frames configuring the same CLB column. The next frame can by typically derived from
the previous one by applying relatively small number of bit-flips. Therefore, this approach
is based on the application of distance vector technique.

The bitstream compression can be incorporated into final FT system designed by means
of proposed methodology to achieve lower capacity demands for the external bitstream
storage. Due to the fact that the GPDRC unit does not implement the direct read from the
memory but it uses external memory controller unit, the decompressor unit for processing
the compressed bitstream can be inserted to the data path between these units as it is shown
in Figure 8.1. For some compression methods which do not work with the same-sized words
of data as the memory and reconfiguration controller additional buffers may be required.

8.2.2 Adoption of isolation design flow

IDF would require for each top-level entity of PRM to have its own level of hierarchy
(this is already achieved in current state) and to be implemented independently from the
other entities. The final implemented design for entire FPGA will be created by merging
this partial implementations. IDF also requires to create regions for all static units of the
system. Assigning the units to defined regions will allow to create the fences between the
isolated parts of the system design. The fences will be created in places which do not belong
to any of defined regions. The connections between the regions in IDF are possible only via
trusted routing or by the utilization of IOBs and going off-chip in one region and back in
the second one. The creation of trusted routing is quite complicated process (see [63]) but
for the replicated units of FT architecture the creation of required constraints can be (at
least partially) automated because the relative routing is the same in all these units with
the exception of the absolute address of their starting point which is different.
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Figure 8.1: Incorporating bitstream compression into FT system design based on the pro-
posed methodology

8.2.3 Other possible enhancements

Several enhancements would be also possible in the GPDRC unit. One of the current
issues in this unit is its permanent occupation of ICAP. If the system entered by designer
would like to use the PDR ability of FPGA for its reconfiguration it will not be possible
because only one instance of this unit can be used. This can be solved by excluding the
ICAP instance from the GPDRC unit and using it externally. Then some multiplexing
logic can be added and this one ICAP instance can be shared by the original system and by
the GPDRC. Because the final secured system (designed by means of the methodology) is
based on the set of FT architectures and thus the fault can be masked by them the instant
fault mitigation is not necessary. The GPDRC unit can wait until the ICAP instance is
not used and then finally perform the mitigation process.

To make the procedure for the transformation from entered system design to secured
system design with all needed FT architectures easier, the transformation tool can be
implemented. As the steps in this procedure contain many similar tasks (e.g. generating
the set of FT architectures for each important system part, constraining each PRM top-level
entity, etc.), it would be possible to automate it. The final solution can be the execution
of the single script for processing where among the original system design and its original
constraints also its important parts with degradation strategies are specified as its input.
This script would create all necessary FT architectures, connect them with the static part
of design, create the PRMs, constrain their top-level entities, etc. In addition to this, it
can also create the implementation script (TCL) for the implementation tool with the plan
of all necessary runs to gain all PRBs needed by fault mitigation procedure performed by
GPDRC.
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