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Abstract 

Metal beams of thin-walled cross-sections have been widely used in building industry as 
members of load-bearing structures. Their resistance is usually limited by lateral torsional buckling. 
It can be increased in case a beam is laterally supported by members of cladding or ceiling 
construction. The paper deals with possibilities of determination of critical load of thin-walled beams 
with lateral continuous restraint which is crucial for beam buckling resistance assessment. 
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 1 INTRODUCTION 
Resistance of slender metal beams of thin-walled cross-sections with no lateral restraints is 

usually limited by lateral torsional buckling. In case they are utilized as purlins or girts, members of 
roof or wall cladding can be attached to them. It results in lateral restraint that prevents displacement 
of the beam cross-section and therefore contributes to its buckling resistance. If it is correctly taken 
into account, more economical design of the cross-section can be achieved. The paper focuses on 
possibilities of determination of critical load of thin-walled metal beams with lateral continuous 
restraint. A numerical method for critical load computation is described and results are compared 
with results obtained using software based on finite element method. 

 2 LATERAL TORSIONAL BUCKLING OF AN IDEAL BEAM 
WITHOUT LATERAL RESTRAINTS 
Lateral torsional buckling of an ideal beam (with no initial imperfection) with no lateral 

restraints is characterized by deformation of the member cross-section consisting of two components 
– lateral displacement of the cross-section out of plane of bending v and angle of rotation φ [1]. For a 
beam of monosymmetric cross-section this effect is illustrated in Fig. 1 where qz is vertical load 
(in the XZ plane), Cg indicates cross-section center of gravity, Cs cross-section shear center, 
az distance of center of gravity and shear center and ez distance of the position of load application 
and center of gravity. Compressed part of the cross-section tends to buckle out of plane of bending. 

Lateral torsional buckling of an ideal beam occurs when critical moment Mcr (caused by 
critical load) is reached. The problem of stability of an arbitrary thin-walled member of open cross-
section in bending and compression is defined by Vlasov in form of differential equations [1]. 
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Fig. 1: Lateral torsional buckling of an ideal beam 

After modification for case of a member in bending only the problem is defined by two 
homogenous differential equations of fourth order (1) and (2) and appropriate boundary conditions 
[1]. For a member simply supported in bending as well as in torsion boundary conditions (3) apply, 
for a fixed member boundary conditions (4) apply [1]. 
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where E is modulus of elasticity, G shear modulus of elasticity, Iz second moment of area, Iω warping 
constant, It torsion constant, qz vertical load (in the XZ plane), My bending moment, v and φ unknown 
functions of deformation and bz is Wagner coefficient. The expression for its determination can be 
found e.g. in [1]. Actual standard for design of steel structures [3] indicates it as zj. 

 In the mathematical point of view the critical load is given as eigenvalue problem of 
differential equations (1) and (2) with appropriate boundary conditions. Derived expression for 
critical moment of an isolated beam (with no lateral restraint) of at least monosymmetric cross-
section loaded by a load that crosses its shear center can be found in the standard [3]. 

 3 LATERAL TORSIONAL BUCKLING OF AN IDEAL BEAM 
WITH LATERAL CONTINUOUS RESTRAINT 
Let us consider that there is lateral continuous restraint located in a distance of cz from the 

cross-section center of gravity (at the point Clat) that prevents lateral displacement of the cross-
section. Therefore rotation of the cross-section around fixed axis occurs [1]. The situation can be seen 
in Fig. 2. 

 
Fig. 2: Lateral torsional buckling of an ideal beam with lateral restraint 
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 The lateral restraint is considered to be perfectly rigid. The beam span is L. An ideal beam is 
considered (with no initial imperfections). 

 3.1 Critical load determination 
Since lateral displacement of the cross-section is prevented, the only unknown function of 

deformation is angle of rotation φ and differential equations (1) and (2) are modified accordingly. It 
results in one homogenous differential equation of order four (5) [1] (in general with nonconstant 
coefficients) with boundary conditions (6) for simply supported beam and (7) for fixed beam: 

   0)())((2)( 2   zzzyzzzt
IV
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 0)()0(,0)()0(  LL  , (7) 

where qz is the magnitude of load at bifurcation of equilibrium (critical load). In the mathematical 
point of view it is an eigenvalue problem. In this case it is the so called Sturm-Liouville eigenvalue 
problem of differential equation of fourth order [4]. Solution of this complex problem is possible 
using combination of selected numerical methods, e.g. finite difference method and inverse power 
method. Both methods are easily algorithmizable. The procedure of the methods is described. 

Equation (5) is transformed to the form (8): 

  DqMCBA zy
IV  , (8) 

where 
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Equation (8) will be used as initial for eigenvalue problem solution (critical load 
determination). The interval <0; L> (beam span) is divided into N subintervals using a step of h and N 
– 1 equidistant nodes xi in such a way that 0 = x0 < x1 < … < xN-1 < xN = L, where xi = ih and h = 1 / N 
(Fig. 3). Certain value of the function φ is assigned to each node xi. It arises from the boundary 
conditions (6) and (7) that φ0 = φ(0) = 0 and φN = φ(L) = 0. 

Let us introduce first (13), second (14) and fourth (15) central difference for first, second and 
fourth derivative approximation: 
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Application of the central differences to nodes x0 and xN requires functional values in fictitious 
nodes x–1 = – h and xN+1 = L + h. It is possible to determine the functional values φ–1 and φN+1 using 
boundary conditions. For simply supported beam application of boundary conditions (6) results in 
functional values φ–1 = – φ1 and φN+1 = – φN–1. For fixed beam application of (7) results in functional 
values φ–1 = φ1 and φN+1 = φN–1. Functional values at nodes from x1 to xN–1 are to be solved. 
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Fig. 3: Difference scheme 

For each node xi, where i = 1, …, N – 1 equation (16) is assembled putting central differences 
(14) and (15) into equation (8) instead of second and fourth derivatives: 
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This modification leads to a system of N – 1 algebraic equations that can be expressed as 
follows (17): 
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 (17) 

Individual members of the system matrix are defined by following expressions: 

 AKK iiii   2,,2
 for i = 1, …, N – 3, (18) 

 
1,1 4   iii SAK  for i = 1, …, N – 2, (19) 

 
iii SAK  41,
 for i = 1, …, N – 2, (20) 

 
iii SAK 26,   for i = 2, …, N – 2. (21) 

For members K1,1 and KN–1,N–1 boundary conditions at nodes x0 = 0 and xN = L have to be taken 
into account. For a simply supported beam expression (22) applies, for a fixed beam expression (23) 
applies. 

 
iii SAK 25,   for i ={1; N – 1}, (22) 

 
iii SAK 27,   for i ={1; N – 1}. (23) 

Expression Si is defined as follows (24): 

 )(2 BMChS yii  . (24) 

System of algebraic equations (17) can be expressed as follows (bold letters indicate vectors): 

 K φ = qz D h4 φ , (25) 

where 

 φ = | φ1   φ2   φ3   …   φN-3   φN-2   φN-1 |T. (26) 

It can be modified to form (27): 

 G φ = qz φ , (27) 

where the matrix G is defined as expression (28): 
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4Dh

K
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For the eigenvalue problem solution (critical load qz determination) equation (27) is utilized. 
For practical purposes the most important is the minimum positive eigenvalue [5] (the lowest load 
that causes lateral torsional buckling of an ideal beam). 

Approximation of the minimum eigenvalue and appropriate eigenvector (buckling shape) of 
the matrix G can be computed e.g. using inverse power method [6] (power method applied to the 
matrix G-1). The algorithm of the power method can be found e.g. in [6]. Another possibility is 
application of the iterative QR algorithm [7] that gives all the eigenvalues with appropriate 
eigenvectors of the matrix G (complete eigenvalue problem solution). The algorithm is briefly 
outlined [7]: 

 
000 RQGG  , (29) 

 1,1  kQRG kkk
, (30) 

where matrices Qk and Rk are products of the so called QR decomposition of the matrix Gk. It is 
possible to decompose the matrix Gk to matrices Qk and Rk e.g. using Gram-Schmidt 
orthonormalization process [8]. Expression (31) then applies: 

 EGk
k




lim , (31) 

where E is a diagonal matrix with eigenvalues located on its diagonal (other members are equal to 
zero). The eigenvectors (buckling shapes) are given as columns of a matrix resulting from matrix 
Qk+1 and Qk multiplication. 

 3.2 Example of the critical load calculation 
For the example of the critical load calculation a steel beam of double symmetric cross-section 

according to Fig. 4 is chosen. There is lateral continuous restraint located at a distance of cz = 50 mm 
from the center of gravity. 

 
Fig. 4: Cross-section of the investigated beam 

The beam span is L = 5 m. There is vertical uniformly distributed load of a magnitude of 
1 kN/m acting at the top flange. Two types of support conditions according to boundary conditions 
(6) and (7) are considered. 

The procedure explained in section 3.1 with a step of h = 0,10 m (number of subintervals N = 
50) is applied. The solution leads to differential equation (32) with boundary conditions (6) or (7), 
respectively: 

  zy
IV qM 25,01,08,418483,121122  , (32) 

which is transformed to a system of 49 algebraic equations using finite difference method and solved 
by inverse power method. It results in minimum eigenvalue of 145520 (simply supported beam) and 
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472480 (fixed beam). In the physical point of view these values represent critical loads (in N/m). The 
appropriate critical moments are calculated using (33) for simply supported beam and (34) for fixed 
beam: 

 2

8

1
LqM crcr  , (33) 

 2

12

1
LqM crcr  , (34) 

For the simply supported beam the critical moment is equal to 454,8 kNm and for the fixed 
beam 984,3 kNm. For comparison: calculation of the critical moment of a beam of the same cross-
section, span and boundary conditions but with no lateral restraint using procedure according to [3] 
results in Mcr = 261,1 kNm (simply supported beam) and Mcr = 885,9 kNm (fixed beam). In this case 
the lateral restraint causes increase of critical moment of about 74 % (simply supported beam) and 
11 % (fixed beam). 

Application of the QR algorithm results in minimum eigenvalue of 142660 (simply supported 
beam) and 462393 (fixed beam). Appropriate critical moment determined using (33) is 445,8 kNm 
(simply supported beam) and using (34) 963,3 kNm (fixed beam). In Fig. 5 three lowest normalized 
eigenvectors (buckling shapes) of the matrix G obtained using QR algorithm are displayed (for clarity 
reasons higher eigenvectors are not displayed). In Fig. 6 graphical distribution of matrix G 
eigenvalues as a result of the QR algorithm is shown. 

      
Fig. 5: Three lowest buckling shapes Fig. 6: Eigenvalues of the matrix G 

 3.3 Solution using finite element method and comparison of results 
The example mentioned in the section 3.2 is solved using the finite element method code 

ANSYS 14.0 [9]. The thickness of each part of the cross-section is low in comparison with other 
dimensions. For this type of constructional members the shell finite elements are suitable. For the 
analysis the SHELL181 finite element is utilized. The beam cross-section, position of lateral restraint 
and load is in accordance with the example solved in section 3.2. Two types of support conditions are 
considered: simply supported beam and fixed beam. For the numerical analysis the finite element 
edge length 20 mm is specified. The detail of modeled beam including lateral restraint 
implementation can be seen in Fig. 7 (fixed beam; warping of support cross-section prevented). 
In case of the simply supported beam the so called fork support condition applies. According to [10] 
this support condition is considered for lateral torsional buckling analysis. It prevents lateral 
displacement at supports while warping is allowed. First order theory static analysis and linear 
buckling analysis (eigenvalue analysis) were performed. It results in minimum positive eigenvalue of 
146610 (simply supported beam) and 434338 (fixed beam). Results of critical moments 
approximations obtained by finite difference method with subsequent inverse power method or QR 
algorithm, respectively, and finite element method using the ANSYS 14.0 code are summarized in 
Tab. 1. In Fig. 8 there is one of the results of the numerical analysis using the ANSYS code – first 
positive eigenvalue for the case of the fixed beam. 
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Fig. 7: Finite element model 

 
Fig. 8: First positive buckling shape

Tab. 1: Comparison of results – approximations of critical moments (in kNm) 

Method 
Beam 

simply supported fixed 

Finite difference method + inverse power method 454,8 984,3 

Finite difference method + QR algorithm 445,8 963,3 

Finite element method (ANSYS) 458,2 904,9 

 3.4 Algorithmisation of the numerical methods for critical load determination and 
parametric studies 
Algorithms of the finite difference method, inverse power method and QR algorithm were 

programmed in the VBA language (programming language for the MS Excel application). 
After entering of input data (cross-section characteristics, beam span, position of lateral restraint, 
position of the load, step h of the interval mesh and required accuracy of iterative calculation the code 
meshes the beam span (discretization of the problem), assembles matrices and vectors and iteratively 
calculates the minimum eigenvalue. 

Following charts show some results obtained by the code. In Fig. 9 there is relationship 
between eigenvalue and size of the step h, Fig. 10 shows convergence of the iterative calculation of 
the inverse power method to the minimum eigenvalue for different beam span mesh. 
The convergence is very fast. The input data is identical with the data utilized for the example 
in section 3.2 for the case of the fixed beam. 

 
Fig. 9: Relationship between critical load and beam span mesh 
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Fig. 10: Convergence of iterative calculation to first positive eigenvalue 

Fig. 11 shows comparison of critical loads of a simply supported beam with no lateral restraint 
(calculation according to [3] and the ANSYS code) and analogous laterally restrained beam 
(calculation using finite difference method – FDM and the ANSYS code) of various spans. Fig. 12 
shows the comparison for a fixed beam (for clarity purposes spans from 5 m to 10 m only are 
displayed). 

 
Fig. 11: Comparison of methods of critical load determination – simply supported beam 

 
Fig. 12: Comparison of methods of critical load determination – fixed beam 
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There are certain noticeable differences among values of critical loads for small spans (low 
slendernesses) of the beams. These differences can be apparently explained by numerical finite 
element analysis that takes into account also effects of local buckling of thin walls of the cross-
sections. These local stability effects act together with global buckling of a beam and influence the 
resulting values of critical loads. For greater spans the global stability completely prevails and 
difference between methods is not significant. The system matrix of the finite difference method was 
derived from the differential equations of global stability of a thin-walled beam (provided the cross-
section does not distort). It follows that mentioned local effects are not included. 

 4 CONCLUSIONS 
The paper focuses on lateral torsional buckling of thin-walled beams with lateral continuous 

restraint. The lateral restraint increases buckling resistance of members; its influence on critical 
moment was quantified using example of a beam of double symmetric cross-section. The results were 
compared with results of an analogous beam with no lateral restraint. For the critical load 
determination selected numerical methods were utilized. A code for computerized calculation in the 
VBA language was created. It implies from the performed parametric studies that the influence of 
lateral restraint on critical load is significant. If it is correctly taken into account it might result in 
more economical cross-section design that positively influences material consumption. 
Constructional design might be therefore more effective. 

The approximations of critical loads were compared with results of numerical analyses 
performed using a finite element code. Certain differences between results for smaller beam spans are 
explained by local stability effects that arise from the finite element method analysis. 

Described numerical algorithms (finite difference method, inverse power method) are 
relatively easy to algorithmize and allow to create applications for eigenvalue problems solution. 
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