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Abstract. Mobile communication systems present an 
actuality subject in academic and industrial research 
activities due to several phenomena such as interferences, 
multipath, fading and shadowing. All this lead to a severe 
perturbation on handover mechanism which depends on 
specific reports, essentially, reference signal received 
power (RSRP) and signal-to-interference and noise ratio 
(SINR). In this paper, we design a new technique in 
handover domain; it consists of combining energy 
detection method used in cognitive radio with least mean 
square (LMS) process in order to prognosticate the 
handover impact in a realistic scenario of heterogeneous 
LTE network. More exactly, technique sense of the word 
"triggering" will be changed to a probability of detection. 
The proposed algorithm cycle follows two main steps; 
Firstly, predict at what time the absence of spectrum 
(primary user) will occur, using a predicted sensing 
probability. Secondly, search others spectrums in this time 
by calculating the probability of detection for each sensed 
signal and hand-off secondary user in the best spectrum. 
The results achieved of the simulation are evaluating, it 
shows that the proposed method predict the original 
probability of detection correctly with minimal errors and 
select the best spectrum successfully contraly to standard 
handover process. 
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1. Introduction 
In recent decades, the demand for mobile applications 

to high data rate continues to increase. Several mobile 
networks generations have known a lightning evolution 
such as 3rd generation partnership project long term evolu-
tion (3GPP LTE) and LTE-Advanced (LTE-A) technolo-
gies [1–3], marketed as 4th generation in telecommunica-
tion systems. The 3GPP standardizes the multiple access 
technologies in downlink as orthogonal frequency division 
multiple access (OFDMA), and single carrier frequency 

division multiple access (SCFDMA) in uplink [1], [3], [4], 
[5]. These techniques aim to give high peak data rates, 
improve network capacity and coverage, high spectral 
efficiency, and spectrum flexibility [6], [7], [8]. Therefore, 
researchers’ community focus their efforts on the 
enhancement of spectral efficiency and throughput in next-
generation wireless networks with deploying small-cell 
also known as femto-cell, or a home evolved node-B 
(HeNB). Their objective is to extend indoor coverage 
where in most cases the signal strength from outdoor 
evolved node-B (eNB) is insufficient. 

Due to economic reasons, the deployments of femto-
cells promise a cost efficient solution in communications 
infrastructure. They guarantee an improved indoor cover-
age, higher transmission rate, better spectrum reuse, main-
tain the requirements for quality of service (QoS) and so 
on. Fundamentally, HeNBs are deployed in an apartment or 
an office to alleviate the loading of the overlay macro-cell, 
and to enhance the communications of femto/macro-users. 

Many critical parameters and problematic for radio 
frequency (RF) spectrum measurement in LTE/LTE-A 
require efficient utilization; same RSRP and SINR, whose 
study and optimization become indispensable for maintain-
ing a continuity of service. The RSRP is the most basic 
measurement performed by the physical layer of user 
equipment (UE); it is used as an input for cell resection and 
handover decisions [9]. The RSRP is defined as the aver-
age power of the resource elements (REs) that carry cell-
specific reference signals (RSs) over the entire bandwidth 
[10]. Whereas the SINR is defined as the ratio of the signal 
power to the summation of the average interference power 
from other cells and the background noise [9]. 

When a UE is moving from one cell to another it trig-
gers the procedure of mobility management, known as 
handover process; it is one of the key components in cel-
lular network mobility management [11] but also a crucial 
point. Basically, handover types are divided into hard or 
soft handovers [2]. In the first case, also known as break-
before-make, the channel is released from the source cell 
and only then will engage to make a channel at the target 
cell. While in soft handover (make-before-break), the 
channel is retained at the source cell and used for a certain 
time; in parallel, it makes the tunnel with the channel at the 
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target cell. So, hard handover has been adopted in 
LTE/LTE-A systems by 3GPP [2], [12], [13]. Its use re-
duces handover mechanism complexity due to LTE/LTE-A 
networks architecture and minimizes the handover delay. 
However, hard handover approach causes a very strong 
impact on applications that may result a lost data during 
a session, and it is not acceptable for UEs.  

Several articles have been published in mobility man-
agement and spectrum sensing areas. However, authors of 
reference [2] present an excellent survey in LTE/LTE-A 
where they clarify the challenges and issues on handover 
management and class the recent works into four groups 
based on the nature of these algorithms: 1) Location based 
algorithms; use the actual location of HeNBs as an input 
parameter to emend the handover efficiency. 2) Mobility or 
speed based algorithms; the UE’s velocity should be taken 
into account during the handover decision. 3) Policy based 
decision algorithms; some predefined policy was placed to 
make the adequate decision. Lastly, 4) learn based algo-
rithms; apply some learning skills to harvest some infor-
mation from the environment and to use it to improve good 
decisions. 

In [14], the authors explain the issue where one 
macro-cell has several femto-cell implying that they will 
have a large number of unnecessary macro-to-femto cell 
handovers when mobile users move with low velocity. The 
idea is to maintain macro-cell connection rather than to 
trigger the handover by identifying «femto-cell temporary 
visitors» where they divided femto-cell area and its sur-
roundings into sub-areas using positioning technology and 
predict next sub-area movement patterns when a mobile 
user approaches the femto-cell. 

The works in [15] take UEs’ speeds for handover de-
cision into account where UEs move with high velocities. 
This situation increases significantly the numbers of hand-
overs which affect communication quality. To reduce the 
unnecessary handovers due to the limitation of spectrum 
resource by serving the station, they introduced in addition 
to SINR, a periodic scan mechanism. They present two 
flow charts. If the serving station is macro-cell, we use 
both SINR trigger and regular scans. Otherwise, if the 
serving station is femto-cell we use only SINR trigger scan. 

The paper [16] presents two issues. Firstly, oversized 
neighboring eNB list problem, when UE needs to handoff, 
it uses a long time for measuring all stations (eNBs and 
HeNBs) on the list to select a suitable station (eNB or 
HeNB). But due to the short transmission range of HeNBs, 
most of stations in the list are out of range. This procedure 
is known as senseless measurement. Secondly, HeNB idle-
ness problem, where UE stay connected on eNB and can-
not use the signal strength provided by HeNB. To avoid 
these two issues, the authors propose the location-based 
neighboring eNB management scheme to alleviate the 
senseless measurement problem by decreasing the size of 

neighboring eNB list and the message flow of “HeNB-
assisted HandOver”. 

Moreover, the reliability of signal detection is limited 
by attenuation due to path loss, fading and shadowing [17]. 
Sensing algorithms in cognitive radio are seen as a solution 
improving the spectrum utilization. There are several 
studies proposed in sensing algorithms for detecting pri-
mary user (eNodeB/HeNB) by secondary user (UE) such 
as energy detection, wavelet-based detection, cycle statio-
nary feature detection and matched filtering [18]–[20]. 

Gentner et al. [21] present a novel analytical deriva-
tion of the false alarm probability (FAP) and detection pro-
bability (DP) for non-line of sight (NLOS) detection based 
on LTE signals. The concept builds on [2], where the 
authors present a derivation of the FAP and DP of detect-
ing pilot bursts of W-CDMA systems. 

In reference [22], the authors present the spectrum 
sensing issue in the case when primary and secondary 
systems operate on a similar scale in terms of transmission 
power. They proposed an analytic model based on sensors 
network and energy detection. The numerical results are 
evaluated in two different scenarios when the primary 
system is a wireless local area network (WLAN) and 
a 3GPP LTE network.  

The authors in [23] propose a method for LTE signal 
detection based on constant amplitude zero autocorrelation 
(CAZAC) sequence. They introduced and calculated 
CAZAC sequence with fractional Fourier transform (FrFT) 
instead fast Fourier transform (FFT) method. The simula-
tion results of the probability of detection are compared to 
the four methods; energy detection, FrFT, CAZAC and 
cyclic prefix.  

Mobility management, scarcity of radio resources, 
dynamic nature of propagation environment, a variety of 
user mobility and heterogeneous networks are the biggest 
challenges that give birth to the proposed technique. The 
principle is in two phases; First phase; foresee the moment 
where the absence of primary user spectrum (HeNBs or 
eNBs) will occur, using energy detection technique that is 
represented by a probability of detection Pd, with an esti-
mator known as the LMS process. Second phase; find other 
spectrums of primary users in this time by calculating their 
Pd and select the best spectrum, in order to prepare and 
connect the secondary user. We employ all this for real 
mobility settings in a heterogeneous LTE network (femto 
and macro cells). 

The rest of paper is arranged as follows. Section 2 in-
troduces the system model of LMS mechanism, propaga-
tion model used in LTE and the functioning of energy de-
tection. Section 3 presents the relationship between the 
conventional handover procedure and proposed algorithm. 
Section 4 provides simulation results for both methods and 
we conclude by Sec. 5 with the conclusion and future 
works that follow this research. 



810 M. H. HACHEMI, M. FEHAM, H. E. ADARDOUR, PREDICTING THE PROBABILITY OF SPECTRUM SENSING WITH LMS … 

 

2. System Model 

2.1 LMS Process 

It is considered as a promising element in signal 
processing applications because of its simplicity and good 
performance on the future state of a system. 

LMS filter supervises prediction error e(n) and at-
tempts to minimize the mean squared prediction error 
E{e(n)2} by updating the weight vector of prediction Wn. 
However, a pth order LMS predictor is represented by: 
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where p is the prediction order, X(n) the input vector and 
Wn denotes the coefficient vector (or the weighting vector), 
where: 

  T
( ) ( ), ( 1), , ( 1)n x n x n x n p   X  , (2) 

  (0), (1), , ( 1)n n n nw w w p W   (3) 

knowing that T represents the transposed. 

Normalized LMS (NLMS) is frequently used in 
practice. It is the modification of the LMS algorithm where 
the update equation is changed as: 

 2

1 ( ) ( ( ) ( ) )n n e n n n    W W X X . (4) 

So, the expression of prediction error e(n) is defined as: 

 )(ˆ)()( pnxpnxne  . (5) 

If at the time n, the value of x(n + p) is not available to 
compute e(n), we can use e(n – p) instead e(n) [24]: 

 )(ˆ)()( nxnxpne    (6) 

 
Fig. 1. Principle diagram of LMS filter. 

Stability of NLMS is controlled by a fixed step-size 
constant , which also controls the rate of convergence 
(speed of tracking). In a normalized LMS, if 0 <  < 2, 
then LMS filter will converge to the mean. The prediction 
linear operation by LMS process is shown in Fig. 1. 

2.2 Propagation Model 

In order to have a probability of detection, we must 
have RSRP model. This model is modeled by the mathe-

matical equations in a heterogeneous LTE network com-
posed of macro and femto cells. 

RSRP is calculated from the transmit power Pc, path 
loss values from cell transmitting to user equipment PLc,ue 
and additional shadow fading with a log-normal distribu-
tion and a standard deviation PLc,fad [9], [12], [25], [26], 
[27]. It is represented as follows: 

 
c,ue c c,ue c,fadRSRP P PL PL   . (7) 

Two path loss propagations models are used to 
calculate RSRPc,ue in this paper: 

 The RSRPmacro,ue for macro-cell transmitter (eNB) and 
an outdoor macro-user (MU). 

 The RSRPfemto,ue for femto-cell transmitter (HeNB) 
and an outdoor femto-user (FU) associated to indoor 
HeNB. 

Firstly, RSRPmacro,ue: The macro-cell propagation 
model for a MU that roams in outdoor urban area PLmacro,ue 
can be expressed in dB [28], [29], [30], [31] as: 

 
macro,ue 102.7 42.8 log ( )PL R   (8) 

where R is the distance between an eNB and a MU in 
meters. 

In the case where we have an indoor MU, we add Low 
in (8) that represents the penetration loss of an outdoor 
wall. The result of the path loss in dB is given by: 

 
macro,ue 10 ow2.7 42.8 log ( )PL R L   . (9) 

The log-normal shadowing path loss model PLmacro,fad is 
represented in dB by: 

  
macromacro,fad 0 10 010 logPL PL d d X   . (10) 

PL0 is the path loss at a reference distance d0 measured in 
dB,  the path loss exponent without unit, d is the separa-
tion distance between an eNB and a MU in meters and 
Xmacro is a random variable Gaussian distribution with zero 
mean and the standard deviation macro in dB [32]. The PL0 
is calculated by the free space path loss (FSPL) model as: 

  2

0 10 010log 4PL d   (11) 

where  is the wavelength of the signal in meters. 

So thus, we will have: 

 
macro,ue macro macro,ue macro,fadRSRP P PL PL   . (12) 

Secondly, RSRPfemto,ue: The path loss PLfemto,ue  be-
tween a HeNB and a FU that are in the same apartment can 
be calculated in dB [28], [29], [30], [31] as: 

 femto,ue 10

(( 2)/( 1) 0.46)
2D,indoor iw

38.46 20log ( )

0.7 18.3 n n

PL R

d n q L  

  

  
 (13) 

where 0.7d2D,indoor represents the penetration loss due to 
walls inside an apartment (expressed in meters), n is the 
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number of building floors, q is the number of walls sepa-
rating apartments between the HeNB and the FU and Liw is 
the penetration loss due to internal building walls.  

In this work, we consider that we have an outdoor FU 
associated to an indoor HeNB. We assume that: 

 The HeNB is on the ground floor of an apartment 
(n = 0). 

 There are no other barriers between the HeNB and 
FU apart q = 3. 

The equation of the path loss outdoor FU & indoor 
HeNB propagation model is given by: 

 femto,ue macro,ue 10

2D,indoor iw ow

max[ ,38.46 20log ( )]

0.7 ,

PL PL R

d q L L

 

   
 (14) 

concerning the log-normal shadowing path loss model 
PLfemto,fad is the same equation for PLmacro,fad except that the 
standard deviation femto is different.  

Thereby, we will have: 

 
femto,ue femto femto,ue femto,fadRSRP P PL PL   . (15) 

Now, observing SINR. In general, it can be calculated 
between RSRP of the connected cell RSRPc,ue and RSRP 
value of the interfering cell plus the thermal noise 
RSRPint,noise. The result in dB is [12], [25], [26]: 

 
ue c,ue int,noiseSINR RSRP RSRP  . (16) 

In particular, we represent the SINR for a MU and a 
FU respectively with (17) and (18): 

 
MU macro,ue int,noiseSINR RSRP RSRP  , (17) 

 
FU femto,ue int,noiseSINR RSRP RSRP  . (18) 

2.3 Energy Detection 

In this part, we interested on local spectrum sensing 
model as presented in [33]. The output of this method gives 
a decision value compared with  that represents the deci-
sion of the energy threshold; if it is above the threshold, 
then the sensing of the primary user is present. Further-
more, the aim of this detection is to distinguish the fol-
lowing binary hypotheses [17], [34], [35], [36] 

 0, ue

1, ue eNB
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where yuei (t) is the received signal by UEi, xeNB(t) denotes 
the transmitted signal of an eNB, ni(t) represents the addi-
tive white Gaussian noise (AWGN) at UEi. H0,i is a null 
hypothesis of UEi which defines the absence of PU. H1,i 
denotes the presence hypothesis of UEi that indicates the 
presence of PU signal. 

Assuming, we have one UE to simplify scripture of 
(19). Now, UE has two observations H0 and H1. It needs to 

take the decision between both over AWGN channel. Take 
  the energy of the received signal expressed by: 
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where T is the sensing time interval (or observation time 
interval) in seconds, W bandwidth in Hz. 

For observations H0, the energy detection is:   
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For observations H1, the energy sensing is written as: 
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The decision statistic is shown to be central chi-square dis-
tributed with 2TW degrees of freedom for E0 and for E1, no 
central chi-square distributed with 2TW degrees of freedom 
and a non-centrality parameter 2 where  represents the 
SINR [36]: 

     
)2(:

:
2
21

2
20





TW

TW

H

H
 (23) 

For this, the sensing metrics are presented such as the 
detection probability Pd and false alarm probability Pfa 
[18], [33], [34], [35], [36]: 
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where Q(.,.) is the Marcum Q-function, (.,.) represents 
the incomplete gamma function and (.) the gamma 
function,  is the time-bandwidth product [37], [38], [39]. 

3. Standard and Proposed Handover 
Process in LTE 
In this section, the relationship between the standard 

handover procedure and the proposed algorithm in LTE are 
exposed.  

3.1 Conventional Handover Algorithm 

The standard handover algorithm in LTE is adopted 
to reduce the complexity of the LTE network architecture. 
It is also known as the LTE Hard Handover Algorithm. 
Two variables are essential for triggering handover pro-
cess; handover margin (HOM) and time to trigger (TTT) 
timer. HOM is a constant value that represents the thresh-
old to triggering the handover (HO). It is calculated by the 
difference of RSRP between the serving cell and targets 
cells that allows identifying the most appropriate target cell 
for UE. A TTT is required time for satisfying HOM condi- 



812 M. H. HACHEMI, M. FEHAM, H. E. ADARDOUR, PREDICTING THE PROBABILITY OF SPECTRUM SENSING WITH LMS … 

 

 
Fig. 2. Principle of the LTE hard handover process. 

tion. The LTE Hard Handover condition is presented as 
follows [25], [40], [41], [42], [43], [44]: 

 
T,ue S,ueRSRP RSRP HOM   (25) 

where RSRPT,ue and RSRPS,ue are the RSRP received by 
a UE from the target cell and the serving sector, respec-
tively. 

As shown in Fig. 2, when equation (25) holds for 
a given TTT then the handover can be initiated, where the 
UE sends the measurement report to the eNB of the serving 
cell. The serving cell starts observing the incoming con-
secutive time slots after TTT starts. If the RSRP difference 
is less than or equal to HOM in any of the incoming con-
secutive time slots, the HO process will be reset, otherwise, 
handover process will be executed. This procedure is called 
the HO decision. Afterward, the preparation time is mod-
eled as a constant protocol delay “C” in a millisecond. 
When the preparation has been completed, the serving cell 
sends the HO Command message to the UE in downlink 
(HO Command Process) [42]–[44]. 

3.2 Proposed Algorithm 

Unlike the conventional handover algorithm (Fig. 3.a) 
that presents a problem on adjustment values HOM and 
TTT which can cause a false triggering of handover pro-
cess due to several phenomena as multipath, fading and 
shadowing, the proposed technique aims to predict the 
triggering of handover process using estimate probability 
of detection method with LMS estimator. 

The improvement brought to avoid this adjustments is 
to track RSRP signal automatically (Fig. 3.b), by estimat-
ing at what moment the sensing probability of link-down of 
serving cell will attain. Firstly, the proposed algorithm 
harvests p samples of RSRPS,ue in order to predict the sam-
ple of RSR̂PS,ue at t + p. The next step consists to calculate 
P̂dS,ue(t + p) by using SIN̂RS,ue(t + p). When 
P̂dS,ue(t + p) < Pdth is fulfilled, the HO initiation is triggered 
followed by HO decision process that calculates the proba-
bilities of detection for each sensed signal PdTi,ue(t). Then, 
the algorithm compares and selects the highest probability 
(best spectrum) and sends the HO Command message to 
the UE without waiting a constant protocol delay “C”. 

 
Fig. 3. a) LTE Hard handover algorithm.  

b) Improved handover algorithm (proposed algorithm). 

4. Simulation Results 
In this section, we compare the two algorithms inves-

tigated in the same scenario using MATLAB platform. 
Table 1 provides the simulation parameters. This scenario 
is composed of one femto-cell (HeNB) and two macro-
cells (eNB). The HeNB is located in the eNB1. Seeing that, 
a femto-cell can support eight users [46]. 

By implementing the pedestrian mobility trace of Mo-
bile and wireless communications Enablers for Twenty-
twenty (2020) Information Society (METIS) [45] in our 
topology model, we evaluate and interpret the simulation 
results.  

Assuming that, the pedestrian starts to move in the 
femto-cell until the second macro-cell crossing the first 
macro-cell as shown in Fig. 4.  

4.1 Conventional Handover Process on 
Energy Detection 

The values of TTT and HOM for the LTE networks 
have already been specified by the 3GPP specification [47] 
where the specified values for TTT (in milliseconds) are 0, 
40, 64, 80, 100, 128, 160, 256, 320, 480, 512, 640, 1024, 
1280, 2560 and 5120. For HOM, the valid values vary 
between 0 and 10 dB with steps of 0.5 dB, resulting in 21 
valid HOM values. In our simulations, the HOM value for 
macro/femto cell set to 10 dB and we suppose the value of 
TTT plus the handover procedure equal to one second. 

From the Fig. 5, the LTE hard handover process is 
triggered on two times. The first triggering, when the UE 
get into HO area at t = 96 s, where the condition 
RSRPeNB1,ue > RSRPHeNB,ue + HOM holds for TTT = 512 ms 
and at t = 308 s is the second HO triggering. 
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Fig. 4. Pedestrian’s mobility METIS in our topology model. 

 
 

 

Parameter Value 
Simulation time 483 sec 
Simulation area 1000 m × 1850 m 
UEs’ numbers 1 

Macro-cell radius 500 m 
Femto-cell radius 50 m 

Frequency 2 GHZ 
Path loss exponent 3 
Reference distance Starting UE’s point 

Outdoor penetration loss 20 dB 
Indoor penetration loss 5 dB 

Transmit power of the eNB 46 dBm 
Transmit power of the HeNB 23 dBm 

Wavelength of the radio signal 0.124 m 
# of walls separating apartment 

between HeNB / UE 
3 

UE’s mobility 
Pedestrian mobility -  

METIS trace 
Observation channel AWGN 

Prediction order 
macro/femto cell 

11 / 3 

Standard deviation 
macro/femto cell 

8 / 3 

Thermal noise –174 (dBm/Hz) 
Noise figure 9 dB 

Step-size  - macro/femto cell 0.05 / 0.1 
Sensing level for macro/femto cell –86 / –75 dBm 

Tab. 1. Simulation parameters. 

 
Fig. 5. LTE hard handover simulation. 

The reason for calculating the sensing probabilities of 
these two points (Fig. 5) is to ensure the same comparison 
scale with the proposed method.  

4.2 LMS Process on Energy Detection 

This prediction mechanism provides an automatic 
method for tracking the signal probability continuously. 
The process starts when it harvests pfemto samples of 
RSRPfemto,ue. Even so, we don’t have enough time on the 
convergence process, fault to the small-cell size. So as to 
accelerate processes, we take the pfemto = 3 and the step-size 
femto = 0.1 which leads to a very low error over time 
(Fig. 6) and benefits a good prediction of RSRPfemto,ue.  

On the other side, for each the RSRPmacro,ue vector, we 
take pmacro = 11 and the step-size macro = 0.05. So, the 
condition pmacro > pfemto is fixed due to large-cell size, which 
implies respectively, a high probability to fall brusquely 
into the fading, a false update of error and an inaccurate 
prediction header of the detection probability. We find the 
results in Fig. 7 and Fig. 8 of the real & ahead prediction of 
the RSRPmacro,ue for the two macro-cells. 
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Fig. 6. Real / prediction header of RSRPfemto,ue. 

 
Fig. 7. Real / prediction header of RSRPeNB1,ue. 

 
Fig. 8. Real / prediction header of RSRPeNB2,ue. 

According to the proposed cycle in Fig. 3.b, we eval-
uate the SINR signal for each UE’s position. The equations 
(17) and (18) as presented are used, and the results are 
illustrated in Fig. 9, Fig. 10 and Fig. 11. 

 
Fig. 9. Real / prediction header of SINRfemto,ue. 

 
Fig. 10. Real / prediction header of SINReNB1,ue.  

 
Fig. 11.  Real / prediction header of SINReNB2,ue. 

As depicted in Fig. 12, Fig. 13 and Fig. 14 we remark 
the influence on the anticipation of detection probability to 
start sensing others spectrums. In other words, if the ahead 
prediction probability value P̂d(t + p) is less than Pdth then 
the detection probability Pd(t) is trigged to detect other 
spectrums. 

In Tab. 2, we summarize the detection points of real 
probabilities detections at t  to explore other probabilities 
of primary users in chronological order. The UE is 
assumed to be connected to the femto-cell at t = 1 s, and to 
move toward to the edge cell. At t = 96 s, the estimated 
probability  of  detection  P̂dHeNB = 0.5292  is less  than  the 



RADIOENGINEERING, VOL. 25, NO. 4, DECEMBER 2016 815 

 

 
Fig. 12. Real & anticipation on the energy detection of PdHeNB,ue. 

 
Fig. 13. Real & anticipation on the energy detection of PdeNB1,ue.  

 
Fig. 14. Real & anticipation on the energy detection of PdeNB2,ue.  

probability of detection threshold Pdth,HeNB = 0.5306 with 
an error of the prediction equal to 0.0105 (weak value), 
thereby, the triggering to sense other spectrums at 
PdHeNB = 0.6564 is started. So, there are two spectrums 
candidates; macro-cell #1 and macro-cell #2. In order to 
select which one is better, the proposed algorithm calcu-
lates the detection probability Pd for both in this time 
PdeNB1 = 0.7060 and PdeNB2 = 0.3861. The selection is 
evident PdeNB1. 

After connection to the macro-cell #1, the UE keeps 
moving until t = 341 s where the detection of the macro-
cell #2 spectrum is obvious (PdeNB2 > PdHeNB) with an excel-
lent precision equal to 99.7%. Whereas, after t = 341 s, the 
process to find other spectrums will be not triggering until 
the end of simulation, because P̂deNB2 value will be always 
staying superior to Pdth,eNB2, we can confirm this by com-
paring PdeNB2 = 0.7830 with Pdth,eNB2 = 0.5261 at t = 483 s, 
where the UE is remained always connected to the macro-
cell #2.  
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Tab. 2. Chronological order of the simulation study. 

4.3 Algorithms Evaluation 

For the evaluation the proposed algorithm, we 
compare with the conventional HO algorithm. 

Figure 15 presents the curve sensing probability 
HeNB for both methods. At t = 96 s and t = 97 s are the 
times to trigger the HO process for the proposed and clas-
sical algorithms with the first sensing probability to hand-
off on eNB1 PHO1 = PdeNB1 = 0.7060 and 
P’HO1 = PdeNB1 = 0.7044 respectively. 

On the second triggering (Fig. 16) the standard HO 
process is triggered too early before the link down of 
macro-cell#1, although the adjustment of the constant 
HOM is at its maximum (P’HO2 = PdeNB2 = 0.6006). So in 
the proposed algorithm, the sensing probability of trigger-
ing is accurate (PHO2 = PdeNB2 = 0.6566). 

4.4 Other Simulations  

To verify the validity of the LMS process on energy 
detection we use two other traces pedestrian mobility of 
METIS [40] in the same topology model (Fig. 17) and 
simulation parameters (Tab. 1). 

So, the pedestrian #2 (UE2) begins to move in the 
first macro cell by crossing the femto-cell and finishes its 
trajectory in the first macro-cell (Fig. 17). However, in the 
classical HO process (Fig. 18) the first triggering will 
occur at 125t s (Fig. 19). 

The second triggering is started at 243t s for 
changing the sector eNB1 to HeNB (Fig. 20). 

Let’s see the impact of LMS process on sensing prob-
ability of spectrum (Fig. 21). At t = 117 s the sensing prob-
ability for triggering the first HO PHO1 is sensed to HeNB 
(PdHeNB = 0.4794, PdeNB2 = 0.3258). At t = 246 s the second 
probability of detection for the HO triggering PHO2 is 
sensed to eNB1 PdeNB1 = 0.6193, PdeNB2 = 0.33056). 

 
Fig. 15. Triggering the first HO process (Conventional & 

proposed algorithms). 

 
Fig. 16. Triggering the second HO process (Conventional & 

proposed algorithms). 

 
Fig. 17. Pedestrian mobility of METIS in the same topology. 

t (s) Pd Pdth Pd(t +p) P̂d(t +p) 
Error of 
precision 

1 Connect to femto-cell 

  
Femto-cell 

96 0.6564 0.5306 0.5215 0.5292 0.0105 

Detect others spectrums before Handoff 

macro-cell #1 

C
an

di
da

te
s 

96 0.7060     

macro-cell #2 

96 0.3547     

Connect to macro-cell #1 

  
macro-cell #1 

341 0.5351 0.5286 0.5152 0.5122 0.0030 

Detect another spectrum before Handoff 

femto-cell 
C

an
di

da
te

s 

341 0     

macro-cell #2 

341 0.6566     

Connect to macro-cell #2 

  
macro-cell #2 

483 0.7830 0.5261    
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Fig. 18. Conventional HO process for UE2.  

 
Fig. 19. First triggering of HO process for UE2.  

 
Fig. 20. Second triggering of HO process for UE2.  

For the pedestrian #3 (UE3): He starts to move in the 
second macro-cell until the femto-cell crossing the first 
macro-cell. As plotted in Fig. 22, where, it presents the 
conventional HO. There are two points of triggering. The 
first will occur at t = 181 s after the link down of eNB2 
(Fig. 23) and at t = 279 s, there is the second time for 
changing sector eNB1 to HeNB (Fig. 24). 

Let us now see the sensing probability. As presented 
in Fig. 25 at t = 121 s the probability of detection for 
triggering the first HO PHO1 is sensed to eNB1 
(PdeNB1 = 0.6534; PdHeNB = 8.6926 × 10–10).  

 

 
Fig. 21. Sensing probability of HO process (proposed method). 

 
Fig. 22. Conventional HO process for UE3.  

The second probability of detection for the HO 
triggering PHO2 (Fig. 26) is sensed to HeNB at t = 261 s 
(PdeNB2 = 0.3448; PdHeNB = 0.4713). 
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Fig. 23. First triggering of HO process for UE3.   

 
Fig. 24. Second triggering of HO process for UE3.  

5. Conclusion 
The primary objective of this paper is to improve in 

real-time the spectrums sensing in a heterogeneous LTE 
network. Our study leads to see the effectiveness of the 
LMS process on the energy detection mechanism in order 
to predicate the detection probability of the spectrum at 
(t + p) and to search other spectrums in the surrounding by 
calculating the detection probability at t and to take the 
right decision by comparing which have the best sensing 
probability. In addition, this study allows seeing another 
appearance of traditional process on the triggering of the 
handover. The simulation results show that the proposed 
algorithm attains the best performance with the excellent 
precision on future spectrum sensing in real environment 
contrary to the conventional HO process that depends on 
several adjustment of HOM and TTT. Equally, the num-
bers of HOM values are limited which has a crippling 
impact on LTE network. 

An interesting work that should follow this research is 
to investigate the impact of this algorithm by increasing the 
femto-cells in macro-cell, and also, to introduce an adap-
tive variable step-size method on LMS filter that allows the 
auto-adaptive sensing. 

 

 
Fig. 25. First triggering of HO process (proposed method). 

 
Fig. 26. Second triggering of HO process (proposed method). 
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