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1. Introduction

In our paper, we study artificial, or formal, neurons. Recall that these are the building
blocks of mathematically modeled neural networks, e.g., [1]. The design and functionality
of artificial neurons are derived from observations of biological neural networks. Our
investigation belongs to the theory which is developed and applied in various directions
contained in many publications, cf. [2–6]. The bodies of artificial neurons compute the sum
of the weighted inputs and bias and “process” this sum with a transfer function, cf. [1–10].

In the next step, the information is passed via outputs (output functions). Thus,
artificial neural networks have the structure similar to that of weighted directed graphs
with artificial neurons being their nodes and connections between neuron inputs and
outputs being directed edges with weights. Recall that in the framework of artificial neural
networks there are networks of simple neurons called perceptrons. The basic concept
(perceptron) was introduced by Rosenblatt in 1958. Perceptrons compute single outputs
(the output function) from multiple real-valued inputs by forming a linear combination
according to input weights, and then possibly putting the output through some nonlinear
activation functions. Mathematically, this can be written as

y(t) = ϕ

(
n

∑
i=1

wi(t)xi(t) + b

)
= ϕ

(
~wT(t)~x(t) + b

)
, (1)

where ~w(t) = (w1(t), . . . , wn(t)) denotes the vector of time dependent weight functions,
~x(t) = (x1(t), . . . , xn(t)) is the vector of time dependent (or time varying) input functions,
b is the bias and ϕ is the activation function. The use of time varying functions as weights and
inputs is a certain generalization of the classical concept of artificial neurons from the work of
Warren McCulloch and Walter Pitts (1943); see also [1–10] and references mentioned therein.

2. Differential Neurons and Their Output Functions

In accordance with our previous papers [1,7–9], we regard the above mentioned artifi-
cial neurons such that inputs xi and weights wi will be functions of argument t belonging
into a linearly ordered (tempus) set T with the least element 0. As the index set we use
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the interval of real numbers [1, ∞) = {x ∈ R; 1 ≤ x}, where R denotes the set of all real
numbers. So, denote by W the set of all non-negative functions w : T → R forming a
subsemiring of the ring of all real functions of one real variable x : R → R. Denote by
Ne(~wr(t)) = Ne(wr1(t), . . . , wrn(t)) for r ∈ [1, ∞), n ∈ N and the mapping

yr(t) =
n

∑
k=1

wr,k(t)xr,k(t) + br (2)

which will be called the artificial neuron with the bias br ∈ R, in fact the output function of
the corresponding neuron. By AN(T) we denote the collection of all such artificial neurons.

Neurons are usually denoted by capital letters X, Y or Xi, Yi. However, we use also
notation Ne(~w), where ~w = (w1, . . . , wn) is the vector of weights.

We suppose, for the sake of simplicity, that transfer functions (activation functions) ϕ,
σ (or f ) are the same for all neurons from the collection AN(T) or that this function is the
identity function f (y) = y.

Now, similarly as in the case of the collection of linear differential operators, we will
construct a cyclic group of artificial neurons, extending their monoid, cf. [1].

Denote by δij the so called Kronecker delta, i, j ∈ N,, i.e., δii = δjj = 1 and δij = 0,
whenever i 6= j.

Suppose Ne(~wr), Ne(~ws) ∈ AN(T), r, s ∈ [1, ∞), ~wr = (wr1, . . . , wr,n), ~ws = (ws1, . . . ,
ws,n), n ∈ N. Let m ∈ N, 1 ≤ m ≤ n be a such an integer that wr,m > 0. We define

Ne(~wv(t)) = Ne(~wr(t)) ·m Ne(~ws(t)), (3)

where
~wv(t) =

(
wv,1(t), . . . , wv,n(t)

)
, (4)

wv,k(t) = wr,m(t)ws,k(t) + (1− δm,k)wr,k(t), t ∈ T (5)

and, of course, the neuron Ne(~wv) is defined as mapping yv(t) =
n
∑

k=1
wk(t)xk(t) + bv,

t ∈ T, bv = brbs. Further, for a pair Ne(~wr(t)), Ne(~ws(t)) of neurons from AN(T) we put

Ne(~wr(t)) ≤m Ne(~ws(t)),

~wr(t) =
(
wr,1(t), . . . , wr,n(t)

)
, ~ws(t) =

(
ws,1(t), . . . , ws,n(t)

) (6)

if wr,k(t) ≤ ws,k(t), k ∈ N, k 6= m and wr,m(t) = ws,m(t), t ∈ T and with the same bias.

Remark 1. There exists a link between formal neurons and linear differential operators of the
n-th order. This link is important for our future considerations. Recall the expression of formal

neuron with inner potential y−in =
n
∑

k=1
wk(t)xk(t), where ~x(t) =

(
x1(t), . . . , xn(t)

)
is the vector

of inputs, ~w(t) =
(
w1(t), . . . , wn(t)

)
is the vector of weights. Using the bias b of the considered

neuron and the transfer function σ we can expressed the output as y(t) = σ

(
n
∑

k=1
wk(t)xk(t) + b

)
.

Now consider a fundamental function u : J → R, where J ⊆ R is an open interval; inputs are
derived from the function u ∈ Cn(J) as follows:

x1(t) = u(t), x2 =
du(t)

dt
, . . . , xn(t) =

dn−1(t)
dtn−1 , n ∈ N.

Further the bias b = b0
dnu(t)

dtn . As weights we use continuous functions wk : J → R, k = 1, . . . ,
n− 1.

Then formula

y(t) = σ

(
n

∑
k=1

wk(t)
dk−1u(t)

dtk−1 + b0
dnu(t)

dtn

)
(7)



Mathematics 2022, 10, 1571 3 of 13

is a description of the action of the neuron Dn which will be called a formal (artificial) differential
neuron. This approach allows to use solution spaces of corresponding linear differential equations.

3. Products and Powers of Differential Neurons

Suppose ~w(t) =
(
w1(t), . . . , wn(t)

)
are fixed vectors of continuous functions wk : R→

R and b0 be the bias for any polynomial p ∈ Rs[t], n ≤ s, s ∈ N0. We consider a differential
neuron DNep(~w) by the action

y1(t) =
n

∑
k=1

w1,k(t)
dk−1 p(t)

dtk−1 + b0
dn p(t)

dtn (8)

with the identity activation function ϕ(u) = u. According to the formula, we can calculate
the output function of the differential neuron D2Nep(~w) = DNep(~w) · DNep(~w).

Firstly, we describe the product of neurons Ne(~wr) · Ne(~ws) = Ne(~wu);, i.e., outputs
of neurons

yr(t) =
n

∑
k=1

wr,k(t)xk(t) + br, ys(t) =
n

∑
k=1

ws,k(t)xk(t) + bs. (9)

The vector of weights of the neuron Ne(~wu) is of the form ~wu(t) = (wu,1, . . . , wu,n),
where

wu,k(t) = wr,m(t)ws,k(t) + (1− δm,k)wr,k(t), t ∈ T and 1 ≤ m ≤ n. (10)

Then the neuron Ne(~wu) is defined using its output function yu(t) =
n
∑

k=1
wu,k(t)xk(t) +

brbs, t ∈ T.
In a greater detail:

wu,1(t) = wr,m(t)ws,1(t) + wr,1(t),

wu,2(t) = wr,m(t)ws,2(t) + wr,2(t),
...

wu,m(t) = wr,m(t)ws,m(t),
...

wu,n(t) = wr,m(t)ws,n(t) + wr,n(t).

Application of the above product onto the case of differential neurons: Suppose
DNep(~wr), DNep(~ws) are neurons with output functions

yr(t) =
n

∑
k=1

wr,k(t)
dk−1 p(t)

dtk−1 + br
dn p(t)

dtn ,

ys(t) =
n

∑
k=1

ws,k(t)
dk−1 p(t)

dtk−1 + bs
dn p(t)

dtn ,

(11)

where p ∈ Rl [t], n ≤ l. Denote

DNep(~wu) = DNep(~wr) · DNep(~ws). (12)

Then the output function of the neuron DNep(~wu) has the form
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yu(t) =
n

∑
k=1
k 6=m

(
wr,m(t)ws,k(t) + wr,k(t)

)dk−1 p(t)
dtk−1 +

+ wr,m(t)ws,m(t)
dm−1 p(t)

dtm−1 + brbs

(
dn p(t)

dtn

)2

.

(13)

Now, using the above formula we can express output functions of powers D2Nep(~wr),
DαNep(~wr) (for α ∈ N) and D0Nep(~wr) (the neutral element-unit) of the infinite cyclic

group {DαNep(~wr); α ∈ Z}. The output function y[2]u (t) of the differential neuron is of
the form

y[2]u (t) =
n

∑
k=1
k 6=m

((wr,m(t) + 1)wr,k(t))
dk−1 p(t)

dtk−1 + w2
r,m(t)

dm−1 p(t)
dtm−1 + b2

r

(
dn p(t)

dtn

)2

=

= (wr,m(t) + 1)
n

∑
k=1
k 6=m

wr,k(t)
dk−1 p(t)

dtk−1 + w2
r,m(t)

dm−1 p(t)
dtm−1 + b2

r

(
dn p(t)

dtn

)2

. (14)

In the paper [1] the following theorem is proved:

Theorem 1. Consider a differential neuron DNep(~w) with the vector ~w(t) =
(
w1(t), . . . , wn(t)

)
of time variable weights and the vector of inputs ~x(t) =

(
p(t), dp(t)

dt , . . . , dn p(t)
dtn

)
with polynomial

p ∈ Rl [t], n ≤ l, t ∈ T and 1 ≤ m ≤ n, n ∈ N = {1, 2, . . . }. The output function y(t) of the
above mentioned neuron is of the form

y(t) =
n

∑
k=1

wk(t)
dk−1 p(t)

dtk−1 + b
dn p(t)

dtn (15)

with the bias b dn p(t)
dtn . Suppose α ∈ N, 2 ≤ α. Then the output function of the differential neuron

DαNep(~w) has the form

y[α](t) =
α−1

∑
k=0

wk
m(t)

n

∑
k=1
k 6=m

wk(t)
dk−1 p(t)

dtk−1 + wα
m(t)

dm−1 p(t)
dtm−1 +

(
b

dn p(t)
dtn

)α

. (16)

Now, we discuss a certain type of subgroup which appears in all groups. The following
text up to Proposition 2 incl. contains well-known facts, which are overtaken from the
monography [11] (Chapter 2, §2,4).

Take any group G and any element a ∈ G. Consider all powers of a : Define a0 = e
(the neutral element), a1 = a, and for k > 1, define ak to be the product of k factors of a. (A
little more properly, ak is defined inductively by declaring ak = aak−1.) For k > 1 define
a−k = (a−1)k.

Recall briefly some well-known classical facts.

Definition 1. Let a be an element of a group G. The set of powers of a 〈a〉 = {ak : k ∈ Z} is a
subgroup of G, called the cyclic subgroup generated by a. If there is an element a ∈ G such that
〈a〉 = G, one says that G is a cyclic group. We say that a is a generator of the cyclic group.

There are two possibilities for 〈a〉, one possibility is that all the powers ak are distinct,
in which case, of course, the subgroup 〈a〉 is infinite; if this is so, we say that a has
infinite order.

The other possibility is that two powers of a coincide, but this is not our case.
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Definition 2. The order of the cyclic subgroup generated by a is called the order of a. If the order of
a is finite, then it is the least positive integer n such that an = e.

Proposition 1. Let a be an element of a group G.

(a) If a has infinite order then 〈a〉 is isomorphic to Z.
(b) If a has finite order n, then 〈a〉 is isomorphic to the group Cn of n-th roots of 1.

Proposition 2.

(a) Any non-trivial subgroup of Z is cyclic and isomorphic to Z.
(b) Let G = 〈a〉 be a finite cyclic group. Any subgroup of G is also cyclic.

For a construction of a cyclic group of artificial differential neurons we need to extend
the cyclic monoid of differential neurons obtained in the paper [1] by negative powers of
differential neurons, in particular to describe their output functions, so we need to construct
negative powers D−αNe(~w) of differential neurons which belong to the basic contribution
of this paper. We suppose the existence of such inverse elements, i.e., negative powers of
the generated element of the considered group.

In general, for the construction of the negative power D−αNe(~w) with α ∈ N it seems
to be a suitable way of a using of this equality:

Dα+1Ne(~w) ·m D−αNep(~w) = DNep(~w), (17)

where on the right hand side is given an arbitrary general differential neuron with the
vector ~w(t) =

(
w1(t), . . . , wm(t), . . . , wn(t)

)
of time variable weight functions, with the

vector of inputs

~x(t) =
(

p(t),
dp(t)
d(t)

, . . . ,
dn p(t)

dtn

)
, (18)

with a polynomial p ∈ Rl [t], n ≤ l, t ∈ T and 1 ≤ m ≤ n, n ∈ N = {1, 2, . . . }. The neuron
DNep(~w) has the output function

y(t) =
n

∑
k=1

wk(t)
dk−1 p(t)

dtk−1 + b0
dn p(t)

dtn , (19)

with the bias b = b0
dn p(t)

dtn . However, we will construct the proof using mathematical
induction—similarly as in [1]—the proof of the Theorem 1, which seems to be a more
convenient way. So we are going to prove the following theorem.

Theorem 2. Suppose the existence of an inverse elements (i.e., negative powers of the gener-
ated element of the considered group). Let DNep(~w) be a differential neuron with the vector
~w(t) =

(
w1(t), . . . , wm(t), . . . , wn(t)

)
of time variable weights and with the vector of inputs

~x(t) =
(

p(t), dp(t)
dt , . . . , dn p(t)

dtn

)
, with a polynomial p ∈ Rl [t], n ≤ l, t ∈ T and 1 ≤ m ≤ n,

n ∈ N = {1, 2, . . . }, i.e., the output function y(t) of the neuron DNep(~w) is of the form

y(t) =
n

∑
k=1

wk(t)
dk−1 p(t)

dtk−1 + b0
dn p(t)

dtn , (20)

with the bias b = b0
dn p(t)

dtn . Suppose α ∈ N. Then the output function of the differential neuron
DNe−α

p (~w) has the form

y[−α](t) = − 1
wα

m(t)

α−1

∑
ξ=0

wξ
m(t)

n

∑
k=1
k 6=m

wk(t)
dk−1 p(t)

dtk−1 +
1

wα
m(t)

· dm−1 p(t)
dtm−1 +

(
b0

dn p(t)
dtn

)−α
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or

y[−α](t) = −w−α
m (t)

α−1

∑
k=0

wk
m(t)

n

∑
k=1
k 6=m

wk(t)
dk−1 p(t)

dtk−1 + w−α
m (t)

dm−1 p(t)
dtm−1 +

(
b0

dn p(t)
dtn

)−α

.

Proof. Consider the equality

DNep(~w) ·m D−1Nep(~w) = N1(~e)m, (21)

where the output function of the neuron N1(~e)m (the identity element of the monoid (S1, ·m)
from [1]) is of the form yN1(t) =

dm−1 p(t)
dtm−1 + 1.

Let y(t) = ∑n
k=1 wk(t)

dk−1 p(t)
dtk−1 + b0

dn p(t)
dtn be the output function of the neuron DNep(~w)

with the bias b = b0
dn p(t)

dtn and

y[−1](t) =
n

∑
k=1

ws,k(t)
dk−1 p(t)

dtk−1 + bs (22)

be the output function of the neuron D−1Nep(~w). Since 0 = w1,k = wm(t) · ws,k(t) + wk(t)
and wm(t) · ws,m(t) = 1 for any k ∈ {1, 2, . . . , n}r {m}, we have

ws,m(t) =
1

wm(t)
and ws,k(t) = −

wk(t)
wm(t)

. (23)

Moreover, 1 = b · bs = b0
dn p(t)

dtn · bs which implies that the bias bs =
(

b0
dn p(t)

dtn

)−1
.

Thus, the output function is of the form

y[−1](t) =
n

∑
k=1
k 6=m

(
− wk(t)

wm(t)

)
dk−1 p(t)

dtk−1 +
1

wm(t)
· dm−1 p(t)

dtm−1 + bs =

=
−1

wm(t)

n

∑
k=1
k 6=m

wk(t)
dk−1 p(t)

dtk−1 +
1

wm(t)
· dm−1 p(t)

dtm−1 +

(
b0

dn p(t)
dtn

)−1

. (24)

Using of Equation (16) we obtain after some simple calculation the expression:

y[−α](t) = − 1
wα

m(t)

α−1

∑
ξ=0

wξ
m(t)

n

∑
k=1
k 6=m

wk(t)
dk−1 p(t)

dtk−1 +

+
1

wα
m(t)

· dm−1 p(t)
dtm−1 +

(
b0

dn p(t)
dtn

)−α

. (25)

This function is in a fact the output function of the neuron D−αNep(~w).
Now, for α = 1 we obtain

y[−1](t) = − 1
wm(t)

n

∑
k=1
k 6=m

wk(t)
dk−1 p(t)

dtk−1 +
1

wm(t)
· dm−1 p(t)

dtm−1 +

(
b0

dn p(t)
dtn

)−1

,

which is in fact the Expression (24).
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We have

y[−α−1](t) = − 1
wα+1

m (t)

α

∑
ξ=0

wξ
m(t)

n

∑
k=1
k 6=m

wk(t)
dk−1 p(t)

dtk−1 +

+
1

wα+1
m (t)

· dm−1 p(t)
dtm−1 +

(
b0

dn p(t)
dtn

)−α−1

,

which is the Equality (25) written for −(α + 1) instead for −α. The other negative powers
can be also obtained from example we have.

Using output functions of corresponding differential neurons we verify a validity of equalities

D−αNep(~w) ·m N1(~e)m = D−αNep(~w) = N1(~e)m ·m D−αNep(~w) (26)

certifying that the neuron N1(~e)m is the neutral element also for negative powers of the
neuron DNep(~w).

Denote by yu(t) the output function of the neuron

DNep(~wu) = D−αNep(~w) ·m N1(~e)m. (27)

Since the output function of the neuron N1(~e) (the unit element) has the form

y1(t) = wN1,m(t)
dm−1 p(t)

dtm−1 + 1 with wN1,m(t) = 1, (28)

we have

yu(t) =
1

wα
m(t)

(
−

α−1

∑
ξ=0

wξ
m(t)

)
n

∑
k=1
k 6=m

wk(t)
dk−1 p(t)

dtk−1 + 1 ·w−α(t)
dm−1 p(t)

dtm−1 + 1 ·
(

b0
dn p(t)

dtn

)−α

,

which is in fact the output function y[−α](t) of the differential neuron D−αNep(~w). In a
similar way we can verify the second equality.

Remark 2. In paper [12] there is defined a concept of a general n-hyperstructure as there follows:
Let n ∈ N be an arbitrary positive integer and {Xk; k = 1, . . . , n} be a system of non-empty

sets. By a general n-hyperstructure we mean the pair

({Xk; k = 1, . . . , n}, ∗n),

where ∗n :
n
∏

k=1
Xk → P∗

(
n⋃

k=1
Xk

)
is a mapping assigning to any n-tuple [x1, . . . , xn] ∈

n
∏

k=1
Xk a

non-empty subset ∗n(x1, . . . , xn) ⊆
n⋃

k=1
Xk. Here P∗(M) means the power set of M without the

empty set ∅.
Similarly as above, with this hyperoperation there is associated a mapping of power sets

⊗n :
n

∏
k=1
P∗(Xk)→ P∗

(
n⋃

k=1

Xk

)
(29)

defined by

⊗n (A1, . . . , An) =
⋃{

∗n (x1, . . . , xn); [x1, . . . , xn] ∈
n

∏
k=1

Ak

}
. (30)

This construction is also based on an idea of Nezhad and Hashemi for N − 2.
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At the end of this section we give this example:
Let J ⊆ R be an open interval, Cn(J) be the ring (with respect to the usual addition

and multiplication of functions) of all real functions f : J → R with continuous derivatives
up to the order n ≥ 0 including. Now, as in suppositions of Theorems 1 and 2, we
consider a differential neuron DNep(~w) with the vector ~w(t) =

(
w1(t), . . . , wn(t)

)
of

time variable weights and the vector of inputs ~x(t) =
(

p(t), dp(t)
dt , . . . , dn p(t)

dtn

)
with the

polynomial p ∈ Rl [t], n ≤ l, t ∈ T and 1 ≤ m ≤ n, n ∈ N = {1, 2, . . . }. The output function
y(t) of the mentioned neuron is of the form

y(t) =
n

∑
k=1

wk(t)
dk−1 p(t)

dtk−1 + b
dn p(t)

dtn (31)

with the bias b dn p(t)
dtn and wk : T → R, wk ∈ Cn(T). In accordance with [13], we put

DANk(T) =
{

DNep(~ws); p ∈ Rl [t], ~ws ∈ [Cn(T)]k
}

.

As above, we put DNep(~ws) ≤ DNep(~wr) whenever ~ws(t) =
(
ws,1(t), . . . , ws,n(t)

)
,

~wr(t) =
(
wr,1(t), . . . , wr,n(t)

)
and ws,k(t) ≤ wr,k(t), t ∈ T, k = 1, 2, . . . , n. Defining

∗n,p
(

DNep(~w1(t), DNep(~w2(t), . . . , DNep(~wn(t)
)
=

=
n⋃

k=1

{
DNep(~w(t) ∈ DANk(T)p; Nep(~wk(t)) ≤ Nep(~w(t))

}
(32)

for any n-tuple [Nep(~w1(t)), Nep(~w2(t)), . . . , Nep(~wn(t))] ∈
n
∏

k=1
DANk(T)p, we obtain that

Dp(n) = ({DANk(T)p; k = 1, 2, . . . , n}, ∗n,p) (33)

is a general n-hyperstructure for the polynomial p ∈ Rl [t].
It is to be noted, that the used concept of investigated neurons is in a certain sense

motivated by ordinary differential operators forming of left-hand sides of corresponding
differential equations, see, e.g., [13,14].

Therefore, the construction of differential neurons consists of a certain modification
of the concept of an artificial neuron which is investigated in a certain formal analogy
to linear differential operators as mentioned above. Using the obtained cyclic group of
differential neurons, we will construct a certain other hyperstructure of differential neurons.
The mentioned relationship is in [8] described by the construction of a homomorphism.

It is to be noted that a hypergroup is a multistructure (H, ∗), where H is a non-empty
set and ∗ : H × H → P(H) is a mapping which is associative, i.e.,

(a ∗ b) ∗ c = a ∗ (b ∗ c)

for any triad a, b, c ∈ H, where A ∗ B =
⋃

(a,b)∈A×B
a ∗ b for A 6= ∅ 6= B, A, B ⊆ H, and

b ∗ A = {b} ∗ A. Further, the reproduction axiom

a ∗ H = H = H ∗ a

for any element a ∈ H is satisfied.
The above definition of a hypergroup is in the sense of F. Marty.
Let J ⊆ R be an open interval (bounded or unbounded) of real numbers, Ck(J) be the

ring (with respect to usual addition and multiplication of functions) of all real functions
with continuous derivatives up to the order k ≥ 0 including. We write C(J) instead of
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C0(J). For a positive integer n ≥ 2 we denote by An the set of all linear homogeneous
differential equations of the n-th order with continuous real coefficients on J,, i.e.,

y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y = 0, (34)

(cf. [14–16]), where pk ∈ C(J), k = 0, 1, . . . , n− 1, p0(x) > 0 for any x ∈ J (this is not an
essential restriction). Denote L(p0, . . . , pn−1) : Cn(J) → Cn(J) the above defined linear
operator defined by

L(p0, . . . , pn−1)(y) = y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y (35)

and put
LAn(J) = {L(p0, . . . , pn−1); pk ∈ C(J), p0 > 0}. (36)

Further N0(n) = {0, 1, . . . , n− 1} and δij stands for the Kronecker δ, δij = 1− δij. For
any m ∈ N0(n) we denote by LAn(J)m the set of all linear differential operators of the n-th
order L0(p0, . . . , pn−1) : Cn(J) → C(J), where pk ∈ C(J) for any k ∈ N0(n), pm ∈ C1(J),
(i.e., pm(x) > 0 for each x ∈ J). Using the vector notation ~p(x) = (p0(x), . . . , pn−1(x)), x ∈
J we can write Ln(~p0)y = y(n) + (~p(x) · (y, y′, . . . , y(n−1))),, i.e., a scalar product.

We define a binary operation ◦m and a binary relation ≤m on the set LAn(J)m in this way:
For arbitrary pair L(~p), L(~q) ∈ LAn(J)m, ~p = (p0, . . . , pn−1), ~q = (q0, . . . , qn−1) we

put L(~p) ◦m L(~q) = L(~u), ~u = (u0, . . . , un−1), where

uk(x) = pm(x)qk(x) + (1− δkm)pk(x), x ∈ J (37)

and L(~p) ≤ L(~q) whenewer pk(x) ≤ qk(x), k ∈ N0(n), pm(x) = qm(x), x ∈ J. Evidently,
(LAn(J)m,≤m) is an ordered set.

In paper [14] there is presented the sketch of the proof of the following lemma:

Lemma 1. The triad (LAn(J)m, ◦m, ≤m) is an ordered (non-commutative) group.

4. Groups and Hypergroups of Artificial Neurons

As it is mentioned in the dissertation [2] neurons are the atoms of neural com-
putation. Out of those simple computational units all neural networks are build up.
For a pair Ne(~wr), Ne(~ws) of neurons from AN(T) we put Ne(~wr) ≤m Ne(~ws), wr =(
wr,1(t), . . . , wr,n(t)

)
, ws =

(
ws,1(t), . . . , ws,n(t)

)
if wr,k(t) ≤ ws,k(t), k ∈ N, k 6= m and

wr,m(t) = ws,m(t), t ∈ T and with the same bias. Evidently (AN(T), ≤m) is an ordered set.
A relationship (compatibility) of the binary operation “·” and the ordering ≤m on AN(T) is
given by this assertion analogical to the above one. In paper [1] there is established that the
structure (AN(T), ·m) is a non-commutative group.

Lemma 2. The triad (AN(T), ·m,≤m) (algebraic structure with an ordering) is a non-commutative
ordered group.

Sketch of the proof is presented in [8]. Denoting

AN1(T)m = {Ne(~w); ~w = (w1, . . . , wn), wk ∈ C(T), k = 1, . . . , n, wm(t) ≡ 1}, (38)

we get the following assertion, the proof of which with necessary concepts is contained
in [1].

Proposition 3. Let T = 〈0, t0) ⊂ R, t0 ∈ R∪ {∞}. Then for any positive integer n ∈ N, n ≥ 2
and for any integer m such that 1 ≤ m ≤ n the semigroup (AN1(T)m, ·m) is an invariant subgroup
of the group (AN(T)m, ·m).
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If m, n ∈ N, 1 ≤ m ≤ n− 1, then a certain relationship between groups (ANn(T)m, ·m),
(LAn(T)m+1, ◦m+1) is contained in the following proposition:

Proposition 4. Let t0 ∈ R, t0 > 0, T = 〈0, t0) ⊂ R and m, , n ∈ N are integers such
that 1 ≤ m ≤ n − 1. Define a mapping F : ANn(T)m → LAn(T)m+1 by this rule: For an
arbitrary neuron Ne(~wr ∈ ANn(T)m, where ~wr =

(
wr,1(t), . . . , wr,n(t)

)
∈ [C(T)]n we put

F(Ne(~wr) ) = L(wr,1, . . . , wr,n) ∈ LAn(T)m+1 with the action :

L(wr,1, . . . , wr,n)y(t) =
dny(t)

dtn +
n

∑
k=1

wr,k(t)
dk−1(t)
dtk−1 , y ∈ Cn(T). (39)

Then the mapping F : ANn(T)m → LAn(T)m+1 is a homomorphism of the group
(ANn(T)m, ·m) into the group (LAn(T)m+1, ◦m+1).

Consider Ne(~wr), Ne(~ws) ∈ ANn(T)m and denote F(Ne(~wr)) = L(wr,1, . . . , wr,n),
F(Ne(~ws = L(ws,1, . . . , ws,n). Denote Ne(~wu) = Ne(~wr) ·m Ne(~ws). There holds

F(Ne(~wr) ·m Ne(~ws)) = F(Ne(~wu)) = L(wu,1, . . . , wu,n), (40)

where

L(wu,1, . . . , wu,n)y(t) = y(n)(t) +
n

∑
k=1

wu,k(t)y(k−1)(t). (41)

Here wu,k(t) = wr,m+1(t)ws,k(t)+wr,k(t), k 6= m, and wu,m+1(t) = wr,m+1(t)ws,m+1(t).
Then L(wu,1, . . . , wu,n) = L(wr,1, . . . , wr,n) ·m L(ws,1, . . . , ws,n) = F(Ne(~wr)) ·m F(Ne(~ws)).
The neutral element Ne(~w) ∈ ANn(T)m is also mapped onto the neutral element of the
group (LnA(T)m+1, ·m+1), thus the mapping F : (ANn(T)m, ·m)→ (LnA(T)m+1, ◦m+1) is
a group homomorphism.

Now, using the construction described in Lemma 2, we obtain the final transpozi-
tion hypergroup (called also non-commutative join space). Denote by P(AN(T)m)∗ the
power set of AN(T)m consisting of all nonempty subsets of the last set and define a binary
hyperoperation

∗m : AN(T)m ×AN(T)m → P(AN(T)m)
∗ (42)

by the rule

Ne(~wr) ∗m Ne(~ws) = {Ne(~wu); Ne(~wr) ·m Ne(~ws) ≤m Ne(~wu)}

for all pairs Ne(~wr), Ne(~ws) ∈ AN(T)m. More in detail if ~w(u) = (wu,1, . . . , wu,n), ~w(r) =
(wr,1, . . . , wr,n), ~w(s) = (ws,1, . . . , ws,n), then wr,m(t)ws,m(t) = wu,m(t), wr,m(t)ws,k(t) +
wr,k(t) ≤ wu,k(t), if k 6= m, t ∈ T. Then we have that (AN(T)m, ∗m) is a non-commutative
hypergroup. The above defined invariant (termed also normal) subgroup (AN1(T)m, ·m)
of the group (AN(T)m, ·m) is the carried set of a subhypergroup of the hypergroup
(AN(T)m, ∗m) and it has certain significant properties.

Using certain generalization of methods from [8] we obtain after investigation of
constructed structures this result:

Let T = [0, t0) ⊂ R, t0 ∈ R∪ {∞}. Then for any positive integer n ∈ N, n ≥ 2 and for
any integer m such that 1 ≤ m ≤ n the hypergroup (AN(T)m, ∗m), where

AN(T)m = {Ne(~wr); ~wr = (wr,1(t), . . . , wr,n(t)) ∈ [C(T)]n, wr,m(t) > 0, t ∈ T},

is a transpozition hypergroup (i.e., a non-commutative join space) such that (AN(T)m, ∗m)
is its subhypergroup, which is

- Invertible (i.e., Ne(~wr)/Ne(~ws)∩AN1(T)m 6= ∅ implies Ne(~ws)/Ne(~wr)∩AN1(T)m
6= ∅ and Ne(~wr) Ne(~ws) ∩AN1(T)m 6= ∅ implies Ne(~ws) Ne(~wr) ∩AN1(T)m 6= ∅
for all pairs of neurons Ne(~wr), Ne(~ws) ∈ AN1(T)m,
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- Closed (i.e., Ne(~wr)/Ne(~ws) ⊂ AN1(T)m, Ne(~wr) \ Ne(~ws) ⊂ AN1(T)m for all pairs
Ne(~wr), /, Ne(~ws) ∈ AN1(T)m,

- Reflexive (i.e., Ne(~wr)AN1(T)m = AN1(T)m/Ne(~wr) for any neuron Ne(~wr) ∈ AN(T)m
and

- Normal (i.e., Ne(~wr) ∗ AN1(T)m = AN1(T)m ∗ Ne(~wr) for any neuron Ne(~wr) ∈
AN(T)m.

Remark 3. We can define a certain transformation function which mappes the output function
y[α](t) into the output function y[α+1](t). This function denoting by ρ[α] also determines the

transformation S[α] of powers of corresponding differential neurons: Dα S[α]

−→ Dα+1. In more detail,
let us describe output functions y[α](t), y[α+1](t) and mentioned transformation function ρ[α].

y[α](t) = (1+ wm(t) + · · ·+ wα−1
m (t))(w1(t)p(t) + w2(t)

dp(t)
dt

+ · · ·+ wm−1(t)
dm−2 p(t)

dtm−2 +

wα
m

dm−1 p(t)
dtm−1 + wm+1

dm p(t)
dtm + · · ·+ (b

dn p(t)
dtn )α

)
,

y[α+1](t) = (1 + wm(t) + · · ·+ wα−1
m (t) + wα

m(t))(w1(t)p(t) + w2(t)
dp(t)

dt
+ · · ·

wm−1(t)
dm−2 p(t)

dtm−2 + wα+1
m

dm−1 p(t)
dtm−1 + wm+1

dm p(t)
dtm + · · ·+ (b

dn p(t)
dtn )α+1

)
.

Transformation function ρ[α] of the output function y[α](t) into the output function

y[α+1](t) which determines the transformation Dα S[α]

−→ Dα+1 of powers of corresponding
differential neurons.

So,

ρ[α]

( α−1

∑
r=0

wr
m(t)

)
·
(

m+1

∑
k−1
k 6=m

wk(t)
dk−1 p(t)

dtk−1 + wα
m(t)

dm−1 p(t)
dtm−1 +

(
b

dn p(t)
dtn

)α
) =

=

( α

∑
r=0

wr
m(t)

)
·
(

m+1

∑
k−1
k 6=m

wk(t)
dk−1 p(t)

dtk−1 + wα+1
m (t)

dm−1 p(t)
dtm−1 +

(
b

dn p(t)
dtn

)α+1
).

Denoting

w[α−1]
m =

α−1

∑
r=0

wr
m(t) and v[α] =

m+1

∑
k−1
k 6=m

wk(t)
dk−1 p(t)

dtk−1 + wα
m(t)

dm−1 p(t)
dtm−1 +

(
b

dn p(t)
dtn

)α
,

we can write

ρ[α]

[(
w[α−1]

m

)
· w[α]

m

]
= w[α]

m · v[α+1].

5. Conclusions

We have constructed the infinite cyclic group (GDn, ·m) of differential neurons which
is isomorphic to the cyclic group (Z,+), possessing the neuron N1(~e)m as the identity
element of (GDn, ·m). Thus,(

{N1(~e)m} ∪ {DαNep(~w; α ∈ Z, α 6= 0}, ·m
)
= (GDn, ·m) ∼= (Z,+). (43)

It is to be noted that the above constructed cyclic (infinite) group of artificial differential
neurons can be also used for the construction of certain hyperstructures formed by such
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neurons [17–20]. So the above presented approach enables an additional elaboration of
the hyperstructure theory ([8,9,11–32]) in connection with time varying weights and with
vectors of differentiable input functions.

The construction of the considered infinite cyclic group of differential neurons can
be onto other its isomorphic images under the using other weights and inputs. Af-
ter those constructions there is possible to create abelian finitely or infinitely generated
groups of artificial differential neurons and to investigate their direct products or sums.
Using a suitable ordering these considerations involve to obtain neural networks with
prescribed structures.
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