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ABSTRACT

Mobile devices are a novelty in technological history. With technology that is evolving
at such a rapid pace and growth in use, it is necessary to pay attention to security. This
diploma thesis deals with the analysis of the security mechanisms used in the Android
OS and the communication between the Android OS and the remote server. The aim
is to examine these mechanisms and test which cryptographic methods and procedures
are most advantageous in terms of security with regard to efficiency. This knowledge
was used to create a demonstration system that uses selected security mechanisms and
cryptographic methods.

KEYWORDS
Android, Android security, MVVM, Cryptography, RSA, EC, Digital signature, JWT,
Microservices, gRPC, Kubernetes, Istio, Docker

ABSTRAKT

Mobilné zariadenia si v ramci technologickej histérie novinka a pri technolégii, ktora
sa vyvija tak rapidnym tempom a rastom pouzivania je nutné dbat na zabezpecenie.
Tato diplomova praca sa zaobera rozborom bezpecnostnych mechanizmov pouzivanych
v Android OS a komunikaciou medzi OS Android a vzdialenym serverom. Cielom je
preskiimat tieto mechanizmy a otestovat aké kryptografické metddy a postupy je naj-
vyhodnejsie pouzivat z hladiska bezpecCnosti s ohladom na efektivitu. Tieto znalosti boli
pouzité pre vytvorenie demonstracného systému, ktory vyuziva vybrané zabezpecovacie
mechanizmy a kryptografické postupy.
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Android, Zabezpecenie Androidu, MVVM, Kryptografia, RSA, EC, Digitalny podpis,
JWT, Mikrosluzby, gRPC, Kubernetes, Istio, Docker
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ROZSIRENY ABSTRAKT

Smartfény st jedny z najrychlejsie sa rozvijajucich a bezne dostupnych technolégii.
S rychlym rastom uzivatelskej zakladne a softvérovych funkcii sa otazky bezpecnosti
stavaju relevantnejsimi. Uzivatelia pouzivaji smartfény castejsie na riadenie kazdo-
dennych tloh, ako st e-mail, internetové bankovnictvo a mobilné platby. Vsetky tie-
to tlohy si vyzaduju citlivé uzivatelské udaje, ktoré sa vo vacsine pripadov ukladaji
priamo do smartfonu. Vdaka zariadeniu, ktoré prichddza vsade kam pouzivatel a
ktoré obsahuje citlivé idaje, sa bezpecnost musela vyvinut nad droven zabezpecenia
stolného pocitaca. Vyrobcovia mobilnych telefénov a vyvojari aplikacii musia zais-
tit bezproblémové prostredie pre vSetkych pouzivatelov (dokonca aj pre tych, ktori
nie st odbornikmi v oblasti zabezpecenia alebo sa nimi nechci priamo zaoberat)
implementovat bezpecnostné opatrenia na ochranu tudajov pouzivatelov, a to aj v
situdcii pri kradezi smartfonu.

Cielom tejto diplomovej prace je vysvetlit model zabezpecenia smartfénov v ope-
racnom systéme Android a porovnat existujice kryptografické protokoly, ktoré An-
droid OS podporuje. Dalsim cielom je na zaklade ziskanych teoretickych znalosti
a vysledkov z testovania implementovat ukazkovy systém, ktory preukaze realne
pouzitie tychto bezpecnostnych mechanizmov a bude klast déraz na overené prak-
tiky pri implementacii.

Prva kapitola popisuje vyvoj smartfonov a predstavuje systém Android, systém
verzii systému Android a sposob distribuicie aplikacii v ekosystéme Android OS.

Druhé kapitola popisuje, z ktorych ¢asti sa model zabezpecenia systému Android
sklada, ich ucel a sposob prace s inymi systémovymi komponentmi, aby poskyto-
vali sofistikované zabezpecenie pouzivatelskych tdajov. Okrem popisu jednotlivych
komponentov a vysvetleni na ¢o slizia, je v tejto kapitole kladeny doéraz na ukazky
aké kryptografické operacie Android podporuje a ako ich je mozné pouzit.

Tretia cast je zaloZend na tedrii opisanej v druhej casti. Sumarizuje vysledky
ziskané z referencnej aplikacie, v ktorej bolo implementovanych a vykonanych 280
testov. Pouzité testovacie pripady pokryvaju vécsinu kryptografickych operacii,
ktoré je mozné vykonavat v systéme Android. Ich hlavnym ciefom bolo vyhod-
notit vypoctovy cas kazdej kryptografickej operacie. Vysledky boli dalej spracované
a vizualizované v tepelnych mapach a stlpcovom grafe. Na ziklade vysledkov sa
dospelo k zaveru, ze nie vsetky predpoklady boli splnené. Napriklad v niekto-
rych pripadoch bolo Sifrovanie RSA rychlejsie ako Sifrovanie AES. Tento pripad
je mozné vidief u zariadeni Google Pixel XL, Motorola Moto G Plus, LG Nexus
5X a dalsimi. Urcité starsie modely zariadeni vykonavaju niektoré kryptografické
algoritmy rychlejsie ako novsie zariadenia. Prikladom tohto spravania su zariade-
nia HTC One M9 (20 nm procesor) a Samsung Galaxy A5 (14nm procesor) ak

na tychto dvoch zariadeniach porovname vytvaranie RSA alebo EC kluca tak v



kazdom pripade je HTC One M9 rychlejsi. To je mozné vysvetlit hardvérovou
podporou urc¢itych kryptografickych algoritmov. Po analyze vysledkov a zohlad-
nenim Sirokého spektra zariadeni, ktoré si podporované boli vybrané algoritmy,
ktoré si vhodné a optimalne pre implementaciu aplikacie, ktora vyuziva kryp-
tografické operacie. Ohlad sa bral hlavne na to, aby dany algoritmus bol vykonavany,
¢o v najmensom casovom rozmedzi na vsetkych zariadeniach. Vybrané algoritmy
st AES256/GCM /NoPadding pre symetrické Sifrovanie, SHA512withRSA2048 /PSS
pre digitédlny podpis a RSA3072/OAEPWithSHA512AndMGF1Padding pre asymet-
rické Sifrovanie.

Posledna stvrta cast popisuje systém SecNote. Systém SecNote je implemen-
tacia kompletného riesenia, ktoré demonstruje bezpecnostné mechanizmy systému
Android a osvedcéené postupy ako ich implementovat. V tejto kapitole je tak-
tiez popisanej ako implementovat bezpeéni komunikiciu medzi aplikaciou Android
a cloudovym systémom. Cloudovy systém je riadeny pomocou Kubernetes a Is-
tia. Bezia tu tri mikro-sluzby s tromi databazami. Systém SecNote demonstruje
bezpecnostné mechanizmy, ako napriklad:

o Biometrické overenie - Aplikacia vyzaduje pre funkcnost, aby telefénne
zariadenie bolo bezpeéné, ¢ize musi mat nastaveny minimalne PIN a v idedl-
nom pripade biometrické overenie. V pripade, Ze ani jeden z mechanizmov nie
je nastaveny, aplikacia vyziada od pouzivatela, aby si dané overenie nastavil
ak chce aplikaciu nadalej pouzivat. Vzdy je mozné, ako zdlozny mechanizmus
overenia pouzif PIN v pripade, Ze by sa biometricky senzor pokazil alebo inak
by znemozil pouzivatelovi sa tymto sposobom overit. Po overeni pouzivatela
sa otvori casové okno, v ktorom je mozné pouzivat kryptograficky material ap-
likacie, ktory je vyuzivany na podpisovanie ziadosti, Sifrovanie a desifrovanie
poznamok, Sifrovanie tloziska.

« Casovo obmedzené prihlisenie - Existuji 2 ¢asové oknd, a to okno ak-
tivnej interakcie, ktoré vyuziva pristupovy token s dobou platnosti 5 minit a
obnovovaci token, ktory plati 7 dni. Po uplynuti piatich minut sa aplikacia
pokusi obnovit pristupovy token pomocou obnovovacieho tokenu. Ak pouzi-
vatel nepouziva aplikaciu dlhsie, ako 7 dni je z aplikdcie odhlaseny a musi sa
znova prihlésit.

e Spdsob prezentacie identity v cloudovom rieseni - Pri danych pozia-
davkach pouzivatel neposiela priamo v parametroch svoje ID, ale namiesto
toho si sluzby ziskavaju ID uzivatela z JWT tokenu, ktory je pripojeny do
kontextu poziadavku. Tymto sposobom je zarucené, ze sa v skutoc¢nosti jedna
o daného uzivatela, pretoze tokeny su digitalne podpisané.

« Digitalny podpis poziadavkou - Kazdy poziadavok, ktory je odoslany z

aplikacie na datové sluzby je digitdlne podpisany pouzivatelom v aplikacii.



Podpis sa overuje na strane serveru, aby sa zarucilo, ze parametre poziadavku
neboli zmenené.

« Sifrovanie a deSifrovanie idajov - PouZivatel moze jednotlivé poznamky,
ktoré su v aplikacii sSifrovat a desifrovat pomocou klucov, ktoré si v aplikacii
vytvori. Tieto klice nikdy neopustia TEE systém takze nie je mozné, aby
poznamky desifroval dakto iny, nez pouzivatel na svojom zariadeni.

e Vytvorenie bezpecného kanala medzi aplikaciou a cloudom - Aplikacia
komunikuje s cloudovym rieSenim pomocou gRPC protokolu. Medzi aplika-
ciou a cloudovym systémom je vytvoreny zabezpeceny gRPCs kandl, ktory je
chraneny pomocou TLS. Certifikat je registrovany na doménu secnote.space
a o jej platnost a obnovu sa starda zautomatizovany systém, ktory bezi na
cloudovom rieseni.

V tejto praci bol popisany komplexny model zabezpecenie systému Android. Boli
rozobraté detailne jednotlivé komponenty tohto systému ich funkcionalita a tloha.
Nésledne bola vytvorena aplikacia, ktora testuje pomocou 280 testov kryptogragické
operacie, ktoré si podporované v systéme Android. Na zaklade vysledkov z aplikacie
bola vytvorena vizualizacia tychto vysledkov, z ktorej boli odvodené zavery aké al-
goritmy je najvyhodnejsie pouzit pri implementacii aplikacie. Na zaklade rozobrane;j
teorie a vysledkov z aplikacie bol implemtovany ukazkovy systém, tvoreny z Android
aplikacie a troch mikro-sluzieb, ktoré bezia na cloude. Tento systém demonstruje

jednotlivé bezpecnostné mechanizmy a ukazuje, ako je ich mozné implementovat.
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Introduction

Smartphones are one of the most rapidly evolving and widely available technologies.
With the fast growth in user base and software features, security questions become
more relevant. Users are using smartphones more frequently to manage daily tasks
such as email, internet banking, and mobile payments. All these tasks require sensi-
tive user data, which in most cases, are saved directly on the smartphone. With the
device that comes everywhere where the user goes and also contains sensitive data,
security had to evolve beyond a desktop PC’s security level. To provide a seamless
experience for all users (even the ones who are not proficient in security, or do not
want to deal with it directly), mobile manufacturers and application developers need
to implement security measures that protect users’ data, even in smartphone theft
situations.

This thesis aims to explain the security model on smartphones using the Android
OS and to compare existing cryptographic protocols. The first chapter describes
the evolution of smartphones and presents the Android OS, the Android versioning
system, and how applications are distributed within the Android OS ecosystem.
The second chapter describes what parts the Android security model is composed
of, their purpose, and how they work with other system components to provide
sophisticated security for user data. The third chapter visualizes and summarizes the
results obtained from the created benchmark application. Last, the fourth chapter
describes the SecNote system, which is implemented based on knowledge gained from
the theory and results obtained from tests. The SecNote system showcases practical

usage of security mechanisms and best practices on how to implement them.
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1 Mobile devices

A Mobile device, or by some called a handheld computer, is a computing device that
can function independently and is small amply to hold and manipulate in hand.
Inbuilt LCD or OLED flatscreen with integrated touch input is one of the many
standard features from the feature-rich diverse set. Mobile devices usually connect
to the Internet and communicate with other devices that can be far from each other.
Devices located nearby each other can communicate by Wi-Fi, Bluetooth, or NFC.
They can bear single or multiple integrated cameras and, in most cases, are powered
by lithium batteries. Security is an essential part of mobile devices, and in order to
satisfy current security standards, mobile devices can include biometric sensors and
specialized hardware for cryptographic operations. The manufacturer chooses the
operating system used on the mobile device, and it can range from small embedded
systems to robust feature-rich ecosystems. A smartphone is a special derivation of

the mobile device, which this thesis deals with a more significant deal.

1.1 History

IBM made the first smartphone and released it to the public on August 16, 1994.
IBM Simon Personal Communicator os simply IBM Simon, was the first PDA that

included features for telephony.

IBM Simon BlackBerry 5810 Nokia 7650
1994 2002 2002
Zaurus OS BlackBerry OS 3.6 Symbian OS

HTC Dream iPhone AnexTEK SP230
2008 2007 2004
Android 1.0 iPhone OS Windows Mobile 2003

Fig. 1.1: Smartphone OS evolution

From the days of IBM Simon, more than ten years passed before we got to the
modern days of I0S or Android smartphones. Figure shows evolution history
from days of IBM Simon to the days of the first Android smartphone in the year 2008.
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Blackberry OS, Symbian OS, and Windows Mobile OS attempted to established
a modern standard of smartphone OS yet still failed. The change came in 2007
with the introduction of Apple iPhone. This concept was further followed by the
introduction of the first Android phone in 2008. iPhone and Android are, to this day,
the most successful operating systems and own majority market share. Sucess of
smartphones can be proven by increasing market share(l.2] which has been increasing
since the first smartphone appeared. In August 2016, mobile devices’ and desktop
computers had equal market share. Since September 2016, mobile devices hold
dominance in market share besides a few months where the market share was equal

or slightly under the desktop market share.

Desktop vs. Mobile
== Desktop == Mobile

100

75

50

Market share

25

2014-01 2015-01 2016-01 2017-01 2018-01 2019-01

Date

Fig. 1.2: Mobile vs Desktop market share [I]

1.2 Android

Android is an open-source software stack that can run on a broad arrangement
of devices from embedded, and smartwatches to mobile phones, tablets, and cars.
Android is designed so that there is no central point of failure. The resulted platform
is available to manufacturers to create products that improve the mobile experience

for users.
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1.2.1 Versions

Android defines the version using three things: code name, version number, and
API level. Besides the first release of Android, which does not have the code name,
all other versions have code names inspired by confectionery and are alphabetically
ordered. The release of Android 10 brings many changes. One of the changes lies
within the code naming convention. Android 10 brings an end to names inspired
from confectionery, and instead, code names are named with Android prefix and
version number, so Android 10, Android 11. The version number is used as a
software versioning number. API version is increased with every new release of
Android API. Diagram|[I.3]states the market share of devices using the given Android
version. Diagram [1.4]indicates how many devices will be supported by the developed

Platform versions May 7, 2019
9 Pie _

N 4.2.x Jelly Bean

~ 4.4 KitKat
8.1 Oreo . 5 Lollipop

N 5.1 Lollipop

8 Oreo
6 Marshmallow

7.1 Nougat 7 Nougat

Fig. 1.3: Distribution of Android versions [2]

application if the minimum supported SDK level is chosen as given Android API.

1.2.2 Application distribution

Android application can have two formats: APK and AAB. AAB is a newer format
that supports dynamic delivery. The dynamic delivery feature provides the possi-
bility for users to download only part of the application that is important for their
device os version, which means a smaller application size for users to download [3].

After the successful upload of APK or AAB to the store, the user can download
the application from the store. There are many stores from which users can download
applications, but Google officially supports only one store. Google Play is an official
application store made and curated by Google. It is by far the safest way to get
applications for Android. Every application submitted to the Google Play store is
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Fig. 1.4: Supported devices with minumum SDK [2]

subjected to automation tests, and if any indication of safety concerns arise, the
application is submitted to manual testing. Service that handles application testing
is named Google play protect. Google Play Protect provides on-device and cloud-
based protection [4].
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2 Android security overview

Google works tightly with developers and device manufacturers to incorporate industry-
leading security features to the Android and keep the ecosystem safe. This approach
resulted in a robust security model implemented in the Android ecosystem [5]. The
following sections are targeted at the android security model and principles descrip-
tion. Furthermore, it provides an in-depth description of necessary components

together with their purpose and relations between them.

2.1 Authentication

The android ecosystem has to ensure that the user’s data are safe and secure. Au-
thentication mechanisms are leveraged to provide this kind of assurance and forbid
unauthenticated users’ access. Android uses the concept of user-authentication-
gated cryptographic keys that require cryptographic key storage, cryptographic key

service provider, and user authenticator [6].

2.1.1 Cryptographic key storage and service provider

Cryptographic key storage is responsible for storing cryptographic keys. Android
Keystore occupies a position of cryptographic hardware-backed key-storage. A ser-
vice provider provides standard cryptographic routines on top of keys provided by
cryptographic key storage. Keymaster is an implementation of a cryptographic ser-

vice provider [6].

2.1.2 Authentication mechanisms

The primary purpose of authentication mechanisms is to attest to users’ presence
and/or successful authentication. These mechanisms are implemented in Gate-
keeper, Fingerprint, and BiometricPrompt classes. The Fingerprint class supports
fingerprint authentication, but only up to Android P, which corresponds to API
below 29. Starting with the Android P, BiometricPrompt should be utilized for user
authentication using the fingerprint or additional biometrics. The BiometricPrompt
itself is a single integration point for biometric authentication of any kind. All these
components communicate their authentication state to the Keystore service through

an authenticated channel [6].
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2.1.3 Credential enrolment

On the first boot of the device after a factory reset, all authenticators are prepared
to receive credential enrollments from the user. A user must initially enroll a PIN,
pattern, or password with Gatekeeper. Otherwise, an application that uses security
features won’t work correctly and prompt the user to enroll with Gatekeeper. Ini-
tial enrolment with a Gatekeeper creates a randomly generated, 64-bit user secure
identifier (SID) that serves as an identifier for the user and as a binding token for
the user’s cryptographic routines. The SID is cryptographically bound to the user’s
security chosen measure [6].

An attacker won’t be able to change or access the user’s credentials unless he
knows explicitly the user’s PIN, pattern, or password that depends on what the user
has chosen on enrolment. Under normal conditions, the Android framework does
not allow an untrusted enroll, but it is possible to force it. In this case, if existing
credentials are not provided, the new credentials are enrolled with an entirely random
User SID. The attacker can access the device, but keys created under the old user
SID are permanently lost. This procedure is known as an untrusted enroll. A user
who wants to replace a credential propperly must exhibit an existing credential. If a
current credential is verified successfully, the user SID associated with the existing
credential is transferred to the new credential, enabling the user to keep accessing

keys after changing a credential [6].

2.1.4 Authentication

A user that successfully set up credentials and were provided with user SID can
start authenticating. Authentication is a process where the user uses created cre-
dentials by providing a PIN, pattern, or password to verify his identity against the
Android system. Diagram is an example of how the user authenticates with user
authenticators using a TEE. An example with TEE is chosen because it is the most
common system configuration by the date of writing this thesis.

Every user authenticator has a dedicated deamon. PIN, pattern, or password
uses LockSettingsService, which sends requests to gatekeeperd. Biometrics-based
authentication on android devices below Android P calls FingerprintService. Fin-
gerprintService requests fingerprintd. Biometrics-based authentication on android
devices running Android P and above requests BiometricPrompt. BiometricPrompt
requests biometric manager, which requests appropriate biometric daemon. A user
provides an authentication method, and the associated service requests the asso-
ciated daemon. The daemon sends data to its counterpart, which generates an
AuthToken. Fingerprint deamon listens for fingerprint event. After fingerprintd

receives fingerprint event, it sends data to Fingerprint in a TEE. If authentication
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in TEE succeeds, Fingerprint in TEE sends an auth token signed with auth token
HMAC key to fingerprintd in Android OS. For PIN, pattern, or password, the flow
is similar with just different used service and deamon. After deamon receives signed
token, it passes auth token to the Keystore service through an extension to the
Keystore service’s Binder interface. The Keystore service passes the auth tokens to
Keymaster and verifies them using the key. The key is shared with the Gatekeeper,
Fingerprint, and other supported biometric TEE components. Keymaster trusts the
timestamp in the token as the last authentication time and bases decision if to allow

an app to use the key on it [6].

Android OS )

PIN
PATTERN
PASSWORD

Fingerprint
request

keystore service
gatekeeperd

Autk
AuthToken AuthToken
A
@ ®

Trusted execution environment (TEE) OS ) <4>

fingerprintd

A,

Gatekeeper Fingerprint

AuthToken HMAC key

Fig. 2.1: Authentication flow [6]

2.2 Gatekeeper

Gatekeeper, as an authentication notion, consists of two parts. Gatekeeper deamon
referred to as gatekeeperd that lives in an Android OS and Gatekeeper that lives
in Trusted Execution Environment (TEE). Gatekeeper’s primary intent is to verify
password, pattern, or PIN via an HMAC that is backed by a secret hardware key.

Gatekeeper can refuse to verify a password, pattern, or PIN if it is presented with
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consequence failed attempts to authenticate. In this case, Gatekeeper throttles au-
thentication requests and timeouts next requests based on the count of the previous
failed attempts.

After a success password, pattern, or PIN verification, Gatekeeper uses TEE-
derived shared secret to sign an authentication attestation that is sent back to
gatekeeperd. Gatekeeperd sends this key to the hardware-backed Keystore. Au-
thentication attestation is a sign for Keystore that the app can use application
created keys [7].

2.2.1 Architecture

How gatekeeper elements communicate between themselves is described in diagram
[2.2] Lock setting service makes requests via binder interface to gatekeeper deamon,
which gives the Android framework APIs access to the HAL implementation. The
android framework can use the gatekeeper daemon to communicate with Gatekeeper

in TEE via HAL implementation to authenticate the user‘s password, pattern, or
PIN [7].

Lock Setting Service

Gatekeeper Service Interface

gatekeeperd

Gatekeeper HAL

Platform-Independent
Gatekeeper HAL module
Platform-Dependent

Platform-Dependent IPC

Trusted execution environment (TEE) OS

Gatekeeper (TEE)

Fig. 2.2: Gatekeeper communication diagram [7]
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HAL implementation must be able to enroll and verify a password, pattern, or
PIN. Every HAL implementation must fulfill an enroll and verify functions from the
gatekeeper header file. Gatekeeper TEE must fulfill the system gatekeeper header.
Those are conditions for gatekeeper implementation. Based on these conditions, a
device manufacturer or system administrator can alter other parts of the gatekeeper
system and can use any TEE OS to implement Gatekeeper as long as the TEE
has access to a hardware-backed key and a secure monotonic clock that ticks in
suspend. In most cases, phones use The Trusty operating system, which is an
open-source implementation of TEE by Google. TEE Gatekeeper, Keymaster, and
other TEE components use a shared secret key that they share via the internal IPC
system. Sharing the secret key is not dangerous, so Gatekeeper does not save or
cache this key and requests it every time from Keymaster via IPC. Key is used to
derive an HMAC key to enroll and verify passwords. This derived key is kept solely
in Gatekeeper [7].

2.2.2 Request throttling

The request-throttling feature provides additional security measurements against
brute-force attacks. Without a request-throttling, an attacker would be able to crack
user passwords/PIN if the password/PIN is not complicated enough. Gatekeeper
HAL implementation can return timeout in milliseconds. The timeout informs the
client not to call Gatekeeper again until after the timeout has elapsed and refuses to
serve any incoming request in the timeout period. Before every password verification
or enroll, Gatekeeper writes a failure counter. If the password verification succeeds,
the Gatekeeper clears the failure counter. The procedure mentioned above prevents
attacks that prevent throttling by disabling the fastened MMC (eMMC) after issu-
ing a verify or enroll call. Failure counter is written to secure storage on devices
supporting secure storage. If the device does not support file-based encryption or

secure storage is too slow, implementation can use Replay Protected Memory Block
(RPMB) [7].

2.3 Biometrics

Biometrics allows authenticating users securely in Android OS. The most used bio-
metrics are fingerprint and face detection. Any other type of biometric can be
added to biometric authentications in case it meets security specifications and have
a deficient rating of false positives. Imposter Accept Rate (IAR), Spoof Accept Rate
(SAR), and False Accept Rate (FAR) metrics are measured to determine if biometric

meet the requirements [§].
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FAR metric defines how often a model mistakenly accepts a randomly chosen
incorrect input. Before Android 8.1, that is API 27, FAR was only known and use
matric to measure biometric modalities security. Even though it is the most used
metric, let alone, it does not provide adequate information to assess how well the
model stands up to targeted attacks [9].

Android 8.1 introduces IAR and SAR metrics that aim to improve biometric
security. TAR metric is the chance that a biometric model accepts input that is
meant to mimic a known good sample. SAR metric is the chance that a biometric
model accepts a previously recorded, known good sample. Android defines three base
levels of biometric sensor security: strong, weak, and convenience. By default, every
sensor is classified as a convenience. Additional requirements need to be fulfilled by
the sensor to be classified as weak or strong. These additional requirements are a
combination of the three accept rates - FAR, IAR, and SAR [9].

Android open-source project releases compatibility definition with every android
API version. Compatibility definition defines requirements that the device must
meet in order for devices to be compatible with a specific Android API version. One
of the requirements of compatibility definition is for biometric sensors. Table

provide accept rates for Android 10.

Classification FAR TIAR SAR

Convenience - - -
Weak 0.002% 20%  20%
Strong 0.002% ™% ™%

Tab. 2.1: Biometric accept rates [10]

Additional requirements are needed from the sensor to be assigned to a weak
or strong category. A weak sensor must have a hardware-backed Keystore imple-
mentation and perform all biometric authentication outside Android kernel such as
TEE. A strong sensor must have all features of a weak sensor, and additionally
must challenge the user for the recommended primary authentication PIN, pattern,

or password once every 72 hours or less [10].

2.3.1 Biometric architecture

As the Android platform evolves, security measurements evolve with it, Fingerprint-
Manager, BiometricPrompt, BiometricManager are the result of android evolution.
FingerprintManager is oldest and deprecated since Android P. His successor is Bio-

metricPrompt that is available on Android P and higher. BiometricManager has
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been introduced in Android Q and offers a method to check which biometric meth-
ods are available to the user. How different biometric classes interact with the

Android system is described in diagram [2.3]

BiometricPrompt
BiometricManager

Android P Android Q Depracated
and higher and higher in Android P

BiometricPrompt BiometricManager FingerprintManager

BiometricService FingerprintService

HWBinder

<Biometric> vendor implementation

. Application . Framework API . Vendor

- Suppor library API - System vendor
Fig. 2.3: Biometric architecture [10]

FingeprintManager only accepts fingerprints as biometric authentication. As a
new biometric methods rose, this was an obstacle to good user experience. Instead
of creating a new manager for every biometric, FingeprintManager was marked
as deprecated. BiometricPrompt has been introduced to the community as the
successor to FingeprintManager as a single entry point for biometric authentication.
BiometricPrompt uses a default setting that the user can set in phone settings in
the security section.

Android provides interfaces and header files to implement biometric methods.
The concrete implementation is the device manufacturer’s role. To guarantee that
users and developers have a seamless biometric experience, device manufacturers
have to integrate biometric stack with BiometricPrompt. Any biometric method
that is about to be integrated with BiometricPrompt must meet the strength re-
quirements defined by CDD [§].

2.4 Keystore

Keystore API provides storage for cryptographic keys and certificates. To provide
hardware-backed cryptography, Keystore leverages TEE Keymaster implementation[11].
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Before Android 6.0, Keystore API had a simple hardware-backed API for signing and
verification operations. In Android 6.0, Keymaster features were extended to imple-
ment a more comprehensive array of capacities provided by the Keystore. Keystore
features added in Android 6.0 are:

e symmetric cryptographic primitives, AES, HMAC,

e access control system for hardware-backed keys,

» a usage control scheme to allow key usage to be limited, to mitigate the risk

of security compromise due to misuse of keys,

e an access control scheme to enable restriction of keys to specified users, clients,

and a defined time range.

Android 7.0 introduced Keymaster 2, which adds support for key attestation and
version binding [12]. In Keymaster 1, apps or remote servers cannot reliably verify
if keys are known to be in hardware-backed storage. To mitigate this, Keymaster 2
introduced key attestation. Key attestation provides a way to securely decide if an
asymmetric key pair is hardware-backed, what constraints are applied to its usage,
and what the properties of the key are [13].

Version binding binds keys to the operating system and patch level version.
Version binding ensures that an attacker who discovers a weakness in an old version
of the system or TEE software cannot roll a device back to the vulnerable version
and use keys created with the newer version. Also, when a key with a given version
and patch level is used on a device that has been upgraded to a newer version or
patch level, the key is upgraded before it can be used. The previous version of the
key is invalidated [12].

Android 8.0 introduced Keymaster 3, which extends Keymaster 2’s attestation
feature to support ID attestation. ID attestation is optional and provides the possi-
bility to bind keys to the device hardware such as phone ID (IMEI / MEID), device
serial number, or a product name. Also, Keymaster 3 transitioned from old-style
C-structure HAL to C++ HAL interface generated from a new Hardware Interface
Definition Language (HIDL) [12].

Android 9.0 introduced Keymaster 4, which adds support for embedded Secure
Elements (SE), secure key import, 3DES encryption, changes to version binding, so

it allows independent version updates for boot.img and system.img [12].

2.5 Supported cryptographic primitives

Cryptographic primitives are well-established, low-level cryptographic algorithms
[14]. Keystore supports various categories of cryptographic primitives:
o Hash function

o Symmetric key cryptography
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o Asymmetric key cryptography
Cryptographic primitives are often used to build cryptographic protocols. Keystore
leverages cryptographic primitives to provide feature-rich cryptographic operations,
which includes but are not limited to:

o Key generation

o Import and export of asymmetric keys

o Import of raw symmetric keys

o Asymmetric encryption and decryption with appropriate padding modes

« Digital signature and verification

o Symmetric encryption and decryption in appropriate modes, including an

AEAD mode

o Generation and verification of symmetric message authentication codes

o Random number generation
The key purpose, padding, access control constraints, or any other protocol element,
is defined on a key generation or import, and it is permanently bound to the key.
The protocol elements bound to the key ensures the key cannot be used in any
other way. Random number generation is not exposed to the public API, and it is
used internally for the generation of keys, initialization vectors, random padding,
and other elements of secure protocols that require randomness. Keystore can be
utilized as a provider and used with supported algorithms, which are:

o Cipher

o KeyGenerator

o KeyFactory

o KeyPairGenerator

o Mac

e Signature

o SecretKeyFactory

2.5.1 Key generation

To generate a key, KeyGenerator or KeyPairGenerator class can be used. KeyGen-
erator provides the functionality of the symmetric key generator. KeyPairGenerator

provides the functionality of the asymmetric key generator.

KeyGenerator

There are two ways to generate a key with a KeyGenerator: in an algorithm-
independent manner, and an algorithm-specific manner. The difference between
them is generator initialization. In listing, [2.1] are listed all initialization methods

of KeyGenerator. Init methods that do not use AlgorithmParameterSpec are an
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algorithm-independent. AlgorithmParameterSpec init method is used in situations
where a set of algorithm-specific parameters already exists. In case the user does
not use any of the provided init methods, the provider specified at creation must

supply a default initialization.

// Algorithm-Independent Initialization
fun init (random: )
fun init (keysize: )
fun init(keysize: , random: )
// Algorithm-Specific Initialization
fun init (params: )
fun init(
params :
random :

Listing 2.1: KeyGenerator init methods

Supported algorithms of KeyGenerator are listed in table [2.2]

Algorithm | Supported API Levels Notes
AES 23+ Supported sizes: 128, 192, 256
sizes: 8-1024 (inclusi 3 Itiple of
HmacSHATL 23+ Supported sizes: 8-1024 (inclusive), must be multiple of 8
Default size: 160
HmacSHA224 93+ Supported sizes: 8-1024 (inclusive), must be multiple of 8
Default size: 224
HimacSHA256 23+ Supported sizes: 8-1024 (inclusive), must be multiple of 8
Default size: 256
HmacSHASS4 234 Supported sizes: 8-1024 (inclusive), must be multiple of 8
Default size: 384
izes: 8-1024 (inclusi Itiple of
HimacSHAS12 234 Supported sizes: 8-1024 (inclusive), must be multiple of 8
Default size: 512

Tab. 2.2: Supported KeyGenerator algorithms with AndroidKeyStore provider

Example of key generation with KeyGenerator

Listing shows how to generate AES symmetric key in Galois/Counter Mode
(GCM), which’s purpose is encryption and decryption with no encryption padding.
AndroidKeyStore is defined as the KeyGenerator provider, so the creation of the
key occurs in the hardware-backed Keystore. Other constraints can be applied to
the KeyGenParameterSpec builder. SetUserAuthenticationRequired and SetUser-
AuthenticationValidityDurationSeconds can be applied to the builder, to condition
the key retrieval to the time window starting from the last unlock of the phone or

user can be prompted directly in application to authorize via LockScreen.
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val keyGenerator = KeyGenerator
.getInstance ("AES", "AndroidKeyStore")
val keyGenParameterSpec =
KeyGenParameterSpec. Builder (
"AES_KEY_ALIAS",
KeyProperties .PURPOSE_ENCRYPT
or
KeyProperties .PURPOSE_DECRYPT

.setBlockModes (KeyProperties .BLOCK _MODE GCM)
.setEncryptionPaddings (

KeyProperties .ENCRYPTION PADDING NONE
)

.setKeySize (256)

.build ()
keyGenerator.init (keyGenParameterSpec)
val secretKey = keyGenerator.generateKey ()

Listing 2.2: AES Key generation

The key can be retrieved from AndroidKeyStore 2.3] AndroidKeyStore is initi-
ated via a static function in the Keystore object, whereas type is passed Android-
KeyStore after the creation load() method is called on object to initialize KeyStore.
Load method loads Keystore using the given LoadStoreParameter, which can be
null. After KeyStore is initialized key can be retrieved by calling getKey() method.

Key alias passed to getKey() must be the same as an alias during the key creation.

val keystore = KeyStore.getInstance ("AndroidKeyStore")

.apply { load(null) }
val secretKey = keystore.getKey ("AES_KEY_ALIAS", null)

Listing 2.3: Retrive AES key from keystore

KeyPairGenerator

As in KeyGenerator, there are two ways to generate a key pair: in an algorithm-
independent manner, or an algorithm-specific manner. The difference between them
is explained in section [2.5.1] Supported algorithms are listed in the Tab

Algorithm | Supported API Levels Notes
DSA 19-22

Supported sizes: 224, 256, 384, 521
EC 23+ Supported named curves: P-224 (secp224rl), P-521 (aka secp521rl).

P-256 (aka secp256rl and prime256v1), P-384 (aka secp384rl),
Supported sizes: 512, 768, 1024, 2048, 3072, 4096

RSA 18+ Supported public exponents: 3, 65537

Default public exponent: 65537

Tab. 2.3: Supported KeyPairGenerator algorithms with AndroidKeyStore provider
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Example of key pair generation with KeyPairGenerator

Listing shows how to generate an EC key pair whose purpose is encryption and
decryption. Key can be used only by an authenticated user in time window of 5
minutes from the last successful authentication. AndroidKeyStore is defined as the
KeyPairGenerator provider, so the creation of the key pair occurs in the hardware

backed Keystore.

val kpg = KeyPairGenerator.getlnstance (
KeyProperties .KEY ALGORITHM_EC,
"AndroidKeyStore"

)

val parameterSpec: KeyGenParameterSpec =

KeyGenParameterSpec. Builder (
"EC_KEY",
KeyProperties .PURPOSE_ENCRYPT
or
KeyProperties .PURPOSE_DECRYPT
)
.setUserAuthenticationRequired (true)
.setUserAuthenticationValidityDurationSeconds (300)
. build ()

kpg.initialize (parameterSpec)

val kp = kpg.generateKeyPair ()

Listing 2.4: EC Key pair generation

2.5.2 Import and export of asymmetric keys

Keystore supports the import of public and private key pairs in DER~encoded
PKCSS format, without password-based encryption. Export is only supported for
public keys in X.509 format. Two different tags are used for origin to distinguish
imported keys from securely generated keys. Imported keys use tag imported, and

securely generated keys use tag generated.

Example of RSA private key import

PrivateKey instance and X.509 certificate for the public key corresponding to the
private key represented as an X509Certificate instance are needed to import a private
key into KeyStore. KeyStore abstraction does not support storing private keys
without a certificate. Listing shows how to generate RSA private key in DER
format and X.509 certificate for public key.

openssl genrsa —out private__key.pem 2048
openssl pkcs8 —topk8 —inform PEM —outform DER
—in private__key .pem
—out private__key.der
—nocrypt
openssl req —new —x509 —key private_key .pem
—out publickey . cer
—days 365

Listing 2.5: RSA key and certificate generation

For demonstration purposes, key and certificate files are directly imported to the
raw resources of the application. Listing shows how to convert DER encoded
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private key with X.509 public-key certificate into the PrivateKey and Certificate
instances, which are used to import private-key into KeyStore. Even though it is
possible to import externally generated keys into Keystore, it is not recommended
to do so. Private-key is exposed to the main memory and, therefore, can be abused

by an attacker.

val privByteArray =
resources .openRawResource (R.raw. private__key)
.readBytes ()
val spec =
PKCS8EncodedKeySpec (privByteArray)
val kf = KeyFactory.getInstance ("RSA")
val privKey =
kf.generatePrivate (spec) as RSAPrivateKey
val publicInputStream =
resources .openRawResource (R.raw. publickey)
val cert = CertificateFactory
.getInstance ("X.509")
.generateCertificate (
publicInputStream
)
val ks = KeyStore.getInstance ("AndroidKeyStore")
.apply { load(null) }
ks.setKeyEntry (
"MyImportedRsaKey" ,
privKey ,
null ,
arrayOf(cert))
val privateKey =
ks .getKey ("MyImportedRsaKey", null)

Listing 2.6: Import of RSA private key

Example of public key export

The export of the public key is straightforward. Listing shows how to get private
entry from Keystore and its certificate. Certificate can be converted to byte array
or base64 string and sent to the recipient. Note that private key entry contains a
private key field, which holds a reference to the private key. No sensitive pieces of

information that could let to abuse of the key are not presented in private key entry.

val entry = kS.getEntry ("EC_KEY", null)
as KeyStore.PrivateKeyEntry
val certificate = entry.certificate as X509Certificate

val base64cert = Base64.encodeToString(
certificate .encoded, Base64.NO_WRAP

)

val base64PubKey = Base64.encodeToString(
certificate .publicKey.encoded, Base64.NO_ WRAP

)

Listing 2.7: Export of EC public key

2.5.3 Encryption and decryption using an asymmetric key

RSA in different modes and padding settings is the only asymmetric algorithm that
can be used on Android to encrypt and decrypt data safely. At the time of writing
this thesis, no other asymmetric algorithm is supported. In table are listed
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all combinations of encryption modes and paddings. Additionally, all combinations
support all RSA key sizes that can KeyPairGenerator generate, (512, 768, 1024,
2048, 3072, 4096) bits. Cipher class is used to encrypt and decrypt data. Listing

shows how to generate RSA key for RSA/ECB/PKCS1Padding transformation
used in Cipher.

val kpg = KeyPairGenerator.getlnstance (
KeyProperties .KEY ALGORITHM_ RSA,
"AndroidKeyStore"
)
val parameterSpec: KeyGenParameterSpec =
KeyGenParameterSpec. Builder (
"RSA_KEY" ,
KeyProperties .PURPOSE_ENCRYPT
or
KeyProperties .PURPOSE_DECRYPT

.setBlockModes (KeyProperties .BLOCK_MODE_ECB)
.setEncryptionPaddings (
KeyProperties .ENCRYPTION_PADDING_RSA_ PKCS1
)
. build ()
kpg.initialize (parameterSpec)
val kp = kpg.generateKeyPair ()

val kS = KeyStore.getInstance ("AndroidKeyStore")
.apply { load(null) }

val entry = kS.getEntry ("RSA_KEY", null)
as KeyStore.PrivateKeyEntry

Listing 2.8: Generate RSA Key for encryption and decryption

Algorithm Supported (API Levels)
RSA/ECB/NoPadding 18+
RSA /ECB,/PKCS1Padding 18+
RSA/ECB/OAEPWithSHA-1AndMGF1Padding 23+
RSA/ECB/OAEPWithSHA-224AndMGF1Padding 23+
RSA/ECB/OAEPWithSHA-256 AndMGF1Padding 23+
RSA/ECB/OAEPWithSHA-384AndMGF1Padding 23+
RSA/ECB/OAEPWithSHA-512AndMGF1Padding 23+
RSA/ECB/OAEPPadding 23+

Tab. 2.4: Supported RSA variants for encryption and decryption

Example of RSA data encryption and decryption

Listing [2.9| shows how to encrypt data with the RSA key in ECB mode with PKCS1
padding. Cipher is initialized with the transformation RSA/ECB/PKCS1Padding,
which corresponds to the RSA key. The mode is set to encryption, and the encryp-
tion key is the public key of RSA. Data input is in a byte array format. To encrypt
data, doFinal(1) method is called. The result is a byte array of encrypted data.
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val dataToEncrypt = "VUT THESIS".toByteArray ()

val encryptedData: ByteArray =
Cipher.getInstance ("RSA/ECB/PKCS1Padding")
.run {
init (
Cipher .ENCRYPT_MODE,
entry.certificate .publicKey

)
doFinal (dataToEncrypt)

Listing 2.9: Enrypt data with RSA

val data =
Cipher.getInstance ("RSA/ECB/PKCS1Padding")
.run {
init (Cipher .DECRYPT MODE, entry.privateKey)
doFinal (encryptedData)

}olet { (it) }

Listing 2.10: Decrypt data with RSA

The private key of RSA is used to decrypt the data. Listing 2.10] shows the
decryption approach. Cipher instance is initialized with the same transformation as
which data were encrypted. The mode is set to decryption, and the decryption key
is the private key of RSA. Method doFinal(1) is called with passed cryptogram as

a parameter. The result is a byte array that can be converted to the string format.

2.5.4 Digital signature and verification of signature

RSA, EC, DSA can be used in different modes and padding settings. Table 2.5
shows all different configurations that can be used for signature and verification.
Listing 2.11 shows how to generate an elliptic curve key pair with SHA512 digest

for signing and verification.

val kpg = KeyPairGenerator.getInstance (
KeyProperties .KEY_ ALGORITHM EC,
"AndroidKeyStore"

val parameterSpec: KeyGenParameterSpec =
KeyGenParameterSpec. Builder (
"EC_KEY",
KeyProperties . PURPOSE_SIGN
or
KeyProperties . PURPOSE_VERIFY

.setDigests (KeyProperties . DIGEST_SHA512)
. build ()

kpg.initialize (parameterSpec)

val kp = kpg.generateKeyPair ()

val kS = KeyStore.getInstance ("AndroidKeyStore")

.apply { load(null) }

val entry = kS.getEntry ("EC_KEY", null)

as KeyStore.PrivateKeyEntry

Listing 2.11: Generate EC Key for sign and verify
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Algorithm Supported (API Levels)
MD5withRSA 18+
NONEwithECDSA 23+
NONEwithRSA 184
SHA1withDSA 19-22
SHA1withECDSA 19+
SHA1withRSA 184
SHA1withRSA /PSS 23+
SHA224withDSA 20-22
SHA224withECDSA 20+
SHA224withRSA 20+
SHA224withRSA /PSS 23+
SHA256withDSA 19-22
SHA256withECDSA 19+
SHA256withRSA 18+
SHA256withRSA /PSS 23+
SHA384withDSA 19-22
SHA384withECDSA 19+
SHA384withRSA 18+
SHA384withRSA /PSS 23+
SHA512withDSA 19-22
SHA512withECDSA 19+
SHA512withRSA 18+
SHA512withRSA /PSS 23+

Tab. 2.5: Supported algorithms for signing and verification

Example of ECDSA data signing and verification

Listing [2.12| shows how to sign data with the EC key with SHA512 digest. Signature
is initialized with the transformation SHA512withECDSA. The signature key is the
private key of EC. Data that should be signed are passed to the method update(1).
The sign method is called to sign data. The result is a byte array.

val dataToSign = "VUT THESIS".toByteArray ()

val signature: ByteArray =
Signature.getInstance ("SHA512withECDSA")
.run {
initSign (entry.privateKey)
update (dataToSign)
sign ()

Listing 2.12: Sign data with ECDSA

The certificate of the public key of EC is used to verify the signature. Listing
2.13] shows how to verify a signature. A signature instance is initialized with the
same transformation used to sign the data. Method verify(1) is called to verify the
signature passed to the method. Data which signature belong to are passed to the

method update(1). The result is a boolean that indicates if the signature is valid.
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val valid: Boolean =
Signature.getInstance ("SHA512withECDSA")
.run {
initVerify (entry.certificate)
update (dataToSign)
verify (signature)

Listing 2.13: Verify data with ECDSA

2.5.5 Import of raw symmetric keys

The import process of symmetric keys is much more straightforward than the import
process of asymmetric keys. The symmetric key is wrapped into SecretKeyEntry
and imported directly to the KeyStore. Listing shows an example of how to
import AES key with additional key properties definition.

fun importAESKey(byteArr: ByteArray) {
val spec = SecretKeySpec(
byteArr, 0,
byteArr.size , "AES")
val kS = KeyStore.getInstance ("AndroidKeyStore")
.apply { load(null) }
kS.setEntry (
"Imported_AES",
KeyStore.SecretKeyEntry (spec),
KeyProtection.Builder (
KeyProperties .PURPOSE_ENCRYPT
or
KeyProperties .PURPOSE DECRYPT)
.setBlockModes (
KeyProperties .BLOCK MODE GCM
)
.setEncryptionPaddings (
KeyProperties .ENCRYPTION PADDING NONE
)
. build ()

Listing 2.14: Import of AES key

2.5.6 Encryption and decryption using an symetric key

AES in different modes and padding settings is the only symmetric algorithm that
can be used on android to encrypt and decrypt data safely. At the time of writing
this thesis, no other symmetric algorithm is supported. In table [2.4] are listed all
combinations of encryption modes and paddings. Additionally, all combinations
support all AES key sizes that can KeyGenerator generate, (128, 192, 256) bits.
Cipher class is used to encrypt and decrypt data. Listing shows how to generate
AES key for AES/GCM /NoPadding transformation used in Cipher.

Listing shows how to encrypt data with the AES key in GCM mode with
no padding. Cipher is initialized with the transformation AES/GRCM /NoPadding,
which corresponds to the AES key purpose. The mode is set to encryption. Data
input is in a byte array format. To encrypt data, doFinal(1) method is called. The
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result is a byte array of encrypted data. To be able to decrypt cryptogram, the

initialization vector of Cipher must be saved for later use.

val dataToEncrypt = "VUT THESIS".toByteArray ()
val cipher = Cipher.getIlnstance ("AES/GCM/NoPadding")
val encryptedData: ByteArray =
cipher
.run {
init (
Cipher .ENCRYPT_ MODE,
entry .secretKey
)
doFinal (dataToEncrypt)

}

val vector = cipher.iv

Listing 2.15: Enrypt data with AES

Listing shows the decryption process. Cipher instance is initialized with the
same transformation as which data were encrypted. The mode is set to decryption,
and the GCMParameterSpec is initialized with the initialization vector and autho-
rization tag. Method doFinal(1) is called with passed cryptogram as a parameter.

The result is a byte array that can be converted to the string format.

val spec = GCMParameterSpec(128, vector)
val data =
Cipher.getInstance ("AES/GCM/NoPadding")
.run {
init (
Cipher .DECRYPT MODE,
entry .secretKey , spec
)
doFinal (encryptedData)

}olet { (it) }

Listing 2.16: Decrypt data with AES

2.6 Key access control

Hardware-based keys let alone are not secure enough, if an attacker could use them
at will. Access control was introduced to add another security layer on to the
hardware-based keys, and the Keystore must enforce access controls. Authorization
list of tag/value pairs is a definition of access controls. Authorization tags are 32-
bit integers, and the values are a variety of types. Authorization tags are defined
at the key creation, and any attempt to modify tags after creation results in key
deprecation so that any cryptographic operation will fail. Some tags can be defined
multiple times. If and when can tag be used multiple times is defined in concrete tag
definition. After the user-defined authorization tag, the key master adds additional
tags, such as whether the key has rollback protection and encodes the final list to
the returned key blob.

Some of the authorization tags are KeyPurpose tags to define the purpose of

the created key: encrypt, decrypt, verify, e.t.c. The expiration date of the key, key
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size, user authentication required, and many more can be defined at the creation to

define access-list.

2.7 Hardware vs. software enforcement

Secure hardware applications vary in implementations, and not all support the same
set of features. To support this variety of approaches, Keymaster distinguishes be-
tween secure and non-secure world access control enforcement, or hardware and
software enforcement, respectively. Even though not all secure hardware implemen-
tations are the same. The base set of features supported on all implementations
are:

o Enforce the exact matching of all authorizations. Authorization lists in key
blobs exactly match the authorizations returned during key generation, in-
cluding ordering. Any mismatch causes an error diagnostic.

e Declare the authorizations whose semantic values are enforced.

The API mechanism for declaring hardware-enforced authorizations divides the
authorization list into two sub-lists, hardware-enforced and software-enforced. Based
on what the secure hardware can enforce, it places the appropriate values in each
sub-list.

2.8 Trusty TEE

Trusted Execution Environment is provided by Trusty, which is a secure Operation
System. TEE runs parallel to the Android OS, and it is on the same processor as
the Android OS, but it is isolated from the Android OS by hardware and software.
TEE can use the full power of the primary processor and memory. TEE isolation
protects it from malicious applications that could be installed by the user. The
Trusty use Trustzone on an ARM processor and Intel’s Virtualization Technology

on x86 platform.
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3 Cryptographic algorithms comparison

This chapter utilizes information from chapter 2] to create a benchmark application
for cryptographic algorithms. The application contains 280 benchmark tests that
measure the run time of cryptographic algorithms on 16 different devices listed in

Tab [(3.1} This chapter presents the processed results from the benchmark applica-

tion.

Manufacturer | Model Chipset CPU RAM [GB] | Android
Google Pixel 3a Qualcomm SDM670 Snapdragon 670 (10 nm) | Octa-core (2x2.0 GHz 360 Gold & 6x1.7 GHz Kryo 360 Silver) ] 10
Google Pixel XL, Qualcomm MSM8996 Snapdragon 821 (14 nm) | Quad-core (2x2.15 GHz Kryo & 2x1.6 GHz Kryo) 1 10
LG G6 Qualcomm MSM8996 Snapdragon 821 (14 nm) | Quad-core (2x2.35 GHz Kryo & 2x1.6 GHz Kryo) 1 9
LG Nexus 5X Qualcomm MSM8992 Snapdragon 808 (20 nm) | Hexa-core (4x1.4 GHz Cortex-A53 & 2x1.8 GHz Cortex-A57) 2 8.1
Samsung Galaxy A5 Exynos 7880 (14 nm) Octa-core 1.9 GHz Cortex-A53 3 8
Asus Zenfone 3 max | Mediatek MTG737M (28 nm) Quad-core 1.25 GHz Cortex-A53 2 7
HTC One M9 Qualcomm MSM8994 Snapdragon 810 (20 nm) | Octa-core (4x1.5 GHz Cortex-A53 & 4x2.0 GHz Cortex-A57) 3 7
Huawei P9 lite HiSilicon Kirin 650 (16 nm) Octa-core (4x2.0 GHz Cortex-A53 & 4x1.7 GHz Cortex-A53) 3 7
Samsung Galaxy S6 Exynos 7420 Octa (14 nm) Octa-core (4x2.1 GHz Cortex-A57 & 4x1.5 GHz Cortex-A53) 3 7
Motorola Moto G5 Plus | Qualcomm MSM8953 Snapdragon 625 (14 nm) | Octa-core 2.0 GHz Cortex-A53 1 8.1
Samsung Notel0+ Exynos 9825 (7 nm) Octa-core (2 GHz Mongoose Md & 2x2.4 GHz Cortex-A75 & 4x1.9 GHz Cortex-A55) | 12 9
OnePlus 7 Pro Qualcomm SDMS55 Snapdragon 855+ (7 nm) | Octa-core (1x2.96 GHz Kryo 485 & 3x2.42 GHz Kryo 485 & 4x1.78 GHz Kryo 485) B 10
Huawei P20lite HiSilicon Kirin 659 (16 um) Octa-core (4x2.36 GHz Cortex-A53 & 4x1.7 GHz Cortex-A53) 4 9
OnePlus 6 Qualcomm SDM845 Snapdragon 845 (10 nm) | Octa-core (4x2.8 GHz Kryo 385 Gold & 4x1.7 GHz Kryo 385 Silver) 3 10
Samsung Galaxy S9+ | Exynos 9810 (10 nm) Octa-core (4x2.7 GHz Mongoose M3 & 4x1.8 GHz Cor 5) 6 9
Samsung S10e Exynos 9820 (8 nm) Octa-core (2x2.73 GHz Mongoose M4 & 2x2.31 GHz Cortex-A75 & 4x1.95 GHz Cortex-A55) | 8 9

Tab. 3.1: Devices used for benchmarking

3.1 Creation of asymmetric key

Asymmetric key creation benchmark measures run-time of the creation of an asym-

metric key. Measured key types are RSA and EC in different key size variations.

With increasing key size, the computation complexity of the algorithm increase
as well. So with the greater key size, longer run times are expected than with smaller
key sizes. The heat map summarizes the results for asymmetric key creation.
The results, in most cases, are coherent with the assumption that with increased
key size, run time also increases. RSA algorithm results approve this assumption
across all devices. With the EC algorithm, if we compare run times of EC224 and
EC256 across devices, results show that on six devices, greater key size resulted in
shorter run times, which is the opposite of assumption. A small difference between
the key size used in algorithms could cause this. Another assumption is that the
EC key generation is faster than the RSA key generation due to EC keys can be a
lot smaller than RSA keys and still have the same level of security. Results show
that overall run times of EC are a lot lower than run times of RSA, which confirms

the original assumption.
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3.2 Encryption using an asymmetric key

Encryption using asymmetric key is currently supported only for RSA, as mentioned
in Section 2.5.3. RSA for encryption can be used in eight different variations. The
difference between them is in used padding mode. Android Keystore and also general
java Keystore do not implement ECB mode for RSA, so encryption/decryption
can be used only on data that are smaller than key size. Interestingly encryption
modes have in their name ECB even though it is not implemented. Heat maps
and indicate that the most consistent run time across devices is achieved by
RSA/ECB/PKCS1Padding variation. PKCS1Padding adds the least overhead of
all supported padding schemes (at least 11 bytes). OAEP padding adds even more
overhead. OAEP padding scheme needs two hash functions with different properties
to operate. One hash function should map arbitrary sized input to fixed-size output.
Another hash function map arbitrary sized input to arbitrarily sized output. Such
a hash function is called "mask generation function" (MFG). OAEP adds at least 42
bytes, which is 31 bytes more than minimum on PKCS1 Padding. Results confirm
assumptions, and a general run time of schemes using OAEP padding is longer than
in the case of PKCS1 schemes. Samsung Galaxy S6 on all encryption schemes shows
significantly slower encryption with used key size 4096bits. Huawei P9 Lite and Asus
Zenphone 3 MAX, when used with OAEP padding, results in slower run times than
other devices. From a security standpoint, it is recommended to use OAEP padding
scheme. Result comparison of algorithms using the OAEP padding scheme shows
the best value brings RSA3072/OAEPWithSha-512AndMGF1Padding.

3.3 Decryption using an asymmetric key

Same as in the case of asymmetric key encryption, RSA is the only supported algo-
rithm. The general assumption is that decryption should be slower. Encryption has
the advantage that the public exponent is generally relatively small. The private
exponent used for decryption is larger, so the decryption of data is slower operation.
Results in heat maps and summarizes results and confirm the assumption
that the data decryption is in the most implementations of RSA is slower than en-
cryption. The same algorithm achieves overall best run time as in case of encryption
that is RSA/ECB/PKCS1Padding.

3.4 Digital signature

Unlike asymmetric key encryption and decryption, digital signature is supported by
RSA and EC. Benchmark tests are divided into categories by hash function that the
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RSA or EC utilizes. Comparing heat maps[A.0] shows that the MD5 hash func-
tion adds almost none overhead to the signature algorithm compared to the signature
algorithm without hash function. Signature algorithms using SHA hash function,
listed in [A.8} [A.9] [A.10)JA.11] [A.12] have longer run time than signature algorithms

using MD5 or none hash function. The run time difference between signature algo-

rithms using the SHA hash function is minimal. Result comparison of algorithms
using the SHA hash function shows the best value brings SHA512withRSA2048 /PSS.

3.5 Verification of digital signature

Benchmark tests are divided into the same categories as in digital signature. Results
are listed in heat maps [A.13] [A.14] [A.15] [A.16] [A.17 [A.18 JA.19] The difference in

run time between verification algorithms using the SHA hash function is the same

as in digital signature minimal. Overall, RSA has a lover run time than EC unlike

digital signature where EC has the lower run time.

3.6 Creation of symmetric key

Symmetric key creation benchmark measures run-time of the creation of the sym-
metric key. The measured key type is AES in different key sizes. With increasing
key size, the computation complexity of the algorithm increase as well. So with the
greater key size, longer run times are expected than with smaller key sizes. The bar
chart summarizes the results for symmetric key creation. Run time difference
on devices Google Pixel 3A, Huawei P20 Lite, LG Nexus 5X, Google Pixel XL are
expected. On other devices, run times are equal, or run time is not increasing with
increased key size. Hardware optimizations can cause this, or it can be a statistical

error.

3.7 Encryption using an symmetric key

AES is the only algorithm supported for symmetric encryption in different key sizes
and variants. Results in heat map show that run time stays consistent on
the device across all variants and key sizes. Compared to the RSA encryption run
times, AES encryption run times are slower in most cases. This can be caused by
small data size used to benchmark encryption (smaller than RSA key size). Based
on results and security standpoint AES256/GCM /NoPadding brings the best value.
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3.8 Decryption using an symmetric key

Same as in the case of symmetric key encryption, AES is the only supported algo-
rithm. The assumption is that decryption and encryption should be roughly equal
due to the same key used for both operations. Compared to the RSA decryption,
AES decryption should be faster. Results in heat map show overall slower run
times than symmetric encryption run times, which do not confirm the assumption
of equal run times. Compared to the RSA decryption run time, AES decryption run

time is faster, and this confirms the assumption.
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4 Hands-on implementation

The hands-on implementation chapter leverages the theory described in chapter
and results from chapter 3], to showcase modern security features that can be used to
implement a secure Android application. To properly showcase how these security
features can be used, the SecNote system is implemented. The system consists
of the Android application and cloud solution. How independent elements in the
system communicate with each other is described in Section [4.1] After an overview
of the system, the separate components are thoroughly described together with their

security mechanisms.

4.1 System overview

The system’s mission is to deliver user notes between the Android application and
cloud solution securely. The system comprises the Android application, Authenti-
cation service, Permission service, and Note service. Communication diagram is

shown on Fig [£.1] Diagram showcases where separate components belong and how
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+signin(C: ialsRequest) : C P Top
+ signUp(Ci quest) : Ci i ponse
+renew quest) : C i P MongoDB
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gRPC
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S v + deleteNote(DeleteRequest) : Response

gRPCs . RPC | + :
Keymaster }4—4 Keystore API SecNote App Ingress + getNotes(Request) : NoteResponse o quest) po
{ secure channel g ] 2o onmeques) oon + \Reques!) : Note
\ N + updateNote(NoteOperationRequest) : Note

g

Cert Authoriry

Public network Accessible only from server

Accessible only from .
TEE Android 0OS

Fig. 4.1: Secnote system overview

accessible they are. The cloud solution is based on microservice architecture. It
allows the system to be rapidly developed and scaled as needed. To deploy and
manage microservices on cloud effectively, Kubernetes with the Istio service mesh is
used. The application communicates with the cloud gateway through the channel.
Channel is secured with TLS, and it is terminated on ingress gateway. Due to the
single cluster solution, for faster response times, it is easier to terminate TLS on
the gateway and let communication inside the cluster be unencrypted. Communica-

tion between application and cloud and also between microservices itself is based on
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gRPC. gRPC is a modern RPC framework that uses HT'TP /2 for transport and seri-
alizes data with the protocol buffers. Protocol buffers are Google’s language-neutral

mechanism for serializing structured data.

4.2 Service architecture

This section describes common architectural patterns between authentication, per-
mission, and note services. All three services are written in go language as gRPC
microservice. The file structure of the project is kept consistent, so navigation be-
tween different project source code is reasonably similar. The runnable portion of
the code, the main, is located in the cmd folder. The main is exactly the same on
all three services besides the provided service implementation. Fig shows the

code execution of the main. This process describes the startup of the service. To

Y
Create
Provider X network listener

P T

Wire Generate component—»| . Serwcel
implementaiton
 —

Provider Y

Start GRPC server

i

Register service
implementation on
grpc server

YYVY

Provider Z

Serve server on
created listener

Fig. 4.2: Service startup

implement the gRPC' server, proto file needs to be defined so the interface of the
service can be generated and implemented. Proto files are located in the API folder.
The internal folder encapsulates all code that is related to service and is not meant
to be included in other services. Concrete implementation of methods that are gen-
erated from the proto file is located in the internal /service folder. Dependencies are
provided through the Wire. The Wire is GO library used to manage dependency
injection at compile time. All components that are intentioned to be provided have
module file in which provide method is implemented. This method tells to Wire
how to provide that particular dependency. After the service is implemented, the
docker image is built. A docker deamon needs the definition of the image, which is
provided with the Dockerfile. Dockerfile of the service is located in the build folder.
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Features described in this section are common between all three services used in the
SecNote system, so the next section will describe what methods service contains and

how those methods are implemented.

4.3 Authentication service

The authentication service is used to authenticate the user in the SecNote system.
The user can use this service to log in to the service or create a new account. In ad-
dition to these features that are visible to the end-user, the service is used to extend
the user’s login and to verify the user’s requests. The ability to verify user requests
increases system security and prevents the so-called man-in-the-middle attack. All
features are shown in Fig[4.3] How the individual features are implemented will be

described in this section.

Authentication service E

+ signin(CredentialsRequest) : CredentialsResponse
+ signUp(CredentialsRequest) : CredentialsResponse
+ renewToken(RenewRequest) : CredentialsResponse
+ signOut(Request) : Response

+ verify(Request) : VerifyResponse

Fig. 4.3: Authentication service

4.3.1 Sing In

The RPC method is used to sign-in a user to an existing account. The parameter of
the method is a structure called CredentialsRequest. The fields of the structure are
email, password, and key. Email and password are used to verify that the user has
the correct access data and thus is allowed access to the system. The key is an RSA
public key in PEM format encoded with base64 and is tied to the user at login. By
associating the key with the user account when signing-in, we protect the system
from account sharing. If the user logs in under the same account on another device,
then after the access token expires, the user will be logged out of the device because
the recovery of the access token using the recovery token fails due to a different
RSA key associated with the account. This is a useful feature for systems that offer
their service free of charge for an individual, but if you want to use the service with
more people, the service is charged. If the login details are correct and the key is

in the correct format, the user’s CredentialsResponse structure is returned. The
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CredentialsResponse structure contains a JWT structure. The JWT token serves
as a representation of the user when interacting with the SecNote system. How a
JWT token is created and used is described in Section [£.3.6]

4.3.2 Sign Up

The RPC method is used to create a user account. The procedure is similar to
sign-in, but instead of verifying that the credentials match the credentials saved in
the database, it verifies that the user does not exist and if not, a new user account
is created. As in the case of the sign-in method, the key is tied to the user account,
and the use case is the same. The return type of the method is the same as in the

case of login.

4.3.3 Sign Out

The sign-out is one of three methods with which the user interacts directly. Unlike
sign-in and sign-up, when using the sign-out method, the user must provide access
token in addition to the input parameters in the context of the RPC method. This
ensures that an unauthorized user cannot sign-out the user from the system. The
input parameters are empty in this case. The id of the user to be signed-out is
obtained from the access token. After verification of the validity of the access token,
the key that is bound to the user is deleted, and an empty structure is returned.

The empty response indicates to the application that the logout was successful.

4.3.4 Renew token

The RPC method is used to create a new access token for the user. The access
token is valid for 5 minutes. After expiration, it is necessary to renew the token so
that the user is not signed out of the application. The token can be renewed using a
renewal token, which is valid for seven days and is intended for renewal of the access
token. The RSA key that is part of the renewal token is compared to the key that
is bound to the user, and if the token is valid and the keys match, new access token
and renew token are created and returned to the user using the CredentialsResponse

structure.

4.3.5 Request verification

The Verify RPC method is used to verify the signature of the request. A signature,
token, and digest are extracted from the request context to verify the request sig-

nature. This RPC method is used primarily by other cloud services. The user can
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also verify his request, but within the business logic, it does not make sense, and
this method is not used for this purpose. Before the service calls the Verify RPC
method, it verifies that the digest matches the digest created from the request. If
the digests do not match, the error is returned to the user, and the Verify method

is not executed. How exactly the signature verification is implemented is explained

in Section [4.3.6l

4.3.6 Security mechanisms

This section describes in more detail the security techniques used in the RPC meth-
ods of the Authentication Service. These techniques include creating a JW'T token,
verifying the token, and verifying the request signature. Where these techniques are

used has been described in the sections mentioned above.

Token creation

As mentioned, the JWT token represents the user in the system. The token is
digitally signed by the server, so it is not possible to change data placed in the
token. When the user sign-in, sign-up or renew an access token, then an access
token and a renewal tokens are created. The JW'T token contains claims that are
divided into public and private claims, and the creation of those claims is on Listing
4.1 One of the fields in the private claims is the key, and this is the public key of

the user, which was used as a method parameter when logging in or creating the

account.
currentTime := time.Now()
accessPublicClaims := jwt.Claims{
Issuer: IssuerValue ,
IssuedAt: jwt.NewNumericDate(currentTime),
Expiry: jwt.NewNumericDate (currentTime .Add( ExpirationTimeAccessValue)) ,
}
accessPrivateClaims := map[string]interface {}{
UserIdKey : id ,

AccessTokenKey : true ,
RefreshTokenKey: false ,
PublicKeyKey : key ,

Listing 4.1: JWT Claims creation

As mentioned, the JW'T tokens are signed by the server in order for the token to be
signed, the server must generate an elliptic curve key. Listing [4.2]shows how a key is
generated using elliptic curves and then used to create a JwtCrypto structure. This
structure is later used to obtain a signer. After creating the structure and claims,
the server can create a token. The process of creation of token from claims using

signer is shown in Listing [4.3] The renewal token is created in the same way. The
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difference is in the type of token that is set in the private claims and the expiration

time.

func ProvideSigned () *model.JwtCrypto {
ecdsaKey, _ := ecdsa.GenerateKey(elliptic.P521(), rand.Reader)
key := jose.SigningKey{Algorithm: jose.ES512, Key: ecdsaKey}
var options = jose.SignerOptions{}
options.WithType ("JWT")
ecSigner, err := jose.NewSigner(key, &options)
if err != nil {
panic(err)

}

return &model.JwtCrypto{
Signer: ecSigner ,
Key: ecdsaKey ,

Listing 4.2: Eliptic curve key creation

builder := jwt.Signed(repository.JwtCrypto.Signer)
.Claims (accessPublicClaims)
.Claims (accessPrivateClaims)

accessToken, err := builder.CompactSerialize ()

Listing 4.3: JW'T token creation

Token verification

Token verification is performed at each request where user data is handled. Before
any token operation is performed, the token must be parsed from the string into the
JSONWebToken structure. How to convert a token from a string to a structure is
shown in Listing [£.4]

func (repository *xCryptoRepository) ParseJWTToken(token string) (xjwt.JSONWebToken, error) {

parsedJWT, err := jwt.ParseSigned (token)

if err != nil {
err = tools.ConvertError(codes.Unauthenticated, "Can‘t parse JWT token", err)
return nil, err

}

return parsedJWT, nil

Listing 4.4: Parsing of JWT token

After the token is parsed, the server tries to verify the token signature. The signature
is verified using the public key of the elliptic curve. If the signature is valid, claims

are obtained from the token. This process is shown in Listing [4.5]

type JWTClaims map[string]interface{}
func (repository xCryptoRepository) GetJWTClaims(token xjwt.JSONWebToken) (JWTClaims, error) {
claims := make(JWTClaims)
err := token.Claims(&repository.JwtCrypto.Key.PublicKey , &claims)
if err != nil {
err = tools.ConvertError(codes.Aborted, "Can‘t deserialize claims from JWT token", err)
return nil, err
}
return claims, nil
}

Listing 4.5: JWT token signature verification
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The procedure that has been performed so far ensures that the data in the token
have not been altered. The server can now verify that the token is of the correct
type and that the token is still valid, in other words, that the expiration time has
not exceeded the current time. If these conditions succeed, the token is evaluated
as valid. Otherwise, an error is returned to the user, and the action the user tried

to perform is invalid. The whole procedure is shown in Listing [4.6]

func (repository *CryptoRepository) VerifyJWT (token =xjwt.JSONWebToken, isRefreshToken bool) error

claims, err := repository.GetJWTClaims(token) // Returns formatted error
if err != nil {
return err
}
if claims[RefreshTokenKey] != isRefreshToken {
return tools.CreateError(codes.InvalidArgument, "Token is in invalid type")
}
expiration := int64 (claims |[ExpirationTimeKey].( float64))
if time.Now (). After (time.Unix(expiration, 0)) {
return status.Error(codes.Unauthenticated, "token is expired")
}

return nil

Listing 4.6: JWT token expiration verification

Request signature verification

Up to this point, the server has determined which user it is according to the token
and that the data in the token has not been modified. However, the server has
not yet ruled out whether the token was stolen, and now the attacker is trying to
retrieve or change the user’s data. In order for the server to prevent this scenario,

each request is protected by the user’s digital signature.

func (repository xCryptoRepository) VerifyRequestSignature (
token *xjwt.JSONWebToken, encodedMessage string ,
signature string , encodedToken string) (bool, error) {
headers, err := repository.GetJWTClaims(token) // Returns formatted error
if err != nil {
return false , err
}
pubKeyRaw := headers[PublicKeyKey].(string)
pubKey, err := repository.ParseKey(pubKeyRaw) // Returns formatted error
if err != nil {
return false , err
}
sign, err := base64.StdEncoding.DecodeString(signature)
if err != nil {
err = tools.ConvertError(codes.InvalidArgument, "Invalid signature base64 encoding", err)
return false , err
}
messageByte := []byte(encodedMessage)
tokenByte := [] byte(encodedToken)
sha512Hash := sha512.New()
shab512Hash . Write (append (messageByte, tokenByte...))
hash := sha512Hash.Sum(nil)
err = rsa.VerifyPKCS1v1l5(pubKey, crypto.SHA512, hash, sign)
if err != nil {
err = tools.ConvertError(codes.Unauthenticated, "Invalid signature, err)
return false, err
¥

return true, nil

Listing 4.7: Request signature verification
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A signature, token, and digest are obtained from the context of the RPC method.
Before the signature verification method is called in the authentication service, the
service that wants to verify the signature validates whether the digest in context is
identical to the digest created from the request body. An RSA public key is obtained
from the token to verify the digital signature. The body of the signed message is
created from a digest and a token. This ensures that the request comes from the
token owner. Such a message is then hashed with the SHA512 algorithm. If the
result after the signature verification is equal to the created hash, the message is

valid, and the signature is valid. The whole process can be seen in Listing

4.4 Note service

The service provides CRUD operations on notes. The service does not know who
the individual notes belong to, and service is used primarily to perform CRUD
operations on the notes. The RPC methods that the service provides in the cloud
system also correspond to this. The user does not have direct access to this service,
and they use it through the permission service. This means that the service cannot
be accessed outside the cloud. The methods that the service provides are shown in
Listing 1.0, and the service primarily only manages database queries and formats
errors in the event of a mistake, for these reasons, the specific methods will not be
described further in the text.

NoteService E

+ getNotes(NoteRequest) : NoteResponse

+ createNote(NoteOperationRequest) : Note
+ updateNote(NoteOperationRequest) : Note
+ deleteNote(DeleteRequest) : Response

Fig. 4.4: Note service

4.5 Permission service

The permission service serves as the primary point for the user in the SecNote
system with which the user interacts. The service stores information about the user’s
mapping to notes and communicates with authentication services and note services.
The user can use this service to manage their notes. The following sections describe
how the individual methods are implemented and how they use other services in the

system to provide information for the user.
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4.5.1 Get notes

In order for the service to provide all the notes that belong to the user, the permission
service must communicate with the authentication services and the note services.
The permission service first verifies that the digest from the request context equals
the digest created from the request body. If this check passes, then the service sends a
request to the authentication service to verify the token and signature of the request.
After confirming the identity of the applicant and the request credibility, the service
will start the process for obtaining notes. Notes are stored in the note service, but
the information which notes belong to whom is stored in the permission service.
So, the permission service first obtains information about which notes belong to the
user from its database. According to the received note identifiers, it gathers data

from the note service and provides it to the user.

4.5.2 Add or update note

As with the getNotes() method, the token and signature of the request are verified
using the authentication service. The input parameter for AddOrUpdateNote() is
the NoteOperationRequest structure that wraps the note. The server checks the
id of the note in the NoteOperationRequest, and if the id is empty, the server will
assume that it is a new note, and it will try to create it. Otherwise, if the id is
specified, it will be assumed that the note already exists and tries to edit it. In case
of note creation createNote() is called on note service, and after success, execution
permission service creates a mapping of the user to the newly created note. In case
of note update, permission service check if the user owns the note and if the user
owns it, and it executes updateMethod() on note service. In either case, after the
action is executed AddOrUpdateNote() returns the newly modified or created note

to the user.

4.5.3 Delete note

When deleting a note, the procedure is very similar to updating a note. The server
checks the JWT token and the signature of the request, and if this information is
valid, the server checks whether the user owns the note he wants to delete. If all
checks are successful, a request is sent to the note service for the note to be deleted,

and the ownership record in the permission service is also removed.

4.5.4 Security mechanisms

This section describes the implementation details of the security mechanism im-

plemented in the SecNote application. These techniques include application lock,
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binding the keys to the user, encryption, decryption, and digital signature of re-
quests. Previous chapters described the application screen by screen for a better
picture where these security mechanisms come into play and how to leverage them

to make the application more secure.

Digest verification

The digest check is related to the verification of the signature of the request. The
server must verify the digest so that the user does not create a request signature
and then changes the data in the request body just before sending it. This use case
would evaluate the signature as valid, but in reality, the signature would not match
the request body. So to verify digest, the permission service converts the request
to a byte array and passes the result to the ProxyMedataFromContext() method.
In Listing is shown implementation of the ProxyMedataFromContext method.
The request that was converted to a byte array is used to create a hash using the
SHAb12 algorithm, which is subsequently encoded using base64. The string created
in this way is compared with the digest that was obtained from the context of the
request. In case the digests are equal, the metadata of request is proxied to the
verify method of authentication service to verify the signature of the request and
JWT validity.

func ProxyMedataFromContext(context context.Context, request []byte) (context.Context, error) {
md, ok := metadata.FromIncomingContext(context)
md = md. Copy ()
digest := md.Get(DigestKey)
if len(digest) = 0 {
return nil, CreateError(codes.FailedPrecondition, "Can‘t get metadata from context")
}
hashed := sha512.New()
hashed . Write(request)
output := hashed.Sum(nil)
requestDigest := base64.StdEncoding.EncodeToString(output)
if digest [0] != requestDigest {
return nil, CreateError(codes.FailedPrecondition, "Digest is not equal to request body")
}
if lok {
return nil, CreateError(codes.Unauthenticated, "Can‘t get metadata from context")

}

return metadata.NewOutgoingContext(context , md), nil

Listing 4.8: Digest verification

4.6 SecNote application

SecNote is native Android application where security is the priority, and the ap-
plication allows users to manage notes, add different categories to the notes, and

also encrypt them. Different security mechanisms are implemented to ensure that
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users’ notes are appropriately protected. Besides local security mechanism, notes are
synchronized into cloud so secure communication between mobile device and cloud
system is also implemented. The application is the entry point for the end-user into
the SecNote system. Principles that are universal and applicable to all screens will
be explained inside the Architecture Section Flow of the application is shown
in Fig In the following sections, the application’s functionality will be divided

based on its screens and further described.

ithorize device to

12345678290
qwertyuiop
sdfghijk.l

vbnanma@

All notes

Fig. 4.5: Secnote application flow

4.6.1 Architecture

The application is based on MVVM [15] architecture and uses the Arkitekt library[16],
which fallows MVVM architecture and adds base components that are then used to
implement the application. Arkitekt is an open-source library with MIT Licence.
Fig showcase abstract application architecture. Every screen in the application
is built upon principles shown in Fig [£.6] and every component will be briefly de-

scribed depending on their use. All components create together architecture, which
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allows easy navigation through the code and supports the robustness of resulting
application. The application can run on any Android device with Android 6.0 or
higher. The application needs to communicate with the remote API so notes can be
synchronized to the server. How application established connection and what kind

of communication is used is explained in the networking Section |4.6.2

~ observe chang |[ LiveData ViewState ]
8

ApiManager

Binding

|

EncryptedSharePreferences

|

@ ______ Fragment ~ observe event |( | EventBus ViewModel ]
8

RoomDatabase

|

Start action  Result

mnel

Store

Interactor

Background
thread pool

View ViewModel Model/Repository

Fig. 4.6: Application architecture

Fragment

The Fragment represents the UI portion of the application and also inherits from
BaseBindingFragment from Arkitekt library. BaseBindingFragment sets up data-
binding from Fragment layout and also sets up dagger dependencies to be injected.
If the screen has defined events, the Fragment can observe the events and react

depending on the event type. The Fragment has direct access to the view-model.

View

The view is an interface that represents actions that can be called on the Fragment.
This is useful when a fragment contains a recycler view, and the view holder requires
action to be executed after on click on it. In that case, the view can be provided by
the dagger to the adapter, which provides it to the view holder. This way, actions
can be called from view holders on a fragment without the need to provide the full

accessibility of Fragment.

ViewModel

The role of ViewModel is to encapsulate business logic from the Fragment. Besides

its architectural intent, it also implements BaseCrViewModel from Arkitekt library,
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which provides coroutine scope bound to view-model scope. This scope is used by
interactors and ensures the clean up of resources and calls in case of scope destroy

event.

ViewState

ViewState is a representation of the screen. All data that are displayed on screen or
are related to the screen are persisted in ViewState. Data representation is presented
in live data, which can be observed in the Fragment. ViewState is persisted in

ViewModel, so the ViewState is not destroyed on lifecycle changes of Fragment.

Events

In the MVVM architecture, ViewModel should not be able to communicate directly
with the Fragment. ViewModel should be clueless, which Fragment is using the
ViewModel. Based on these principles, events can be defined and send from the
ViewModel. The Fragment can than observe the view-model events and react based

on the type of event.

Interactors

Interactors encapsulate domain logic. There are two base classes Coroutinelnterac-
tor and FlowInteractor. Coroutinelnteractor emits a single result, and FlowInter-
actor emits a stream of results. Interactors are executed on background executors,
which frees the main thread from heavy background work. Concrete interactors are

injected into the view-model and executed at will.

4.6.2 Networking

SecNote application is based on the premise that the user can get access to the
notes if he has a knowledge of authentication credentials. The application needs
to communicate with the remote API to implement these features. The SecNote
application communicates with the Authentication and Permission service.
These services run on gRPC protocol, that is based on HTTP /2, which means that
all communication is multiplexed through the single channel. Listing shows
the declaration of the channel that is located in NetworkModule. In line seven is
used useTransportSecurity() method. This method enforces that all communication
through this channel needs to be under the TLS. TSL secures the communication
channel, so the communication between the application and remote API is secure.
gRPC service is defined by a proto file. Proto file is a file that declares all the

messages that can be sent to the service and all the RPC that service contains. So,
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in contrast with REST API, gRPC is a type-safe. On build type compiler generates
gRPC client builder that can be used to build a client for service. To build a client,

application needs to provide a channel that was created on Listing [4.9]

@QProvides
@Singleton
fun provideChannel(@ApplicationContext context: Context): Channel = AndroidChannelBuilder
.forTarget (Constants.Network .URL)
.context (context)
.idleTimeout (Constants.Network .IDLE_TIMEOUT, TimeUnit.MINUTES)
.useTransportSecurity ()
. build ()

Listing 4.9: gRPC Android channel

Listing [4.10] shows how to use generated builder to build stub for services. After a

stub is built, the application can call an RPC that is defined in the proto file.

@QProvides

@Singleton

fun provideAuthStub(channel: Channel) =
AuthServiceGrpcKt. AuthServiceCoroutineStub (channel)

QProvides

@Singleton

fun providePermissionStub (channel: Channel) =
PermissionServiceGrpcKt.PermissionServiceCoroutineStub (channel)

Listing 4.10: gRPC Stub

4.6.3 Login

Users can create a new account with sign up or sign in into an existing account. Fig
4.7 shows login UI where the user enters login credentials, which are composed of

email and password, and selects which action would like to perform.

Validation

Before sign in or sign up action is executed, in both cases, the input is validated

with the same method validateInput() shown on Listing [4.11}

private fun validatelnput (action: () —> Unit) {
val isEmailValid = Patterns.EMAIL ADDRESS. matcher(viewState.email.value).matches ()
val isPasswordValid = viewState.password.value.isNotBlank ()

viewState.emailError.value = if (isEmailValid.not())
resources.getString (R. string.general email error) else

viewState.passwordError.value = if (isPasswordValid.not())
resources.getString (R. string . general password__error) else

if (isEmailValid && isPasswordValid) {
action ()

}

Listing 4.11: Email and password validation

Email and password edit text fields are bound to the ViewState so the method can

access the values inserted by the user. Email is checked if it matches the pattern,
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Fig. 4.7: Login and pin set up screens

and the password is checked if it is not empty. If both conditions are valid than the

provided action is executed. Otherwise, an error is shown to the user.

Device security

After input validation, application checks if the device is secure. By secure, it
means the device has set up PIN/PATTERN/PASSWORD. This can be validated
with the KeyguardManager that has method isDeviceSecure() If the device
is not secure, NavigateToPinEvent is sent from the view-model with the value of
PinState.PIN__SET. After the event is observed in the Fragment, the PinFragment
is started with the PIN_SET argument [£.6.4 In the case that the device is secured,
the method proceeds with the action, which can be Signln or SingUp.

private fun checkIfDevicelsSecure (action: () —> Unit) {
if (!'keyguardManager.isDeviceSecure) {
sendEvent (NavigateToPinEvent (PinState .PIN_SET))
} else {
action ()

i

Listing 4.12: Device security validation
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Sign Up

The sign-up action creates a new user account. After input and device security
validation, SignUplnteractor is executed. Interactor generates new RSA key pair.
This RSA key is used for request signing and verification. Before the password is
sent to the server, salt is added to the password. Salt is a sequence of characters that
is added to a user’s password to increase security against dictionary attacks. After
the salt is added, the result is hashed with the SHA512 hash function. To create
new account, signUp() RPC is executed on Authentication service. Parameters for
the call are email, password, and public RSA key. On successful account creation,
access and renew tokens are returned as a response. Tokens are saved into encrypted
shared preferences. Interactor on success callback is called, and Navigate ToPinEvent
is sent with the argument PinState. AUTHORISE. After the event is observed in the
Fragment, the PinFragment is started with the AUTHORISE argument [4.6.4]

Sign In

The sign-in action gets the existing user account. Flow with sign-in is the same as
in sign-up. The difference is that the SignInInteractor is executed, and inside the
interactor signln() RPC is executed on Authentication service. Other flow from key

creation to the event sent is the same.

4.6.4 Pin

The screen has three states consisting of PIN SET, AUTHORIZE, REAUTHO-
RIZE. The initial state is set by an argument with which the screen is started.
Screens in all three states can be seen in Fig

The PIN SET state screen informs the user that the lock screen is not set on
this device. It needs to be set up so the application can function correctly. The
"Set PIN" button navigates the user to the device settings where the user can set
the lock screen of the device. Only the login screen can start a pin-screen with an
initial state of PIN_SET. In other use cases, if the user removes a lock screen from
the device after the login, app-generated keys will be invalidated and unusable. The
application will automatically log out the user from the application and show him
a login screen where on login attempt user will be prompt to the pin-screen. If
the user sets up the lock screen, application will return the user to the login screen
where he can continue with the authentication process.

The AUTHORIZE state screen initially opens the lock screen. The security
mechanism informs the user that he needs to authorize to unlock cryptographic

material. By authorizing, the user unlocks keys saved in Keystore for a 5-minute
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Fig. 4.8: Pin-screen in all three states with lock screen

time window. If a user tries to go back or fail the authorization, the app will show
infographics to the user that he needs to authorize to continue. Screen with the
initial state of AUTHORIZE is invoked right after login or if the user is already

signed in after app startup.

The REAUTHORIZE state screen informs the user that a 5-minutes time win-

dow had expired, and he needs to authorize again to unlock cryptographic material.
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The difference between AUTHORIZE and REAUTHORIZE state is that the REAU-
THORIZE state does not open initially lock screen but instead, informs the user
what happened and what he needs to do next in order to use application. This
behavior is implemented due to the use case of how a screen with state REAUTHO-
RIZFE is opened. If the user tries to do some in-app action after the expiration of
a b-minutes window pin-screen with the initial state of REAUTHORIZE is opened.
Users can invoke the lock screen with the Authorize button and, after successful

authorization, continue where left off in the application.

4.6.5 Notes

The notes-screen displays all notes that belong to the signed-in user, and also serves
as the primary navigation component from where the user can navigate to the other
screens. Notes are loaded from the room database and synchronized from remote
permission service into the room database. Synchronization is invoked by onResume
call from fragment lifecycle call. If the user interacts with the application longer
than 5 mins and tries to invoke the synchronization, pin-screen with an argument of
REAUTHORIZATION will be shown. From the notes screen, the user can navigate
to note detail, profile, and preview of encryption keys. At the bottom right of the
screen floating action button, navigates the user to note screen without id argument,
which corresponds to note creation. Notes are displayed in raw form, which means
when a note is encrypted user sees only the encrypted text body and readable title.
Fig shows the empty state of notes screen and also screen with content where
one of the notes is encrypted, and the other one is not. By clicking on the note, the

application navigates to the note screen.

4.6.6 Note

In the note-screen Fig. [4.10] the user can create a new note or edit an existing
note. In which of two states screen opens depends on noteld argument. If noteld
argument is provided, the corresponding note will be preloaded on the screen. The
note is observed from the local room database. Any update to note will propagate
to the Ul immediately. If the note is encrypted, the application will try to decrypt
it and show the results to the user. The decryption of note is conditioned by user
authorization and can be done only in authorize 5-minute window. Otherwise, pin-
screen with argument REAUTHORIZATION will be shown to the user. Changes
made by users are not immediately saved. Instead, the user is notified that he made
some changes and can save the note with the floating action button. If the user tries
to navigate back without saving dialog is open that informs the user if he leaves

this screen, all unsaved changes will be discarded. Notes can be added to categories
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Fig. 4.9: Notes screen

that are created by the user. On the bottom of the screen is a chip with the text
'Add Category'. By clicking on the chip, application navigates to the categories
screen. As mentioned earlier, the user can encrypt the note. Encryption can be
done by clicking on the lock icon in the bottom app bar, which opens the encryption
key selection screen. Right next to the lock icon is the bin icon, which deletes the

current note and returns the user to the notes-screen.

4.6.7 Categories

The categories screen displays all categories created by the user. The user can
manage categories corresponding to the note by selecting and deselecting individual
categories. The new category can be added by clicking on the floating action button
on the bottom of the screen. The categories screen is started with argument select-
edCategories. The argument serves for categories synchronization and pre-selection

of categories.

Synchronization of categories

Upon view model creation, the onStart lifecycle call is called. In this call, Sync-
CategorylInteractor is executed. The categories screen is started with the argument
selectedCategories that contains selected categories for currently selected note. This

argument is also a mandatory parameter for the SyncCategorylnteractor, as listed
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in Listing .13} The SyncCategorylInteractor check if provided categories are cre-
ated in the room database, and if not, it creates them after successful categories
synchronization application can guarantee that selected categories are created and

can be shown in the UL

override fun onStart() {
if (viewState.selectedCategories.value.isNotEmpty ()) {
syncCategorylnteractor.init (viewState.selectedCategories.value.toList ()).execute {
getCategories ()
}
} else {
getCategories ()

}

Listing 4.13: Category synchronization interactor call

The application needs to load them from the room database to the ViewState to
show categories in the Ul. This is the purpose of GetCategoriesInteractor executed
in the success callback of SyncCategorylInteractor Listing

private fun getCategories () {
getCategoriesInteractor.execute (
onNext = {
viewState.categories.value = it
viewState.loading.value = false

Listing 4.14: Category synchronization interactor call
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Fig. 4.11: Categories screen

SyncCategorylnteractor observers categories saved in the room database and changes
are propagated to the Ul by calling onNext callback on every change to the cate-
gories. This guarantees that newly created categories are shown into the Ul without

the need for result mechanism implementation from the create categories screen.
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Category selection and deselection

Category can be selected or deselected by clicking on the chip. Depending on the
state of the selected chip, the state needs to be inverted and added or removed from
note selected categories. By clicking on the chip, invertState() method from view-
model is called. Implementation of invertState() is shown on Listing After
the modification of selected categories, the ChangeCategoriesEvent is sent to the

CategoriesFragment to set new categories for the selected note.

fun invertState (category: CategorySelection) {

viewState.selectedCategories.value = if (category.selected) {
viewState.selectedCategories.value.apply { remove(category.name) }
} else {

viewState.selectedCategories.value.apply { add(category.name) }
}
sendEvent (ChangeCategoriesEvent (
NoteCategories (
viewState.selectedCategories.value.toList ()
)
))

Listing 4.15: Invert state of category

In the CategoriesFragment event is observed Listing and newly selected cate-
gories are saved as a result under the CATEGORIES CHANGE key for the previous

fragment in back stack.

observeEvent (ChangeCategoriesEvent:: class) {
setResult (Constants.Note . CATEGORIES _CHANGE, it .result)

}

Listing 4.16: Set new categories for note

New category creation

To create a new category, the user enters the category name into the edit text input.
Edit text input is bi-directionally bound to the live data in ViewState. To confirm
the category creation user clicks on the "Add Category" button, which calls the
createCategory() method in the view model. The CreateCategorylInteractor
creates a new category with the name entered into the input. After the successful

creation of the category user is returned back to the category-screen.

fun createCategory () {
val name = viewState.name.value
if (name.isNotBlank()) {
createCategorylnteractor.init (name). execute (
onSuccess = {
sendEvent (NavigateBack)

}

Listing 4.17: Set new categories for note
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4.6.8 Encryption

Encryption screen helps the user to manage AES keys, which can be used to encrypt
and decrypt notes. Usage of a key is conditioned by the authorization window opened
by user authorization for five minutes. Keys are saved and loaded from Keystore. By
clicking on a key, the user select and deselect key for encryption and decryption of
the note. The user can choose the length of the AES key and alias. The encryption
screen is started with argument alias. The alias argument serves for the pre-selection
of the key.

431 0 E & 435 0 E & P 432 S E &

< Encryption < Encryption

< Encryption

IdeasKey IdeasKey

general general

No keys found

(a) Empty state (b) Content (c) Selected key

435 S E &

< Encryption

IdeasKey

Add key

(d) Key creation

Fig. 4.12: Encryption screen
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Keystore aliases

For the user to be able to select the key from the Keystore, the application needs
to be able to list all saved keys by defined aliases. Keystore API provides method
aliases(), which returns the list of all saved aliases in the Keystore. The application
needs to filter out from this list device key, which is used for request signing and
encrypted shared preferences key, which is used to encrypt and decrypt data saved

in shared preferences. Implementation is shown on Listing

fun getKeystoreAliases () = keystore.aliases ().toList ()
Cfilter {
it != Constants. Security .DEVICE USER_KEY &&
it != MasterKeys.AES256 _GCM_SPEC. keystoreAlias

Listing 4.18: List all aliases from keystore

Key selection and deselection

The key can be selected or deselected by clicking on the key alias in the list. De-
pending on the state of the selected key, the state needs to be inverted and set
as a result of the previous note fragment. By clicking on the key onKeySelection()
method from view-model is called Listing The KeySelectionEvent is sent to the
EncryptionFragment with the name of alias with which note should be encrypted.

If the alias is the empty string, that means encryption is removed from the note.

fun onKeySelection (alias: ) A
viewState.selected .value = if (viewState.selected.value == alias) {
} else {

alias
}

sendEvent (KeySelectionEvent (viewState.selected .value))

Listing 4.19: Key selection

New key creation

The user can generate AES keys for encryption and decryption of notes and can
choose between AES128, AES192, AES256. To tell the difference and also tell the
application which key should be used for different notes, the user assign aliases to
all keys on their creation. Listing shows how keys are generated in code. The
mode chosen for the AES key is GCM with no padding. By setting randomize
encryption to true, KeyStore ensures that each time such a key is used, a new
randomized initialization vector is generated and used for encryption. This vector

must be provided to the KeyStore during decryption for decryption to be successful.
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fun generateEncryptionKey (alias: String, keySize: Int) {
val keyGenerator = KeyGenerator
.getInstance (Constants. Security .AES, Constants.Security .KEYSTORE)
val keyGenParameterSpec =
KeyGenParameterSpec. Builder (alias , KeyProperties .PURPOSE ENCRYPT
or KeyProperties .PURPOSE DECRYPT)
-apply {
setBlockModes (KeyProperties .BLOCK_MODE GCM)
setEncryptionPaddings (KeyProperties .ENCRYPTION_PADDING_NONE)
setRandomizedEncryptionRequired (true)
setUserAuthenticationRequired (true)
setUserAuthenticationValidityDurationSeconds (
Constants. Security .DEVICE AUTHORIZATION WINDOW
)
¥
.setKeySize (keySize)
. build ()
keyGenerator.init (keyGenParameterSpec)
keyGenerator.generateKey ()

Listing 4.20: Key creation

4.6.9 Profile

The profile screen [4.13] shows the email of the signed-in user and provides a sign-out
button for the user to sign-out from the application. On the click of the sign-out
button, the method signOut() in the view model is called. In the signOut() method
SignOutlnteractor is executed. The SignOutInteractor uses the authentication ser-
vice to call the signOut() method. Upon successful response from the server, the
access and renew tokens are removed from the application and the user is redirected

to the login screen.

753 & &

<  Profile

develodea.dev@gmail.com

Sign Out

Fig. 4.13: Profile screen
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4.6.10 Security mechanisms

This section describes the implementation details of the security mechanism. Pre-
vious chapters described the application screen by screen for a better picture where
these security mechanisms come into play and how to leverage them to make the

application more secure.

Application lock

Application lock is useful when only the user that sets the device lock mechanism
should be able to enter the application content or when the application needs to
bind cryptographic keys with the application lock. Both use cases are used in Sec-
Note. If the user doesn’t have set PIN/PATTERN/PASSWORD application needs
to confront the user that it is mandatory to set it before continuing. Optionally,
the user can set biometric unlock, and then PIN/PATTERN/PASSWORD serves
as a backup. How biometric works on Android is described in Section The con-
clusion of Section is that the application needs to use two different mechanisms
for biometric authentication, FingerprintManager, and BiometricManager. Instead
of implementing two different approaches in SecNote, Google’s androidx.biometric
library (in short xbiometric) can be used instead. Xbiometric encapsulates the logic
for both FingerprintManager and BiometricPrompt, and depends on the device An-
droid version. The library executes the appropriate code. Xbiometric is not part of
the standard Android library and needs to be added to the application. This can
be done by adding Gradle dependency as shown on Listing [4.21]

implementation ("androidx.biometric:biometric:1.0.1") ‘

Listing 4.21: Biometric library dependency

To show BiometricPrompt to the user, application needs to provide BiometricPrompt-
Info, BiometricCallback, and ExecutorService. This dependencies are provided by
PinFragmentModule that is shown on Listing [4.22]

@QProvides
fun callback (fragment: PinFragment) = BiometricCallback (fragment)

QProvides

fun biometricPromptInfo(resources: Resources) = BiometricPrompt.PromptInfo.Builder ()
.setTitle (resources.getString (R.string.general_lock__screen_ title))
.setSubtitle (resources.getString (R.string.general lock screen_subtitle))
.setDeviceCredentialAllowed (true)

. build ()
QProvides
fun executor () = Executors.newSingleThreadExecutor ()
@QProvides
fun biometricPrompt (fragment: PinFragment,
callback: BiometricCallback , executor: ExecutorService) =
BiometricPrompt (fragment , executor, callback)

Listing 4.22: BiometricPrompt dependencies in PinFragmentModule
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The BiometricPromptInfo sets the dialog title message, body message, and by set-
ting setDeviceCredential Allowed() to true dialog will offer the possibility to authenti-
cate with the backoff mechanism in case the biometric authentication is not available
for the user at the moment. The ExecutorService manages on which thread will be
BiometricCallback called. The BiometricCallback provides a way of communication
with the calling PinFragment. In the case of authentication success, error, or failure,
the appropriate method is called to inform the application about the result.
PinFragment implements BiometricCallbackInterface, which is used in Biomet-
ricCallback to proxy calls from BiometricCallbackInterface to the Authentication-
Callback from xbiometric library. AuthenticationCallback can’t be directly extended
in PinFragment due to the reason AuthenticationCallback is an abstract class, and

PinFragment is already extending BaseBindingFragment from Arkitekt library.

override fun onAuthenticationError (errorCode: , errString: CharSequence) =
runOnUIThread {
viewState.loading.value = false

}

override fun onAuthenticationSucceeded(result: BiometricPrompt.AuthenticationResult) =
runOnUIThread {
viewModel.checkState ()

}

override fun onAuthenticationFailed () = runOnUIThread {

viewState.loading .value = false

}

Listing 4.23: BiometricPrompt result

In PinFragment, when AuthenticateDeviceEvent is observed, BiometricPrompt and
BiometricPromptInfo are lazily injected and used to show lock mechanism appro-
priate for the Android version as shown on Listing [4.24] Listing [4.23] shows callback
implementation in PinFragment. One of these methods is called to notify PinFrag-

ment about the result from BiometricPrompt.

class PinFragment : BaseBindingFragment<PinViewModel, PinViewState, FragmentPinBinding > (),
PinView, BiometricCallbackInterface {

@Inject lateinit var biometricPrompt: BiometricPrompt
@Inject lateinit var promptInfo: BiometricPrompt.PromptInfo

override fun onViewCreated (view: View, savedInstanceState: Bundle?) {
observeEvent (AuthenticateDeviceEvent :: class) {
biometricPrompt.authenticate (promptInfo)

}

Listing 4.24: BiometricPrompt
Request signing

Section describes how user sign-in or sing-up into the application and how the
public key of the generated RSA key pair is sent with the credentials to the server.
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On successful response, the JWT access token and renew token is obtained in the
application. This JW'T tokens have embedded public key into them that was sent
with the login credentials to the server. The public key is used for verification of
the digital signature. Tokens are digitally signed by the server, so any modifications
to them would result in a failed response from the server. This ensures that the
JWT tokens are bind to the device that was used to sign-in or sign-up. Attempt to
use this tokens on another device would fail with the cause of the missing private
RSA key that is stored in the device Keystore. So to summarize, JWT is used to
identify the user on the server and also provides users public key to the server with
which server can verify provided request signatures created by the user. Listing
4.25|shows how the application generates the RSA key for digital signature and how
the public key is extracted and converted to PEM format encoded into base64. To
use this key user needs to be authenticated, authentication is enforced by setUser-
AuthenticationRequired() on line nine, which means he needs to use the application
lock. After unlocking the device and becoming authenticated application opens a
S5-minutes time window where the user can use the key. How long the window is
defined on line ten with setUserAuthenticationValidityDurationSeconds(). The key

generation is invoked on every attempt to sign-up or sign-in.

fun generateKey (): {
val params = KeyGenParameterSpec
. Builder (

Constants. Security .DEVICE_USER_KEY,
KeyProperties .PURPOSE_SIGN or KeyProperties.PURPOSE_VERIFY
)
.setDigests (KeyProperties . DIGEST_ SHA512)
.setKeySize (Constants. Security .DEVICE_USER_KEY_SIG_SIZE)
.setUserAuthenticationRequired (true)
.setUserAuthenticationValidityDurationSeconds (
Constants. Security .DEVICE _AUTHORIZATION_WINDOW)

.setSignaturePaddings (KeyProperties .SIGNATURE_PADDING_RSA_PKCS1)
. build ()

keyPairGenerator. initialize (params)

val kP = keyPairGenerator.generateKeyPair ()

val encoded = BaseEncoding.base64 ().encode(kP.public.encoded)
val pem = "$PEM_KEY_RREFIX\n$encoded\n$PEM_KEY_POSFIX"

return encodeBase64 (pem.toByteArray ())

Listing 4.25: Digital signature key generation

After the key is successfully generated, and the user is successfully signed-in into
the application, all onwards requests to the server are digitally signed. Listing |4.26

shows getNotes() method in PermissionServiceManager.

suspend fun getNotes() = executeApiCall {
val request = Request.newBuilder (). build ()
val digest = cryptoHelper.hashMessage(request.toByteArray ())
client

.executeWithMetadata(digest)
.getNotes(request)

Listing 4.26: PermissionServiceManager - getNotes() method
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In the method getNotes() request body is hashed with the SHA512 algorithm and
encoded with base64 encoding, this process is shown on Listing[4.27], Hash is passed

as a parameter to the method executeWithMetadata(), which implementation is
shown in Listing [£.28]

fun hashMessage (message: ByteArray): =
MessageDigest . getInstance (Constants. Security .HASH ALG).run {
update (message)
encodeBase64 (digest ())

}
Listing 4.27: CryptoHelper - hashMessage() method
suspend fun <T : AbstractStub<T>> T.executeWithMetadata (request: ): T {
val token = tokenStore.getAccessToken () 7: ""

val toBeSign = request.toByteArray () + token.toByteArray ()
val signature = cryptoHelper.signAndEncodeDataBase64(toBeSign)

val header = Metadata ()

header.put(Metadata.Key.of ("Authorization", Metadata.ASCIL_STRING_MARSHALLER), token)
header.put (Metadata.Key.of ("Digest", Metadata.ASCIL_STRING_MARSHALLER), request)
header.put(Metadata.Key.of ("Signature", Metadata.ASCIL_STRING MARSHALLER), signature)

MetadataUtils.attachHeaders (
this ,
header

Listing 4.28: ServiceManager - executeWithMetadata() method

At this point, the application has all the necessary information to create the meta-
data. Individual information is gradually added to the metadata, and this process
can be seen in Listing 4.28, First, the Authorization value is added to the meta-
data. Below the Authorization field is the value of the JWT token. Subsequently,
the Digest value is added, which represents the value of the hashed request body.
Signature is added as the last value. Signature is a combination of digest and JWT
token. These two values are combined together, and then a hash is created from
them, which is digitally signed by the RSA private key. Creation of signature is
shown on Listing [4.29

fun signAndEncodeDataBase64(data: ByteArray): {
val entry = keystore.getKey(Constants.Security .DEVICE USER_KEY, null) as PrivateKey
return Signature.getlnstance (Constants.Security .DEVICE USER_KEY_ SIG_ALG)
.run {
initSign (entry)
update (data)
encodeBase64 (sign ())

Listing 4.29: Signature creation

Note encryption and decryption

Section describes how encryption and decryption keys are created and selected
to encrypt and decryp the note. Trigger for note encryption is the selection of the
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key and on click on the save button in the note screen. The save action executes
CreateOrUpdateNotelnteractor. Before the note is sent to the server, the note body
is encrypted with the key that is saved in the Keystore under provided alias. Listing
shows implementation of CreateOrUpdateNotelnteractor build method.

override suspend fun build (): NoteResponse {
if (encrypted == true) {
body = cryptoHelper.encryptData (alias , body)

}

val response = permissionServiceManager
.createOrUpdateNote (prototype, id, title , body, categories, encrypted, alias)
val notes = response.notesList.map { it.convertToRoomNote() }

noteStore.syncNotes(notes)

return response

Listing 4.30: CreateOrUpdateNotelnteractor build method

The method encryptData() is responsible for note encryption. Parameters of the
method are alias of the key and note body. The implementation of the method is
shown on Listing [4.31]

fun encryptData(alias: , data: E {
val key = keystore.getKey(alias, null)
return Cipher.getIlnstance (Constants.Security .AES _ALG).run {
init (
Cipher .ENCRYPT MODE,
key

)

val encrypted = doFinal(data.toByteArray ())
val vector = iv
"${encodeBase64 (encrypted)}${ENCRYPTION_DELIMITER}${encodeBase64 (vector)}"

Listing 4.31: CryptoHelper encryptData method

Method encryptData() encrypt the note with the "AES/GCM/NoPadding" algo-
rithm. As mentioned when creating the key, one of the constraints set to the key
is to enforce the random initialization vector generation on every encryption. The
same initialization vector needs to be provided in case of a decryption of the note.
Otherwise, decryption will fail. For that reason, the body of the note is saved as
the concatenated text of encrypted text, divider, and vector. After that, the note is

sent to the remote API and persisted on the server.

fun decryptData(alias: , data: )8 {
val split = data.split (ENCRYPTION DELIMITER)
val encryptedData = decodeBase64(split. first())
val vector = decodeBase64(split.second())
val key = keystore.getKey(alias, null) ?: throw IllegalStateException ("Missing key")
val spec = GCMParameterSpec(128, vector)
return Cipher.getIlnstance (Constants.Security .AES ALG).run {
init (
Cipher .DECRYPT_ MODE,
key ,
spec

(doFinal (encryptedData))

Listing 4.32: CryptoHelper decryptData method
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The decryption of the note is occurring in GetNotelnteractor. Listing |4.32 shows
decryptData() method that is started in GetNotelnteractor. In case the note is
encrypted, the interactor decrypts the body and replaces the encrypted body with
the decrypted version. The body is split with the encryption delimiter to obtain
encrypted body and initialization vector. Before using any of the information, it
needs to be decoded from base64 to ByteArray after which the raw initialization

vector and body are passed to Cipher to obtain the decrypted body of the note.
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5 Conclusion

This thesis aimed to describe the security mechanisms used in the Android OS and
the communication between the Android OS and the remote server. The goal was
divided into several parts of the diploma thesis. The first section, where the history
of mobile devices and the Android system is presented, serves as an introduction to
the reader as to why it is necessary to fiddle with security. The thesis introduces
the components that make up the security model of Android OS and the role of
individual components after stating why it is necessary to address the security of
applications. This theory regarding what makes up the Android security model is
presented in the second section. In addition to the introduction of components, this
section also presents code snippets that describe how to use cryptographic algorithms
and procedures that the Android system provides.

The third section is based on the theory described in the second section. It
summarizes the results obtained from the benchmark application in which 280 tests
have been implemented. The utilized test cases cover most of the cryptographic
operations that can be performed on the Android system. Their primary goal was
to evaluate each cryptographic operation’s computational time and its suitability for
application use. The results were further processed and visualized in heatmaps and
a bar graph. Based on the results, it was concluded that not all assumptions were
met. For example, RSA encryption was, in some cases, faster than AES encryption.
Some older models of devices with the older processor units perform some of the
cryptographic algorithms faster than newer devices with the newer processor units.
This could be explained with the hardware acceleration for concrete cryptographic
algorithms. By taking into account the various devices that are supported, and after
analyzing the result, specific cryptographic algorithms were selected that are suit-
able and optimal for the implementation of an application that utilizes cryptographic
operations. Selected algorithms are AES256/GCM /NoPadding for symmetric en-
cryption, SHA512withRSA2048 /PSS for digital signature, and
RSA3072/OAEPWithSHA512AndMGF1Padding for asymmetric encryption.

Last, the fourth section describes the SecNote system. The SecNote system is
an implementation of a complete solution that demonstrates the Android system’s
security mechanisms and best practices on how to implement them, as well as how
to implement secure communication between the Android application and the cloud
system. The cloud system is managed using Kubernetes and Istio service mesh and
runs three micro-services with three databases. The SecNote system demonstrates
security mechanisms such as biometric user authentication, time-limited login, how
to present identity in a cloud solution, creating a secure channel between the appli-

cation and the cloud, data encryption and decryption, and more.
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Overall, this work offers a theoretical evaluation of the android security model, a
comparison of options in a test environment, and a complete solution where various
security mechanisms can be seen in practice. The primary area for improvement is
in the cloud solution. It would be possible to set cluster-wide authentication policy
rules instead of a specific service. This would reduce the amount of information
transmitted and queries to the authentication service. Instead of ordinary JWT
tokens, a more complex system could be used to authenticate and authorize users,
such as OpenID. Currently, the solution assumes that it is deployed in a single
cluster. The work could be extended to a multicluster solution where it would be

necessary to add mTLS between individual services.
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91






List of appendices

[A__Benchmark results | 95

[B_Content of the enclosed CD | 107

93






A Benchmark results
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Fig. A.1: Asymmetric key creation
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Fig. A.2: Encryption using RSA/ECB with PKCS1 or OAEP Padding
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Fig. A.3: Encryption using RSA/ECB/OAEPwithSHA and MGF1 Padding
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Fig. A.4: Decryption using RSA/ECB with PKCS1 or OAEP Padding
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Fig. A.5: Decryption using RSA/ECB/OAEPwithSHA and MGF1 Padding
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Fig. A.6: Signature using RSA with MD5
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Fig. A.7: Signature using RSA or EC without hash function
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Fig. A.8: Signature using RSA or EC with SHA1
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Fig. A.9: Signature using RSA or EC with SHA224
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Fig. A.10: Signature using RSA or EC with SHA256
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Fig. A.11: Signature using RSA or EC with SHA384
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Fig. A.12: Signature using RSA or EC with SHA512
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Fig. A.13: Verification using RSA with MD5
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Fig. A.14: Verification using RSA or EC without hash function
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Fig. A.15: Verification using RSA or EC with SHA1

102



Device

Device

Samsung Galaxy AS
Google Pixel XL 16ms
HTC One M9
14ms
Motorola Moto G Plus
Samsung S10e

12ms

LG Nexus 5X
Huawei P20 Lite 10ms
OnePlus 7 Pro
LGG6

Samsung GalaxyS9+
OnePlus 6

Huawei P9 Lite
4ms
Google Pixel 3A
Samsung Galaxy S6

samsung Note10+

Asus Zenphone 3 MAX

Algorithm

Fig. A.16: Verification using RSA or EC with SHA224
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Fig. A.17: Verification using RSA or EC with SHA256
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Fig. A.18: Verification using RSA or EC with SHA384
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Fig. A.19: Verification using RSA or EC with SHA512
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Fig. A.20: Symmetric key creation
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Fig. A.21: Encryption with AES
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Fig. A.22: Decryption with AES
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B Content of the enclosed CD

L e e root folder of enclosed CD
| Android.......iiiiiii e source code of Android applications
tBenchmarks ........................... source code of benchmark application
SECNOLE v vttt it et e source code of SecNote application

| _Benchmark results...........covvunn... python scrips for processing and results
| Server............... source code of microservices and deployment configuration
AuthsService ...oovveviiiiinn e source code of Authentication service
Noteservice .....oovuiiiiiiiiiniiiiniiiinnnnne. source code of Note service
Permissionservice ...........cooiiinnn. source code of Permission service
Deployment ......ooviiniiiiiinnnnniininnnnn, Kubernetes and Istio yaml files

| SecNOte.aPK « ot Runnable application for Android OS
| Instructions........ccovvviiiiiiiiiiiiiinn Instructions how to try application
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