
RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 99 

 

Semilogarithmic Nonuniform Vector Quantization of 
Two-Dimensional Laplacean Source for Small Variance 

Dynamics 

Zoran PERIC1, Milan SAVIC1, Stefan PANIC2 
1Dept. of Telecommunications, Faculty of Electronic Engineering, University of Nis, A. Medvedeva 14, 18000, Nis, Serbia  
2Dept. of Informatics, Fact. of Natural Science and Informatics, Un. of Pristina, L. Ribara 29, 33400 Kos. Mitrovica, Serbia 

zoran.peric@elfak.ni.ac.rs,  mihajlo_savic84@yahoo.com,  stefanpnc@yahoo.com  

 
Abstract. In this paper high dynamic range nonuniform 
two-dimensional vector quantization model for Laplacean 
source was provided. Semilogarithmic A-law compression 
characteristic was used as radial scalar compression 
characteristic of two-dimensional vector quantization. 
Optimal number value of concentric quantization domains 
(amplitude levels) is expressed in the function of para-
meter A. Exact distortion analysis with obtained closed 
form expressions is provided. It has been shown that 
proposed model provides high signal-to-quantization noise 
ratio (SQNR) values in wide range of variances, and 
overachieves quality obtained by scalar A-law quantization 
at the same bit rate, so it can be used in various switching 
and adaptation implementations for realization of high 
quality signal compression. 
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1. Introduction 
The quantization technique based on dividing a large 

set of points (vectors) into groups having approximately the 
same number of points closest to them and represented by 
its centroid point is called vector quantization (VQ). The 
set of discrete amplitude levels is quantized jointly instead 
each sample being quantized separately [1]. Data points are 
represented by the index of their closest centroid, so it 
commonly occurred data have low error, and rare data high 
error. The data is compressed, because a lower-space 
vector requires less storage space. Only the index of the 
codeword in the codebook is sent instead of the quantized 
values. This conserves space and achieves more 
compression. VQ allows the modeling of probability 
density functions by the distribution of prototype vectors, 
which is powerful, especially for identifying the density of 
large and high-dimensioned data. This is why VQ is 
suitable for lossy data compression. 

Since VQ have a higher degree of freedom for 
choosing the reconstruction values and the decision regions 
they provide better performances (higher SQNR for the 
same bit-rate) compared to scalar quantizers. However VQ 
are, in general case, more complex than scalar quantizers, 
with the increase of quantizer dimension. The simplest VQ 
are two-dimensional VQ. 

VQ of Laplacean source has been previously 
considered in the literature [2]-[6]. Proposed encoder 
design for switching piecewise uniform vector quantization 
of the memoryless two-dimensional Laplacean source was 
analyzed in [2]. In [5] and [7], a geometric approach was 
taken into consideration. Lattice quantization was applied 
to define a high dynamic range vector quantization model 
in [5]. 

However none of these papers has considered 
optimizing concentric quantization domains (amplitude 
levels) in the function of parameter A. In order to improve 
performance, we have provided two models of quantization 
considering A parameter. Also none of previously 
published papers considers analysis in the area of small 
parameter A values [3], [5]. Usually higher values of A 
parameter are considered, i. e., A = 48269 in [8], while 
more complex analysis should be carried out for the cases 
of smaller A parameter values, like in this paper. 

Comparison with scalar A-law quantization has shown 
that proposed model provides high SQNR values in wide 
range of variances, and reaches better quality for over 2 dB 
than obtained by scalar A-law quantization at same bit rate, 
so it can be used in various switching and adaptation 
implementations for realization of high quality signal 
compression.  

At the beginning we give the description a of two 
dimensional vector quantizer, also we define compression 
function. A distortion analysis with obtained closed form 
expressions is provided. After that we introduce two 
models of quantizer construction considering optimization 
of amplitude levels in the function of parameter A. At the 
end, we compared the performance of proposed vector 
quantizer with performance of the well-known semi-
logarithmic A-law scalar quantizer [9]-[12]. 



100 Z. PERIC, M. SAVIC, S. PANIC, SEMILOGARITHMIC NONUNIFORM VECTOR QUANTIZATION OF TWO DIMENSIONAL… 

 

2. Semilogarithmic Quantization 
Model of two Dimensions 
At the quantizer input is a 2-dimensional vector 

x = [x1,x2]T consisting of two independent and identically 
distributed variables with Laplacian distribution with zero 
mean and unit variance , 
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In two-dimensional x1x2 system, probability density 
function (pdf) given by equation (1) represents a square 
line. This square surface representing dynamic range of 
a two dimensional vector quantizer, can be partitioned into 
L concentric domains as shown in Fig. 1. In the case of 
nonuniform vector quantization, these concentric domains 
are of unequal width. 

The number of output points in each domain is denoted 
by Ni, where � �

�
L

i iNN
1

 represents the total number of 

output points. Every concetric domain is partitioned into 
rectangular cells. As shown in [3], [5], it is considered to be 
N1 = N2 = … = NL, and optimization is carried out over L. 

Since computational complexity is a function of quan-
tizer design complexity, the proposed technique provides 
lower computational complexity compared to the model 
presented in [4]. Namely, VQ model presented in [4] is 
more complex, since it can be observed as a model 
consisting of L*k uniform quantizers and k nonuniform 
quantizers (L is the number of concentric domains and 
k denotes the number of quantizers in corresponding 
switching quan-tizer). Our newly proposed VQ can be 
observed as model consisting of one uniform quantizers 
and one nonuniform quantizer. However, as known, SQ 
(scalar quantizer) models, consisting of a non-uniform 
quantizer, have even lower complexity. 

 
Fig. 1. Two-dimensional space partitioning. 

The radius r of input vector x is defined as 
r = |x1| + |x2| and it is also a random variable that has 
a probability density function [5], [13] 
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Optimal compression function used in 2-dimensional 
vector quantization is: 
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This compression function consists of two parts: 
linear and logarithmic. r1 = rmax/A is the border between 
these two parts. rmax is the maximal range of quantizer. 

During quantization an irreversible error is made, 
which is expressed by distortion. Total distortion D 
consists of granular distortion Dg in granular region and 
overload distortion Do in overload region: 

 og DDD 
� . (4) 

Granular distortion Dg consists of two parts: distortion 
in linear part Dg1 and distortion in logarithmic part Dg2. Dg1 
is calculated as: 
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is the probability that an input vector x belongs to area S1 
that includes all cells from the linear part 

 
1

2
1

1

12
1

2
N
r

N
s

���  where 2
11 LN �  and � �.ln1/1 ALL 
�  

Dg2 can be calculated using Bennet integral as: 
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where 
L

rmax
2 �� . Overload distortion is defined as [5] 
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In our case the number of dimensions is 2 (n = 2). 
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Applying simple mathematic calculation, we can 
obtain the expressions for Dg1, Dg2 and D0 in closed form: 
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Exact distortion analysis has been obtained in the form of 
closed form expressions in (8). In previous papers [3], [5] 
an approximation was made, because the influence of the 
linear part of characteristic on the distortion was not taken 
into account. Namely for higher values of A parameter 
distortion Dg1  was ignored. Since our analysis covers full 
range of A parameters, distortion Dg1 was taken into 
account, and expression (8) could be applied more ac-
curately for smaller values of A.  

In the function of A parameter values optimal number 
of amplitude levels can be expressed through two 
models [5]:  

I model (A ≥ 20) 

 � �
2
ln1 NA

L



� . 

II model (A < 20) 

 NL � . 

In order to compare our 2-dimensional vector quan-
tizer with another already defined quantizer we define 
signal-to-quantization noise ratio (SQNR) as: 
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2
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3. Performance and Discussion of 
Results 
The comparison of SQNR values in the function of in-

put variances for A-law scalar quantizer with N = 16 levels, 
and for 2-dimensional vector quantizer with N = 256 levels 
(for high value of parameter A, A = 87.6) is given in Fig. 2. 
Scalar quantization size of codebook is defined with 

N = 2R, while with vector quantization bit rate is 
R = ½ log2N. The comparison corresponds to the same bit 
rate, so signal quality is comparable. 
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Fig. 2. Comparison of SQNR between A-law scalar quantizer 

and 2-dimensional vector quantizer for A = 87.6. 

From Fig. 2 we can see that the proposed vector 
quantizer implementation has two main advantages. Firstly, 
higher values of SQNR are achieved with proposed 2-
dimensional vector quantizer implementation than with the 
scalar one, over the wide range of input variance, so it is 
very suitable for non-adaptive quantization. Secondly, 2-
dimensional vector quantizer’s maximal SQNR value 
overachieves maximal SQNR value for A-law scalar 
quantizer by 2.60 dB. Because of that vector quantizer 
could provide higher quality performances during 
adaptation process.  

In Tab. 1 the average  SQNR values for proposed 
vector quantizer implementation and A-law scalar 
quantizer are presented for various ranges of normalized 
input signal variances (A = 87.6). We can see that with 
variance range dynamics decrease, level of quality 
achieved with proposed model arises compared to scalar A-
law quantization model. 

 
down 
bound 
[dB] 

up 
bound 
[dB] 

width 
[dB] 

SQNRav 

[dB] 
(vector 

quantizer) 

SQNRav 

[dB] 
(scalar 

quantizer) 

-20 20 40 15.02 13.07 

-15 15 30 16.22 13.82 

-10 10 20 16.62 14.05 

-5 5 10 16.69 14.09 

Tab. 1.  Average value of SQNR for vector quantizer and for 
A-law scalar quantizer for different widths of input 
signal variances (A=87.6). 

Table 2 shows percentage of distortion Dg1 in the 
overall distortion D for different values of parameter A. It 
can be seen, that for smaller values of A parameter the 
influence of Dg1 on overall performances increases, so our 
proposed model has more general properties than 
approximation from [5,8,9], (where the influence of the 
linear part of characteristic on the distortion was not taken 
into account). 
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A Dg1 D Dg1/D*100[%] 

10 0.00125 0.011960 10.451 

100 0.000088 0.030749 0.286 

1000 0.000001 0.061068 0.001 

Tab. 2.  Percentage of distortion Dg1 in the overall distortion D   
for different values of parameter A. 
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Fig. 3. Comparison of SQNR for proposed vector quantizer 

when L is calculated according to the first and second 
model for A = 10 and R = 4 bits/sample. 

From Fig.3 we can see SQNR values for smaller 
values of the parameter A (A < 20). Namely SQNR values 
for the proposed vector quantizer implementation for the 
case when L is calculated according to the second model 
overachieve SQNR values for the case when L is calculated 
according to the first model in the complete range of 
normalized signal variances. 

In Fig. 4 SQNR values through the input normalized 
variances are given for A-law scalar quantizer model and 
proposed 2-dimensional vector quantizer, for small value of 
parameter A (A = 10). 
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Fig. 4. Comparison of SQNR between A-law scalar quantizer 

and 2-dimensional vector quantizer for A = 10. 

We can conclude that in the area of small A values 
(for input signals of small variance dynamics), proposed 2-
dimensional vector quantizer achieves higher SQNR values 
in the observed variance range over SQNR values, that can 
be achieved by using A-law scalar quantizer. Also 
presented 2-dimensional vector quantizer achieves higher 
maximal SQNR value so could reach better performance 
during adaptation. 

4. Conclusions 
An exact distortion analysis with obtained closed 

form expressions is provided for the high dynamic range 
nonuniform two-dimensional vector quantization model for 
Laplacean source. As radial scalar compression 
characteristic of two-dimensional vector quantization, 
semilogarithmic A-law compression characteristic was 
considered. Concentric quantization domains number 
(number of amplitude levels) is optimized in the function 
of parameter A. Two models of quantization considering A 
parameter are provided. Comparing with previously 
obtained results by scalar A-law quantization it has been 
shown that proposed model provides high SQNR values in 
wide range of variances, and reaches better quality for over 
2 dB (for A ≥ 20) and over 1 dB (for A < 20) at the same bit 
rate. Also the proposed model can be used in various 
switching and adaptation implementations. 
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