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A B S T R A C T   

The main purpose of this work is to thoroughly describe the implementation protocol of laser-induced break
down spectroscopy (LIBS) method in the plant analysis. Numerous feasibility studies and recent progress in 
instrumentation and trends in chemical analysis make LIBS an established method in plant bioimaging. In this 
work, we present an easy and straightforward phytotoxicity case study with a focus on LIBS method. We intend 
to demonstrate in detail how to manipulate with plants after exposures and how to prepare them for analyses. 
Moreover, we aim to achieve 2D maps of spatial element distribution with a good resolution without any loss of 
sensitivity. The benefits of rapid, low-cost bioimaging are highlighted. 

In this study, cabbage (Brassica oleracea L.) was treated with an aqueous dispersion of photon-upconversion 
nanoparticles (NaYF4 doped with Yb3+ and Tm3+ coated with carboxylated silica shell) in a hydroponic short- 
term toxicity test. After a 72-hour plant exposure, several macroscopic toxicity end-points were monitored. 
The translocation of Y, Yb, and Tm across the whole plant was set by employing LIBS with a lateral resolution 
100 µm. The LIBS maps of rare-earth elements in B.oleracea plant grown with 50 μg/mL nanoparticle-treated and 
ion-treated exposures showed the root as the main storage, while the transfer via stem into leaves was minimal. 
On the contrary, the LIBS maps of plants exposed to the 500 μg/mL nanoparticle-treated and ion-treated uncover 
slightly different trends, nanoparticles as well as ions were transferred through the stem into leaves. However, 
the main storage organ was a root as well.   

1. Introduction 

Many types of nanoparticles (NPs) have been increasingly used in 
commercial products as well as in many research areas. This leads not 
only to the NP-accumulation in the environment and within the food 
chain (Rodrigues et al., 2016) but also to unknown toxic effects at 
various organism/tissue/cellular levels (Magnuson et al., 2011). The 
evaluation of NPs toxicity, bioaccumulation, and translocation in 
diverse organisms is an extremely challenging task (Modlitbová et al., 
2020a). This is caused by a great number of variables in physicochem
ical properties of NPs (composition, shape, size, surface charge, func
tional group and ligands, …). Thus, it is impossible to establish robust 
standard protocols. Consequently, the real effects of NPs and the sites of 

their bioaccumulation still remain unknown. 
The precise localization of NPs through the plant tissues is of a 

paramount importance in order to reveal the relationship between the 
exact location of NPs and their toxic effect. The distribution of NPs and 
their bioimaging in plants is evaluated most often by using transmission 
electron microscopy (Wang et al., 2012), scanning electron microscopy 
(Vittori Antisari et al., 2015), scanning transmission electron micro
scopy (Schwabe et al., 2015), micro-X-ray fluorescence microscopy (Cui 
et al., 2014), or laser ablation inductively coupled plasma mass spec
trometry (Ko et al., 2019). However, rarely has been laser-induced 
breakdown spectroscopy (LIBS) showed to be suitable for a spatial dis
tribution of elements contained in NPs assessment within various plant 
organs in a few recent papers (Krajcarová et al., 2017; Modlitbová et al., 
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2019, 2020b). Herein, LIBS represents an indispensable alternative to its 
analytical counterparts in the NPs bioimaging with a high resolution 
(micro-scale) on a large-scale sample (whole glass slide imaging). 

The LIBS has been widely used in modern analytical chemistry. It is 
popular because of its advantages such as the fast turn-around time, 
multi-elemental capability (detection of light elements and halogens), 
analysis of samples in any state of matter, possibility of remote sensing, 
and the assessment of spatial elemental distribution on a large scale (so 
called imaging). Various biological samples were successfully analysed 
using LIBS method, e.g., mouse kidney, lung tumours, skin melanomas; 
summarized in two most recent reviews (Busser et al., 2018; Jolivet 
et al., 2019). LIBS was also applied for bioimaging of various NP types in 
plant tissues as mentioned above (Modlitbová et al., 2020a). 

In this study, less common NPs, the rare-earth elements-doped 
photon-upconversion nanoparticles (UCNPs) are studied. The UCNPs are 
a new type of luminescent nanomaterial which started to be widely used 
as luminescent labels due to their unique optical properties (Zhou et al., 
2015). They are composed of NaYF4 nanocrystals and doped with Yb3+

and Tm3+ ions; a carboxylated silica shell is added on the surface to 
increase the chemical stability and reduce the releasing of free ions 
(Modlitbová et al., 2019). 

The cabbage (Brassica oleracea L.), which has been commonly used as 
a model crop plant in phytotoxicity and bioaccumulation experiments 
tests for a long time (Wang and Keturi, 1990), was employed during the 
whole study. This plant species belongs to ten recommended species by 
United States Environmental Protection Agency (US EPA) for the 
determination of toxicological effects of pesticides and other toxic sub
stances (US EPA, 1996). Additionally, the cabbage belongs to the 
so-called hyperaccumulator plant family Brassicaceae (Reeves et al., 
2018). Also, this plant was already used in the phytotoxicity assessment 
of various NPs, for example Ag NPs (Pokhrel and Dubey, 2013), ZnO NPs 
(Pokhrel and Dubey, 2013), Al2O3 NPs (Amist et al., 2017), and CuO NPs 
(Singh et al., 2017). Moreover, the phytotoxicity of rare-earth elements 
containing NPs (CeO2, La2O3, Gd2O3, and Yb2O3 NPs) was established 
and the growth of cabbage root was negatively affected by La2O3, 
Gd2O3, and Yb2O3 NPs dispersions in a very high test concentration 
2000 µg NPs/mL (Ma et al., 2010). 

In this study, the first objective was to evaluate the toxicity of the 
selected contaminants (UCNPs dispersion in two nominal concentrations 
500 and 50 µg UCNPs/mL, and two Y3+ and Yb3+ mixture solutions in 
corresponding concentrations serving as a positive control) to B. oleracea 
plant grow in an aqueous medium. After a 72-h exposure, we monitored 
four macroscopic end-points (root length, stem length, root + stem 
length, whole plant length). Then, the spatial distribution of Y, Yb, and 
Tm for UCNPs treated plants, and the spatial distribution of Y and Yb for 
positive control treated plants was set by LIBS method. The photon- 
upconversion laser microscanning was used as a complementary tech
nique confirming the presence of Y, Yb, and Tm in the plants in the form 
of UCNPs (Sedlmeier et al., 2016). 

The spatial distribution of Y, Yb (Tm) across the whole plant was 
established with a sufficient spatial resolution of 100 µm by LIBS. The 
difference in behaviour between both contaminants as well as between 
both tested concentrations is clearly visible in obtained 2D maps. LIBS is 
a fast, straightforward, price sensitive (when compared to Laser Abla
tion Inductively Coupled Plasma Mass Spectrometry), and relatively 

simple analytical method for semi-quantitative multi-element bio
imaging in plants with a similar sensitivity to the photon-upconversion 
microscanner. Moreover, LIBS is a promising alternative to other tech
niques as it is able to detect NPs with no visible upconversion or fluo
rescence. It also detects NPs whose luminescence is quenched, e.g. 
because of changes in external conditions, such as pH values changes 
(Škarková et al., 2017). 

2. Material and methods 

2.1. Synthesis and characterization of UCNPs 

The preparation of UCNPs was described in detail in our previous 
work (Hlaváček et al., 2019), nothing was modified in this experiment. 
These were the used reagents: YCl3 × 6H2O (99.99%), YbCl3 × 6H2O 
(99.99%), TmCl3 × 6H2O (99.99%), 1-octadecene (90%), oleic acid 
(90%), tetraethylorthosilicate (TEOS, ≥ 99%), and Igepal CO-520 were 
purchased from Sigma-Aldrich (Steinheim, Germany) and used as 
starting materials without further purification. NaOH (p.a.), cyclo
hexane (p.a.), N,N-Dimethylformamide (p.a.), Methanol (p.a.), Acetone 
(p.a.), and NH4OH 25% (p.a.) were purchased from PENTA (Chrudim, 
Czech Republic). Carboxyethylsilanetriol, sodium salt; 25% (w/v) in 
water was obtained from ABCR GmbH (Karlsruhe, Germany). The 
nominal hydrodynamic particle diameter was determined with a Zeta
sizer Nano ZS (Malvern Instruments, Worcestershire, United Kingdom). 

2.2. Plant exposure 

Seeds of cabbage (Brassica oleracea L.) were purchased from Mor
avoSeed (Mikulov, Czech Republic). Firstly, cabbage seeds were 
germinated for 48 h in Petri dishes with the bottom covered with 
filtration paper in Milli-Q water (Millipore RG, Merck KGaA, Germany). 
Then seedlings with similar size (approximately 1 cm root length) were 
selected for the toxicity test. Plants were exposed for 72 h under the 
lighting cycle of 15 h light/9 h darkness at room temperature (22 ±
1 ◦C). Specially prepared Eppendorf tubes with a 2-mm hole on the top 
were filled with 2.0 mL of an exposure medium based on our previous 
studies (Modlitbová et al., 2020b). Each plant experiment consisted of a 
control group (Milli-Q water), two UCNPs dispersions in nominal con
centrations 500 µg UCNPs/mL (100 µg Y/mL + 43.8 µg Yb/mL) and 50 
µg UCNPs/mL (10 µg Y/mL + 4.38 µg Yb/mL), and two chloride mixture 
solutions at the same concentrations “500′′ µg /mL (100 µg Y/mL + 43.8 
µg Yb/mL) and “50′′ µg/mL (10 µg Y/mL + 4.38 µg Yb/mL). Each 
exposure group contained 12 replicates of test plants. After the 72-hour 
exposure, the plants were photographed; plant roots, stems, and the 
overall length were measured. A simplified scheme of toxicity test fol
lowed by LIBS measurements is illustrated in Fig. 1. 

The statistical analysis for root, stem, root + stem, and the whole 
plant length (5–11 plants per one treatment) was performed by Ori
ginPro software (2015). The significance of the difference between the 
exposed and control plants was tested by the Mann-Whitney U-test. The 
level of significance was accepted at *p < 0.05, **p < 0.01, and 
***p < 0.001. 

Fig. 1. Scheme of seeds germination, plant exposure, and plant samples before and after LIBS analysis.  
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2.3. LIBS bioimaging 

After the exposure, plants must be prepared for LIBS measurements 
(Jantzi et al., 2016). Several ways to prepare plants were already and 
summarized in an extensive review (Modlitbová et al., 2020a). These 
approaches are the most common. The first way is to use fresh plants and 
analyze them directly, even in in-situ conditions (Zhao et al., 2016). The 
main disadvantage is the water content in plants which is responsible for 
lower LIBS signals (Peng et al., 2017), and for no possibility of the 
experiment repetition. The second procedure is to prepare histological 
cross-sections from plant tissues (Krajcarová et al., 2017). This is a very 
time consuming procedure which requires a detailed optimalization for 
various plant tissues, different contaminants as well as for different laser 
sources in LIBS set-ups. The third possibility is the most common, easy, 
and low-cost. It was used in this experiment. The plants were firstly 
thoroughly washed in Milli-Q water, then dried and molded at room 

temperature for five days and then glued with epoxide onto the glass 
slide. Then, plants were photographed using an optical microscope 
(Stemi 2000-c, Zeiss, Oberkochen, Germany), then photon-upconversion 
microscans (only in case of UCNPs treated plants), and LIBS measure
ments were performed. 

The LIBS Discovery system (CEITEC, Brno, Czech Republic) was used 
for all experiments. The set-up consisted of a nanosecond laser (CFR 400, 
Quantel, Paris, France; 20 Hz, 532 nm, 10 ns), UV grade collecting optic 
(F2, SOL instruments, Minsk, Belarus), an optical fibre (core diameter 
400 µm, Thorlabs, Newton, United States), the glass doublet (f 
= 32 mm, Sill optics, Wendelstein, Germany), the Czerny-Turner spec
trometer (Shamrock, Andor, Nottingham, United Kingdom), and a 
sCMOS iStar camera (Andor). A simplified scheme of LIBS experiment 
set-up is illustrated in Fig. 2A. 

The experimental parameters used during the LIBS analysis were 
optimized in our previous work (Modlitbová et al., 2019) and only slight 

Fig. 2. A) LIBS scheme: (1) laser, (2) focusing optics, (3) sample holder with plant sample, (4) collection optics, (5) optical fibre, (6) spectrometer, (7) detector, (8) 
PC, (9) example of LIBS emission spectra. 2B) Laser microscanner scheme: (1) laser and focusing optics, (2) dichroic mirror, (3) microscope objective, (4) sample 
holder with plant sample, (5) collection optics, (6) optical fiber, (7) spectrometer, (8) PC, (9) example of photon-upconversion spectra. 

Fig. 3. A1) The photograph of plant treated with UCNPs dispersion (leaves – left side, root – right side). The black cross represents place with UCNPs contain and the 
red cross represents places without UCNPs contain. Followingly typical LIBS spectrum (black – with UCNPs presence, red – without UCNPs presence) with marked 
emission lines are at part A2. B1) The photograph of the plant treated with ions solution (leaves – left side, root – right side). The black cross represents place with the 
Y and Yb contain and the red cross represents places without the Y and Yb contain. Followingly typical LIBS spectrum (black – with Y and Yb presence, red – without 
Y and Yb presence) with marked emission lines are at part B2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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modifications were made here. The 1 µs of the gate delay, 15 µs of the 
detection integration time, 20 mJ of laser pulse energy, and 20 Hz 
repetition rate were preserved. The energy per pulse and number of 
ablation layers needed for the whole plant mass removing have to be 
optimized again due to a different plant structure of each test plant 
species. The energy was set to 20 mJ per pulse which was enough for 
ablation of the whole plant mass in one layer. The irradiance value was 
approximately 6.3 GW cm− 2. The lateral resolution was 100 µm based 
on the crater diameter. The resolution of maps is already a compromise 
between the laser beam energy, the size of crater diameter after the laser 
ablation, and the achieved sensitivity. The typical map size ranged from 
150 to 400 mm2 and consisted from 20,382 to 40,584 spectra; the 
measurements times were between 17 and 34 min. 

The data from LIBS measurements of plant samples were analysed 
using RStudio (R-Core team, Vienna, Austria), LIBS Analyzer (CEITEC, 
Brno, Czech Republic), and Lightigo ImageLab (Epina, Vienna, Austria). 
The most appropriate emission lines were Y II 437.49 nm, Yb I 
398.80 nm, and Tm I 409.42 nm. These lines were selected based on 
literature (Modlitbová et al., 2019). Afterwards, they were experimen
tally verified, i.e. 100 spectra were obtained from solid Y2O3 (p.a., 
Lachema, Brno, Czech Republic), Yb2O3 (p.a., Ubichem, Redditch, 
United Kingdom), and Tm2O3 (p.a., Sigma Aldrich) standards. Spectra of 
selected elements were thoroughly investigated and spectral lines 
assigned. For those purposes we have also used Principal Component 
Analysis (PCA), all the spectra were processed using PCA and yielded 
loadings showed distinct spectral lines for individual elements (Pořízka 
et al., 2018). These lines were used through the whole experiment after a 
background subtraction using moving minimum (Yaroshchyk and 
Eberhardt, 2014) where the size of the minimum window was set at 80 
points and the smoothing window at 30 points. The data were imaged in 
the form of 2D maps. Each point of the map represents one obtained 
spectrum, thus it gives the spatial resolution. The intensity is repre
sented by the integral of the area under the spectral line. Fig. 3 depicts 
the obtained spectra from plants treated with UCNPs dispersions as well 
as with ions mixture. 

2.4. Photon-upconversion microscans 

Plants exposed to UCNPs dispersions were scanned with a photon- 
upconversion microscanner before LIBS measurements. A laser diode 
(5 W, 976 nm, Besram Technology, Wuhan, China) with a focusing lens 
(focal length 20 mm, ThorLabs) and a 925 nm long-pass filter (Edmund 
Optics, Barrington, United States) was utilized as an excitation source 
for photon-upconversion luminescence. The detector of microscanner 
comprises a dichroic mirror (900 nm short pass, Thorlabs) that reflects 
the excitation into the microscope objective (40 ×, NA 0.60). The 
objective collects the luminescence into a charge-coupled device array 
spectroscope (QE65000, Ocean Optics, Duiven, the Netherlands) which 
is connected by a multimode optical fiber of 200 µm diameter (Thor
Labs), and records emission spectra in the range from 435 nm to 
900 nm. The spatial resolution of the scanner was set to 40 µm and the 
integration time of 10 ms was used for recording the emission spectrum 
in each pixel of the image. Recorded images confirmed the presence of 
UCNPs and evaluated the translocation of UCNPS through the root and 
stem to leaves. A simplified scheme of laser microscanner is shown in 
Fig. 2B. 

3. Results and discussion 

3.1. The properties of tested compounds 

The photon-upconversion maximum and the hydrodynamic diam
eter of UCNPs in both concentrations was established before and after 
the exposures to B. oleracea (summarized in the Supplementary data file 
in Table S1). No evident changes before and after the exposure were 
noted in photon-upconversion maximum values, and only minimal 
changes were registered in the hydrodynamic diameter of NPs. This 
demonstrated a great stability of tested UCNPs with low tendencies to 
agglomerate/aggregate after a contact with the plant roots. Also, the 
nominal concentrations of Y, Yb, and Tm ions in UCNPs dispersions and 
positive control solutions are listed in the Supplementary data file in 
Table S2. 

Fig. 4. Toxicological macroscopic end-points for cabbage (B. oleracea) after a 72 h exposure to UCNPs dispersions and ions mixture solutions, the x axis shows 
nominal concentrations (µg/mL), each black cross represents one sample and each red cross is a mean, the blue asterisks show notable differences (*p < 0.05, 
**p < 0.01, ***p < 0.001), A: root length (cm), B: stem length (cm), C: root + stem length (cm), D: length of the whole plant (cm). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.2. Toxicity experiments 

The following parameters served as the macroscopic toxicity end- 
points; the root length, stem length, root + stem length, and the 
whole plant length. Their significant affection was noticeable only in 
concentration “500′′ µg/mL of ions mixture solution (100 µg Y/mL +
43.8 µg Yb/mL). The root length and root + stem length (Mann-Whitney 
U test, **p < 0.01), and the stem and the whole plant length (Mann- 
Whitney U test, ***p < 0.001) were significantly negatively affected 
(Fig. 4). On the contrary, UCNPs dispersions in both tested concentra
tions (500 and 50 µg UCNPs/mL) had a slightly (not statistically sig
nificant) positive effect on the growth of all plant parts. The zero effect 
for all monitored parameters was noticed in concentration “50′′ µg/mL 

of ions mixture solution (10 µg Y/mL + 4.38 µg Yb/mL). 
The plant growth enhancement is expected in a low UCNPs exposure 

dosage. Concentration 10 µg UCNPs/mL promoted the development of 
mung beans (Peng et al., 2012), development of soybean (Yin et al., 
2015), or the radish root growth (Modlitbová et al., 2019). Higher 
concentrations (100, 500, or 1000 µg UCNPs/mL) showed to have an 
inhibitory growth effect for exposed plants. In accordance with litera
ture, the concentration 50 µg UCNPs/mL had no negative effect on 
B. oleracea growth. On the contrary to literature, B. oleracea growth was 
not inhibited even in the concentration 500 µg UCNPs/mL. This incon
sistence could be partially affected by a slightly different type of tested 
UCNPs; NaYF4:Yb3+,Er3+,Tm3+ coated with citric acid (Peng et al., 
2012), NaYF4:Yb3+,Er3+ coated with polyethyleneimine (Yin et al., 

Fig. 5. Brassica oleracea after a 72-h exposure to 500 µg UCNPs/mL dispersion, A: photography of plant, B: photon-upconversion microscan of plant, C: 2D LIBS map 
of spatial yttrium distribution (Y II 437.49 nm), D: 2D LIBS map of spatial ytterbium distribution (Yb I 398.80 nm), E: 2D LIBS map of spatial thulium distribution 
(Tm I 409.42 nm). The scales show the intensity of emission lines (counts). 
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2015), and NaYF4:Yb3+,Er3+ coated with carboxylated silica shell 
(Modlitbová et al., 2019). Also, it could be caused by the great stability 
of tested UCNPs as described in previous chapter. 

As it was already proved in literature (Ma et al., 2010), the effects of 
NPs containing rare-earth elements are not related to free ions that are 
released from NPs into their surroundings but by NPs themselves. 

Nevertheless, these NPs have no inert shell on the surface or another 
type of encapsulation in order to be more stable and consequently 
improve their stability (Ma et al., 2010). This corresponds to previous 
phytotoxicity studies with UCNPs (Yin et al., 2015; Modlitbová et al., 
2019), and the same behaviour is expected here due to the same silica 
encapsulation of UCNPs as shown previously (Modlitbová et al., 2019). 

Fig. 6. Brassica oleracea after a 72-h exposure to 50 µg UCNPs/mL dispersion, A: photography of plant, B: photon-upconversion microscan of plant, C: 2D LIBS map 
of spatial yttrium distribution (Y II 437.49 nm), D: 2D LIBS map of spatial ytterbium distribution (Yb I 398.80 nm), E: 2D LIBS map of spatial thulium distribution 
(Tm I 409.42 nm). The scales show the intensity of emission lines (counts). 
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In accordance with literature, the UCNPs showed a lower toxicity than Y 
ions (Yin et al., 2015). This situation occurred ordinarily even for other 
types of NPs (Pokhrel and Dubey, 2013). 

3.3. LIBS bioimaging 

The emission signals for yttrium (Y II 437.49 nm) and for ytterbium 
(Yb I 398.80 nm) were accumulated separately after a proper back
ground subtraction using moving minimum for each B. oleracea part 
(root, stem, and leaves). They were normalized to maximum value as 
shown in the Supplementary data file in Table S3. Then, 2D LIBS maps 
were constructed for selected elements that UCNPs contained, Y (Y II 
437.49 nm), Yb (Yb I 398.80 nm), and Tm (Tm I 409.42 nm). These 
maps were completed by photon-upconversion microscans to confirm 
the presence of selected elements in the NPs form. The distribution of 
elements in B. oleracea exposed to 500 µg UCNPs/mL is shown in Fig. 5. 
The distribution of elements in B. oleracea exposed to 50 µg UCNPs/mL 
is shown in Fig. 6. Also, 2D maps of Y (Y II 437.49 nm) and Yb (Yb I 
398.80 nm) were constructed for both positive controls. Fig. 7 shows Y 
and Yb maps for plant after exposure to “50′′ µg/mL ions mixture 
solution. 

The UCNPs were transferred from the root via stem into leaves by 

vascular bundles, which are the main transport corridors for water, 
inorganic ions, and also for UCNPs (Peng et al., 2012). However, the 
main bioaccumulation storage organ was the root, which is easily visible 
on 2D LIBS maps and followingly confirmed also by accumulated signals 
for Y and Yb as listed in the Table S3. The preference of bioaccumulation 
sites of UCNPs and ions was as follows. In lower test concentration 
50 µg/mL, ions and UCNPs showed the same behaviour in plant trans
location, root " stem > leaves, the detected signal from the stem and 
leaves was negligible. The plants exposed to the 500 µg UCNPs/mL 
demonstrated different trends. The order of preference was: root > stem 
" leaves. The same preference of storage organs was present for R. sativus 
exposed to 10 µg UCNPs/mL and to “10′′ µg/mL ions mixture solution 
(Modlitbová et al., 2019). The plants exposed to the “500′′ ions solution 
slightly differed: root > stem = leaves. The trend of bioaccumulation of 
ions in leaves was shown also for R. sativus plants exposed to the ions 
mixture at a high concentration 1000 µg /mL (Modlitbová et al., 2019). 
On the contrary, R. sativus exposed to 100 a 1000 µg UCNPs/ had a 
preference in bioaccumulation sites in this order: root > leaves > stem 
(Modlitbová et al., 2019). This variance might be caused by the different 
toxicity of UCNPs for plant growth between R. sativus and B. oleracea 
plants. 

As visible in Figs. 5 and 6, 2D maps of spatial Y, Yb, and Tm 

Fig. 7. Brassica oleracea after a 72-h exposure to “50“ Y and Yb ions mixture solution, A: photography of plant, B: 2D LIBS map of spatial yttrium distribution (Y II 
437.49 nm), C: 2D LIBS map of spatial ytterbium distribution (Yb I 398.80 nm). The scales show the intensity of emission lines (counts). 
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distribution obtained by LIBS method showed a very similar sensitivity 
in comparison to photon-upconversion microscans. Moreover, LIBS 
method could easily detect the UCNPs without any luminescence, or 
UCNPs whose luminescence quench. Also, LIBS offered the bioimaging 
of selected elements in their ionic forms as showed in the Fig. 7. Thus, 
LIBS is a robust method for multi-element bioimaging, which is non- 
dependent on the form of analysed substances. 

4. Conclusion 

Herein, we report on the toxicity and biodistribution of UCNPs 
dispersed in aqueous medium for a model crop plant B. oleracea. The 
toxicity was set via four macroscopic end-points (root length, stem 
length, root + stem length, and whole plant length). Based on our 
findings, we draw several conclusions. (i) The stability of UCNPs in an 
aquatic dispersion during the exposure, in the direct contact with plant 
roots, and within test organisms was proved. (ii) The bioaccumulation of 
rare-earth elements in plants is concentration dependant. (iii) The 
UCNPs and Y and Yb ions could be transferred from roots through the 
stem into leaves, however the preferred storage organ is the root. (iv) 
Tested rare-earth elements are more toxic in ionic forms; actually, 
UCNPs did not show any toxicity in tested concentrations. (v) The 
minimal differences in preferences of Y and Yb bioaccumulation sites 
were observed for the plants exposed to UCNPs or to ions mixtures in the 
concentration 50 µg/mL. In higher tested concentration 500 µg/mL the 
change was visible, the UCNPs as well as ions were transferred into 
leaves via stem. In general, it is an extremely challenging task to compile 
a comprehensive view of UCNPs behaviour in major food crops. Main 
reasons are the complexity of the problem and the limited information 
available in the literature. The need of further investigation is apparent. 

In this work, we presented LIBS as a fast, straightforward, and quite 
simple analytical method for semi-quantitative multi-element bio
imaging in plant tissues. Also, LIBS enables bioimaging of various NPs 
after their luminescence quenching and also of NPs without any lumi
nescence, as well as of elements in all other forms. Also, we highlight the 
possibility of an easy and cheap plant sample preparation with the op
portunity for a long-term storage. Finally, LIBS allows the in-situ analysis 
of fresh plants without any sample preparation (Zhao et al., 2016). 
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Střítežská and Antonín Hlaváček performed the experiments; David 
Prochazka evaluated the LIBS data; Pavlína Modlitbová wrote the 
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Kaiser, J., 2020b. Detail investigation of toxicity, bioaccumulation, and translocation 
of Cd-based quantum dots and Cd salt in white mustard. Chemosphere 251, 126174. 
https://doi.org/10.1016/j.chemosphere.2020.126174. 

Peng, J., He, Y., Ye, L., Shen, T., Liu, F., Kong, W., Liu, X., Zhao, Y., 2017. Moisture 
influence reducing method for heavy metals detection in plant materials using laser- 
induced breakdown spectroscopy: a case study for chromium content detection in 
rice leaves. Anal. Chem. 89, 7593–7600. https://doi.org/10.1021/acs. 
analchem.7b01441. 

Peng, J., Sun, Y., Liu, Q., Yang, Y., Zhou, J., Feng, W., Zhang, X., Li, F., 2012. 
Upconversion nanoparticles dramatically promote plant growth without toxicity. 
Nano Res. 5, 770–782. https://doi.org/10.1007/s12274-012-0261-y. 

Pokhrel, L.R., Dubey, B., 2013. Evaluation of developmental responses of two crop plants 
exposed to silver and zinc oxide nanoparticles. Sci. Total Environ. 452–453, 
321–332. https://doi.org/10.1016/j.scitotenv.2013.02.059. 
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