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Abstract 
 
 
The aim of this Ph.D. thesis is to introduce semi-open sets in closure spaces and study 

their fundamental properties. The semi-open sets are used to define semi-open maps, semi-
closed maps, semi-continuous maps, contra-semi-continuous maps and semi-irresolute maps 
which are investigated. They are also used to introduce a new type of connectedness and 
compactness in closure spaces, the so-called s-connectedness and s-compactness, 
respectively. Further, we introduce and study generalized semi-open sets. We define 
generalized semi-continuous maps and generalized semi-irresolute maps by using generalized 
semi-open sets and study their behaviour. Another type of open sets in closure spaces, namely 
γ-open sets, are also introduced and some of their properties are studied, too. The concepts of 
γ-continuous maps and γ-irresolute maps are introduced by using γ-open sets. We also 
investigate the interrelation between generalized-semi-open sets and γ-open sets in closure 
spaces. We define a notion of semi-open sets in biclosure spaces and investigate its behaviour. 
Finally, the concepts of semi-open maps, semi-closed maps, semi-continuous maps, semi-
irresolute maps and pre-semi-open maps of biclosure spaces are introduced and studied.  
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Chapter 1 
 
Introduction  
 
 
 
The study of semi-open sets in topological spaces was initiated in 1963 by N. Levine in [16]. 
If ( )τ,X  is a topological space and XA ⊆ , then A  is semi-open if there exists τ∈O  such 

that ( )OClAO ⊆⊆ , where ( )OCl  denotes the closure of O  in ( )τ,X . Furthermore, Levine 
used semi-open sets to define semi-continuous maps in topological spaces. By utilizing the 
concept of semi-open sets, semi-closed sets in topological spaces were introduced by N. 
Biswas [3] in 1969 as complements of semi-open sets. Further, semi-open sets and semi-
closed sets were used to define semi-open and semi-closed maps in topological spaces.  After 
the work of Levine and Biswas, various mathematicians turned their attention to the 
generalizations of topology obtained by considering semi-open sets instead of open sets and 
many interesting results have been obtained - see for instance, [1], [4], [11] and [15]. 

 
 In 1969, bitopological spaces were introduced by J. C. Kelly [14] as triples ( )21,, ττX  

where X  is a set and 1τ  and 2τ  are topologies defined on X . After that, a number of papers 
have been written to generalize topological concept to the bitopological setting-see for 
instance, [2], [12] and [13]. 
 

 The purpose of this thesis is to study the concept of semi-open sets in closure 
spaces and in biclosure spaces. Closure spaces were introduced by E.Čech [6] in 1966 and 
then studied by many mathematicians, see e.g. [7], [8], [9], [10], [17] and [18]. Closure spaces 
are sets endowed with a grounded, extensive and monotone closure operator. Biclosure spaces 
were introduced in [5] as triples ( )21,, uuX  where X  is a set and 1u , 2u  are closure operators 
on X . 
 

In this thesis, we divide the text into six chapters. 
The first chapter is an introduction which contains some remarks about the past 

research. We also explain our motivations and outline the aims of the thesis.  
 
In the second chapter, we recall some definitions concerning closure spaces and some 

of their properties. Among others, unions, intersections and Cartesian product of closure 
spaces are investigated. 

 
 In the third chapter, we introduce semi-open sets in a closure space and study their 
unions, intersections and Cartesian product. These semi-open sets are used to define a certain 
types of maps, namely semi-continuous maps and semi-irresolute maps which will also be 
studied. Further, semi-open sets are used to introduce and study a new type of connectedness 
(respectively, compactness) called s-connectedness (respectively, s-compactness). 
 

In the fourth chapter, we introduce two new types of open sets in closure space called 
generalized semi-open and γ-open. We then study some of their basic properties. As an 
application, three new kinds of closure spaces, namely Tgs-spaces, Tγ-spaces and Tsγ-spaces are 



introduced and some of their characterizations are studied. Further, we introduce generalized 
semi-continuous and γ-continuous maps by using generalized semi-open sets and γ-open sets, 
respectively. Moreover, two new types of maps called generalized semi-irresolute and γ-
irresolute are introduced and studied. Further, we study the interrelation among generalized-
semi-continuous, γ-continuous, generalized semi-irresolute and γ-irresolute maps. 
 

In the fifth chapter, we recall the concepts of biclosure spaces and investigate some of 
their properties, e.g. unions, intersections and subspaces. We introduce and study semi-open 
sets in biclosure spaces. The notions of semi-continuous maps and semi-irresolute maps of 
biclosure spaces are defined and investigated. At the end of the chapter, we introduce pre-
semi-open maps and pre-semi-closed maps obtained by using semi-open sets and semi-closed 
sets, respectively. We then study some of their properties. 

  
In the last chapter, we make conclusions of the obtained results and we outline the 

direction of the further research. 
 
 

 
 

 
 
 
 
 



Chapter 2 
 
Closure Spaces 

 
 

 In this chapter, we study some fundamental properties of closure spaces. First, we 
recall some basic definitions. 
 

A map ( ) ( )XPXPu →:  defined on the power set ( )XP  of a set X  is called a 

closure operator on X  and the pair ( )uX ,  is called a closure space if the following axioms 
are satisfied: 
(A1) φφ =u , 
(A2) uAA ⊆  for every XA ⊆ , 
(A3) uBuABA ⊆⇒⊆  for all XBA ⊆, . 

A closure operator u  on a set X  is called additive (respectively, idempotent) if 
XBA ⊆, ⇒ uBuABAu ∪=∪ )(  (respectively, XA ⊆ ⇒ uAuuA= ). 

A subset XA ⊆  is closed in the closure space ( )uX ,  if  AuA= . It is called open if 
its complement in X  is closed. The empty set and the whole space are both open and closed. 

A closure space ( )vY,  is said to be a subspace of ( )uX ,  if XY ⊆  and =vA YuA∩  
for each subset YA ⊆ . 

Let ( )uX ,  and ( )vY,  be closure spaces. A map ( ) ( )vYuXf ,,: →  is called open 

(respectively, closed) if the image of every open (respectively, closed) set in ( )uX ,  is open 

(respectively, closed) in ( )vY, .   

A map ( ) ( )vYuXf ,,: →  is said to be continuous if ( ) ( )AvfuAf ⊆  for every XA ⊆ . 
One can see that if f  is continuous, then the inverse image under f  of every open 

(respectively, closed) set in ( )vY,   is open (respectively, closed) in ( )uX , .  

A closure space ( )uX ,  is said to be connected if φ  and X  are the only subsets of X  
which are both closed and open. 

A collection { } JG ∈αα  of sets in a closure space X  is called a cover of a subset B  of 

X  if αα
GB

J∈
∪⊆  holds, and an open cover if αG is open for each J∈α . 

Furthermore, a cover { } JG ∈αα  of a subset B  contains a finite subcover, if there exists a 

finite subset 0J  of J  such that αα
GB

J0∈
∪⊆ .  

A subset A  of a closure space ( )uX ,  is compact if every open cover of A  contains a 
finite subcover. 

 
The following statement is evident:  
 

Proposition 2.1. If { } JA ∈αα  is a collection of subsets in a closure space( )uX , , then  

αααα
AuuA

JJ ∈∈
∪⊆∪  and  αααα

uAAu
JJ ∈∈

∩⊆∩ . 

 



 The following example shows that the inclusions of Proposition 2.1 cannot be replaced 
by equalities in general. 
 
Example 2.2. Let { }3,2,1=X  and define a closure operator u  on X  by φφ =u , { } { }11 =u , 

{ } { }22 =u , { } { }33 =u  and { } =2,1u { }=3,1u { }=3,2u XuX = . It is easy to see that  

{ } { } =∪ 21 uu { }2,1   but { } { }( ) Xu =∪ 21 . It follows that { } { }≠∪ 21 uu { } { }( )21 ∪u . Further, we 

have { } { }( ) =∩ 3,21u φφ =u  but { } { } =∩ 3,21 uu { }1 . Hence, { } { }( ) ≠∩ 3,21u { } { }3,21 uu ∩ . 
 
Proposition 2.3. Let { } JA ∈αα  be a collection of closed sets in a closure space ( )uX , . Then 

αα
A

J∈
∩  is a closed set. 

 
Proof. Since ααα

AA
J

⊆∩
∈

 for each J∈α , ααα
uAAu

J
⊆∩

∈
 for all J∈α . Since { } JA ∈αα  is a 

collection of closed sets, αα AuA =  for all J∈α . Hence, ααα
AAu

J
⊆∩

∈
  for each J∈α . 

Thus, αααα
AAu

JJ ∈∈
∩⊆∩ . Since αααα

AuA
JJ ∈∈

∩⊆∩ , αααα
AuA

JJ ∈∈
∩=∩ . Therefore, αα

A
J∈

∩  is a 

closed set.                                                                                                         � 
 
 If { } JA ∈αα  is a collection of open sets in a closure space ( )uX , , then αα

A
J∈

∩  need not 

be an open set as shown in the following example. 
 
Example 2.4. In the closure space from Example 2.2, it is easy to see that  { }2,1  and { }3,1  are 

open but { } { } { }13,12,1 =∩  is not open in ( )uX , . 
 
 As a direct consequence of Proposition 2.3, we have: 
 
Proposition 2.5. Let { } JA ∈αα  be a collection of closed sets in a closure space ( )uX , . Then 

αααα
uAAu

JJ ∈∈
∩=∩ . 

 
Proposition 2.6. Let { } JA ∈αα  be a collection of open sets in a closure space( )uX , . Then 

αα
A

J∈
∪  is an open set. 

 
Proof. Clearly, the complement of αα

A
J∈

∪  is ( )αα
AX

J
−∩

∈
. Since αA is open for each J∈α , 

αAX −  is closed for all J∈α . But ( )αα
AX

J
−∩

∈
 is a closed set by Proposition 2.3. Therefore, 

αα
A

J∈
∪  is open.                                              � 

 
Let { } JA ∈αα  be a collection of closed sets in a closure space ( )uX , . Then αα

A
J∈

∪  need 

not be closed set as shown in the following example. 
 
Example 2.7. In the closure space from Example 2.2, it is easy to see that { }1  and { }2  are 

closed but { } { } { }2,121 =∪  is not closed in ( )uX , . 
 
Proposition 2.8. Let ( )uX ,  be a closure space. If G  is a subset of ( )uX , , then GuG−  has 
no nonempty open subset. 



 
Proof. Let G  be a subset in ( )uX ,  and H  be a nonempty open subset of GuG− . Then there 

is uGGuGHx ⊆−⊆∈  but HXx −∉ . Since H  is open, we have  =− HX  ( )HXu − . 

Hence ( )HXux −∉ , i.e., uG  is not contained in ( )HXu − . But ⊆H GuG− , hence 

⊆G ⊆− HuG HX − . It follows that uG  is contained in ( )HXu − , which is a 
contradiction. Therefore, GuG−  contains no nonempty open set.                � 
 
Proposition 2.9. Let ( )vY,  be a closure subspace of ( )uX , . If G  is an open set in X , then 

YG ∩  is an open set in ( )vY, . 
 
Proof. Let G  is an open subset of ( )uX , . Then ( )( ) =∩− YGYv ( )( ) ⊆∩∩− YYGYu  

( ) =∩− YGXu ( ) =∩− YGX ( )YGY ∩− . Therefore, YG ∩  is open in ( )vY, .    � 
 

The converse of Proposition 2.9 is not true as shown in the following example.  
 
Example 2.10. Let { }3,2,1=X  and define a closure operator u  on X  by φφ =u , { }=1u  

{ }2,1 , { }=2u { }3,2 , { }=3u { }3  and { }=2,1u { }=3,1u { }=3,2u =uX X . Thus, there are only 

three open subsets of ( )uX , , namely  φ , { }2,1  and X . Let =Y { }2,1  and ( )vY,  be a closure 

subspace of ( )uX , . Then φφ =v , { }=2v { }2  and { }=1v =vY Y . We can see that { }1  is an 

open subset of ( )vY,  but there is no any open set G  in ( )uX ,  such that { }=1 YG ∩ . 
 
Proposition 2.11. Let ( )uX ,  and ( )vY,  be closure spaces. If ( ) ( )vYuXf ,,: →  is a 

continuous map, then the inverse image under f  of each open set in ( )vY,   is open in ( )uX , . 
 
Proof. Let H  be open in ( )vY, . Then HY −  is closed in ( )vY, . Hence, ( )⊆−− HYf 1 X . But 

f  is continuous, so we have ( )( )⊆−− HYuff 1  ( )( )⊆−− HYfvf 1 ( )HYv − . Hence, 

( )( )( )⊆−−− HYufff 11 ( )( )HYvf −−1 . Thus, ( ) ⊆−− HYuf 1 ( )( ) =−− HYvf 1 ( )HYf −−1 . 

Consequently, ( )HYf −−1  is a closed set in ( )uX , . But ( ) =−− HYf 1  ( ) ( ) =− −− HfYf 11  

( )HfX 1−− , hence ( )Hf 1−  is open in ( )uX , .                        �  
 
Remark 2.12. In a closure space, if a map ( ) ( )vYuXf ,,: →  is such that the inverse image 

under f  of each open set in ( )vY,  is open in ( )uX , , then f need not be continuous as shown 
in the following example.  
 
Example 2.13. Let { }3,2,1=X , { }cbaY ,,=  and define a closure operator u on X  by =φu  

φ , { } { } { } { } { } XuXuuuuu ====== 3,23,12,131 and { } { }22 =u . Define a closure operator v  

on Y  by φφ =v , { } { }caav ,= , { } { }bbv = , { } { }cacv ,=  and { }=bav ,  { }=cav ,  

{ } =cbv , YvY = . Let ( ) ( )vYuXf ,,: →  be defined by ( ) af =1 , ( ) bf =2 and ( ) cf =3 .  It is 

easy to see that there are only three open sets, φ , Y  and { }ca,  in .Y  We have that  

( ) φφ =−1f , ( ) =− Yf 1 X  and { }( ) { }3,1,1 =− caf  are open sets in ( )uX , . But f  is not 

continuous because { }( ) ( ) YXfuf ==3  is not contained in { }( ) { } { }cacvvf ,3 == .  
 
 The following statement is evident: 
 



Proposition 2.14. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces, let ( ) →uXf ,: ( )vY,  and 

( ) ( )wZvYg ,,: →  be maps. Then:  
a) If f and g are open, then so is fg o . 
b) If fg o is open and f is a continuous surjection, then g  is open. 
c) If fg o is open and g is a continuous injection, then f  is open. 

 
Proposition 2.15. Let ( )uX ,  and ( )vY,  be closure spaces and let ( ) ( )vYuXf ,,: →  be a 

map. If f  is open, then for every ∈y Y and every closed subset F  of ( )uX ,  such that 

{ }( ) ⊆− yf 1 F , there exists a closed subset K  of ( )vY,  such that ∈y K  and ( ) ⊆− Kf 1 F . 
 
Proof. Suppose that f  is open. Let ∈y Y  and F  be a closed subset of ( )uX ,  such that 

{ }( ) Fyf ⊆−1 . Then ( )FXf −  is an open set in ( )vY, . Let =K  ( )FXfY −− . Then K  is 

closed in ( )vY,  and ( ) =− Kf 1 ( )( ) =−−− FXfYf 1 ( )( ) ⊆−− − FXffX 1  ( ) =−− FXX F . 

But ∈y { }( ) ⊆−− yYY  { }( )( ) =−− − yYffY 1 { }( )( ) ⊆−− − yfXfY 1 ( )FXfY −− , hence 

∈y K . Therefore, K  is a closed subset of ( )vY,  such that ∈y K  and ( ) ⊆− Kf 1 F .  
 
 The converse of Proposition 2.15 is not true in general as can be seen from the 
following example. 
 
Example 2.16. Let { } YX == 3,2,1  and define a closure operator u  on X  by  =φu φ , 

{ }=1u { } =2u { }=2,1u { },2,1  and { }=3u { }=3,1u { }=3,2u =uX X . Define a closure operator v  

on Y  by =φv φ , { } { }11 =v , { }=2v { }2 , { }=3v { }=2,1v { }=3,1v { }=3,2v =vY Y . Let 

( ) ( )vYuXf ,,: →  be the identity map. Then there are only three closed subset of ( )uX , , 

namely φ , { }2,1  and X . Moreover, there are only four closed subset of ( )vY, , namely φ , { }1 , 

{ }2  and Y . Then for every ∈y Y  and every closed subset F  of ( )uX ,  such that 

{ }( ) ⊆− yf 1 F , there exists a closed subset K  of ( )vY,  such that ∈y K  and ( ) ⊆− Kf 1 F . 

But f  is not open because { }3  is open in ( )uX ,  but { }( )3f  is not open in ( )vY, . 
                                                                                                

In [1], E.Čech defines the product ( )∏
∈J

uX
α

αα ,  of a family ( ){ }JuX ∈ααα :,  of closure 

spaces to be the closure space 






∏
∈

uX
J

,
α

α  where ∏
∈J

X
α

α denotes the Cartesian product of  the 

sets αX , J∈α  and u  is the closure operator generated by the projections α
α

ααπ XX
J

→∏
∈

: , 

J∈α , i.e., defined by ( )AuuA ∏
∈

=
αα

ααπ  for each ⊆A ∏
∈J

X
α

α . Clearly, απ  is continuous for 

each J∈α . 
 
Proposition 2.17. Let ( ){ }JuX ∈ααα :,  be a family of closure spaces. Then αF  is closed in 

( )αα uX ,   for all J∈α  if and only if ∏
∈J

F
α

α  is closed in ( )∏
∈J

uX
α

αα , . 

 



Proof. Let J∈α  and αF  be a closed subset of ( )αα uX , . Then ααα FuF = . But 

=






∏
∈J

F
α

ααπ αF , hence, =∏
∈J

F
α

α =∏
∈J

Fu
α

αα 






∏∏
∈∈ J

Fu
J α

ααα
α

π . Therefore, ∏
∈J

F
α

α is closed 

in ( )∏
∈J

uX
α

αα , . 

 Conversely, let J∈α  and αα XF ⊆ . Suppose that  ∏
∈J

F
α

α  is closed in ( )∏
∈J

uX
α

αα , . 

Then =∏
∈J

F
α

α 






∏∏
∈∈ J

Fu
J α

ααα
α

π . Hence, =






∏
∈J

F
α

ααπ 



















∏∏
∈∈ J

Fu
J α

αααα
α

ππ . Thus, 

ααα FuF = . Therefore, αF  is closed in ( )αα uX ,  for all J∈α .                � 

 
We will need the following, quite obvious properties of the Cartesian product of sets: 

 
Lemma 2.18. Let ( ){ }JuX ∈ααα :,  be a collection of closure spaces, J∈β  and βπ   be a 

projection map. If ⊆G ∏
∈J

X
α

α  and ( ) ∈∈Jx αα G , then { } ( )( ){ }⊆×∏
∈
≠

∈

J

Jxc

α
βα

αααβ π GX
J

−∏
∈α

α   

for all ∈βc ( )GX ββ π− .  

 
Proof.  Let ⊆G ∏

∈J

X
α

α  and ( ) ∈∈Jx αα G . Let J∈β  and ∈βc ( )GX ββ π− . Then ∉βc  

( )Gβπ . Hence, { } ( )( ){ }⊄×∏
∈
≠

∈

J

Jxc

α
βα

αααβ π ( ) ( ) =×∏
∈
≠

J

GG

α
βα

αβ ππ ( )∏
∈J

G
α

απ . Clearly, ⊆G  

( )∏
∈J

G
α

απ . Consequently, { } ( )( ){ }⊄×∏
∈
≠

∈

J

Jxc

α
βα

αααβ π G . But { } ( )( ){ }∏
∈
≠

∈×
J

Jxc

α
βα

αααβ π  is 

singleton, thus { } ( )( ){ }⊆×∏
∈
≠

∈

J

Jxc

α
βα

αααβ π GX
J

−∏
∈α

α .           � 

 
Lemma 2.19. Let ( ){ }JuX ∈ααα :,  be a collection of closure spaces and let J∈β . If 

⊆G ∏
∈J

X
α

α  and βπ  is a projection map, then ( ) ⊆− GX ββ π 






 −∏
∈

GX
Jα

αβπ . 

 
Proof. Let J∈β  and ⊆G ∏

∈J

X
α

α . 

If φ=G , then β
α

αβπ XGX
J

=






 −∏
∈

. Thus, ( ) ⊆− GX ββ π 






 −∏
∈

GX
Jα

αβπ .     

If φ≠G , i.e. there exists ( ) ∈∈Jx αα G . Let ∈βc ( )GX ββ π− . By Lemma 2.18, 

{ } ( )( ){ }⊆×∏
∈
≠

∈

J

Jxc

α
βα

αααβ π GX
J

−∏
∈α

α . It follows that ∈βc 






 −∏
∈

GX
Jα

αβπ . Therefore, 

( ) ⊆− GX ββ π 






 −∏
∈

GX
Jα

αβπ .               � 

 



Proposition 2.20. Let ( ){ }JuX ∈ααα :,  be a collection of closure spaces. If G  is an open 

subset of ( )∏
∈J

uX
α

αα , , then ( )Gαπ  is open in ( )αα uX ,  for every projection map απ , J∈α . 

  
Proof. Let G  be an open subset of ( )∏

∈J

uX
α

αα , . Suppose that there exists J∈β  such that 

( )Gβπ  is not open in βX . Since βX  is open, ( ) ββπ XG ≠ , i.e. ( ) φπ ββ ≠− GX . Hence, 

there exists ∈βm ( )GX ββ π− . By the hypothesis, ( )( )GXu βββ π−  is not contained in 

( )GX ββ π− . Thus, there exists ∈*
βx  ( )( )GXu βββ π−  but ∉*

βx ( )GX ββ π− , i.e. ∈*
βx  

( )Gβπ . Hence, there exists ( ) ∈∈Jx αα G  such that ( )( ) =∈Jx ααβπ *
βx . Since ∈βm  

( )GX ββ π− , { } ( )( ){ }⊆×∏
∈
≠

∈

J

Jxm

α
βα

αααβ π GX
J

−∏
∈α

α  by Lemma 2.18. Consequently, 

( )( )∈∈Jx αααπ ⊆






 −∏
∈

GX
Jα

ααπ 






 −∏
∈

GXu
Jα

αααπ  for all βα ≠ , J∈α . Since ∈*
βx  

( )( )GXu βββ π− , ∈*
βx 







 −∏
∈

GXu
Jα

αββ π  by Lemma 2.19. It follows that, 

{ } ( )( ){ }⊆× ∏
∈
≠

∈

J

Jxx

α
βα

αααβ π* ∏ ∏
∈ ∈








 −
J J

GXu
α α

αααπ . But ( )( ) =∈Jx ααβπ *
βx , hence 

{ } ( )( ){ }=×∏
∈
≠

∈

J

Jxx

α
βα

αααβ π* ( )( ){ }×∈Jx ααβπ ( )( ){ }=∏
∈
≠

∈

J

Jx

α
βα

αααπ ( )( ){ }=∏
∈

∈
J

Jx
α

αααπ ( ){ }Jx ∈αα . 

Consequently, ( ){ }⊆∈Jx αα ∏ ∏
∈ ∈








 −
J J

GXu
α α

αααπ , i.e. ( ) ∈∈Jx αα ∏ ∏
∈ ∈








 −
J J

GXu
α α

αααπ . But 

( ) ∈∈Jx αα G , i.e. ( ) ∉∈Jx αα GX
J

−∏
∈α

α . Hence, ∏ ∏
∈ ∈








 −
J J

GXu
α α

αααπ  is not contained in 

GX
J

−∏
∈α

α . Thus, G  is not open in ( )∏
∈J

uX
α

αα , , which is a contradiction. Therefore, ( )Gβπ  

is open in βX  for all J∈β .               � 

 
 The converse of Proposition 2.20 is not true as shown by the following example. 
  
Example 2.21. Let { }2,11 =X , { }baX ,2 =  and define a closure operator 1u  on 1X  by 

φφ =1u , { } { }111 =u  and { }=21u 111 XXu = . Define a closure operator 2u  on 2X  by φφ =2u , 

{ } { }aau =2  and { } =bu2 222 XXu = . Let :1π →× 21 XX 1X  and :2π →× 21 XX 2X  be the 

projection maps. Then ( ){ }⊆b,2 21 XX ×  such that ( ){ }( ) =b,21π { }2  and ( ){ }( ) =b,22π { }b  are 

open in ( )11,uX  and ( )22 ,uX , respectively. But ( ){ }b,2  is not open in ( )11,uX × ( )22 ,uX . 
 
Remark 2.22. By Proposition 2.20, a projection map ( ) ( )αα

α
αααπ uXuX

J

,,: →∏
∈

 is open for 

all J∈α .  
 



Chapter 3 
 
Semi-open Sets in Closure Spaces 
 
3.1 Semi-Open Sets 
 
 In this section, we introduce a new class of open sets in closure spaces, called semi-
open sets, and we study some of its properties. 
 
Definition 3.1.1. Let ( )uX ,  be a closure space. A subset A  of X  is called a semi-open set if 

there exists an open set G  in ( )uX ,  such that uGAG ⊆⊆ . A subset XA ⊆  is called a 
semi-closed set if its complement is semi-open.  
 

Clearly, if A  is open (respectively, closed) in ( )uX , , then A  is semi-open 

(respectively, semi-closed) in ( )uX , . The converse is not true as shown in the following 
example. 
 
Example 3.1.2. Let { }3,2,1=X  and define a closure operator u  on X  by φφ =u , { } { }11 =u , 

{ } { } { }3,13,13 == uu  and { }=2u { }=2,1u { } XuXu ==3,2 . It is easy to see that { }2,1  is semi-

open because there is an open set { }2  such that { } { } { }.22,12 u⊆⊆  But { }2,1  is not open. And 

we also see that { }3  is semi-closed but not closed. 
 
 Regarding the union of semi-open sets and the intersection of semi-closed sets we 
have the following: 
 
Proposition 3.1.3. Let { } JA ∈αα  be a collection of semi-open sets in a closure space ( )uX , . 

Then αα
A

J∈
∪  is a semi-open subset of ( )uX , . 

Proof. For each J∈α , we have an open set αG  such that ααα uGAG ⊆⊆ . Thus, 

αααααα
uGAG

JJJ ∈∈∈
∪⊆∪⊆∪ . By Proposition 2.1, αααα

GuuG
JJ ∈∈

∪⊆∪ . Therefore, ⊆∪
∈ αα

G
J

 

⊆∪
∈ αα

A
J

αα
Gu

J∈
∪ . But αα

G
J∈

∪  is open, hence αα
A

J∈
∪  is a semi-open set.                                � 

 
 The intersection of two semi-open sets need not  be  a semi-open set as can be seen 
from Example 2.2: { } { }3,12,1 ∩  is not semi-open while { }2,1  and { }3,1  are semi-open in 

( )uX , .  
 
Proposition 3.1.4. Let { } JA ∈αα  be a collection of semi-closed sets in a closure space ( )uX , . 

Then αα
A

J∈
∩  is semi-closed. 

 



Proof. Let αA  be a semi-closed set in ( )uX ,  for all J∈α . Then αAX −  is semi-open for 

each J∈α . By Proposition 3.1.3, ( )αα
AX

J
−∪

∈
 is semi-open. But ( ) =−∪

∈ αα
AX

J
αα

AX
J∈

∩− , 

thus αα
A

J∈
∩  is semi-closed.                                                                                                   � 

 
The union of two semi-closed sets need not be a semi-closed set as can be seen from 

Example 2.2: { } { }21 ∪  is not semi-closed but { }1  and { }2  are semi-closed sets in ( )uX , . 
 
Proposition 3.1.5. Let ( )uX ,  be a closure space and u  be idempotent. If A  is semi-open in 

( )uX ,  and uABA ⊆⊆ , then B  is semi-open. 
 
Proof.   Let A  be semi-open in ( )uX , . Then there exists an open set G  in ( )uX ,  such that 

uGAG ⊆⊆ , hence uuGuA⊆ . Since u  is idempotent, uGuA⊆ . Thus, ⊆G ⊆A ⊆B  
⊆uA uG. Therefore, B  is semi-open.                                                                � 

 
Proposition 3.1.6. Let ( )vY,  be a closure subspace of ( )uX ,  and YA⊆ . If A is a semi-open 

set in ( )uX , , then A is a semi-open set in ( )vY, . 
 
Proof.   Let A  be semi-open in ( )uX , . Then there exists an open set G  in ( )uX ,  such that 

uGAG ⊆⊆ . Since YA⊆ , YG ⊆  and =G ⊆∩ YG ⊆∩ YA =∩YuG vG. But 
AYA =∩ , thus vGAG ⊆⊆ . Since YGG ∩= , G  is open in ( )vY, . Hence, A  is a semi-

open set in ( )vY, .                                    � 
 
 The converse of Proposition 3.1.6 need not be true as can be seen from the following 
example. 
 
Example 3.1.7. Let { }3,2,1=X  and define a closure operator u  on X  by φφ =u , { }=1u  

{ }3,1 , { }=2u { }3,2  and { } { } { }3,12,13 uuu == { } XuXu === 3,2 . Let { }2,1=Y  and ( )vY,  be a 

closure subspace of ( )uX , . Then φφ =v , { } { }11 =v , { } { }22 =v  and YvY = . It is easy to see 

that { }1  is semi-open in ( )vY,  but is not semi-open in ( )uX , . 

 Proposition 3.1.8. Let ( )uX ,  be a closure space and let XA ⊆ . Then A is semi-closed if 

and only if there exists a closed set F  in ( )uX ,  such that ( ) FAFXuX ⊆⊆−− . 
 
Proof. Let A  be semi-closed. Then there exists an open set G  in ( )uX ,  such that 

uGAXG ⊆−⊆ . Thus, there exists a closed set F  in ( )uX ,  such that FXG −=  and 

( )FXuAXFX −⊆−⊆− . Therefore, ( ) FAFXuX ⊆⊆−− .  

 Conversely, by the assumption, there is a closed set F  in ( )uX ,  such that 

( ) ⊆−− FXuX ⊆A F . Thus, there exists an open set G  in ( )uX ,  such that GXF −=  and 
GXAuGX −⊆⊆− . It follows that ⊆G ⊆− AX uG. Therefore, A  is semi-closed in 

( )uX , .                          � 
 
Definition 3.1.9. Let ( )uX ,  and ( )vY,  be closure spaces. A map ( ) ( )vYuXf ,,: →  is called 
semi-open (respectively, semi-closed) if the image of every open set (respectively, closed set) 
in ( )uX ,  is semi-open (respectively, semi-closed) in ( )vY, .  



Clearly, if f  is open (respectively, closed), then f  is semi-open (respectively, semi-
closed). The converse is not true as can be seen from the following example. 
 
Example 3.1.10. Let { }3,2,1=X  and { }cbaY ,,= . Define a closure operator u  on X   by 

=φu φ , { } { }11 =u  and { }=2u { }=3u { }=2,1u { } { } XuXuu === 3,23,1 . Define a closure 

operator v  on Y  by φφ =v , { } { } { } { }cacavcvav ,, ===  and { }=bv { } =bav , { }=cbv , =vY Y . 

Let ( ) ( )vYuXf ,,: →  be defined by ( ) af =1 , ( ) cf =2  and ( ) =3f b . It is easy to see that  

f  is semi-open but not open because { }( ) =3,2f { }cb,  is not open in ( )vY,  while { }3,2  is 

open in ( )uX , . And we also see that f  is semi-closed but not closed. 
 
Proposition 3.1.11. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces, let ( ) →uXf ,: ( )vY,  

and ( ) ( )wZvYg ,,: →  be maps. Then: 
(i) If f is open andg is semi-open, then fg o  is semi-open. 
(ii)  If fg o is semi-open and f is a continuous surjection, then g  is semi-open.  
 

Proof. (i)  Let G  be an open subset of ( )uX , . Since f is open, ( )Gf  is open in ( )vY, . Hence 

( )( )Gfg  is semi-open in ( )wZ, . Thus, fg o  is semi-open. 

(ii)  Let G  be an open subset of ( )vY, . Since f  is a continuous map, ( )Gf 1−   is open 

in ( )uX , . Since fg o  is semi-open, ( )( ) ( )( )( )GffgGffg 11 −− =o  is semi-open  in ( )wZ, . 

But f  is surjection, so that ( )( ) ( )GgGffg =−1
o . Hence, ( )Gg is semi-open in ( )wZ, . 

Therefore, g  is semi-open.           � 

 
Proposition 3.1.12. Let ( ){ }JuX ∈ααα :,  be a collection of closure spaces. Let J∈α  and 

⊆A ∏
∈J

X
α

α . If A is semi-open in ( )∏
∈J

uX
α

αα ,  and απ  is a projection map, then ( )Aαπ  is 

semi-open in ( )αα uX , . 

  
Proof.  Let J∈α and A  be a semi-open subset of  ( )∏

∈J

uX
α

αα , . Then there exists an open 

subset G  of ( )∏
∈J

uX
α

αα ,  such that ⊆G ⊆A ( )Gu
J

∏
∈α

ααπ . It follows that ( ) ⊆Gαπ  

( ) ⊆Aαπ ( ) =






∏
∈

Gu
Jα

ααα ππ ( )Gu ααπ . By Proposition 2.20,  ( )Gαπ  is open in ( )αα uX , . 

Therefore, ( )Aαπ  is semi-open in ( )αα uX , .              
   � 
 
Remark 3.1.13. The converse of Proposition 3.1.12 need not be true in general. By Example 
2.21, ( ){ }( )b,21π  and ( ){ }( )b,22π  are semi-open sets in ( )11,uX  and ( )22 ,uX , respectively. 

But ( ){ }b,2  is not semi-open in ( )11,uX × ( )22 ,uX .  
 
Proposition 3.1.14. Let ( ){ }JuX ∈ααα :,  be a collection of closure spaces. Let J∈β and 

⊆βA βX . Then βA  is semi-open in ( )ββ uX ,  if and only if ∏
∈
≠

×
J

XA

α
βα

αβ is semi-open in 

( )∏
∈J

uX
α

αα , . 



 
Proof. Let J∈α and βπ  be a projection map. Let βA  be a semi-open subset of ( )ββ uX , . 

Then there exists an open subset βG  of ( )ββ uX ,  such that ⊆βG ⊆βA ββ Gu . Hence, 

⊆×∏
∈
≠

J

XG

α
βα

αβ ⊆×∏
∈
≠

J

XA

α
βα

αβ =×∏
∈
≠

J

XGu

α
βα

αββ ∏ ∏
∈

∈
≠ 
















×
J

J

XGu
α

α
βα

αβααπ . As βπ  is continuous, 

( )=−
ββπ G1 ∏

∈
≠

×
J

XG

α
βα

αβ  is open in ( )∏
∈J

uX
α

αα , . Therefore, ∏
∈
≠

×
J

XA

α
βα

αβ  is semi-open.  

The converse follows immediately from Proposition 3.1.12.   
   � 
 
Theorem 3.1.15. Let ( ){ }JuX ∈ααα :,  be a family of closure spaces and let J∈β . Then βA  

is a semi-closed subset of ( )ββ uX ,  if and only if ∏
∈
≠

×
J

XA

α
βα

αβ  is semi-closed in ( )∏
∈J

uX
α

αα , . 

 
Proof. Let J∈β  and βA  be a semi-closed subset of ( )ββ uX , . Then ββ AX −  is semi-open in 

( )ββ uX , . By Proposition 3.1.14, ( ) ∏
∈
≠

×−
J

XAX

α
βα

αββ  is a semi-open subset of ( )∏
∈J

uX
α

αα , . 

But ( ) ∏
∈
≠

=×−
J

XAX

α
βα

αββ ∏∏
∈
≠∈

×−
J

J

XAX

α
βα

αβ
α

α . It follows that ∏
∈
≠

×
J

XA

α
βα

αβ  is semi-closed in 

( )∏
∈J

uX
α

αα , .                                                                                          

Conversely, suppose that ∏
∈
≠

×
J

XA

α
βα

αβ  is a semi-closed subset of ( )∏
∈J

uX
α

αα , . Then 

=×− ∏∏
∈
≠∈

J
J

XAX

α
βα

αβ
α

α ( ) ∏
∈
≠

×−
J

XAX

α
βα

αββ  is semi-open in ( )∏
∈J

uX
α

αα ,  . By Proposition 

3.1.14, ββ AX −  is semi-open in ( )ββ uX , . Therefore, βA  is semi-closed.   

   � 
 
 
 

3.2 Semi-continuous Maps 
 
Definition 3.2.1. Let ( )uX ,  and ( )vY,  be closure spaces. A map ( ) →uXf ,: ( )vY,  is called 

semi-continuous if the inverse image under f  of every open set in ( )vY,  is semi-open in 

( )uX , .  
Clearly, if f  is continuous, then f  is semi-continuous. The converse is not true in 

general as shown in the following example. 
 

Example 3.2.2. Let { }3,2,1=X , { }cbaY ,,=  and define a closure operator u  on X  by  

φφ =u , { } { } { }3,13,11 == uu , { } { } { }3,23,22 == uu , { } { }33 =u  and { } == uXu 2,1 X .Define a 

closure operator v  on Y  by φφ =v ,  { } { } { }babavav ,, == , { } { }bbv = , { } =cv { }c , 



{ } { }cbcbv ,, =  and { }=cav , YvY = . Let ( ) ( )vYuXf ,,: →  be defined by ( ) af =1 , ( ) cf =2  

and ( ) bf =3 . It is easy to see that f is semi-continuous, but f  is not continuous because 

{ }ba,  is open in ( )vY,  and { }( ) { }3,1,1 =− baf  but { }3,1  is not open in ( )uX , .  
 
Proposition 3.2.3. Let ( )uX ,  and ( )vY,  be closure spaces and let ( ) →uXf ,: ( )vY,  be a 
map. Then f  is semi-continuous if and only if the inverse image under f   of every closed 

subset of ( )vY,  is semi-closed in ( )uX , . 
 
Proof. Let F  be a closed subset in ( )vY, . Then FY −  is open in ( )vY, . Since f  is semi-

continuous, ( )FYf −−1  is semi-open. But ( ) =−− FYf 1 ( )FfX 1−− , thus ( )Ff 1−  is semi-

closed in ( )uX , .       

 Conversely, let G  be an open subset in ( )vY, . Then GY −  is closed in ( )vY, . Since 

the inverse image of each closed subset in ( )vY,  is semi-closed in ( )uX , , ( )GYf −−1  is semi-

closed in ( )uX , . But ( ) ( )GfXGYf 11 −− −=− , thus ( )Gf 1−  is semi-open. Therefore, f  is 
semi-continuous.                     � 
 
Proposition 3.2.4. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces, let ( ) →uXf ,: ( )vY,  and 

( ) ( )wZvYg ,,: →  be maps. If fg o is open and g  is a semi-continuous injection, then f  is 
semi-open.  
 
Proof. Let G  be an open subset of ( )uX , . Since fg o  is open, ( )( )Gfg  is open in ( )wZ, . As 

g  is semi-continuous, ( )( )( )Gfgg 1−  is semi-open in ( )vY, . But g  is injective, so that 

( )( )( ) ( )GfGfgg =−1  is semi-open in ( )vY, . Therefore, f is semi-open.                               � 
 
 The following statement is evident: 
 
Proposition 3.2.5. Let ( )uX ,  and ( )vY,   be closure spaces. If ( ) →uXf ,: ( )vY,  is a 
bijection, then the following statements are equivalent: 

(i) The inverse map ( ) →− vYf ,:1 ( )uX ,  is semi-continuous. 
(ii)  f  is a semi-open map. 
(iii) f  is a semi-closed map. 

 
Proposition 3.2.6. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces. If ( ) →uXf ,: ( )vY,  is 

semi-continuous and ( ) ( )wZvYg ,,: →  is continuous, then fg o  is semi-continuous. 
 
Proof. Let H  be an open subset of ( )wZ, . Since g  is continuous, ( )Hg 1−  is open in ( )vY, . 

Since f  is semi-continuous, ( )( )Hgf 11 −−  is semi-open in ( )uX , . But ( )( ) =−− Hgf 11  

( ) ( )Hfg 1−
o . Therefore, fg o  is semi-continuous.                                          � 

 
 The following example shows that Proposition 3.2.6 need not be true if g  is not 
continuous. 
 
Example 3.2.7. Let { },3,2,1=X  { },,, cbaY = { }zyxZ ,,=  and define a closure operator u  on 

X  by  =φu φ , { } { }3,11 =u , { } { } { } { }3,23,232 === uuu  and { }=2,1u { }=3,1u XuX = . Define 



closure operator v  on Y  by φφ =v , { }=bv { }=cv { } { }cbcbv ,, =  and { } { }== bavav ,  { } =cav ,  

YvY = . Define closure operator w  on Z  by φφ =w , { } { }zzw =  and { }=xw { }=yw  

{ }=yxw , { } =zxw , { } =zyw , =wZ Z . Let ( ) ( )vYuXf ,,: →  be defined by ( ) af =1 , ( ) =2f  

b  and ( ) cf =3 . Let ( ) →vYg ,: ( )wZ,  be defined by ( ) xag = , ( ) ybg =  and ( ) zcg = . It is 
easy to see that f  is continuous, hence f  is semi-continuous. And we also see that g  is only 

semi-continuous but not continuous. Since { }yx,  is open in ( )wZ,  but ( ) { }( )yxfg ,1−
o  is not 

semi-open in ( )uX , , fg o  is not semi-continuous. 
 
Definition  3.2.8. A closure space ( )uX ,  is said to be a  Ts-space if every semi-open set in 

( )uX ,  is open. The closure space ( )uX ,  in Example 2.2 is a Ts-space.  
 
Proposition 3.2.9. Let ( )uX ,  and ( )wZ,  be closure spaces and ( )vY,  be a Ts-space . If 

( ) →uXf ,: ( )vY,  and ( ) ( )wZvYg ,,: →  are semi-continuous, then fg o  is semi-
continuous. 
 
Proof. Let H  be open in ( )wZ, . Since g  is semi-continuous, ( )Hg 1−   is semi-open in ( )vY, . 

But ( )vY,  is a Ts-space, hence ( )Hg 1−  is open in ( )vY, . Thus,  ( )( ) =−− Hgf 11  ( ) ( )Hfg 1−
o  

is semi-open in ( )uX , . Therefore, fg o  is semi-continuous.          � 
 
Theorem 3.2.10. Let ( )uX ,  be a closure space, ( ){ }JvY ∈ααα :,  be a family of closure 

spaces and ( ) ( )∏
∈

→
J

vYuXf
α

αα ,,:  be a map. If f  is semi-continuous and απ  is a projection 

map, then foαπ  is semi-continuous for each J∈α . 

 
Proof. Assume that ( ) ( )∏

∈

→
J

vYuXf
α

αα ,,:  is semi-continuous for all J∈α . Since απ  is 

continuous, foαπ  is semi-continuous for each J∈α  by Proposition 3.2.6.    � 

 
Definition 3.2.11. Let ( )uX ,  and ( )vY,  be closure spaces. A map ( ) →uXf ,: ( )vY,  is 

called contra-semi-continuous if the inverse image under f  of every open set in ( )vY,  is 

semi-closed in ( )uX , .  
 
Remark 3.2.12. The concepts of a semi-continuous map and a contra-semi-continuous map 
are independent as shown by two following examples. 
 
Example 3.2.13. Let { } YX == 2,1   and define a closure operator u  on X  by  =φu φ , 

{ } =2u { }2  and { }=1u XuX = . Define closure operator v  on Y  by φφ =v , { }=1v { }1  and 

{ }=2v YvY = . Let ( ) ( )vYuXf ,,: →  be the identity map. It is easy to see that f  is contra-

semi-continuous but not semi-continuous because { }2  is open in ( )vY,  but { }( )21−f  is not 

semi-open in ( )uX , .  
 
Example 3.2.14. In Example 3.2.7, the map f  is semi-continuous but not contra-semi-

continuous because { }a  is open in ( )vY,  but { }( )af 1−  is not semi-closed in ( )uX , . 
 



Proposition 3.2.15. Let ( )uX ,  and ( )vY,  be closure spaces and let ( ) →uXf ,: ( )vY,  be a 
map. Then f  is contra-semi-continuous if and only if the inverse image under f  of every 

closed subset of ( )vY,  is semi-open in ( )uX , . 
 
Proof. Let F  be a closed subset in ( )vY, . Then FY −  is open in ( )vY, . Since f  is contra-

semi-continuous, ( )FYf −−1  is semi-closed. But ( ) =−− FYf 1 ( )FfX 1−− , thus ( )Ff 1−  is 

semi-open in ( )uX , .       

 Conversely, let G  be an open subset in ( )vY, . Then GY −  is closed in ( )vY, . Since 

the inverse image of each closed subset in ( )vY,  is semi-open in ( )uX , , ( )GYf −−1  is semi-

open in ( )uX , . But ( ) ( )GfXGYf 11 −− −=− , thus ( )Gf 1−  is semi-closed. Therefore, f  is 
contra-semi-continuous.                     � 
 
Proposition 3.2.16. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces, let ( ) →uXf ,: ( )vY,  

and ( ) ( )wZvYg ,,: →  be maps. If fg o is contra-semi-continuous and g  is a closed 
injection, then f  is contra-semi-continuous.  
 
Proof. Let H  be a closed subset of ( )vY, . Since g  is closed, ( )Hg  is closed in ( )wZ, . As 

fg o  is contra-semi-continuous, ( ) ( )( ) =− Hgfg 1
o ( )( )( )Hggf 11 −−  is semi-open in ( )uX ,  by 

Proposition 3.2.15. But g  is injective, hence ( )( )( ) =−− Hggf 11 ( )Hf 1− . Therefore, f  is 
contra-semi-continuous.                   � 
 
Proposition 3.2.17. Let ( )uX ,  and ( )wZ,  be closure spaces and ( )vY,  be a Ts-space . If 

( ) →uXf ,: ( )vY,  and ( ) ( )wZvYg ,,: →  are contra-semi-continuous maps, then fg o  is 
semi-continuous. 
 
Proof.   Let H  be closed in ( )wZ, . Since g  is contra-semi-continuous, ( )Hg 1−   is semi-open 

in ( )vY, . But ( )vY,  is a Ts-space, hence ( )Hg 1−  is open in ( )vY, . As f  is contra-semi-

continuous by Proposition 3.2.15, ( )( )Hgf 11 −− ( ) ( )Hfg 1−= o  is semi-closed in ( )uX , . 
Therefore, fg o  is semi-continuous by Proposition 3.2.3.         � 
 
 The following statement is evident: 
 
Proposition 3.2.18. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces and let ( ) →uXf ,:  

( )vY,  and ( ) ( )wZvYg ,,: →  be maps. If f  is contra-semi-continuous and  g  is continuous, 
then fg o  is contra-semi-continuous. 
 
 As a direct consequence of Proposition 3.2.18, we have: 
 
Proposition 3.2.19. Let ( )uX ,  be a closure space, ( ){ }JvY ∈ααα :,  be a family of closure 

spaces and ( ) ( )∏
∈

→
J

vYuXf
α

αα ,,:  be a map. If f  is contra-semi-continuous and απ  is a 

projection map, then foαπ  is contra-semi-continuous for each J∈α . 

 
 
 



 

3.3 Semi-irresolute Maps  
    
Definition 3.3.1. Let ( )uX,  and ( )vY,  be closure spaces. A map ( ) →uXf ,: ( )vY,  is called 

semi-irresolute if ( )Gf 1−  is semi-open in ( )uX,  for every semi-open set G  in ( )vY, . 
 
Proposition 3.3.2. Let ( )uX,  and ( )vY,  be closure spaces and ( ) ( )vYuXf ,,: →  be a map. 

Then f  is semi-irresolute if and only if ( )Bf 1−  is semi-closed in ( )uX, , whenever B  is semi-

closed in ( )vY, . 
 
Proof. Let B  be a semi-closed subset of ( )vY, . Then BY −  is semi-open in ( )vY, . Since 

( ) →uXf ,: ( )vY,  is semi-irresolute, ( )BYf −−1  is semi-open in ( )uX, . But ( ) =−− BYf 1  

( )BfX 1−− , so that ( )Bf 1−  is semi-closed in ( )uX, . 

 Conversely, let A  be a semi-open subset in ( )vY, . Then AY −  is semi-closed in 

( )vY, . By the assumption, ( )AYf −−1  is semi-closed in ( )uX, . But ( ) ( )AfXAYf 11 −− −=− , 

thus ( )Af 1−  is semi-open in ( )uX, . Therefore, f  is semi-irresolute.                               � 
 
 Clearly, every semi-irresolute map is semi-continuous. The converse need not be true 
as can be seen from the following example. 
 
Example 3.3.3. Let { } YX == 3,2,1  and define a closure operator u  on X  by  =φu φ , 

{ } { }2,11 =u , { } { } { } { }3,23,232 === uuu and { } { } XuXuu === 3,12,1 . Define closure operator 

v  on Y  by φφ =v , { } { }3,11 =v , { } { }33 =v , { } { } { }3,23,22 == vv  and { }=2,1v  { }=3,1v YvY = . 

Let ( ) ( )vYuXf ,,: →  be the identity map. Then f  is semi-continuous but not semi-irresolute 

because { }3,1  is semi-open in ( )vY,  but { }( ) =− 3,11f  { }3,1  is not semi-open in ( )uX, . 
 
Proposition 3.3.4. Let ( )uX, , ( )vY,  and ( )wZ,  be closure spaces. If ( ) →uXf ,: ( )vY,  is a 

semi-irresolute map and ( ) ( )wZvYg ,,: →  is a semi-continuous map, then the composition 

( ) ( )wZuXfg ,,: →o   is semi-continuous. 
 
Proof. Let G  be an open subset of ( )wZ, . Then ( )Gg 1−  is a semi-open subset of ( )vY,  as g  

is semi-continuous. Hence, ( )( )Ggf 11 −−  is semi-open in ( )uX,  because f  is semi- irresolute. 
Thus, fg o  is semi-continuous.           � 
 
 The following statements are evident: 
 
Proposition 3.3.5. Let ( )uX, , ( )vY,  and ( )wZ,  be closure spaces. If ( ) →uXf ,: ( )vY,  and 

( ) ( )wZvYg ,,: →  are semi-irresolute, then ( ) ( )wZuXfg ,,: →o  is semi-irresolute. 
 
Proposition 3.3.6. Let ( )uX,  and ( )wZ,  be closure spaces and  ( )vY,  be a Ts-space. If 

( ) ( )vYuXf ,,: →  is a semi-continuous map and ( ) ( )wZvYg ,,: →  is a semi-irresolute map, 

then the composition ( ) ( )wZuXfg ,,: →o  is semi-irresolute. 
 



Proposition 3.3.7. Let ( )uX,  and ( )vY,  be closure spaces and  ( ) ( )vYuXf ,,: →  be a 

bijective map. If f  and 1−f  are continuous, then f and 1−f  are semi-irresolute. 
 
Proof. Let B  be a semi-open subset of ( )vY, . Then there exists an open set H  in ( )vY,  such 

that vHBH ⊆⊆ , hence ( ) ( ) ( )vHfBfHf 111 −−− ⊆⊆ . Since 1−f  is continuous, ( ) ⊆− vHf 1  

( )Huf 1− . But f  is continuous, thus ( )Hf 1−  is open in ( )uX, . Hence, ( )Bf 1−  is semi-open 

in ( )uX, . Therefore, f  is semi-irresolute.  

Let A  be a semi-open subset of ( )uX, . Then there exists an open set G  in ( )uX,  

such that uGAG ⊆⊆ . Hence, ( ) ( ) ( )uGfAfGf ⊆⊆ . As f  is continuous, ( ) ⊆uGf  

( )Gvf . Since 1−f  is continuous and ( )Gf  is the inverse image of G  under 1−f , ( )Gf  is 

open in ( )vY, . Thus, ( )Af  is semi-open in ( )vY, . But ( )Af  is the inverse image of A  under 
1−f , therefore 1−f  is semi-irresolute.            �                                                      

 
 
 

3.4 S-connectedness 
 
Definition 3.4.1.   A closure space ( )uX ,  is said to be s-connected if φ  and X  are the only 
subsets of X  which are both semi-open and semi-closed.  

Clearly, if ( )uX ,  is s-connected, then ( )uX ,  is connected. The converse is not true as 
can be seen from the following example.  
 
Example 3.4.2. Let { }3,2,1=X  and define a closure operator u  on X  by φφ =u , { }=1u  

{ } { }3,13,1 =u , { }=2u { } { }3,23,2 =u , { } { }33 =u ,  and { }=2,1u XuX = . We have that ( )uX ,  is 

connected but not s-connected because { }3,1  is both semi-closed and semi-open in ( )uX, . 
 
Proposition 3.4.3. Let ( )uX ,  be a closure space. Then the following statements are 
equivalent: 

a) X  is s-connected. 
b) X  cannot be expressed as the union of two disjoint, non-empty, semi-closed subsets. 
c) X  cannot be expressed as the union of two disjoint, non-empty, semi-open subsets. 

 
Proof. Statement (a) implies statement (b): Suppose that VUX ∪=  where U  and V  are 
non-empty, disjoint, semi-closed subsets of ( )uX , . Then VXU −=  and U  is semi-open. 
Thus, U  is a subset of X  which is both semi-open and semi-closed but U  is neitherX  nor 
φ . Hence, ( )uX ,  is not s-connected. 

Statement (b) implies statement (c): Suppose that BAX ∪=  where A  and B  are 
disjoint non-empty semi-open subsets of ( )uX , . Then BAX =−  and ABX =−  are both 
complements of semi-open sets and hence are semi-closed. Thus, BAX ∪=  is an expression 
of X  as the union of two disjoint, non-empty, semi-closed subset of ( )uX , , which 
contradicts (b). 
 Statement (c) implies statement (a): Suppose that A  is a subset of X  which is both 
semi-open and semi-closed but A  is neither X  nor φ . Then AX −  is also semi-closed, semi-

open and non-empty. Thus, ( ) AAXX ∪−=  is the expression of X  as the union of two 
disjoint, non-empty semi-open subsets, which contradicts (c).               � 



 The following statement is evident: 
 
Proposition 3.4.4. Let ( )uX ,  be a Ts-space. Then ( )uX ,  is connected if and only if ( )uX ,  is 
s-connected. 
 
Proposition 3.4.5. Let ( )uX ,  be a closure space and let { }1,0=Y  and vbe a closure 

operator on Y  defined by φφ =v , { }=0v { }0 , { } { }11 =v  and YvY = .  Then the following 
statements are equivalent:  

a) The only contra-semi-continuous maps ( ) ( )vYuXf ,,: →  are the constant maps. 

b) A closure space ( )uX ,  is s-connected.  
         
Proof. Statement (a) implies statement (b): Suppose that there is a non-empty subset A  of 
( )uX ,  such that XA ≠  and A  is both semi-open and semi-closed. Then AX −  is both semi-

open and semi-closed in ( )uX , . Define a map :f ( ) →uX , ( )vY,  by ( ) 0=xf  if Ax∈  and 

( ) =xf 1 if AXx −∈ . Consequently, ( ) φφ =−1f , { }( ) =− 01f A , { }( ) Bf =− 11  and 

( ) XYf =−1 . Since there are only four closed subsets of  ( )vY, , namely φ , { }0 , { }1  and Y , 

the inverse image under f  of any closed subset in ( )vY,  is semi-open in ( )uX , . Thus, f  is 

contra-semi-continuous but non-constant, which a contradiction. Therefore, ( )uX ,  is s-
connected. 

Statement (b) implies statement (a): Suppose that a contra-semi-continuous map :f  

( ) →uX , ( )vY, , where the closure operator v  on Y  is defined by φφ =v , { }=0v { }0 , 

{ } { }11 =v  and YvY = , is non-constant. Then { }( )01−f  and { }( )11−f  are non-empty. Further, 

neither { }( )01−f  nor { }( )11−f  are equal to X . Since { }0  and { }1  are closed subset of ( )vY,  

and f  is contra-semi-continuous, { }( )01−f  and { }( )11−f  are semi-open subsets of ( )uX , . But 

{ }( ) =− 01f { }( )11−− fX , hence { }( )01−f  is both semi-closed and semi-open. Consequently, X  
is not s-connected, which a contradiction             � 
 
Theorem 3.4.6. Let ( )uX ,  and ( )vY,  be closure spaces and ( ) →uXf ,: ( )vY,  be a map.  

(i) If f  is a contra-semi-continuous map from ( )uX ,  onto ( )vY,  and ( )uX ,   is s-

connected, then ( )vY,  is connected. 

(ii)  If f  is a semi-irresolute map from ( )uX ,  onto ( )vY,  and ( )uX ,  is s-connected, 

then ( )vY,  is s-connected. 
 

Proof.  (ii)   Suppose that ( )vY,  is not s-connected. Then there is a non-empty subset A  of 
Y , YA ≠  such that A  is both semi-open and semi-closed. Since f  is semi-irresolute, the set 

( )Af 1−  is both semi-open and semi-closed. Since f  is an onto map and A  is a non-empty 

subset of Y  with YA ≠ , it follows that ( )Af 1−  is a non-empty subset of X  with 

( ) XAf ≠−1 . Hence, ( )uX ,  is not s-connected which a contradiction. Therefore, ( )vY,  is s-
connected.    

 The proof of (i) is similar to that of (ii).          � 

3.5 S-compactness 
 

As another application of semi-open sets, a new kind of compactness, namely s-
compactness, is introduced.  



 
 Definition 3.5.1.  A collection { } JG ∈αα  of semi-open sets in a closure space ( )uX ,  is called a 

semi-open cover of a subset B  of X  if αα
GB

J∈
∪⊆  holds. 

 
Definition 3.5.2.  A subset A  of a closure space ( )uX ,  is s-compact if every semi-open cover 

of A  contains a finite subcover. Cleary, if ( )uX ,  is s-compact, then it is compact.  
 
 The following statements are evident: 
 
Proposition 3.5.4.   Let ( )uX ,  be a closure space. If X  is s-compact and B  is a semi-closed 
subset of X , then B  is s-compact.  
 
Proof. Let { } JG ∈αα  be a collection of semi-open subsets of X  such that αα

GB
J∈

∪⊆ . It 

follows that =X ( )BXG
J

−∪∪
∈ αα

. Since B  is semi-closed,  BX −  is semi-open. 

Consequently, ( )BXG
J

−∪∪
∈ αα

 is a semi-open cover of X . But X  is s-compact, so 

( )BXG
J

−∪∪
∈ αα

 contains a finite subcover, i.e. there exits a finite subset 0J  of J  such that 

=X ( )BXG
J

−∪∪
∈ αα 0

. Since B  and BX −  are disjoint, ⊆B αα
G

J0∈
∪ . Thus, any semi-open 

cover { } JG ∈αα  of B  contains a finite subcover. Therefore, B  is s-compact      
   � 
 
Proposition 3.5.4.  Let ( )uX ,  and ( )vY,  be closure spaces and ( ) ( )vYuXf ,,: →  be a map. 

If f is semi-irresolute and a subset B of X  is s-compact, then the image ( ) YBf ⊆ is s-
compact. 
 
Proof.   Let { } JG ∈αα  be a collection of semi-open subsets of Y  such that ( ) ⊆Bf αα

G
J∈

∪ . It 

follows that ⊆B ( )( ) ⊆− Bff 1 =






 ∪
∈

−
αα

Gf
J

1 ( )αα
Gf

J

1−

∈
∪ . But f  is semi-irresolute, so  

( ){ } JGf ∈
−

αα
1  is a semi-open cover of B . Since B  is s-compact, there exists a finite subset 0J  

of J  such that ⊆B ( )αα
Gf

J

1

0

−

∈
∪ . It follows that ( ) ⊆Bf ( )αα

G
J0∈

∪ .  Thus, any semi-open 

cover { } JG ∈αα  of ( )Bf  contains a finite subcover. Therefore, ( )Bf  is s-compact.   
   � 
 
Proposition 3.5.5.  Let ( )uX ,  and ( )vY,  be closure spaces and ( ) ( )vYuXf ,,: →  be a map. 
If f is a semi-continuous surjection and X  is s-compact, then Y is compact. 
 
Proof.   Let { } JG ∈αα  be a collection of open subsets of Y  such that ⊆Y αα

G
J∈

∪ . It follows that 

( ) ⊆= − YfX 1 =






 ∪
∈

−
αα

Gf
J

1 ( )αα
Gf

J

1−

∈
∪ . But f is semi-continuous, so ( ){ } JGf ∈

−
αα

1  is a 

semi-open cover of X . Since X  is s-compact, there exists a finite subset 0J  of J  such that 

=X ( )αα
Gf

J

1

0

−

∈
∪ . It follows that ( ) =Xf ( ) =





 ∪ −

∈ αα
Gff

J

1

0

( ) 












 ∪

∈

−
αα

Gff
J0

1 .  Since f is a 



surjection, =Y αα
G

J0∈
∪ . Thus, any open cover { } JG ∈αα  of Y  contains a finite subcover. 

Therefore, Y  is compact               � 
 
Proposition 3.5.6.  Let ( )uX ,  and ( )vY,  be closure spaces and ( ) ( )vYuXf ,,: →  be a map. 
If f is a semi-irresolute surjection and X  is s-compact, then Y  is s-compact. 
 
Proof.   Let { } JA ∈αα  be a collection of semi-open subsets of Y  such that ⊆Y αα

A
J∈

∪ . It 

follows that ( ) ⊆= − YfX 1 =






 ∪
∈

−
αα

Af
J

1 ( )αα
Af

J

1−

∈
∪ . But f  is semi-irresolute, hence 

( ){ } JAf ∈
−

αα
1  is a semi-open cover of X . Since X  is s-compact, there exists a finite subset 

0J  of J  such that =X ( )αα
Af

J

1

0

−

∈
∪ . Hence, ( ) =Xf ( ) =





 ∪ −

∈ αα
Aff

J

1

0

 ( ) 












 ∪

∈

−
αα

Aff
J0

1 .  

Since f  is a surjection, =Y αα
A

J∈
∪ . Thus, any semi-open cover { } JA ∈αα  of Y  contains a 

finite subcover. Therefore, Y  is s-compact               � 
 

 
 
 
 
 



Chapter 4  
 
Generalized Semi-Open and γ-open 
Sets in Closure Spaces 
 
 
4.1 Generalized Semi-open Sets 
 

In this section, we introduce and study generalized-semi-open sets, briefly g-semi-
open sets, in order to extend some properties of semi-open sets to a larger family of sets.  
 
Definition 4.1.1. A subset B  of a closure space ( )uX ,  is called generalized-semi-open, 

briefly g-semi-open, if there exists a semi-open subset A  of ( )uX ,  such that uABA ⊆⊆ . A 
subset B  of X  is called generalized-semi-closed, briefly g-semi-closed, if its complement is 
g-semi-open. 
 
Remark 4.1.2. If A  is semi-open (respectively, semi-closed) in a closure space ( )uX , , then 
A  is g-semi-open (respectively, g-semi-closed). But the converse is not true as can be seen 
from the following example. 
 
Example 4.1.3. Let { }4,3,2,1=X  and define closure operator u  on X  by φφ =u , { }=1u  

{ }2,1 , { }=2u { } { }3,23 =u , { } { }4,24 =u , { } { } { }3,2,13,12,1 == uu , { }=4,1u { }4,2,1 , { }=3,2u  

{ }=4,2u { }=4,3u { }=4,3,2u { }4,3,2  and { } { } { }=== 4,3,14,2,13,2,1 uuu XuX = . It is easy to see 

that { }3,2,1  is g-semi-open but not semi-open in ( )uX , . And we also see that { }4  is g-semi-

closed but not semi-closed in ( )uX , . 
 
Proposition 4.1.4.    Let { } JB ∈αα  be a collection of g-semi-open sets in a closure space 

( )uX , . Then αα
B

J∈
∪  is a g-semi-open set in ( )uX , . 

Proof.  By the assumption, we have a semi-open set αA  such that ααα uABA ⊆⊆  for each 

J∈α . Thus, αααααα
uABA

JJJ ∈∈∈
∪⊆∪⊆∪ . By Proposition 2.1, αααα

AuuA
JJ ∈∈

∪⊆∪ . Hence, 

⊆∪
∈ αα

A
J

αααα
AuB

JJ ∈∈
∪⊆∪ . By Proposition 3.1.3, αα

A
J∈

∪  is semi-open. Therefore,  αα
B

J∈
∪  is g-

semi-open.                   � 
 
Proposition 4.1.5. Let { } JB ∈αα  be a collection of g-semi-closed sets in a closure space 

( )uX , . Then αα
B

J∈
∩  is a g-semi-closed set in ( )uX , . 

 



Proof.  Let αA  be g-semi-closed in ( )uX ,  for all J∈α . Then αAX −  is g-semi open for 

each J∈α . By Proposition 4.1.4, ( )αα
AX

J
−∪

∈
 is g-semi open. But ( ) =−∪

∈ αα
AX

J
 

αα
AX

J∈
∩− , hence αα

A
J∈

∩  is g-semi-closed.           � 

 
Proposition 4.1.6. Let ( )uX ,  be a closure space and let XB ⊆ . Then B  is g-semi-closed if 

and only if there exists a semi-closed subset ⊆E X  such that ( ) EBEXuX ⊆⊆−− . 
 
Proof.  Let B  be a g-semi-closed subset of ( )uX , . Then there exists a semi-open subset A  

of ( )uX ,  such that uABXA ⊆−⊆ . Put AXE −= . It follows that E  is semi-closed in 

( )uX ,  and ( )EXuBXEX −⊆−⊆− . Therefore, ( ) EBEXuX ⊆⊆−− .  

 Conversely, by the assumption, there is a semi-closed subset E  of ( )uX ,  such that 

( ) EBEXuX ⊆⊆−− . Put EXA −= . Consequently, A  is semi-open in ( )uX ,  and 
AXBuAX −⊆⊆− . It follows that ⊆A ⊆− BX uA. Therefore, BX −  is g-semi-open in 

( )uX , , i.e. B  is g-semi-closed.                      � 
 
Proposition 4.1.7. Let ( )uX ,  be a closure space and u  be idempotent. If B  is a g-semi-open 

subset of ( )uX ,  and uBCB ⊆⊆ , then C  is g-semi-open. 
 
Proof.   Let B  be a g-semi-open subset of ( )uX , . Then there exists a semi-open subset A  of 

( )uX ,  such that uABA ⊆⊆ , hence uuAuB ⊆ . Since u  is idempotent, uAuB ⊆ . Thus, 
⊆A ⊆B ⊆C  ⊆uB uA. Therefore, C  is g-semi-open.       � 

 
Proposition 4.1.8. Let ( )uX ,  be a closure space. If G  is a subset of ( )uX , , then GuG−  has 
no nonempty g-semi-open subset. 
 
Proof.   Let G  be a subset of ( )uX ,  and ⊆B GuG− . Let B  be nonempty g-semi-open. 

Then there is a nonempty semi-open subset A  of ( )uX ,  such that ⊆A ⊆B uA. Hence, there 

exists a nonempty open subset H  of ( )uX ,  such that ⊆H ⊆A uH . Since ⊆B GuG− , 
⊆G BuG− . But ⊆H B , thus ⊆− BuG ⊆− HuG HX − , i.e. ⊆G HX − .  It follows that 

⊆uG ( )HXu − . Since φ≠H , there exists ∈x ⊆H ⊆A ⊆B  ⊆− GuG  uG . As ∈x H , 

HXx −∉ . But  H  is open, hence ( ) =− HXu HX − . Thus, ∉x  ( )HXu − . Consequently, 

uG  is not contained in ( )HXu − , which is a contradiction. Therefore, GuG−  has no 
nonempty g-semi-open subset.              � 
Proposition 4.1.9. Let ( )uX ,  be a closure space and B  be a subset of X . If  ( )uX ,  is a Ts -
space and B  is g-semi-open, then B  is open. 
 
Proof. Let ( )uX ,  be a Ts -space and B  be a g-semi-open subset of ( )uX , . Then there exists a 

semi-open subset A  of ( )uX ,  such that uABA ⊆⊆ . Since ( )uX ,  is a Ts –space, A  is open. 

Hence, B  is semi-open. But ( )uX ,  is a Ts -space, thus B  is open.       � 
 
Proposition 4.1.10. Let ( ){ }JuX ∈ααα :,  be a collection of closure spaces. Let J∈α  and 

⊆B ∏
∈J

X
α

α . If B  is g-semi-open in ( )∏
∈J

uX
α

αα ,  and απ  is a projection map, then ( )Bαπ  is 

g-semi-open in ( )αα uX , . 



 
Proof. Let J∈α and B  be a g-semi-open subset of ( )∏

∈J

uX
α

αα , . Then there exists a semi-

open subset A  of ( )∏
∈J

uX
α

αα ,  such that ⊆A ⊆B ( )Au
J

∏
∈α

ααπ . It follows that ( ) ⊆Aαπ  

( ) ⊆Bαπ ( ) =






∏
∈

Au
Jα

ααα ππ ( )Au ααπ . By Proposition 2.20, ( )Aαπ  is semi-open. Therefore, 

( )Bαπ  is g-semi-open in ( )αα uX , .              � 

 
Proposition 4.1.11. Let ( ){ }JuX ∈ααα :,  be a collection of closure spaces. Let J∈β and 

⊆βB βX . Then βB  is g-semi-open in ( )ββ uX ,  if and only if ∏
∈
≠

×
J

XB

α
βα

αβ is g-semi-open in 

( )∏
∈J

uX
α

αα , . 

 
Proof.   Let J∈α and βπ  be a projection map. Let βB  be a g-semi-open subset of ( )ββ uX , . 

Then there exists a semi-open subset βA  of ( )ββ uX ,  such that ⊆βA ⊆βB ββ Au . Hence, 

⊆×∏
∈
≠

J

XA

α
βα

αβ ⊆×∏
∈
≠

J

XB

α
βα

αβ =×∏
∈
≠

J

XAu

α
βα

αββ ∏ ∏
∈

∈
≠ 
















×
J

J

XAu
α

α
βα

αβααπ . By Proposition 3.1.15, 

∏
∈
≠

×
J

XA

α
βα

αβ  is semi-open in ( )∏
∈J

uX
α

αα , . Therefore, ∏
∈
≠

×
J

XB

α
βα

αβ  is g-semi-open.  

The converse follows immediately from Proposition 4.1.10.   
   � 
 
 
 
 

4.2 γ-open Sets in Closure Spaces 
 

Now, we introduce and study a new type of sets lying, as for generality, between the 
class of open sets and the class of semi-open sets. 
  
Definition 4.2.1. A subset B  of a closure space ( )uX ,  is called γ-open if there exists an open 
subset G  of X  such that BG ⊆  and uBuG = . A subset B  of X  is called γ-closed if its 
complement is γ-open. 
 
Remark 4.2.2. If G  is open (respectively, closed) in ( )uX , , then G  is γ-open (respectively, 

γ-closed) in ( )uX , . But the converse is not true as shown in the following example. 
 
Example 4.2.3. Let { }3,2,1=X  and define closure operator u  on X  by φφ =u , 

{ }=2u { }=3u { }=3,2u { }3,2  and { }=1u { } { } XuXuu === 3,12,1 . It is easy to see that { }2,1  is 

γ-open but not open in ( )uX , . And we also see that { }3  is γ-closed but not closed in ( )uX ,   
 



Remark 4.2.4. If B  is γ-open (respectively, γ-closed) in a closure space ( )uX , , then B  is 

semi-open (respectively, semi-closed) in ( )uX , . But the converse is not true as shown in the 
following example. 

 
Example 4.2.5. Let { }3,2,1=X  and define closure operator u  on X  by φφ =u , { }=1u { }2,1 , 

{ }=2u { }=3u { }=3,2u { }3,2  and { } { } XuXuu === 3,12,1 . It is easy to see that { }2,1  is semi-

open but not γ-open in ( )uX , . And we also see that { }3  is semi-closed but not γ-closed. 
 
Remark 4.2.6. It follows from Remark 4.1.2, 4.2.2 and 4.2.4 that, for a subset G  of a closure 
space ( )uX , , we have the following implications: 

G  is open→ G  is γ-open→ G  is semi-open→ G  is g-semi-open  
 
Proposition 4.2.7. If ( )uX ,  is a closure space where =∪

∈ αα
Au

J
αα

uA
J∈

∪  for all subsets αA  of 

X  and { } JB ∈αα  is a collection of γ-open sets in ( )uX , , then αα
B

J∈
∪  is γ-open. 

 
Proof.  Let J∈α  and αB  be γ-open in ( )uX , . Then there exists an open set αG  such that 

αα BG ⊆  and αα uBuG = . Hence αααα
BG

JJ ∈∈
∪⊆∪  and αααα

uBuG
JJ ∈∈

∪=∪ . By the assumption, 

αααα
GuuG

JJ ∈∈
∪=∪  and αααα

BuuB
JJ ∈∈

∪=∪ . Consequently, αααα
BuGu

JJ ∈∈
∪=∪ . By Proposition 

2.6, αα
G

J∈
∪  is open in ( )uX , . Therefore, αα

B
J∈

∪  is γ-open.       � 

 
Remark 4.2.8. If { } JB ∈αα  is a collection of γ-open sets in a closure space ( )uX ,  ,then αα

B
J∈

∪  

need not be γ-open in ( )uX ,  as shown by the following example. 
 
Example 4.2.9. Let { }4,3,2,1=X  and define closure operator u  on X  by φφ =u , { }=2u  

{ }2 , { }=3u { }3 , { } { } { } { }3,2,13,12,11 === uuu , { }=4u { }=3,2u { }=4,2u { }=4,3u { }=4,3,2u  

{ }4,3,2 , { }=4,1u { }=3,2,1u { }=4,2,1u { }=4,3,1u XuX = . It is easy to see that { }2,1  and { }3,1  

are γ-open but { }∪2,1 { }3,1  is not γ-open in ( )uX , . 
 
 
Proposition 4.2.10. If ( )uX ,  is a closure space where =∪

∈ αα
Au

J
αα

uA
J∈

∪  for all subsets αA  of 

X  and { } JB ∈αα  is a collection of γ- closed sets in ( )uX , , then αα
B

J∈
∩  is γ-closed.  

 
Proof.  Let J∈α  and αB  be γ-closed in ( )uX , . Consequently, αα BX −  is γ-open. By 

Proposition 4.2.7, ( )αα
BX

J
−∪

∈
 is γ-open . But ( )αα

BX
J

−∪
∈ αα

BX
J∈

∩−=  , hence αα
B

J∈
∩  is γ-

closed.                  � 
 
Remark 4.2.11. If { } JB ∈αα  is a collection of γ-closed sets in a closure space ( )uX ,  ,then 

αα
B

J∈
∩  need not be γ-closed in ( )uX ,  as shown in the following example. 

 
Example 4.2.12. In the closure space from Example 4.2.9, it is easy to see that { }4,2  and 

{ }4,3  are γ-closed but { } { } { }44,34,2 =∩  is not γ-closed in ( )uX , . 
 



Proposition 4.2.13.  Let ( )uX ,  be a closure space and let XB ⊆ . Then B  is γ-closed if and 

only if there exists a closed set E  in ( )uX ,  such that EB ⊆  and ( ) ( )EXuBXu −=− . 
 
Proof.  Let B  be a γ-closed subset of ( )uX , . Then there exists an open subset G  of ( )uX ,  

such that BXG −⊆  and ( )BXuuG −= . Put GXE −= . Then E  is closed in ( )uX , . Thus, 

⊆− EX BX −  and ( ) ( )BXuEXu −=− . Therefore, EB ⊆  and ( ) ( )EXuBXu −=− . 

 Conversely, by the assumption, there is a closed subset E  of ( )uX ,  such that EB ⊆  

and ( ) ( )EXuBXu −=− . Put EXG −= . Then G  is open in ( )uX ,  and such that 

BXG −⊆  and ( )BXuuG −= . It follows that BX −  is γ-open in ( )uX , . Therefore, B  is γ-
closed.                � 
 
Proposition 4.2.14. Let ( )uX ,  be a closure space and u be idempotent. If B  is a γ-open 

subset of ( )uX ,  and uBCB ⊆⊆  , then C  is γ-open. 
 
Proof. Let B  be a γ-open subset of ( )uX , . Then there exists an open subset G  of ( )uX ,  such 
that BG ⊆  and uBuG = . But CB ⊆ , hence CG ⊆ . It follows that uCuG ⊆ . Since 

uBC ⊆ , uuBuC ⊆ . As u  is idempotent, uBuC ⊆ . But uGuB = , thus uGuC ⊆ . 
Consequently, uCuG = . Therefore, C  is γ-open.                                       � 
 
Proposition 4.2.15. Let ( )uX ,  be a closure space. If G  is a subset of ( )uX , , then GuG−  
has no nonempty γ-open subset. 
 
Proof.   Let G  be a subset of ( )uX ,  and ⊆B GuG− . Let B  be γ-open. Then B  is g-semi-

open in ( )uX , . By Proposition 4.1.6, B  is empty. Therefore, GuG−  has no nonempty γ-
open subset.                      � 
 
Proposition 4.2.16. Let ( ){ }JuX ∈ααα :,  be a collection of closure spaces. Let J∈α  and 

⊆B ∏
∈J

X
α

α . If B  is γ-open in ( )∏
∈J

uX
α

αα ,  and απ  is a projection map, then ( )Bαπ  is γ-open 

in ( )αα uX , . 

 
Proof. Let J∈α and B  be a γ-open subset of ( )∏

∈J

uX
α

αα , . Then there exists an open subset 

G  of ( )∏
∈J

uX
α

αα ,  such that ⊆G B  and ( ) =∏
∈

Gu
Jα

ααπ ( )Bu
J

∏
∈α

ααπ . It follows that ( ) ⊆Gαπ  

( )Bαπ  and ( ) =Gu ααπ ( ) =






∏
∈

Gu
Jα

ααα ππ ( ) =






∏
∈

Bu
Jα

ααα ππ ( )Bu ααπ . By Proposition 2.20,  

( )Gαπ  is open in ( )αα uX , . Therefore, ( )Bαπ  is γ-open in ( )αα uX , .       � 

  
Proposition 4.2.17. Let ( ){ }JuX ∈ααα :,  be a collection of closure spaces. Let J∈β  and 

⊆βB βX . Then βB  is γ-open in ( )ββ uX ,  if and only if ∏
∈
≠

×
J

XB

α
βα

αβ is γ-open in ( )∏
∈J

uX
α

αα , . 

Proof. Let J∈α and βπ  be a projection map. Let βB  be a γ-open subset of ( )ββ uX , . Then 

there exists an open subset βG  of ( )ββ uX ,  such that ⊆βG βB  and =ββ Gu ββ Bu . Hence, 



⊆×∏
∈
≠

J

XG

α
βα

αβ ∏
∈
≠

×
J

XA

α
βα

αβ  and =
















×∏ ∏
∈

∈
≠J

J

XGu
α

α
βα

αβααπ =×∏
∈
≠

J

XGu

α
βα

αββ =×∏
∈
≠

J

XBu

α
βα

αββ  

∏ ∏
∈

∈
≠ 
















×
J

J

XBu
α

α
βα

αβααπ . As βπ  is continuous, ( )=−
ββπ G1 ∏

∈
≠

×
J

XG

α
βα

αβ  is open in ( )∏
∈J

uX
α

αα , . 

Therefore, ∏
∈
≠

×
J

XB

α
βα

αβ  is γ-open.  

The converse follows immediately from Proposition 4.2.16.   
   � 

 
 
 
 

4.3.  Tγ -spaces, Tsγ -spaces and Tgs -spaces  
 

As applications of g-semi-open sets and γ-open sets, three new kinds of closure spaces 
are introduced, namely Tγ -spaces, Tsγ -spaces and Tgs -spaces. 
 
Definition 4.3.1. A closure space ( )uX ,  is said to be a Tγ-space if every γ-open subset of 

( )uX ,  is open. 
 
Definition 4.3.2. A closure space ( )uX ,  is said to be a Tsγ-space if every semi-open subset of 

( )uX ,  is γ-open. 
 
Definition 4.3.3. A closure space ( )uX ,  is said to be a Tgs-space if every g-semi-open subset 

of ( )uX ,  is semi-open. 
 
Remark 4.3.4.  The concepts of a Tγ-space and a Tsγ-space are independent, as can be 
seen from the following examples. By Example 4.2.5, ( )uX ,  is a Tγ-space but not a Tsγ-space 

because { }2,1  is semi-open but not γ-open. By Example 4.2.3, ( )uX ,  is a Tsγ-space but not a 

Tγ-space because { }2,1  is γ-open but not open. 
 
Remark 4.3.5.  The concepts of a Tγ-space and a Tgs-space are also independent. By 
Example 4.1.3, ( )uX ,  is a Tγ-space but not a Tgs-space because { }3,2,1  is g-semi-open but not 

semi-open. By Example 4.2.3, ( )uX ,  is a Tgs-space but not a Tγ –space. 
  
Proposition 4.3.6. Let ( )uX ,  be a closure space and B  be a subset of X . If  ( )uX ,  is a Tsγ-
space and B  is g-semi-open, then B  is γ-open. 
 
Proof. Let ( )uX ,  be a Tsγ-space and B  be a g-semi-open subset of ( )uX , . Then there exists a 

semi-open subset A  of ( )uX ,  such that uABA ⊆⊆ . Since ( )uX ,  is a Tsγ-space, A  is γ-

open. Hence, there exists an open subset G  of ( )uX ,  such that uGuABAG =⊆⊆⊆ . Thus, 

B  is semi-open. But ( )uX ,  is a Tsγ-space, thus B  is γ-open.        � 
  



Proposition 4.3.7. Let ( )uX ,  be a closure space. If ( )uX ,  is a Tsγ –space, then ( )uX ,  is a 
Tgs-space. 
 
Proof. Let ( )uX ,  be a Tsγ-space and let B  be a g-semi-open subset of ( )uX , . Then B  is γ-

open by Proposition 4.3.6. It follows that B  is semi-open in ( )uX , . Therefore, ( )uX ,  is a 
Tgs-space.              � 
 
 The converse of Proposition 4.3.7 need not be true in general. By Example 4.2.5, 
( )uX ,  is a Tgs-space but ( )uX ,  is not a Tsγ-space because { }2,1  is semi-open but not γ-open.  
 
 Proposition 4.3.8. Let ( )uX ,  be a closure space. If ( )uX ,  is a Ts-space, then ( )uX ,  is a Tgs-
space. 
 
Proof.  Let ( )uX ,  be a Ts-space and let B  be a g-semi-open subset of ( )uX , . By Proposition 

4.3.7, B  is open in ( )uX , . It follows that B  is semi-open in ( )uX , . Therefore, ( )uX ,  is a Tgs 

-space.               � 
 
The converse of Proposition 4.3.8 need not be true in general. By Example 4.2.3, 

( )uX ,  is a Tgs-space but ( )uX ,  is not a Ts-space because { }2,1  is semi-open but not open.  
 
Proposition 4.3.9. Let ( )uX ,  be a closure space. Then ( )uX ,  is a Ts-space if and only if 

( )uX ,  is both a Tγ-space and a Tsγ-space. 
 
Proof. Assume that ( )uX ,  is a Ts-space. Let A  be a γ-open subset of ( )uX , . Then A  is semi-

open in ( )uX , .  But ( )uX ,  is a Ts-space, hence A  is open. Thus, ( )uX ,  is a Tγ-space. Let B  

be a semi-open subset of ( )uX , . Since ( )uX ,  is a Ts-space, B  is open. Consequently, B  is γ-

open. Therefore, ( )uX ,  is a Tsγ-space.        

 Conversely, suppose that ( )uX ,  is both a Tγ-space and a Tsγ-space. Let A  be a semi-

open subset of ( )uX , . Since ( )uX ,  is a Tsγ-space, A  is γ-open. But ( )uX ,  is a Tγ -space, thus 

A  is open in ( )uX , . Therefore, ( )uX ,  is a Ts-space.             � 
 
Remark 4.3.10. Let ( )uX ,  be a closure space.  

(i) ( )uX ,  need not be a Ts-space even if ( )uX ,  is a Tγ-space. By Example 4.2.5, 

( )uX ,  is a Tγ-space but not a Ts-space. 

(ii)  ( )uX ,  need not be a Ts-space even if ( )uX ,  is a Tsγ-space. By Example 4.2.3, 

( )uX ,  is a Tsγ-space but not a Ts-space. 
 



Remark 4.3.11. The interrelation among Ts-spaces, Tgs-spaces, Tγ-spaces and Tsγ-spaces can 
be shown by the following diagram. 
 
 
 
 
 
 
 

 
 
 

 
 
 
Here, A      B  means A  implies B  and A     B  means A  does not necessarily imply B .  
 
Proposition 4.3.12. Let ( ){ }JuX ∈ααα :,  be a collection of closure spaces. 

(i)  If ( )∏
∈J

uX
α

αα , is a Ts-space, then ( )αα uX ,  is a Ts-space for all J∈α . 

(ii)   If ( )∏
∈J

uX
α

αα , is a Tgs-space, then ( )αα uX ,  is a Tgs-space for all J∈α . 

(iii)   If ( )∏
∈J

uX
α

αα , is a Tγ-space, then ( )αα uX ,  is a Tγ-space for all J∈α . 

(iv)  If ( )∏
∈J

uX
α

αα , is a Tsγ-space, then ( )αα uX ,  is a Tsγ-space for all J∈α . 

Proof. Let J∈β  and :βπ ∏
∈

→
J

X
α

α βX  be a projection map. 

(i) Assume that ( )∏
∈J

uX
α

αα ,  is a Ts-space. Let βA  be a semi-open subset of ( )ββ uX , . 

By Proposition 3.1.15, ∏
∈
≠

×
J

XA

α
βα

αβ  is semi-open. But ( )∏
∈J

uX
α

αα ,  is a Ts-space, 

hence ∏
∈
≠

×
J

XA

α
βα

αβ  is open. By Proposition 2.20, βA  is open in ( )ββ uX , . 

Therefore, ( )ββ uX ,  is a Ts-space.   

(ii)  The proof is similar to that of (i) by utilizing Propositions 4.1.11 and 3.1.15. 
(iii) The proof is similar to that of (i) by utilizing Propositions 4.2.17 and 2.20. 
(iv)  The proof is similar to that of (i) by utilizing Propositions 3.1.15 and 4.2.17.   � 

4.4 Generalized-semi-continuous and  
      γ-continuous Maps 
 

In this section, we introduce and study two new types of maps called generalized-
semi-continuous maps and γ-continuous maps.  
 
Definition 4.4.1. Let ( )uX ,  and ( )vY,  be closure spaces. A map ( ) ( )vYuXf ,,: →   is said to 

be generalized-semi-continuous, briefly g-semi-continuous, if ( )Gf 1−  is a g-semi-open subset 

of ( )uX ,  for every open subset G  of ( )vY, . 

Tgs 

Ts 

Tγ Tsγ 

Tγ and Tsγ 



Proposition 4.4.2. A map ( ) →uXf ,: ( )vY,  is g-semi-continuous if and only if the inverse 

image under f  of every closed subset of ( )vY,  is g-semi-closed in ( )uX , . 
 
Proposition 4.4.3. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces. Let ( ) →uXf ,: ( )vY,  

and ( ) ( )wZvYg ,,: →  be maps. If f  is g-semi-continuous and g  is continuous, then fg o  is 
g-semi-continuous. 
 
Definition 4.4.4. Let ( )uX ,  and ( )vY,  be closure spaces. A map ( ) ( )vYuXf ,,: →   is said to 

be γ-continuous if ( )Gf 1−  is a γ-open subset of ( )uX ,  for every open subset G  of ( )vY, . 
 
Proposition 4.4.5. A map ( ) →uXf ,: ( )vY,  is γ-continuous if and only if the inverse image 

under f  of every closed subset of ( )vY,  is γ-closed in ( )uX , . 
 
Proposition 4.4.6. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces. Let ( ) →uXf ,: ( )vY,  

and ( ) ( )wZvYg ,,: →  be maps. If f  is γ-continuous and g  is continuous, then fg o  is γ-
continuous. 
 
Remark 4.4.7. For a map ( ) ( )vYuXf ,,: → , when ( )uX ,  and ( )vY,  are closure spaces, the 
following implications hold: 
f  is continuous → f  is γ-continuous → f  is semi-continuous → f  is g-semi-continuous 

Moreover, none of these implications is reversible as can be seen from the following 
examples. 
 
Example 4.4.8. Let { }3,2,1=Y . Define a closure operator v  on Y   by =φv φ , { }=3v { }3  and 

{ }=1v { }=2v { }=2,1v { }=3,1v { }=3,2v =vY Y . Let ( ) ( )vYuXf ,,: →  be the identity map 

where ( )uX ,  is the closure space from Example 4.2.3. It is easy to see that f  is γ-continuous 

but  not continuous because { }2,1  is open in ( )vY,  but { }( )2,11−f  is not open in ( )uX , .  
 
Example 4.4.9. Let ( ) ( )vYuXf ,,: →  be the identity map where ( )uX ,  and ( )vY,  are the 
closure spaces from Example 4.2.5 and 4.4.8, respectively. It is easy to see that f  is semi-

continuous but not γ-continuous because { }2,1  is open in ( )vY,  but { }( )2,11−f  is not γ-open in 

( )uX , .  
 
Example 4.4.10. Let ( ) ( )vYuXf ,,: →  be a map where ( )uX ,  and ( )vY,  are the closure 

spaces from Example 4.1.3 and 4.4.8, respectively. Let f  be defined by ( ) 11 =f , ( ) 22 =f , 

( ) 23 =f  and ( ) 34 =f . It is easy to see that f  is g-semi-continuous but not semi-continuous 

because { }2,1  is open in ( )vY,  but { }( ) { }3,2,12,11 =−f  is not semi-open in ( )uX , .  
 
Proposition 4.4.11. Let ( )uX ,  and ( )vY,  be closure spaces and ( ) →uXf ,: ( )vY,  be a  
map. 

(i) If ( )uX ,  is a Tgs-space and f  is g-semi-continuous, then f  is semi-continuous. 

(ii)  If ( )uX ,  is a Tγ-space and f  is γ-continuous, then f  is continuous. 

(iii)  If ( )uX ,  is a Ts-space and f  is g-semi-continuous, then f  is continuous 

(iv) If ( )uX ,  is a Tsγ-space and f  is g-semi-continuous, then f  is γ-continuous.  
 



Proof. (i)   Let H  be an open subset of ( )vY, . Since f  is g-semi-continuous, ( )Hf 1−  is g-

semi-open in ( )uX , . But ( )uX ,  is a Tgs-space, thus ( )Hf 1−  is semi-open. Therefore, f  is 
semi-continuous. 

(ii)  The proof is similar to that of (i). 
(iii)  Let H  be an open subset in ( )vY, . Since f  is g-semi-continuous, ( )Hf 1−  is g-

semi-open in ( )uX , . But ( )uX ,  is a Ts-space, thus ( )Hf 1−  is open by Proposition 4.1.9. 
Therefore, f  is continuous.  

(iv) The proof is similar to that of (iii) by utilizing Proposition 4.3.6.      � 
 
Proposition 4.4.12. Let ( )uX ,  and ( )wZ,  be closure spaces and ( )vY,  be a Ts-space. Let 

( ) →uXf ,: ( )vY,  and ( ) ( )wZvYg ,,: →  be maps.   
(i) If f  and g are g-semi-continuous, then fg o  is also g-semi-continuous. 
(ii)  If f  and g are γ-continuous, then fg o  is also γ-continuous. 

 
Proof. (i) Since g  is g-semi-continuous and ( )vY,  is a Ts-space, g  is continuous by  
Proposition 4.4.11 (iii). As f  is g-semi-continuous, fg o  is also g-semi-continuous by 
Proposition 4.4.3.             
 (ii) Since ( )vY,  is a Ts-space, ( )vY,  is a Tγ-space by Proposition 4.3.9. As g  is γ-
continuous, g  is continuous by Proposition 4.4.11 (iii). Since f  is γ-continuous, fg o  is γ-
continuous by Proposition 4.4.6.           � 
 
 
 
 

4.5 Generalized-semi-irresolute and  
       γ-irresolute Maps 
 

In this section, we introduce and study two new types of maps called generalized-
semi-irresolute maps and γ-irresolute maps. 

 
Definition 4.5.1. Let ( )uX ,  and ( )vY,  be closure spaces. A map ( ) ( )vYuXf ,,: →   is said to 

be generalized-semi-irresolute, briefly g-semi-irresolute, if ( )Bf 1−  is a g-semi-open subset of 

( )uX ,  for every g-semi-open subset B  of ( )vY, . 
 
Proposition 4.5.2. A map ( ) →uXf ,: ( )vY,  is g-semi-irresolute if and only if the inverse 

image under f  of every g-semi closed subset of ( )vY,  is g-semi-closed in ( )uX , . 
 
Proposition 4.5.3. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces. Let ( ) →uXf ,: ( )vY,  

and ( ) ( )wZvYg ,,: →  be maps. If f  and g  are g-semi-irresolute, then fg o  is also g-semi-
irresolute. 
 
Remark 4.5.4. The concepts of semi-irresolute maps and g-semi-irresolute maps are 
independent as shown by the following examples. 
 



Example 4.5.5. Let { }4,3,2,1=Y  and define a closure operator v  on Y  by φφ =v , { }=1v  

{ }2,1 , { }=2v { } { }4,24 =v , { } { }3,23 =v , { }=2,1v { }=4,1v { }4,2,1 ,  { } { }3,2,13,1 =v ,  { }=3,2v  

{ }=4,2v { }=4,3v { }=4,3,2v { }4,3,2  and { }=3,2,1v { }=4,2,1v { }=4,3,1v YvY = . Let a map :f  

( ) →uX , ( )vY,  be identity where ( )uX ,  is the closure space from Example 4.1.3. It is easy to 

see that f  is semi-irresolute but f  is not g-semi-irresolute because { }4,2,1  is g-semi-open in 

( )vY,  but { }( )4,2,11−f  is not g-semi-open in ( )uX , . 
 
Example 4.5.6. Let ( ) →uXf ,: ( )vY,  be a map where ( )uX ,  and ( )vY,  are the closure 

spaces from Example 4.1.3 and Example 4.2.5, respectively. Let f  be defined by ( ) 11 =f , 

( ) 22 =f , ( ) 23 =f  and ( ) 34 =f . It is easy to see that f  is g-semi-irresolute but not semi-

irresolute because { }2,1  is semi-open in ( )vY,  but { }( ) { }3,2,12,11 =−f  is not semi-open in 

( )uX , .     
 
Remark 4.5.7. If ( ) →uXf ,: ( )vY,  is a g-semi-irresolute map, then f  is g-semi-continuous. 
The converse is not true in general. By Example 4.5.5, the map f  is g-semi-continuous but  
not g-semi-irresolute. 

 
Remark 4.5.8. The concepts of g-semi-irresolute maps and γ-continuous maps are 
independent. By Example 4.4.10, f  is g-semi-irresolute, but f  is not γ-continuous. By 
Example 4.5.5, the mapf  is γ-continuous, but not g-semi-irresolute. 
 
Definition 4.5.9. Let ( )uX ,  and ( )vY,  be closure spaces. A map ( ) ( )vYuXf ,,: →   is said to 

be γ-irresolute if ( )Bf 1−  is a γ-open subset of ( )uX ,  for every γ-open subset B  of ( )vY, .  
 
Proposition 4.5.10. A map ( ) →uXf ,: ( )vY,  is γ-irresolute if and only if the inverse image 

under f  of every γ-closed subset of ( )vY,  is γ-closed in ( )uX , . 
 
Proposition 4.5.11. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces and let ( ) →uXf ,:  

( )vY,  and ( ) ( )wZvYg ,,: →  be maps. If f  and g  are γ-irresolute, then fg o  is also γ-
irresolute. 
 
Remark 4.5.12. The concepts of g-semi-irresolute maps and γ-irresolute maps are 
independent of each other. By Example 4.5.5,f  is γ-irresolute but not g-semi-irresolute. By 
Example 4.4.10, f  is g-semi-irresolute but not γ-irresolute. 
 
Remark 4.5.13. If ( ) ( )vYuXf ,,: →  is a γ-irresolute map, then f  is g-semi-continuous. The 
converse is not true. By Example 4.4.10, f  is g-semi-continuous but not γ-irresolute. 
 
Remark 4.5.14. If ( ) ( )vYuXf ,,: →  is a γ-irresolute map, then f  is γ-continuous. The 
converse is not true as can be seen from the following example.  
 
Example 4.5.15. Let { }3,2,1=Y  and define a closure operator v  on Y  by φφ =v , { }=2v  

{ }=3v { }=3,2v { }3,2  and { }=1v { }=2,1v { }=3,1v YvY = . Let :f ( ) →uX , ( )vY,  be an identity 

map where ( )uX ,  is the closure space in Example 4.2.5. It is easy to see that f  is γ-



continuous but not γ-irresolute because { }3,1  is γ-open in ( )vY,  but { }( )3,11−f  is not γ-open in 

( )uX , . 
 

By Remarks 4.4.7, 4.5.7, 4.5.8, 4.5.12, 4.5.13 and 4.5.14, the interrelation among g-
semi-continuous maps, g-semi-irresolute maps, γ-continuous maps and γ-irresolute maps can 
be shown by following diagram:  

 
 

 
 
 
 
 
 
 
Proposition 4.5.16. Let ( )uX ,  be a closure space, ( )vY,  be a Ts-space. If ( ) →uXf ,: ( )vY,  
is a g-semi-continuous map, then f  is g-semi-irresolute. 
 
Proof. Let B  be a g-semi-open subset of ( )vY, . Since ( )vY,  is a Ts-space, B  is open in 

( )vY,  by Proposition 4.1.9. As f  is g-semi-continuous, ( )Bf 1−  is g-semi-open in ( )uX , . 
Therefore, f  is g-semi-irresolute.              � 
 
Proposition 4.5.17. Let ( )uX ,  be a closure space, ( )vY,  be a Tγ-space. If ( ) →uXf ,: ( )vY,  
is a γ-continuous map, then f  is γ-irresolute. 
 
Proof. Let B  be a γ-open subset of ( )vY, . Since ( )vY,  is a Tγ-space, B  is open in ( )vY, . As 

f  is γ-continuous, ( )Bf 1−  is γ-open in ( )uX , . Therefore, f  is γ-irresolute.      � 
 
Proposition 4.5.18. Let ( )uX ,  be a Tsγ-space and ( )vY,  be a Tγ-space. If ( ) →uXf ,: ( )vY,  
is  a g-semi-continuous map, then f  is γ-irresolute. 
 
Proof. Let B  be a γ-open subset of ( )vY, . Since ( )vY,  is a Tγ-space, B  is open in ( )vY, . As 

f  is g-semi-continuous, ( )Bf 1−  is g-semi-open in ( )uX , . But ( )uX ,  is a Tsγ-space, hence 

( )Bf 1−  is γ-open by Proposition 4.3.6.  Therefore, f  is γ-irresolute.       � 
  
Proposition 4.5.19. Let ( )uX ,  and ( )vY,  be closure spaces and :f ( ) →uX , ( )vY,  be a map. 

(i) If ( )uX ,  is a Tsγ-space and f  is g-semi-irresolute, then f  is γ-irresolute. 

(ii)  If ( )vY,  is a Tsγ-space and f  is γ-irresolute, then f  is g-semi-irresolute. 
 

Proof. (i)   Let B  be a γ-open subset of ( )vY, . Then B  is also g-semi-open in ( )vY, . As f  is 

g-semi-irresolute, ( )Bf 1−  is g-semi-open in ( )uX , . Since ( )uX ,  is a Tsγ-space, ( )Bf 1−  is γ-

open in ( )uX ,  by Proposition 4.3.6. Therefore, f  is γ-irresolute. 

 (ii) Let B  be a g-semi-open subset of ( )vY, . Since ( )vY,  is a Tsγ-space, B  is γ-open in 

( )vY,  by Proposition 4.3.6. As f  is γ-irresolute, ( )Bf 1−  is γ-open in ( )uX , . Consequently, 

( )Bf 1−  is also g-semi-open in ( )uX , . Therefore, f  is g-semi-irresolute.    � 

g-semi-irresolute 

g-semi-continuous 

γ-irresolute γ-continuous 



 
Proposition 4.5.20. Let ( )uX ,  and ( )vY,  be closure spaces and ( ) →uXf ,: ( )vY,  be a map. 

(i) If ( )uX ,  is a Tsγ-space and f  is g-semi-irresolute, then f  is γ-continuous. 

(ii)  If ( )vY,  is a Ts-space and f  is γ-continuous, then f  is g-semi-irresolute. 
 
Proof. (i) Since f  is g-semi-irresolute and ( )uX ,  is a Tsγ-space, f  is γ-irresolute by 
Proposition 4.5.19 (i). It follows that f  is γ-continuous. 

 (ii) Let B  be a g-semi-open subset of ( )vY, . Since ( )vY,  is a Ts-space, B  is open in 

( )vY,  by Proposition 4.1.9. As f  is γ-continuous, ( )Bf 1−  is γ-open in ( )uX , . It follows that 

( )Bf 1−  is also g-semi-open in ( )uX , . Therefore, f  is g-semi-irresolute.      
   �  
 
Proposition 4.5.21. Let ( )uX ,  and ( )vY,  be closure spaces and :f ( ) →uX , ( )vY,  be a 

semi-open, g-semi-irresolute and surjective map. Then ( )vY,  is a Tgs-space if ( )uX ,  is a Ts-
space. 
 
Proof. Let ( )uX ,  be a Ts-space and let B  be a g-semi-open subset of ( )vY, . Since f  is g-

semi-irresolute, ( )Bf 1−  is g-semi-open in ( )uX , . As ( )uX ,  is a Ts-space, ( )Bf 1−  is open in 

( )uX ,  by Proposition 4.1.9. Since f  is semi-open, ( )( )Bff 1−  is semi-open in ( )vY, . But f  

is a surjection, thus ( )( ) =− Bff 1 B . Therefore, ( )vY,  is a Tgs-space.       � 
 
Proposition 4.5.22. Let ( )uX ,  and ( )vY,  be closure spaces and :f ( ) →uX , ( )vY,  be a γ-

open, semi-irresolute and surjective map. Then ( )vY,  is a Tsγ-space if ( )uX ,  is a Ts-space. 
 
Proof. The proof is similar to that of Proposition 4.5.21.           � 
Proposition 4.5.23. Let ( )uX ,  and ( )vY,  be closure spaces and let :f ( ) →uX , ( )vY,  be an 

open, γ-irresolute and surjective map. Then ( )vY,  is a Tγ-space if ( )uX ,  is a Tγ-space. 
  
Proof. The proof is similar to that of Proposition 4.5.21           � 
 
Proposition 4.5.24. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces and let ( ) →uXf ,:  

( )vY,  and ( ) →vYg ,: ( )wZ,  be maps. Then  
(i) fg o  is g-semi-continuous if f  is g-semi-irresolute and g  is g-semi-continuous, 
(ii)  fg o  is γ-continuous if f  is γ-irresolute and g  is γ-continuous. 

 
Proposition 4.5.25. Let ( )uX , , ( )vY,  and ( )wZ,  be closure spaces and let 

( ) →uXf ,: ( )vY,  and ( ) →vYg ,: ( )wZ,  be maps. 

(i) If ( )uX ,  is a Tsγ-space, f  is g-semi-irresolute and g  is γ-irresolute, then 
fg o  is γ-irresolute 

(ii)  If ( )wZ,  is a Tsγ-space, f  is g-semi-irresolute and g  is γ-irresolute, then 
fg o  is g-semi-irresolute. 

(iii)  If ( )vY,  is a Tsγ-space, f  is γ-irresolute and g  is g-semi-irresolute, then fg o  
is both g-semi-irresolute and γ-irresolute. 

 



Proof. (i) Let B  be a γ-open subset of ( )wZ, . Since g  is γ-irresolute, ( )Bg 1−  is γ-open in 

( )vY, . Consequently, ( )Bg 1−  is also g-semi-open in ( )vY, . As f  is g-semi-irresolute, 

( )( )=−− Bgf 11  ( ) ( )Bfg 1−
o  is g-semi-open in ( )uX , . But ( )uX ,  is a Tsγ-space, hence 

( ) ( )Bfg 1−
o  is γ-open in ( )uX ,  by Proposition 4.3.6. Therefore, fg o  is γ-irresolute.   

 (ii) Let B  be a g-semi-open subset of ( )wZ, . Since ( )wZ,  is a Tsγ-space, B  is γ-open 

by Proposition 4.3.6. As g is γ-irresolute, ( )Bg 1−  is γ-open in ( )vY, . Consequently, ( )Bg 1−  is 

also g-semi-open in ( )vY, . But f  is g-semi-irresolute, hence ( )( )=−− Bgf 11 ( ) ( )Bfg 1−
o  is g-

semi-open in ( )uX , . Therefore, fg o  is g-semi-irresolute.  

 (iii) Let B  be a g-semi-open subset of ( )wZ, . Since g  is g-semi-irresolute,  ( )Bg 1−  is 

g-semi-open in ( )vY, . As ( )vY, is a Tsγ-space, ( )Bg 1−  is γ-open by Proposition 4.3.6. But f  is 

γ-irresolute, hence ( )( )=−− Bgf 11 ( ) ( )Bfg 1−
o  is γ-open in ( )uX , . Consequently, ( ) ( )Bfg 1−

o  

is g-semi-open in ( )uX , . Thus, fg o  is g-semi-irresolute.  

        Let C  be a γ-open subset of ( )wZ, . It follows that C  is g-semi-open in ( )wZ, . As 

g  is g-semi-irresolute,  ( )Cg 1−  is g-semi-open in ( )vY, . As ( )vY,  is a Tsγ-space, ( )Cg 1−  is γ-

open by Proposition 4.3.6. Since f  is γ-irresolute, ( )( )=−− Bgf 11 ( ) ( )Bfg 1−
o  is γ-open in 

( )uX , . Thus, fg o  is γ-irresolute. Therefore,   fg o  is both g-semi-irresolute and γ-
irresolute.               �  
 
Theorem 4.5.26.  Let ( ){ }JuX ∈ααα :,  and ( ){ }JvY ∈ααα :,  be collections of closure 

spaces. Let J∈α , ( ) ( )ααααα vYuXf ,,: →  be a map and let ( ) ( )∏∏
∈∈

→
JJ

vYuXf
α

αα
α

αα ,,:  be 

defined by ( )( ) ( )( ) JJ xfxf ∈∈ = ααααα . 

(i) If f  is g-semi-irresolute, then αf  is also g-semi-irresolute.  

(ii)  If f  is γ-irresolute, then αf  is also γ-irresolute. 

 
Proof. (i) Let J∈β  and βB  be a g-semi-open subset of ( )ββ vY , . By Proposition 4.1.11, 

∏
∈
≠

×
J

YB

α
βα

αβ is g-semi-open in ( )∏
∈J

vY
α

αα , . As f  is g-semi-irresolute, =
















×∏
∈
≠

−

J

YBf

α
βα

αβ
1  

( ) ∏
∈
≠

− ×
J

XBf

α
βα

αββ
1  is g-semi-open in ( )∏

∈J

uX
α

αα , . By Proposition 4.1.11, ( )ββ Bf 1−  is g-semi-

open in ( )ββ uX , . Therefore, αf  is g-semi-irresolute 

 (ii) The proof  is similar to that of (i) by utilizing Proposition 4.2.17.  � 
 
Proposition 4.5.27. Let ( ){ }JuX ∈ααα :,  be a collection of closure spaces and J∈β . If  

:βπ  ( ) →∏
∈J

uX
α

αα , ( )ββ uX ,  is a projection map, then  

(i) βπ  is g-semi-irresolute,  

(ii)  βπ  is γ-irresolute. 



Proof. (i) Let J∈β  and βA  be a g-semi-open subset of ( )ββ uX , . Then ( )=−
ββπ A1  

∏
∈
≠

×
J

XA

α
βα

αβ . By Proposition 4.1.11, ∏
∈
≠

×
J

XA

α
βα

αβ  is g-semi-open in ( )∏
∈J

uX
α

αα , . Therefore, 

βπ  is g-semi-irresolute.  

 (ii) The proof is similar to that of (i) by utilizing Proposition 4.2.17.    � 
 
   

 
 

 
 
 
 
 



Chapter 5 
 
Semi-Open Sets in Biclosure Spaces 
 
 
5.1 Biclosure Spaces 
 
In this section, we recall some basic definitions concerning biclosure spaces and study some 
of its fundamental properties.  
 

A biclosure space is a triple ( )21,, uuX  where X  is a set and 1u , 2u  are two closure 

operators on X . A subset A  of a biclosure space ( )21,, uuX  is called closed if AAuu =21 . 
The complement of a closed set is called open. 

 
Let ( )21,, uuX  be a biclosure space. A biclosure space ( )21,, vvY  is called a subspace 

of ( )21,, uuX  if ⊆Y X  and =Avi YAui ∩  for all { }2,1∈i  and every subset A  of Y . 

 
  Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and let { }2,1∈i . Then a map 

:f ( ) →21,, uuX  ( )21,, vvY  is called: 

(i) i -open (respectively, i -closed) if the map :f ( ) →iuX , ( )ivY,  is open 

(respectively, closed).  
(ii)  open (respectively, closed) if f  is i -open (respectively, i -closed) for all 

{ }2,1∈i . 

(iii)  biopen (respectively, biclosed) if the map ( ) →1,: uXf ( )2,vY  is open 
(respectively, closed). 

(iv) i -continuous if the map ( ) →iuXf ,: ( )ivY,  is continuous.  

(v) continuous if f is i -continuous for all { }2,1∈i . 
 
 
Remark 5.1.1. Let A  be a subset of a biclosure space ( )21,, uuX . 

(i) A  is open in ( )21,, uuX  if and only if A  is open in both ( )1,uX  and ( )2,uX  

(ii)  If A  is an open subset of ( )21,, uuX , then ( ) ( )AXuuAXuu −=− 1221 .   
   

The converse of the statement (ii) in Remark 5.1.1 need not be true as can be seen 
from the following example.  

 
Example 5.1.2. Let { }3,2,1=X  and define a closure operator 1u  on X  by φφ =1u , 

{ } =11u { }1 , { } =21u { }2 , { } =31u { }3 , { } =3,11u { }3,1  and { } =2,11u { } =3,21u =Xu1 X . Define a 

closure operator 2u  on X  by φφ =2u , { }=12u { }3,1 , { }=22u { }2 , { }=32u { }3  and 



{ }=2,12u { }=3,12u  { }=3,22u =Xu2 X . We can see that { }( ) { }( ) =−=− 11 1221 XuuXuu X  but 

{ }1  is not open in ( )21,, uuX . 
 
Proposition 5.1.3. Let { } JA ∈αα  be a collection of open sets in a biclosure space ( )21,, uuX . 

Then αα
A

J∈
∪  is an open set. 

Proof. Let αA  be an open subset of ( )21,, uuX . Then αAX −  is closed for all J∈α . Since 

( ) ⊆−∩
∈ αα

AX
J

αAX −  for all J∈α , ( ) ( )ααα
AXuuAXuu

J
−⊆−∩

∈ 2121  for each J∈α . But 

=− αAX  ( )αAXuu −21  for all J∈α . Thus, ( ) ααα
AXAXuu

J
−⊆−∩

∈21  for all J∈α . 

Consequently, ( ) ⊆−∩
∈ αα

AXuu
J

21 ( ) ⊆−∩
∈ αα

AX
J

( )αα
AXuu

J
−∩

∈21 , i.e. ( ) =−∩
∈ αα

AXuu
J

21  

( )αα
AX

J
−∩

∈
. Thus, ( ) =−∩

∈ αα
AX

J
 αα

AX
J∈

∪−  is closed in ( )21,, uuX . Therefore, αα
A

J∈
∪  is 

open in ( )21,, uuX .                � 
 

The intersection of two open sets in a biclosure space ( )21,, uuX  need not be an open 

set as can be seen from Example 5.1.2 where { }2,1  and { }3,1  are open in ( )21,, uuX  but 

{ } { }3,12,1 ∩  is not open.  
  
Proposition 5.1.4. If { } JA ∈αα  is a collection of subsets in a biclosure space ( )21,, uuX , then 

⊆∩
∈ αα

Auu
J

21 αα
Auu

J
21∈

∩ .  

  
 By Example 5.1.2, { } { }3,12,1 2121 uuuu ∩  is not contained in { } { }( )3,12,121 ∩uu , i.e. the 
inclusion in Proposition 5.1.4 cannot be replaced by equality in general.  
  
Proposition 5.1.5.  If { } JA ∈αα  is a collection of closed subsets in a biclosure space 

( )21,, uuX , then =∩
∈ αα

Auu
J

21 αα
Auu

J
21∈

∩ .  

 
Proof. Let αA  be closed in ( )21,, uuX  for all J∈α . Then αAX −  is open and =αA αAuu 21  

for each J∈α . By Proposition 5.1.3, ( )αα
AX

J
−∪

∈
 is open. But ( ) αααα

AXAX
JJ ∈∈

∩−=−∪ , 

hence αα
A

J∈
∩  is closed in ( )21,, uuX , i.e. =∩

∈ αα
Auu

J
21 =∩

∈ αα
A

J
αα

Auu
J

21∈
∩ .    � 

 
 The converse of Proposition 5.1.5 is not true in general as shown in the following 
example. 
 
Example 5.1.6. Let { }3,2,1=X  and define a closure operator 1u  on X  by φφ =1u , { } =21u  

{ } =31u { } =3,21u { }3,2  and { } =11u { } =2,11u { } =3,11u =Xu1 X . Define a closure operator 2u  

on X  by φφ =2u , { }=12u { }=22u { }=2,12u { }2,1  and { }=32u { }=3,12u { }=3,22u =Xu2 X . It 

is easy to see that { } { }( ) =∩ 3,12,121uu { } { }3,12,1 2121 uuuu ∩  but neither { }2,1  nor { }3,1  is closed 

in ( )21,, uuX . 
 
Proposition 5.1.7. Let ( )21,, uuX  be a biclosure space. If G  is a subset of X , then 

GGuu −21  has no nonempty open subset of ( )21,, uuX . 
 



Proof. Let G  be a subset of  X  and H  be a nonempty open subset of ( )21,, uuX  such that 

⊆H GGuu −21 . Since H  is nonempty, there is GGuuHx −⊆∈ 21 , i.e. HXx −∉ . Thus, 

Guu 21  is not contained in HX − . Since ⊆H GGuu −21 , ⊆G  ⊆− HGuu 21 HX − . It 

follows that ⊆Guu 21 ( )HXuu −21 . But H  is open in ( )21,, uuX , hence ( ) =− HXuu 21  

HX − . Consequently, ⊆Guu 21 HX − , which is a contradiction. Therefore, GGuu −21  

contains no nonempty open set of ( )21,, uuX .           � 
 
Remark 5.1.8. The following statement is equivalent to Proposition 5.1.7:  

Let ( )21,, uuX  be a biclosure space and G  be a subset of X . If H  is an open subset of 

( )21,, uuX  with ⊆H GGuu −21 , then H is an empty set. 

Moreover, if the subset H  is an open subset in ( )1,uX  but not in ( )2,uX , then H  need 

not be empty. And if the subset H  is an open subset in ( )2,uX  but not in ( )1,uX , then H  

need not be empty. By Example 5.1.6, { }2  is a subset of X  such that { }1  and { }3  are 

nonempty subsets of { } { }2221 −uu . We can see that { }1  is open in ( )1,uX  but not in ( )2,uX , 

and { }3  is an open subset in ( )2,uX  but not in ( )1,uX . 
 

Proposition 5.1.9. If ( )21,, vvY  is a biclosure subspace of ( )21,, uuX , then YG ∩  is an open 

subset of ( )21,, vvY  for every open subset G  of ( )21,, uuX . 
 
Proof.  Let G  be an open subset of ( )21,, uuX . By Remark 5.1.1 (i), G  is open in both 

( )1,uX  and ( )2,uX .  Thus, ( )( ) =∩− YGYvi ( )( ) ⊆∩∩− YYGYui  ( ) =∩− YGXui  

( ) =∩− YGX  ( )YGY ∩−  for each ∈i { }2,1  . Consequently, YG ∩  is open in both ( )1,vY  

and ( )2,vY . Therefore, YG ∩  is open in ( )21,, vvY .       
   � 
 
Remark 5.1.10. By Proposition 5.1.9, if ⊆E Y and =E YG ∩  for some open subset G  of 
( )21,, uuX , then E  is an open subset of ( )21,, vvY . The converse is not true as can be seen 
from the following example.  
 
Example 5.1.11. Let { }3,2,1=X  and define a closure operator 1u  on X  by φφ =1u , 

{ } =11u { }3,1 , { } { } { }3,23,22 11 == uu , { } =31u { }3  and { } =2,11u { } =3,11u =Xu1 X . Define a 

closure operator 2u  on X  by φφ =2u , { }=12u { }2,1 , { }=22u { }3,2 , { }=32u { }3  and { }=2,12u  

{ }=3,12u { }=3,22u =Xu2 X . Thus, there are only three open subsets of ( )21,, uuX , namely  

φ , { }2,1  and X . Let =Y { }2,1  and ( )21,, vvY  be a biclosure subspace of ( )21,, uuX . Then 

φφ =1v , { } =11v { }1 , { } =21v { }2  =Yv1 Y ,  φφ =2v , { }=22v { }2  and { }=12v =Yv2 Y . We can 

see that { }1  is an open subset of ( )21,, vvY  but there is no open set G  in ( )21,, uuX  such that 

{ }=1 YG ∩ . 
 
Proposition 5.1.12. Let ( )21,, uuX , ( )21,, vvY  and ( )21,, wwZ  be biclosure spaces, let 

:f ( ) →21,, uuX  ( )21,, vvY  and :g ( ) →21,, vvY ( )21,, wwZ   be maps.  
(i) If f is 1-open and g is biopen, then fg o is biopen. 
(ii)  If f is biopen and g is 2-open, then fg o is biopen. 

 



Proof.  (i)  Let G  be an open subset of ( )1,uX . Since f  is 1-open, ( )Gf  is open in ( )1,vY . 

As g  is biopen, ( )( ) ( )GfgGfg o=  is open in ( )2,wZ . Thus, fg o  is biopen. 

(ii) Let G  be an open subset of ( )1,uX . Since f  is biopen, ( )Gf  is open in ( )2,vY . 

And since g  is 2-open, ( )( ) ( )GfgGfg o=  is open in ( )2,wZ . Thus, fg o  is biopen.    � 
 
The composition of two biopen maps need not be a biopen map as can be seen from 

the following example. 
 
Example 5.1.13. Let { }2,1=== ZYX  and define a closure operator 1u  on X  by φφ =1u , 

{ } =21u { }2 , and { } =11u XXu =1 . Define a closure operator 2u  on X  by φφ =2u  and 

{ }=12u { }=22u =Xu2 X . Define a closure operator 1v  on Y  by φφ =1v , { } =11v { }1  and 

{ } =21v YYv =1  and define a closure operator 2v  on Y  by φφ =2v , { }=12v { }1 , { }=22v { }2  

and =Yv2 Y . Define a closure operator 1w  on Z  by φφ =1w  and { } =11w { } =21w =Zw1 Z  

and define a closure operator 2w  on Z  by φφ =2w , { }=12w { }1  and { }=22w =Zw2 Z . Let 

:f ( ) →21,, uuX ( )21,, vvY  and :g ( ) →21,, vvY ( )21,, wwZ   be the identity maps. We can see 

that f  and g  are biopen. But fg o  is not biopen because { }1  is open in ( )1,uX  but 

{ }( )1fg o  is not open in ( )2,wZ . 
 
Proposition 5.1.14. Let ( )21,, uuX , ( )21,, vvY  and ( )21,, wwZ  be biclosure spaces and let :f  

( ) →21,, uuX ( )21,, vvY  and :g ( ) →21,, vvY ( )21,, wwZ   be maps. 
(i)   If fg o is biopen and f is a 1-continuous surjection, then g  is biopen. 
(ii)  If fg o is biopen and g is a 2-continuous injection, then f  is biopen. 

 
Proof.  (i) Let H  be an open subset of ( )1,vY . Since f  is 1-continuous, ( )Hf 1−  is open in 

( )1,uX . But fg o  is biopen, hence ( )( )Hffg 1−
o  is open in ( )2,wZ . As f  is a surjection, 

( )( ) =− Hffg 1
o ( )Hg . Therefore, g  is biopen. 

            (ii) Let G  be an open subset of ( )1,uX . Since fg o  is biopen, ( )Gfg o  is open in 

( )2,wZ . But g  is 2-continuous, hence ( )( )Gfgg o
1−  is open in ( )2,vY . As g  is an injection, 

( )( ) =− Gfgg o
1  ( )Gf . Therefore, f  is biopen.                               � 

 
Proposition 5.1.15. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and let :f  

( ) →21,, uuX ( )21,, vvY  be a map. If f is open, then ( )Gf  is open in ( )21,, vvY  for every open 

subset G  of ( )21,, uuX . 
 
Proof.  Let G  be an open subset of ( )21,, uuX . By Remark 5.1.1(i), G  is open in both 

( )1,uX  and ( )2,uX . Since f  is open, f  is both 1-open and 2-open. It follows that ( )Gf  is 

open in both ( )1,vY  and ( )2,vY . Consequently, ( )Gf  is open in ( )21,, vvY  by Remark 
5.1.1(i).                     �  
          
Remark 5.1.16. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and let :f ( ) →21,, uuX  

( )21,, vvY  be a map. If ( )Gf  is open in ( )21,, vvY  for every open subset G  of ( )21,, uuX , 
then f  need not be open as can be seen from the following example. 
 



Example 5.1.17. Let { } YX == 2,1  and define a closure operator 1u  on X  by φφ =1u , 

{ } =21u { }2 , and { } =11u XXu =1 . Define a closure operator 2u  on X  by φφ =2u  and 

{ }=12u { }=22u =Xu2 X . Define a closure operator 1v  on Y  by φφ =1v , { } =11v { } =21v  

YYv =1  and define a closure operator 2v  on Y  by φφ =2v , { }=12v { }1  and { }=22v =Yv2 Y . 

Let :f ( ) →21,, uuX ( )21,, vvY  be the identity map. It is easy to see that ( )Gf  is open in 

( )21,, vvY  for every open subset G  of ( )21,, uuX . But f  is not 1-open because { }( )1f  is not 

open in ( )1,vY  while { }1  is open in ( )1,uX . Consequently, f  is not open.  
 
Proposition 5.1.18. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and let :f  

( ) →21,, uuX ( )21,, vvY  be a map. If f is continuous, then ( )Hf 1−  is open in ( )21,, uuX  for 

every open subset H  of ( )21,, vvY . 
 
Proof.  Let H  be an open subset of ( )21,, vvY . By Remark 5.1.1 (i), H  is open in both ( )1,vY  

and ( )2,vY . Since f  is continuous, f  is both 1-continuous and 2-continuous. It follows that  

( )Hf 1−  is open in both ( )1,uX  and ( )2,uX . Therefore, ( )Hf 1−  is open in ( )21,, uuX  by 
Remark 5.1.1 (i).                    �           
 
Remark 5.1.19. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and let :f ( ) →21,, uuX  

( )21,, vvY  be a map. If ( )Hf 1−  is open in ( )21,, uuX  for every open subset H  of ( )21,, vvY , 
then f  need not be continuous as can be seen from the following example. 
 
Example 5.1.20. In Example 5.1.17, ( )Hf 1−  is open in ( )21,, uuX  for every open subset H  

of ( )21,, vvY . But the map f  is not 2-continuous because { }( )21−f  is not open in ( )2,uX  

while { }2  is open in ( )2,vY . Consequently, f  is not continuous. 
 
Definition 5.1.21. A map :f ( ) →21,, uuX ( )21,, vvY , where ( )21,, uuX  and ( )21,, vvY  are 
biclosure spaces, is called a homeomorphism if  f  is bijective, continuous and open. 
 
Proposition 5.1.22. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and :f ( ) →21,, uuX  

( )21,, vvY  be a map. If f  is a bijective continuous map, then the following statements are 
equivalent: 

(i) f  is a homeomorphism, 
(ii)  f  is a closed map, 
(iii) f  is an open map. 

 
Proof.  (i) → (ii)  Since f  is a homeomorphism, f  is open and bijective. It follows that f  is 

both 1-open and 2-open. Let { }2,1∈i  and let iF  be a closed subset of ( )iuX , . Then 

( ) =− iFXf  ( )iFfY −  is open in ( )ivY, . Hence, ( )iFf  is closed in ( )ivY, . Thus, f  is both 

1-closed and 2-closed. Therefore, f  is closed.   

(ii) → (iii) Let { }2,1∈i  and let iG  be an open subset of ( )iuX , . Then iGX −  is closed 

in ( )iuX , . By the assumption, f  is both closed and bijective. It follows that f  is both 1-

closed and 2-closed. Consequently, ( ) =− iGXf ( )iGfY −  is closed in ( )ivY, . Hence, ( )iGf  

is open in ( )ivY, . Thus, f  is both 1-open and 2-open. Therefore, f  is open.   



 (iii) → (i) By the assumption, f  is a homeomorphism.        � 
 
 
 

5.2 Semi-open Sets 
 

In this section, we introduce a new type of open sets in biclosure spaces and study 
some of their properties.  
 
Definition 5.2.1. A subset A  of a biclosure space ( )21,, uuX  is called semi-open if there 

exists an open subset G  of ( )1,uX  such that GuAG 2⊆⊆ . The complement of a semi-open 
subset of X  is called semi-closed.  
  Clearly, if ( )21,, uuX  is a biclosure space and A  is open (respectively, closed) in 

( )1,uX , then A  is semi-open (respectively, semi-closed) in ( )21,, uuX . The converse is not 
true as can be seen from the following example. 
 
Example 5.2.2. Let { }3,2,1=X  and define a closure operator 1u  on X  by φφ =1u , 

{ } =11u { } =31u { } =3,11u { }3,1 , { } =21u { }3,2  and { } =2,11u { } =3,21u =Xu1 X . Define a closure 

operator 2u  on X  by φφ =2u , { }=32u { }3  and { }=12u { }=22u { }=2,12u { }=3,12u { }=3,22u  

=Xu2 X . It follows that { }3,2  is semi-open in ( )21,, uuX  but { }3,2  is open in neither ( )1,uX  

nor ( )2,uX . Moreover, { }1  is semi-closed in ( )21,, uuX  but { }1  is closed in neither ( )1,uX  

nor ( )2,uX . 
 
Proposition 5.2.3. Let ( )21,, uuX  be a biclosure space and let XA ⊆ . Then A is semi-closed 

in ( )21,, uuX  if and only if there exists a closed subset F  of ( )1,uX  such that 

( ) ⊆−− FXuX 2  ⊆A F . 
 
Proof.  Let A  be a semi-closed subset of ( )21,, uuX . Then there exists an open subset G  of 

( )1,uX  such that GuAXG 2⊆−⊆ . Thus, there exists a closed subset F  of ( )1,uX  such 

that FXG −=  and ( )FXuAXFX −⊆−⊆− 2 . Therefore, ( ) FAFXuX ⊆⊆−− 2 .  

 Conversely, by the assumption, there is a closed subset F  of ( )1,uX  such that 

( ) ⊆−− FXuX 2 ⊆A F . Thus, there exists an open subset G  of ( )1,uX  such that 

GXF −=  and GXAGuX −⊆⊆− 2 . It follows that ⊆G ⊆− AX Gu2 . Therefore, A  is  

semi-closed in ( )21,, uuX .                         � 
 
Proposition 5.2.4. Let { } JA ∈αα  be a collection of semi-open sets in a biclosure space 

( )21,, uuX . Then αα
A

J∈
∪  is a semi-open subset of ( )21,, uuX . 

 
Proof.  Let αA  be semi-open in ( )21,, uuX  for all J∈α . Hence, for each J∈α , we have an 

open set αG  in ( )1,uX  such that ααα GuAG 2⊆⊆ . Thus, ⊆∪
∈ αα

G
J

αααα
GuA

JJ
2∈∈

∪⊆∪ . Since 

ααα GG
J∈

∪⊆  for each J∈α , ααα GuGu
J∈

∪⊆ 22  for all J∈α . Thus, ⊆∪
∈ αα

Gu
J

2  αα
Gu

J∈
∪2 . 

Consequently, ⊆∪
∈ αα

G
J

⊆∪
∈ αα

A
J

αα
Gu

J∈
∪2 . As αG  is open in ( )1,uX  for all J∈α , 



( ) ⊆−∩
∈ αα

GXu
J

1 ( ) =− αGXu1 αGX −  for each J∈α . Thus, ( ) ⊆−∩
∈ αα

GXu
J

1 ( )αα
GX

J
−∩

∈
. 

It follows that ( )αα
GX

J
−∩

∈
 is closed in ( )1,uX , i.e. αα

G
J∈

∪  is open in ( )1,uX . Therefore, 

αα
A

J∈
∪  is semi-open in ( )21,, uuX .            � 

 
If { } JA ∈αα  is a collection of semi-open sets in a biclosure space ( )21,, uuX , then 

αα
A

J∈
∩  need not be a semi-open subset of ( )21,, uuX  as shown in the following example.  

 
Example 5.2.5.  In the biclosure space ( )21,, uuX  from Example 5.1.2, we can see that { }2,1  

and { }3,1  are semi-open but { } { }3,12,1 ∩  is not semi-open.  
 
Proposition 5.2.6. Let { } JA ∈αα  be a collection of semi-closed sets in a biclosure space 

( )21,, uuX . Then αα
A

J∈
∩  is semi-closed.  

 
Proof. Clearly, the complement of αα

A
J∈

∩  is ( )αα
AX

J
−∪

∈
. Since αA is semi-closed in 

( )21,, uuX  for each J∈α , αAX −  is semi-open for all J∈α . But ( )αα
AX

J
−∪

∈
 is a semi-

open set by Proposition 5.2.4. Therefore, αα
A

J∈
∩  is semi-closed in ( )21,, uuX .       � 

 
If { } JA ∈αα  is a collection of semi-closed sets in a biclosure space ( )21,, uuX , then 

αα
A

J∈
∪  need not be a semi-closed set as shown in the following example. 

 
Example 5.2.7. In the biclosure space ( )21,, uuX  from Example 5.1.2, we can see that { }2  

and { }3  are semi-closed but { } { }32 ∪  is not semi-closed. 
 
Proposition 5.2.8. Let ( )21,, uuX  be a biclosure space and 2u  be idempotent. If A  is semi-

open in ( )21,, uuX  and AuBA 2⊆⊆ , then B  is semi-open. 
 
Proof. Let A  be a semi-open subset of ( )21,, uuX . Then there exists an open set G  in 

( )1,uX  such that GuAG 2⊆⊆ , hence GuuAu 222 ⊆ . Since 2u  is idempotent, GuAu 22 ⊆ . 

Thus, ⊆G ⊆A ⊆B ⊆Au2 Gu2 . Therefore, B  is semi-open in ( )21,, uuX .            � 
 
Proposition 5.2.9. Let ( )21,, vvY  be a biclosure subspace of ( )21,, uuX  and YA⊆ . If A is  

semi-open in ( )21,, uuX , then A is semi-open in ( )21,, vvY . 
 
Proof. Let A  be a semi-open subset of ( )21,, uuX . Then there exists an open subset G  of 

( )1,uX  such that GuAG 2⊆⊆ . It follows that ⊆∩ YA YGu ∩2 . But AYA =∩ , hence 

⊆G =A ⊆∩YA =∩YGu2 Gv2 . Since G  is open in ( )1,uX ,  ( ) =− GYv1 ( ) ⊆∩− YGYu1  

( ) =∩− YGXu1 ( ) =∩− YGX GY − . Thus, GY −  is closed in ( )1,vY , i.e. G  is open in 

( )1,vY . Therefore, A  is a semi-open subset of ( )21,, vvY .             � 
 

The converse of Proposition 5.2.9 need not be true as can be seen from the following 
example. 



 
Example 5.2.10. In the biclosure spaces ( )21,, uuX  and ( )21,, vvY  from Example 5.1.11, we 

can see that { }⊆2 Y  and { }2  is semi-open in ( )21,, vvY  but { }2  is not semi-open in 

( )21,, uuX . 
 
Definition 5.2.11. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces. Then a map 

:f ( ) →21,, uuX  ( )21,, vvY  is called semi-open (respectively, semi-closed) if ( )Af  is semi-

open (respectively, semi-closed) in( )21,, vvY  for every open (respectively, closed) subset A  

of ( )21,, uuX .  
Clearly, if f  is open (respectively, closed), then f  is semi-open (respectively, semi-

closed). The converse need not be true as can be seen from the following example. 
 
Example 5.2.12. Let { } == 2,1X Y  and define a closure operator 1u  on X  by φφ =1u , 

{ } =11u  { }1  and { } =21u XXu =1 . Define a closure operator 2u  on X  by  φφ =2u , 

{ }=12u { }1 ,  { }=22u { }2  and XXu =2 . Define a closure operator 1v  on Y  by  φφ =1v , 

{ } =11v { }1  { } =21v YYv =1  and define a closure operator 2v  on Y  by  φφ =2v  and 

{ }=12v { }=22v =Yv2  Y . Let :f ( ) →21,, uuX ( )21,, vvY  be the identity map. It is easy to see 

that f  is semi-open but not open because { }( )2f  is not open in ( )21,, vvY  while { }2  is open in 

( )21,, uuX . Moreover, we can see that f  is semi-closed but not closed because { }( )1f  is not 

closed in ( )21,, vvY  while { }1  is closed in ( )21,, uuX . 
 
Proposition 5.2.13. Let ( )21,, uuX , ( )21,, vvY  and ( )21,, wwZ  be biclosure spaces and let :f  

( ) →21,, uuX ( )21,, vvY  and :g ( ) →21,, vvY ( )21,, wwZ   be maps. Then fg o  is semi-open if 
f is open and g is semi-open. 

 
Proof. Let G  be an open subset of ( )21,, uuX  and let f  be open. By Proposition 5.1.15, 

( )Gf  is open in ( )21,, vvY . As g  is semi-open, ( )( ) =Gfg ( )Gfg o  is semi-open in 

( )21,, wwZ . Therefore, fg o  is semi-open.          � 
 

Proposition 5.2.14. Let ( )21,, uuX , ( )21,, vvY  and ( )21,, wwZ  be biclosure spaces and let :f  

( ) →21,, uuX ( )21,, vvY  and :g ( ) →21,, vvY ( )21,, wwZ   be maps. If fg o is semi-open and 
f is a continuous surjection, then g  is semi-open.  

 
Proof. Let H  be an open subset of ( )21,, vvY  and let f  be continuous. By Proposition 5.1.18, 

( )Hf 1−  is open in ( )21,, uuX . Since fg o  is semi-open, ( )( )Hffg 1−
o  is semi-open in 

( )21,, wwZ . But f  is a surjection, hence ( )( )=− Hffg 1
o ( )Hg . Thus, ( )Hg  is semi-open in 

( )21,, wwZ . Therefore, g  is semi-open.           � 
 

 
 
 

5.3 Semi-continuous Maps  
 



In this section, we study the concept of semi-continuous maps obtained by using semi-
open sets. 
 
Definition 5.3.1. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces. A map :f ( ) →21,, uuX  

( )21,, vvY  is called semi-continuous if ( )Gf 1−  is a semi-open subset of ( )21,, uuX  for every 

open subset G  of ( )21,, vvY .  
Clearly, if f  is continuous, then f  is semi-continuous. The converse need not be true 

as can be seen from the following example.  
 

Example 5.3.2. Let { } == 2,1X Y  and define a closure operator 1u  on X  by φφ =1u , { } =11u  

{ }1  and { } =21u XXu =1 . Define a closure operator 2u  on X  by φφ =2u  and { }=12u  

{ }=22u XXu =2 . Define a closure operator 1v  on Y  by  φφ =1v , { } =11v { }1 , { } =21v { }2 , 

YYv =1  and define a closure operator 2v  on Y  by φφ =2v , { }=12v { }1  and { }=22v =Yv2 Y . 

Let :f ( ) →21,, uuX ( )21,, vvY  be the identity map. It is easy to see that  f  is semi-

continuous but not continuous because { }( )21−f  is not open in ( )21,, uuX  while { }2  is open in 

( )21,, vvY .  
 
Proposition 5.3.3. Let ( )21,, uuX  and ( )21,, vvY  be biclosure space. Then a map 

:f ( ) →21,, uuX  ( )21,, vvY  is semi-continuous if and only if ( )Ff 1−  is a semi-closed subset 

of ( )21,, uuX  for every closed subset F  of ( )21,, vvY . 
  
Proposition 5.3.4. Let ( )21,, uuX , ( )21,, vvY  and ( )21,, wwZ  be biclosure spaces and let                   

:f ( ) →21,, uuX ( )21,, vvY  and :g ( ) →21,, vvY ( )21,, wwZ   be maps. If g  is continuous and 
f  is semi-continuous, then fg o  is semi-continuous. 

 
Proof.  Let H  be an open subset of ( )21,, wwZ  and let g  be continuous. By Proposition 

5.1.18,   ( )Hg 1−  is open in ( )21,, vvY . As f  is semi-continuous, ( )( ) =−− Hgf 11 ( ) ( )Hfg 1−
o  

is semi-open in ( )21,, uuX . Therefore, fg o  is semi-continuous.       � 
 
Definition  5.3.5. A biclosure space ( )21,, uuX  is said to be a ST -space if every semi-open set 

in ( )21,, uuX  is open in ( )21,, uuX . Clearly, the closure space ( )21,, uuX  in Example 5.2.12 

is a ST -space.  

 
Proposition 5.3.6. Let ( )21,, uuX  and ( )21,, wwZ  be biclosure spaces and ( )21,, vvY  be a ST - 

space and let :f ( ) →21,, uuX ( )21,, vvY  and :g ( ) →21,, vvY ( )21,, wwZ  be maps. If f and 
g  are semi-continuous, then fg o  is semi-continuous. 
 
Proof. Let H  be an open subset of ( )21,, wwZ . Since g  is semi-continuous, ( )Hg 1−  is semi-

open in ( )21,, vvY . But ( )21,, vvY  is a ST -space, hence ( )Hg 1−  is open in ( )21,, vvY . As f  is 

semi-continuous, ( )( ) =−− Hgf 11 ( ) ( )Hfg 1−
o  is semi-open in ( )21,, uuX . Therefore, fg o  is 

semi-continuous.                 � 
 
Proposition 5.3.7. Let ( )21,, uuX , ( )21,, vvY  and ( )21,, wwZ  be biclosure spaces, and let                   

:f ( ) →21,, uuX ( )21,, vvY  and :g  ( ) →21,, vvY ( )21,, wwZ   be maps. 



(i) If f  is a semi-open surjection and fg o  is continuous, then g  is semi- continuous. 
(ii)  If g  is a semi-continuous injection and fg o  is open, then f  is semi-open. 
(iii)If g  is an open injection and fg o  is semi-continuous, then f  is semi-continuous. 

  
Proof. (i) Let H  be an open subset of ( )21,, wwZ  and let fg o  be continuous. By Proposition 

5.1.18, ( ) ( )Hfg 1−
o  is open in ( )21,, uuX . Since f  is a semi-open map, 

( ) ( )( )=− Hfgf 1
o ( )( )( )Hgff 11 −−  is semi-open in ( )21,, vvY . But f  is a surjection, thus 

( )( )( )=−− Hgff 11 ( )Hg 1− . Therefore, g  is semi-continuous. 

(ii)  Let G  be an open subset of ( )21,, uuX  and let fg o  be open. By Proposition 

5.1.15, ( )Gfg o  is open in ( )21,, wwZ . Since g  is semi-continuous, ( )( )Gfgg o
1−  is semi-

open in ( )21,, vvY . But g  is an injection, hence ( )( ) =− Gfgg o
1 ( )Gf . Therefore, f  is semi-

open. 
(iii)  Let H  be an open subset of ( )21,, vvY  and let g  be open. By Proposition 5.1.15, 

( )Hg  is open in ( )21,, wwZ . Since fg o  is semi-continuous, ( ) ( )( )Hgfg 1−
o  is semi-open in 

( )21,, uuX . But g  is an injection, thus ( ) ( )( ) =− Hgfg 1
o  ( )( )( ) =−− Hggf 11 ( )Hf 1− . 

Therefore, f  is semi-continuous.          � 
  
 
 

5.4 Semi-irresolute Maps  
 
In this section, we introduce semi-irresolute maps in biclosure spaces obtained by 

using semi-open sets. We then study some of their basic properties. 
Definition 5.4.1. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces. A map :f ( ) →21,, uuX  

( )21,, vvY  is called semi-irresolute if  ( )Gf 1−  is semi-open in ( )21,, uuX  for every semi-open 

set G  in ( )21,, vvY . 
 

 It is easy to show that the composition of two semi-irresolute maps of biclosure 
spaces is again a semi-irresolute map.  

 
Remark 5.4.2. If a map :f ( ) →21,, uuX ( )21,, vvY  is semi-irresolute, then f  is semi-
continuous. The converse need not be true as shown in the following example.  
 
Example 5.4.3. Let { } == 2,1X Y  and define a closure operator 1u  on X  by φφ =1u  and 

{ } =11u { } =21u XXu =1 . Define a closure operator 2u  on X  by φφ =2u  and { }=12u  

{ }=22u XXu =2 . Define a closure operator 1v  on Y  by  φφ =1v , { } =11v { }1 , { } =21v  

=Yv1 Y  and define a closure operator 2v  on Y  by  φφ =2v  and { }=12v { }=22v =Yv2 Y . Let 

:f ( ) →21,, uuX ( )21,, vvY  be the identity map. It is easy to see that there are only two open 

sets in ( )21,, vvY , namely φ  and Y , and their inverse images are semi-open in ( )21,, uuX . 

Thus,  f  is semi-continuous. But f  is not semi-irresolute because { }( )21−f  is not semi-open 

in ( )21,, uuX  while { }2  is semi-open in ( )21,, vvY .  
 



Proposition 5.4.4. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and :f ( ) →21,, uuX  

( )21,, vvY   be a map. Then f  is semi-irresolute if and only if ( )Bf 1−  is semi-closed in 

( )21,, uuX  whenever B  is semi-closed in ( )21,, vvY . 
 
Proposition 5.4.5. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and :f ( ) →21,, uuX  

( )21,, vvY  be an open, semi-irresolute and surjective map. Then ( )21,, vvY  is a ST -space if 

( )21,, uuX  is a ST -space . 

 
Proof. Let ( )21,, uuX  be a ST -space and let B  be a semi-open subset of ( )21,, vvY . Since f  

is semi-irresolute, ( )Bf 1−  is semi-open in ( )21,, uuX . As ( )21,, uuX  is a ST -space, ( )Bf 1−  is 

open in ( )21,, uuX . Since f  is open, ( )( )Bff 1−  is open ( )21,, vvY  by Proposition 5.1.15. But 

f  is a surjection, hence ( )( ) =− Bff 1 B . Thus, B  is open in ( )21,, vvY . Therefore,  ( )21,, vvY  

is a ST -space               � 

 
Proposition 5.4.6. Let ( )21,, uuX , ( )21,, vvY  and ( )21,, wwZ  be biclosure spaces and let :f  

( ) →21,, uuX ( )21,, vvY  and :g ( ) →21,, vvY ( )21,, wwZ   be maps. If f  is  semi-irresolute and 
g  is semi-continuous, then fg o  is semi-continuous. 
 
Proposition 5.4.7. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and let :f  

( ) →21,, uuX  ( )21,, vvY  be a bijective map. 

(i) If f  is 1-continuous and 1−f  is 2-continuous, then f is semi-irresolute. 

(ii)  If f is 2-continuous and 1−f is 1-continuous, then 1−f  is semi-irresolute. 

Proof. (i)  Let B  be semi-open in ( )21,, vvY . Then there exists an open set H  of ( )1,vY  such 

that HvBH 2⊆⊆ . Since 1−f  is 2-continuous, :1−f ( ) →2,vY ( )2,uX  is continuous. Thus, 

( ) ⊆− Hvf 2
1 ( )Hfu 1

2
− , i.e. ( ) ( ) ( )HfuBfHf 1

2
11 −−− ⊆⊆ . As f  is 1-continuous, :f  

( ) →1,uX ( )1,vY  is continuous, hence ( )Hf 1−  is open in ( )1,uX . Consequently, ( )Bf 1−  is 

semi-open in ( )21,, uuX . Therefore, f  is semi-irresolute.  

(ii) Let A  be semi-open in ( )21,, uuX . Then there exists an open subset G  of ( )1,uX  

such that  GuAG 2⊆⊆ . Since f  is 2-continuous, :f ( ) →2,uX ( )2,vY  is continuous. Thus, 

( ) ⊆Guf 2 ( )Gfv2 , i.e. ( ) ( ) ( )GfvAfGf 2⊆⊆ . But 1−f  is 1-continuous, hence :1−f  

( ) →1,vY ( )1,uX  is continuous. Since ( )Gf  is the inverse image of G  under 1−f , ( )Gf  is 

open in ( )1,vY . Consequently, ( )Af  is semi-open in ( )21,, vvY . But ( )Af  is the inverse 

image of A  under 1−f , thusf  is semi-irresolute.            � 
 
 
  

5.5 Pre-semi-open Maps  
 
In this section, we introduce pre-semi-open maps obtained by using semi-open sets. 

We then study some of their properties. 
  



Definition 5.5.1. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces. A map :f  

( ) →21,, uuX ( )21,, vvY  is called pre-semi-open if ( )Af  is a semi-open subset of ( )21,, vvY  

for every semi-open subset A  of ( )21,, uuX . A map :f  ( ) →21,, uuX ( )21,, vvY  is called pre-

semi-closed if ( )Bf  is a semi-closed subset of ( )21,, vvY  for every semi-closed subset B  of 

( )21,, uuX .  
 

It is easy to show that the composition of two pre-semi-open maps in biclosure spaces 
is again a pre-semi-open map.  

 
Clearly, if a map :f ( ) →21,, uuX ( )21,, vvY  is pre-semi-open, then f  is semi-open. 

The converse need not be true as shown in the following example.  
 

Example 5.5.2. In Example 5.1.17, the map f  is semi-open but f  is not pre-semi-open 

because { }1  is semi-open in ( )21,, uuX   but { }( )1f  is not semi-open in ( )21,, vvY . 
 
Proposition 5.5.3. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces. Let :f ( ) →21,, uuX  

( )21,, vvY  be a map. Then the following statements are equivalent: 
(i) f is pre-semi-open 

(ii)  If ⊆B Y  and C  is a semi-closed subset of ( )21,, uuX  such that ( ) ⊆− Bf 1 C , then 

⊆B E   and ( ) ⊆− Ef 1 C   for some semi-closed subset E  of  ( )21,, vvY . 
 
Proof. (i)→(ii) Let B  be a subset of Y and let C  be a semi-closed subset of ( )21,, uuX  such 

that ( ) ⊆− Bf 1 C . Then ( )CXf −  is a semi-open subset of ( )21,, vvY . Put =E  ( )CXfY −− . 

Then E  is semi-closed in ( )21,, vvY  and ⊆− CX ( ) =− − BfX 1 ( )BYf −−1 . Hence, 

( ) ⊆− CXf ( )( ) ⊆−− BYff 1 BY − . Thus, ( ) ⊆−− BYY ( )CXfY −− , i.e. ⊆B E  and 

( ) =− Ef 1 ( )( ) =−−− CXfYf 1 ( )( ) ⊆−− − CXffX 1 ( ) =−− CXX C . Therefore, E  is a 

semi-closed subset of ( )21,, vvY  such that ⊆B E  and ( ) ⊆− Ef 1 C .  

(ii)→(i) Let A  be a semi-open subset of ( )21,, uuX . Then AX −  is semi-closed in 

( )21,, uuX  and ( )( ) ( )( ) ⊆−=− −− AffXAfYf 11 AX −  where ( )AfY −  is a subset of Y . 

By the assumption, there is a semi-closed subset E  of ( )21,, vvY  such that ( ) ⊆− AfY E  and 

( ) AXEf −⊆−1 . Hence, ( )AfEY ⊆−  and ( )EfXA 1−−⊆ . It follows that ⊆− EY  

( ) ⊆Af ( )( ) =− − EfXf 1 ( )( ) ⊆−− EYff 1 EY − , i.e. ( ) =Af EY − . Thus, ( )Af  is semi-

open in ( )21,, vvY . Therefore,f  is pre-semi-open.                 � 
 
Proposition 5.5.4. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and let :f  

( ) →21,, uuX  ( )21,, vvY  be a pre-semi-open map. If ∈y Y and C  is a semi-closed subset of 

( )21,, uuX  such that { }( ) ⊆− yf 1 C , then there exists a semi-closed subset E  of ( )21,, vvY  

such that ∈y E  and ( ) ⊆− Ef 1 C . 
  
Proof. Let ∈y Y  and let C  be a semi-closed subset of ( )21,, uuX  such that { }( ) ⊆− yf 1 C . 

Since { } Yy ⊆ , there exists a semi-closed subset E  of  ( )21,, vvY  such that ∈y E  and 

( ) ⊆− Ef 1 C  by Proposition 5.5.3.        � 
 



 The converse of the previous statement is not true in general as can be seen from the 
following example. 
 
Example 5.5.5. Let { } YX == 3,2,1  and define a closure operator 1u  on X  by  =φ1u φ , 

{ }=11u { }=21u { }=2,11u { },2,1  and { }=31u { }=3,11u { }=3,21u =Xu1 X . Define a closure 

operator 2u  on X  by =φ2u φ , { }=32u { }3  and { }=12u { }=22u { }=2,12u { }=3,12u { }=3,22u  

XXu =2 . Define a closure operator 1v  on Y  by =φ1v φ , { } { }111 =v , { }=21v { }2 , 

{ }=31v { } =2,11v { }=3,11v { }=3,21v =Yv1 Y  and define a closure operator 2v  on Y  by =φ2v φ  

and { }=12v { }=22v { }=32v { }=2,12v { }=3,12v { }=3,22v =Yv2 Y . Let 

:f ( ) →21,, uuX ( )21,, vvY  be the identity map. Then there are only three semi-closed subset 

of ( )21,, uuX , namely φ , { }2,1  and X . Moreover, there are only four semi-closed subset of 

( )21,, vvY , namely φ , { }1 , { }2  and Y . Then for every ∈y Y  and every semi-closed subset C  

of ( )21,, uuX  such that { }( ) ⊆− yf 1 C , there exists a semi-closed subset E  of ( )21,, vvY  such 

that ∈y E  and ( ) ⊆− Ef 1 C . But f  is not pre-semi-open because { }3  is semi-open in 

( )21,, uuX  but { }( )3f  is not semi-open in ( )21,, vvY . 
 
Theorem 5.5.6. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and let :f ( ) →21,, uuX  

( )21,, vvY  be a map. Then the following statements are equivalent:  
(i) f  is pre-semi-closed. 

(ii)  If ⊆D Y and A is a semi-open subset of ( )21,, uuX  such that ( ) ⊆− Df 1 A, then 

⊆D M  and ( ) ⊆− Mf 1 A  for some semi-open subset M  of  ( )21,, vvY . 

(iii)If ∈y Y and A is a semi-open subset of ( )21,, uuX  such that { }( ) ⊆− yf 1 A, then 

∈y M  and ( ) ⊆− Mf 1 A for some semi-open subset M  of  ( )21,, vvY . 
 
Proof. (i)→(ii) The proof is a modification of the proof (i)→(ii) of Proposition 5.5.3. 
 (ii)→(iii) Let ∈y Y  and A  be a semi-open subset of ( )21,, uuX  such that { }( ) ⊆− yf 1  

A . Put =D { }y . Then there exists a semi-open subset M  of  ( )21,, vvY  such that ∈y M  and 

( ) ⊆− Mf 1 A . 

(iii)→(i) Let C  be a semi-closed subset of ( )21,, uuX . Then CX −  is semi-open in  

( )21,, uuX  and ( )( )CfYf −−1 = ( )( ) ⊆− − CffX 1 CX − . Let ∈y ( ) ⊆− CfY Y  and put 

=A CX − . Then { }( ) ⊆− yf 1 =− CX A . By (iii), there exists a semi-open subset yM  of 

( )21,, vvY  such that ∈y yM  and ( ) ⊆−
yMf 1 =A CX − , i.e. ⊆C ( )yMfX 1−− . Hence, 

( ) ⊆Cf ( )( ) =− −
yMfXf 1 ( )( )⊆−−

yMYff 1
yMY − . Thus, ∈y ⊆yM ( )CfY −  for all 

∈y ( )CfY − . It follows that  ( ) =− CfY
( ) y
CfYy

M
−∈
∪ . By Proposition 5.2.4, 

( ) y
CfYy

M
−∈
∪  is 

semi-open in ( )21,, vvY . Consequently, ( )Cf  is semi-closed in ( )21,, vvY . Therefore, f  is 
pre-semi-closed.                 � 
 
Proposition 5.5.7. Let ( )21,, uuX , ( )21,, vvY  and ( )21,, wwZ  be biclosure spaces and let  

:f ( ) →21,, uuX  ( )21,, vvY  and :g ( ) →21,, vvY ( )21,, wwZ  be maps. 
(i) If f is a semi-irresolute surjection and fg o  is pre-semi-open, then g is pre-

semi-open. 



(ii)  If g  is a semi-irresolute injection and fg o  is pre-semi-open, then f  is pre-
semi-open. 

(iii)  If f  is a pre-semi-open surjection and fg o  is semi-irresolute, then g is semi-
irresolute. 

(iv) If g  is a pre-semi-open injection and fg o  is semi-irresolute, then f  is semi-
irresolute. 

 
Proof. (i) Let B  be a semi-open subset of ( )21,, vvY . Since f is semi-irresolute, ( )Bf 1−  is 

semi-open in ( )21,, uuX . But fg o  is pre-semi-open and f  is surjective, hence 

( )( ) =− Bffg 1
o ( )Bg  is semi-open in ( )21,, wwZ . Therefore, g is pre-semi-open. 

  The proofs of (ii)-(iv) are just modifications that of (i).   
   � 
 
Proposition 5.5.8. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and :f ( ) →21,, uuX  

( )21,, vvY  be a continuous, pre-semi-open and injective map. Then ( )21,, uuX  is a ST -space if  

( )21,, vvY  is a ST -space. 

 
Proof. Let ( )21,, vvY  be a ST -space and let A  be a semi-open subset of ( )21,, uuX . Since f  

is pre-semi-open, ( )Af  is semi-open in ( )21,, vvY . But ( )21,, vvY  is a ST -space, hence ( )Af  

is open in ( )21,, vvY . As f  is continuous, ( )( )Aff 1−  is open in ( )21,, uuX  by Proposition 

5.1.18. Since f  is injective, ( )( ) =− Aff 1 A .  Thus, A  is open in ( )21,, uuX .Therefore, 

( )21,, uuX  is a ST -space.              � 

Proposition 5.5.9. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and :f ( ) →21,, uuX  

( )21,, vvY  be a 1-open and 2-continuous map. Then f  is pre-semi-open. 
 
Proof. Let A  be a semi-open subset of ( )21,, uuX . Then there exists an open subset G  of 

( )1,uX  such that GuAG 2⊆⊆ . Consequently, ( ) ( ) ( )GufAfGf 2⊆⊆ . Since f  is 2-

continuous, :f  ( ) →2,uX ( )2,vY  is continuous. Hence, ( ) ⊆Guf 2 ( )Gfv2 , i.e. 

( ) ( ) ⊆⊆ AfGf ( )Gfv2 . But f is 1-open, thus :f ( ) →1,uX ( )1,vY  is open. It follows that 

( )Gf  is open in ( )1,vY . Thus, ( )Af  is a semi-open subset of ( )21,, vvY . Therefore, f  is pre-
semi-open.                  � 
 
Definition 5.5.10. A map :f ( ) →21,, uuX ( )21,, vvY , where ( )21,, uuX  and ( )21,, vvY  are 
biclosure spaces, is called a semi-homeomorphism if f  is bijective, semi-irresolute and pre-
semi-open.  

It is easy to show that the composition of two semi-homeomorphisms of biclosure 
spaces is again a semi-homeomorphism.  
 
Remark 5.5.11. The concepts of a homeomorphism and a semi-homeomorphism are 
independent as can be seen from two following examples. 
 
Example 5.5.12. In Example 5.2.12, the map f  is a semi-homeomorphism but f  is not 
open. Consequently, f  is not a homeomorphism. 
 



Example 5.5.13. Let { } YX == 3,2,1  and define a closure operator 1u  on X  by  =φ1u φ , 

{ }=21u { }=31u { }=3,21u { }3,2  and { }=11u { }=2,11u { }=3,11u =Xu1 X . Define a closure 

operator 2u  on X  by =φ2u φ , { }=12u { }3,1  and { }=22u { }=32u { }=2,12u { }=3,12u  

{ }=3,22u XXu =2 . Define a closure operator 1v  on Y  by =φ1v φ , { }=21v { }=31v { }=3,21v  

{ }3,2  and  { } =11v { } =2,11v { }=3,11v =Yv1 Y . Define a closure operator 2v  on Y  by =φ2v φ  

and { }=12v { }=22v { }=32v { }=2,12v { }=3,12v { }=3,22v =Yv2 Y . Let :f ( ) →21,, uuX  

( )21,, vvY  be the identity map. Then f  is a homeomorphism but f  is not semi-irresolute 

because { }2,11−f  is not semi-open in ( )21,, uuX  while { }2,1  is semi-open in ( )21,, vvY , i.e. f  
is not semi-homeomorphism. 
 
Proposition 5.5.14. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces and :f ( ) →21,, uuX  

( )21,, vvY   be a bijective map. Then f  is pre-semi-open if and only if f  is pre-semi-closed. 
 
 As a direct consequence of Proposition 5.5.14, we have: 
 
Proposition 5.5.15. Let ( )21,, uuX  and ( )21,, vvY  be biclosure spaces. If :f ( ) →21,, uuX  

( )21,, vvY  is a bijective semi-irresolute map, then the following statements are equivalent: 
 (i)   f  is a semi-homeomorphism, 
 (ii)  f  is a pre-semi-closed map, 
 (iii) f  is a pre-semi-open map.  



6 Conclusion 
 
 
The outcomes of the Ph.D. Thesis are as follows: 
 

1. Semi-open sets and semi-closed sets in closure spaces were introduced.  Their 
fundamental properties and behaviour of unions, intersections and subspaces were described. 
We also showed that the openness and semi-openness are preserved under the projection 
maps. Semi-open sets were used to define semi-open maps, semi-closed maps, semi-
continuous maps, contra-semi-continuous maps and semi-irresolute maps which were 
investigated. We proved that the class of all semi-open (respectively, semi-closed) maps 
properly contains the class of all open (respectively, closed) maps and the class of all semi-
continuous maps properly contains the class of all semi-irresolute maps.  Semi-open sets were 
also used to introduce s-connectedness and s-compactness of closure spaces. Further, we 
proved that s-connectedness and s-compactness are preserved under semi-irresolute 
surjections.  

 
2. Two new kinds of sets called generalized semi-open sets and γ-open sets were 

introduced. Their basic properties were studied. We proved that the generalized semi-
openness and γ-openness are preserved by projection maps. Three new kinds of spaces, 
namely Tgs-spaces, Tγ-spaces and Tsγ-spaces, were introduced and studied.  Further, the 
interrelation among them was investigated. We then introduced generalized semi-continuous 
maps and generalized semi-irresolute maps by using generalized semi-open sets and studied 
some of their properties. Moreover, we introduced the concepts of γ-continuous maps and γ-
irresolute maps by using γ-open sets and investigated their behaviour. The interrelations 
among generalized-semi-continuous maps, generalized semi-irresolute maps, γ-continuous 
maps and γ-irresolute maps in closure spaces were also studied.  
 

3. We studied some fundamental properties of biclosure spaces. We then defined a 
notion of semi-open sets in biclosure spaces and investigated their behaviour. We also 
introduced the concepts of semi-open maps, semi-closed maps, semi-continuous maps, semi-
irresolute maps, pre-semi-open maps and pre-semi-closed maps of biclosure spaces and 
investigate some their properties. We proved that the class of all semi-irresolute maps is 
properly contained in the class of all semi-continuous maps and the class of all pre-semi-open 
maps is properly contained in the class of all semi-open maps.  

 
In our further research, we will introduce the notion of φ-open sets and φ-closed sets. 

If ( )uX ,  is a closure space and XA ⊆ , then A  is φ-open if there exists an open subset G  of 

( )uX ,  such that uAGA ⊆⊆ . A subset XA ⊆  is called φ-closed if its complement is φ-
open. We will study some basic properties of φ-open and φ-closed sets.  We will introduce 
and study φ-open maps, φ-closed maps, φ-continuous maps, contra-φ-continuous maps, φ-
irresolute maps, pre-φ-open and pre-φ-closed maps by using φ-open sets and φ-closed sets. 
We will also study the interrelation among these concepts. 
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