4 VHDL Model of Electronic-Lock System
K. VLCEK, B.R. BBANNISTER, D. MIKLIK, .M. BELL, E. BARTSCH, J. NOGA

Radioengineering
Vol. 9, No. 1, April 2000

VHDL MODEL OF ELECTRONIC-LOCK SYSTEM

Karel VLCEK', Brian R. BANNISTER?, David MIKLIK',
lan M. BELL?, Ernst BARTSCH? and Jitf NOGA'
'Department of Measurement and Control, FEI,

V8B Technical University of Ostrava, Czech Republic
Department of Electronic Engineering, University of Hull,
Great Britain

~ ™~

Abstract

The paper describes the design of an electronic-lock
system which was completed as part of the Basic VHDL
course in the Department of Control and Measurement,
Faculty of Electrical Engineering and Informatics,
Technical University of Ostrava, Czech Republic in co-
operation with the Department of Electronic
Engineering, University of Hull, Great Britain in the
\fiame of TEMPUS project no. S_JEP/09468-93.

_

Keywords
System Design, Finite State Machine, Behavioural
VHDL Modelling, FPGA Implementation

1. Behavioural Modelling Method

The solution was achieved by the use of a finite
state machine model which described the behaviour of the
electronic-lock. The required circuit was specified in terms
of partial behavioural models which were then simulated,
and the final circuit achieved by the interconnection of
these partial models.

This method of design allowed the designers the
freedom to modify the overall model description of the
system as necessary, and to implement it in a chosen FPGA.

2. System Design

The electronic-lock is often introduced to illustrate the
possibilities of design of an electronic system using a "top-
down" approach. This is because it is not too complicated
but must be designed as a complete system. The "customer"
must be able to specify the key data sequence and the
sequence must be easily modified when required.

As designs become more complex, it becomes more
efficient to move away from ad hoc methods and use tools
that allow the design to be carried out at a higher level of
abstraction [1]. The description of the circuit by VHDL [2]
allows the designers to prepare a behavioural algorithm and
does not require the definition of a data sequence for the
electronic key.

The key is subsequently specified by the user as a
sequence of constants, which are used as declarations in the
program description. Input of the electronic key is by
means of a twelve contacts telephone number pad. When a
key is activated, one of four "row" contacts is connected to
one of three “column” contacts. The rows and columns are
connected to a 2-out-of-5 encoder.

The bus CD is the output of the encoder, giving a non-
linear five-bit error control code. This is applied to a
decoder and decryptor via a multiplexer which can,
alternatively, connect external inputs, K, to the decoder and
decryptor if selected by the address input M. The circuit is
thus able to accept data from remote circuits and provide
communication by cryptographic data key. The circuit
blocks contained within the dotted box in FIG. 1 are all
included in the one-circuit FPGA implementation [3].

3. Model Description

The VHDL description of the electronic-lock system
[4] can be divided into three entities. These are entities
GEN, MULTIPL and DESIFRAT (see part 7: Source code

BUTTON cD
CLOCK
1|2 |3 [RO | R ey \
41516 Ri Encoder - % ! READY
R2 2-out-of-5 r MUX Decoder &
180 2:1 Decryptor ALARM
R3
* 0 # S /; // tl
[ERROR
c-0f 11 2 ST “
K M

FIG. 1.: The block diagram of the electronic-lock system

Radioengineering
Vol. 9, No. 1, April 2000

VHDL Model of Electronic-Lock System 5
K. VLCEK, B.R. BBANNISTER, D. MIKLIK, .M. BELL, E. BARTSCH, J. NOGA

of VHDL model). Entity GEN contains a description of the
(2-out-of-5) encoder. The keypad is controlled by the signal
vector C(0 to 2), which sequentially tests the individual
columns. A shift register behavioural model is used for this
purpose.

When a key is operated, a signal vector R(0 fo 3) is
generated. If the vector signal R is equal to zero then no key
is pressed. The output of the (2-out-of-5) encoder on the
CD bus is defined by the values of signal vectors C and R.

For subsequent processing it is necessary that the
output of entity GEN is only impulses, and this is achieved
as follows: The code of the active key is presented as signal
D and, after de-activation of the key (C=111, R=0000), the
value of output signal CD is determined by the rising edge
of the next CLOCK signal. The signal BUTTON is active if
any key is pressed.

The entity MULTIPL gives the VHDL model of
the multiplexer, which allows the connection of another,
remote, circuit and keypad. The multiplexer model uses
inputs ¥ in the description, which are the output bus CD of
the entity GEN and the external inputs K.

The choice of inputs is controlled by the address
signal M. The chosen inputs are switched to the
multiplexer outputs. The outputs of the multiplexer, O, are
connected to the inputs, /, of entity DESIFRAT.

This entity decodes the (2 of 5)-code and it is
responsible for the electronic key sequence recognition.
The decoding of the non-linear error-control code occurs at

COMPILE | SIMULATE |

" Edit_Zoom _ Cursor_Options

utj
C

the beginning of the program routine describing the
behavioural model.

4. Model Simulation

If the five-bit code word contains an error, output
signal ERROR is activated. If the input word is a valid code
word the value is passed to the decryptor. If the input word
is not a valid code word, the model DESIFRAT waits for
the next input word.

During the simulation the values of the keypad are
inserted into signal TLACZ. To deactivate the key, the value
55 is inserted. The unlocking combination is pre-set in the
simulated example to the sequence of values 1, 2, 3,4, 5, 6
and 7. If the inserted sequence is not the same as the
example sequence the signal ALARM is activated as part of
the entity ZAMEK in the circuit model.

The finite state machine can be restarted from the
ALARM active state by activation of button, or code, "*" on
the keypad. This causes the binary "11111" to appear on
the CD bus. When the "*" key is deactivated, the circuit re-
initialises and a new sequence can be inserted.

The unlock sequence can be changed by altering of
the values of the variables in the terms of test states SO to
S13 in entity DESIFRAT. These are values expressed in (2-
out-of-5)-code. (See: part 6. Table of “keys to (2-out-of-5)-
code relation™).

/stz = 2 JEREEDRONN RN NARAD

(2) = 8
() =1
(8) =0

Wz =9

aic

lclnckz

/ez =80 G0 { G €1 I | G)

) GV G VG0
|

oy N N I I
(3) N

¥

Nl Il I

(2) = N

1) =

Salalaul

@ =

— —J /9 3 3

LR

ARZ =]

Ta7 160

iz = 1

/tiacz = 55T o7 o ls oom oo s

Bt I‘I

| 8 F 1 T el meTialns

schybaz = @

I_

/readyz = 0

00000@E

salarmz = 0

/[R S

i‘

w0 s Jlew

{ETTH B T

i Ixsiﬁ e i Ton

o | »

FIG. 2: Wave simulation diagram of electronic-lock circuit

6 VHDL Model of Electronic-Lock System
K. VLEEK, B.R. BBANNISTER, D. MIKLIK, I.M. BELL, E. BARTSCH, J. NOGA

Radioengineering
Vol. 9, No. 1, April 2000

5. Circuit Signals

PIN(S) Function
C0-C2 Column keypad outputs
CD0 - CD4 (2-out-of-5)-code outputs
BUTTON Keypad activity output
READY Unlock output
ALARM Wrong unlock sequence output.
RO - R3 Row keypad inputs
K0 -K4 Remote code inputs
M Multiplexer address
CLOCK Circuit clock input
ERROR Error in (2-out-of-5)-code output

6. Keypad and Related Code

Input of the electronic key is by means of a twelve
contacts telephone number pad. When a key is activated,
one of four "row" contacts is connected to one of three
“column” contacts. The rows and columns are connected to
a 2-out-of-5 encoder.

Key Code Key Code
1 11000 7 01001
2 10100 8 00110
3 10010 9 00101
4 10001 0 00011
5 01100 i 11111
6 01010 "#" 00000
7. Source Code of VHDL Model
-- Sedmimistny kodovy zamek, Jiri Noga
-- odemykaci kombinace...1234567
entity zamek is
port (stz: buffer bit_vector (2 downto 0); -- vstup do klav.
rz: buffer bit_vector (3 downto 0); -- vystup z klav.
clockz: in bit; -- hodiny
cz: buffer bit_vector(4 downto 0); - -- vystup za
-- koderem 2z5
Kz: in bit_vector (4 downto 0); -- druhy vstup

do multiplexoru
Mz: in bit;
tlacz : integer;

-- ovladani multiplexoru

-- simulace stalac. tlacitka

-- (55)pust,

-- (10)vyp.alarmu
CHYBAz, READYz, ALARMz: out bit);

-- chyba kodu 2z5, odemknuti, alarm

end zamek;

entity gen is -- klavesnice a koder 2z5
port (st: buffer bit_vector (2 downto 0);
c: buffer bit_vector(4 downto 0); -- vystup z koderu
clock: in bit;
r: buffer bit_vector (3 downto 0);
tlac : integer);
end gen;
architecture vysilac of gen is
signal d : bit_vector (4 downto 0);
signal s : bit_vector (2 downto 0);

begin
Sequence: process (clock, r)
begin
if (clock'event and clock = '1")then
case s is
when "100" => st <= "010"; s <="010" after 1 ns;
when "010" => st <="001"; s <="001" after | ns;
when "001" =>st<="111";s<="111" after | ns;
when "111" => st <="100";, s <="100" after 1 ns;
when others => st <= "100"; s <="100" after | ns;
end case;
end if}
end process;
Combinatorial : process (r,s)
begin
if (r="0001" and st ="001") then d <="11000"; -1
elsif (r="0001" and st ="010") then d <="10100"; --2
elsif (r="0001" and st ="100") then d <="10010"; --3
elsif (r ="0010" and st ="001") then d <="10001"; --4
elsif (r="0010" and st ="010") then d <="01100"; --5
elsif (r="0010" and st ="100") then d <="01010"; --6

-- posouvani s a st

elsif (r ="0100" and st ="001") then d <="01001"; --7
elsif (r="0100" and st ="010") then d <="00110"; --8
elsif (r="0100" and st ="100") then d <= "00101"; --9
elsif (r="1000" and st ="001") thend <="11111"; --*
elsif (r="1000" and st ="010") then d <="00011"; --0
elsif (r ="1000" and st ="100") then d <= "00000"; --#
end if;

if (r="0000" and s="111" and st="111") then
-- nestlacene tlacitko
c<=d;
d<="00000";
else c<="00000",
end if}
end process;

-- vznikne impuls na ¢

kalvesnice: process (tlac, st)
begin
if (st="001" and tlac =1) then r <= "0001";
elsif (st ="010" and tlac =2) then r <= "0001",
elsif (st ="100" and tlac = 3) then r <= "0001";
elsif (st ="001" and tlac = 4) then r <= "0010";
elsif (st ="010" and tlac = 5) then r <="0010";
elsif (st="100" and tlac = 6) then r <="0010";
elsif (st ="001" and tlac = 7) then r <= "0100";
elsif (st ="010" and tlac = 8) then r <="0100";
elsif (st ="100" and tlac =9) then r <="0100";
elsif (st ="001" and tlac = 10) then r <="1000";
elsif (st ="010" and tlac = 0) then r <="1000";
elsif (st ="100" and tlac = 11) then r <="1000";
elsif (st ="111" and not(tlac = 55)) then r <="1111";
else r<="0000",
end if}
end process;
end vysilac;

entity MULTIPL is -- Mux mezi
port (V,K : in bit_vector (4 downto 0); --koderem 2z5
-- a desifratorem
M : in bit;
O : out bit_vector (4 downto 0)),
end MULTIPL;

architecture MUX of MULTIPL is
begin
process (V, K, M)
begin

Radioengineering
Vol. 9, No. 1, April 2000

VHDL Model of Electronic-Lock System
K. VLCEK, B.R. BBANNISTER, D. MIKLIK, I.M. BELL, E. BARTSCH, J. NOGA

if (M ="'0") then
O <=V after 1 ns;
else O <= K after 1 ns;
end if}
end process;
end MUX;

entity DESIFRAT is -- desifrator odemykaciho kodu
port (CLOCK: in bit; -- s kontrolou spravnosti
[:in bit_vector (4 downto 0); -- kodu 2z5
CHYBA, READY, ALARM : out bit),
end DESIFRAT;

-- Kontrola kodu 2z5 ... cisla klavesnice a jim odpovidajici

-- 111000 701001 kombinace v kodu 225
--210100 800110

--3 10010 900101 (55)..pusteni tlacitka
--4 10001 000011

- 501100 10* L1111
- 601010 11# 00000

architecture DESIF of DESIFRAT is
type StateType is
(S0,51,52,83,54,55,56,57,58,59,510,511,512,513,514,515,516)

signal State, NextState : StateType;
begin
Sequence: process (CLOCK)
begin
if (CLOCK'event and CLOCK ="1") then
State <= NextState;
end if;
end process;
Combinatorial : process (I, State)
begin
READY <="'0";
ALARM <='0",
if (I="11000" -- konrola kodu 2z5
or I="10100"-- jestli je kod 2z5 spatny
or[="10010" -- zadava se cislo znovu
or I="10001"
orI="01100"
or [="01010" -- jestli je spatna odemykaci
or [="01001" -- kombinace, aktivuje se alarm
or [="00110" -- ktery se da zrusit zmacknutim
or[="00101" -- 10*..11111
or1="00011"
orI="11111"
or I ="00000") then
CHYBA <=0
case State is
when S0 =>
if (1="11000") then
NextState <= S1;
elsif (1/="11000" and [/= "00000") then
NextState <= S15;

-- lcislo

end if;
when S1 =>

if (I ="00000") then NextState <= S2 ; end if;
when 52 => -- 2cislo

if (1="10100") then
NextState <= S3;
elsif (1/="10100" and I/="00000")then
NextState <= S15;
end if;
when S3 =>
if (I = "00000") then NextState <= S4 ; end if;

when S4 => -- 3cislo
if (I="10010") then
NextState <= S5;
elsif (1/="10010" and I/="00000") then
NextState <= S15;
end if;
when S5 =>
if (I1="00000") then NextState <= S6 ; end if;
when S6 => -- 4cislo
if (1="10001") then
NextState <= 87,
elsif (1/="10001" and I/= "00000") then
NextState <= S15,
end if;
when S7 =>
if (I="00000") then NextState <= S8 ; end if;
when S8 => -- Scislo
if (I="01100") then
NextState <= S9,
elsif (I /="01100" and I/="00000") then
NextState <= §15;
end if;
when S9 =>
if (I="00000") then NextState <= S10 ; end if;
when S10=> -- bcislo
if (1="01010") then
NextState <= S11;
elsif (1/="01010" and I/= "00000") then
NextState <= S15;
end if;
when S11 =>
if (I ="00000") then NextState <= S12 ; end if;

when S12 => -- Tcislo
if (I="01001") then
NextState <= S13;
elsif (I/="01001" and I/= "00000") then
NextState <= S15;
end if;
when S13 =>
if (I ="00000") then NextState <= S14 ;end if;
when S14 =>
READY <="1"; -- odemknuti
ALARM <='0";
NextState <= S0,
when S15=> -- alarm
ALARM <="1"
if (I="11111") then
NextState <= S16;
end if;
when 516 =>
if (I ="00000") then NextState <= SO ;end if;
end case;
else CHYBA <="1";
end if;
end process;
end DESIF;

architecture structural of zamek is -- vnitrni signaly
signal t1 : bit_vector (4 downto 0);
-- pomocny signal mezi multipl. a desifratorem
-- deklarace lokalnich komponentu
component gen
port (st: buffer bit_vector (2 downto 0);
c: buffer bit_vector(4 downto 0);
clock: in bit;
r: buffer bit_vector (3 downto 0);
tlac : integer),

8 VHDL Model of Electronic-Lock System
K. VLEEK, B.R. BBANNISTER, D. MIKLIK, I.M. BELL, E. BARTSCH, J. NOGA

Radioengineering
Vol. 9, No. 1, April 2000

end component;
component MULTIPL
port (V,K : in bit_vector (4 downto 0);
M :in bit;
O : out bit_vector (4 downto 0));
end component;
component DESIFRAT
port { CLOCK: in bit;
[:in bit_vector (4 downto 0);
CHYBA, READY, ALARM : out bit);

end component;

-- popis struktury
begin

u0: gen port map (st => stz, ¢ => cz, clock => clockz, r => rz, tlac
=> tlacz),

ul: MULTIPL port map (V => cz, K =>Kz, M => Mz, O =>1tl);

u3: DESIFRAT port map (CLOCK => clockz, I => tl, CHYBA
=> CHYBAz, READY => READYz, ALARM =>
ALARMz);

end structural;

8. Conclusion

This example of an electronic-lock circuit is a design
of average complexity, where it is necessary to be able to
modify various aspects in response to customer
requirements. The model was verified by functional
simulation using the software suite V-System. It is possible
to simulate many other details of the time response [6].

When implementing the circuit in an ANTI-FUSE
type of FPGA, it is an advantage that the configuration file
in memory is not necessary. In this case it is already
verified that the circuit will be fully functional.

The more complicated models were simulated using
the V-SYSTEM from Model Technology or EASY-VHDL
of GALILEO system, from Mentor Graphics, running on
HP workstations [7]. When a hazard occurs between two
signals, it is possible to confirm the hardware operation by
means of two independent probes which are connected
directly to the circuit. This allows verification of actual
electrical signals by direct connection to test points brought
out through free pins on the circuit package.

Acknowledgement

The first author gratefully acknowledges discussions
about this work with Prof. Brian R. Bannister. These
discussions allow more exact expression of some
formulations. The author thanks his student Jiri Noga for
careful derivation of VHDL model and the simulation of
this and his colleague David Miklik for his efforts in FPGA
implementation using the Logic Explorer and the Time
Explorer software suite GALILEO system. Last but not
least the author thanks his colleagues Ian Bell and Ernst
Bartsch for re-simulations of this model in the Cadence
VHDL system.

Support for TEMPUS project “EQUATOR" (No.
S JEP/09468-95) is gratefully acknowledged.

References

[1] Scott, T.: "Adopting VHDL for PLD design and simulation”,
EDN, 1998, Vol. 43, No. 8, p. 139.

[2] Vigek, K.: "VHDL makes CPLD & FPGA design easy".
ST1/98,

[3] Vigek, K.; "Circuit design by VHDL support”. Sdel. tech. 2/98,
[4] Vigek, K.: "The VHDL mixed models". Sdel. tech. 4/98,

[5] Vigek, K.: "The VHDL models of finite state machines”. Sdel.
tech. 6/98

[6] Vicek, K., Noga, J., Mitrych, J.: "The VHDL University
Courses". Proc. of Conf. Radioelektronika, (April 28-29, 1998,
Czech Republic),

[7]1 Vicek, K., Miklik, D.: "The VHDL Model of DEC-TED Memory
Checker". Proc. of Int. Conf. EWDC-9, (May 14-16, 1998,
Poland), ISBN 83-907591-1-X, pp. 54-58.

[8] Vlgek, K.: The VHDL Model of Wyner-Ash Cannel Coding for
Medical Applications. Proc. of International Workshop DDECS
'98 (Sept. 2-4, 1998, Szczyrk, Poland)

About authors...

Karel VI€ek has been Associate Professor of Czech
Technical University in Prague for Telecommunication. At
the time being, he is at the Department of Control and
Measurement, Technical University of Ostrava. His main
field of interests is investigated in Discrete Signal
Processing, and Error Control Coding, Diagnostics and
Reliability, Automation of Circuit Design by VHDL, and
Biomedical Engineering.

Brian R. Bannister has recently retired as Director of
the Microelectronics Lab at the University of Hull,
England. He has been with the Department of Electronic
Engineering, and more recently the School of Engineering,
at the University since 1981. He was previously at
Staffordshire University and The Marconi Company
Research Labs, Great Baddow, where he was involved with
radar data handling and computer systems research.

David Miklik was born in Zlin, (Czech Republic) in
1974. He received the Ing. (MSc.) degree at the Technical
University of Ostrava, Faculty of Electrical Engineering
and Informatics, Department of Control and Measurement
(1991-1996). At the time being, he is a post-graduate
student at the Department of Control and Measurement and
a technical person in workstation CAD laboratory. His
professional orientation interests in Multi-agent Systems,
Distributed Control Systems, WWW Programming, and
VHDL Circuit Modelling.

Ian M. Bell (see Radioengineering vol. 8, No. 4).
Ernst Bartsch (see Radioengineering vol. 8, No. 4).

Jan Noga was born in Karvind (Czech Republic) in
1976. He received the Ing. (MSc.) degree at the Technical
University of Ostrava, Faculty of Electrical Engineering
and Informatics, Department of Telecommunication and
Electronics (1994-1999).

