BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

NN

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS
AND MULTIMEDIA

FAKULTA INFORMACNICH TECHNOLOGII
f"l USTAV POCITACOVE GRAFIKY A MULTIMEDII

IMAGE CAPTIONING WITH RECURRENT NEURAL
NETWORKS

POPIS FOTOGRAFII POMOCI REKURENTNICH NEURONOVYCH SITI

MASTER'’S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. JAKUB KVITA
AUTOR PRACE

SUPERVISOR Ing. MICHAL HRADIS, Ph.D.
VEDOUCI PRACE

BRNO 2016

Zadani diplomové prdce/18734/2015/xkvita01
Vysoké uceni technické v Brné - Fakulta informaénich technologii

Ustav pocitadové grafiky a multimédii Akademicky rok 2015/2016
Zadani diplomové prace

Reditel: Kvita Jakub, Bc.

Obor: Pocitacova grafika a multimédia

Téma: Popis fotografii pomoci rekurentnich neuronovych siti
Image Captioning with Recurrent Neural Networks

Kategorie: Zpracovani obrazu

Pokyny:
1. Prostudujte zaklady neuronovych siti a back-propagation.
2. Vytvorte si prehled o soutasnych metodach pro generovani popiskd na zékladé
fotografii pomoci rekurentnich siti.
3. Navrhnéte konkrétni metodu pro generovani popisl fotografii pomoci rekurentnich
siti.
. Obstarejte si databazi vhodnou pro experimenty.
. Implementujte navrzenou metodu a provedte experimenty nad datovou sadou.
. Porovnejte dosazené vysledky a diskutujte moznosti budouciho vyvoje.
. Vytvorte stru¢né video prezentujici vasi praci, jeji cile a vysledky.

NOoO b

Literatura:

e Vinyals et al.: Show and Tell: A Neural Image Caption Generator. CVPR 2015.
PFi obhajobé semestralni Casti projektu je poZzadovano:

e Body 1 az 3.

Podrobné zavazné pokyny pro vypracovani diplomové prace naleznete na adrese
http://www.fit.vutbr.cz/info/szz/
Technickd zprava diplomové prace musi obsahovat formulaci cile, charakteristiku sou¢asného stavu,
teoretickd a odborna vychodiska fesenych problém{ a specifikaci etap, které byly vyfeeny v ramci d¥ivéjsich
projektd (30 a% 40% celkového rozsahu technické zpravy).

Student odevzda v jednom vytisku technickou zpravu a v elektronické podobé zdrojovy text technické
zprévy, Uplnou programovou dokumentaci a zdrojové texty programd. Informace v elektronické podobé& budou
uloZeny na standardnim nepfepisovatelném pamétovém médiu (CD-R, DVD-R, apod.), které bude vioZeno do
pisemné zpravy tak, aby nemohlo dojit k jeho ztraté pfi bézné manipulaci.

Vedouci: Hradis Michal, Ing., Ph.D., UPGM FIT VUT

Datum zadani: 1. listopadu 2015

Datum odevzdani: 25. kvétna 2016))
VYSOKE UCENI TECHNICKE v 3Rt
. Fakulta informagnich technologii

Ustav poéitadové grafiky a multimédi
61566 Brno, BoZetdchova 2

) 4
e T
doc. Dr. Ing. Jan Cernocky
vedouci Ustavu

Abstract

In this work I deal with automatic generation of image captions by using multiple types
of neural networks. Thesis is based on the papers from MS COCO Captioning Challenge
2015 and character language models, popularized by A. Karpathy. Proposed model is com-
bination of convolutional and recurrent neural network with encoder—decoder architecture.
Vector representing encoded image is passed to language model as memory values of LSTM
layers in the network. This work investigate, whether model with such simple architecture
is able to generate captions and how good it is in comparison to other contemporary solu-
tions. One of the results is that the proposed architecture is not sufficient for any image
captioning task.

Abstrakt

Tato prace se zabyva automatickym generovanim popist obrazki s vyuzitim nékolika druht
neuronovych siti. Préace je zalozena na c¢lancich z MS COCO Captioning Challenge 2015
a znakovych jazykovych modelech, popularizovanych A. Karpathym. Navrzeny model je
kombinaci konvolu¢ni a rekurentni neuronové sité s architekturou kodér—dekodér. Vektor
reprezentujici zakédovany obrazek je predavan jazykovému modelu jako hodnoty paméti
LSTM vrstev v siti. Prace zkoumad, na jaké tirovni je model s takto jednoduchou architek-
turou schopen popisovat obrazky a jak si stoji v porovnani s ostatnimi soucasnymi modely.
Jednim ze zaveéru prace je, ze navrzena architektura neni dostatecna pro jakykoli popis
obrazki.

Keywords

recurrent neural networks, RNN, convolutional neural networks, CNN, image captioning,
LSTM, GRU, MS COCO, Torch, deep learning

Klicdova slova

rekurentni neuronové sité, RNN, konvoluéni neuronové sité, CNN, popisovani obrazku,
LSTM, GRU, MS COCO, Torch, hluboké uceni

Reference

KVITA, Jakub. Image Captioning with Recurrent Neural Networks. Brno, 2016. Master’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Hradis Michal.

Image Captioning with Recurrent Neural
Networks

Declaration

I hereby certify that this thesis is a presentation of my original research work and I have
excercised reasonable care to ensure it does not to the best of my knowledge breach any law
of copyright. Wherever contributions of others are involved, every effort is made to indicate
this clearly, with due reference to the literature, and acknowledgement of collaborative
research and discussions. The work was done under the guidance of Michal Hradis at the
Brno University of Technology.

Jakub Kvita
May 11, 2016

Acknowledgements

Access to computing and storage facilities owned by parties and projects contributing to
the National Grid Infrastructure MetaCentrum, provided under the programme “Projects
of Large Research, Development, and Innovations Infrastructures”(CESNET LM2015042),
is greatly appreciated.

(© Jakub Kvita, 2016.

This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction

2 Neural networks

2.1 Feed-forward neural netso
2.2 Recurrent neural nets L L s
2.2.1 Recurrent architectures

2.2.2 Modeling languages
2.3 Convolutional neural nets

3 Image Captioning

3.1 Related Work
3.2 Datasets
3.3 Evaluation.

3.3.1 Automated metrics

4 Model design

4.1 Overall architecture e
4.1.1 Language model
4.1.2 Hidden state initialization,
4.2 Training0 e e e e e
5 Implementation
5.1 Tools e e e e e e e
5.1.1 Torch e
5.2 Dataset MS COCO e e
5.3 Model implementation Lo oo
5.3.1 Training Lo

5.4 Bag of Words experiments

6 Experiments
6.1 Pretraining RNN

6.2 Language model initialization variations

6.3 Bag of Words experiments
7 Conclusion
Bibliography

List of Abbreviations

24
24
25
25
26

28
28
29
30
31
32
34

35
36
37
38

40

41

46

Appendices
List of Appendices L

CD Contents
MS COCO Annotation format

Installing Torch

O a & »

Scripts Manuals

D.1 RNN pretraining o L
D2 Fullmodel
D.3 Bagof Wordsmodels L o

47
48

49

50

51

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5

4.1

6.1
6.2
6.3
6.4

Nonlinear functions used in neural nets.
Applying dropout to a neural network.
Unrolling of a recurrent neural net.
Variation of a LSTM.
Variation of a GRU.
Architecture of famous CNN LeNet-5. [36]

Show and Tell image captioning model. [54]
From Captions to Visual Concepts caption generation pipeline. [14]

Show, Attend and Tell model architecture. [57]
Examples of Show, Attend and Tell attention. [57]
The LRCN model architecture for video processing. [11]

Architecture of the proposed model.

Distribution of caption lengths in the training data.
Pretrained RNN error based on character position in sequence.
Error of RNN initialized with CNN based on character position in sequence.
Error of RNN initialized with BOW based on character position in sequence.

© 00 3 O

10

17
18
19
20
20

25

35
36
38
39

Chapter 1

Introduction

When does a machine understand an image? One definition could be the following sentence:
A machine understand an image, when it can describe important content of the image. This
description should include present objects, their attributes and relation to each other. De-
termining the important content of the image can be quite difficult, even for humans, which
have been trained for this task since they were born. However, deep learning techniques
are proving to be quite successful in this kind of tasks. Similarly to people, these mod-
els require large amounts of training data, but, being properly trained, they can evaluate
correctly even yet unseen situations.

Neural networks, sometimes mentioned under the name of deep learning, are a branch
of machine learning based on composing multiple non-linear functions to solve the task.
As it is fundamentally different from the standard computer algorithms, it perform well
on problems, which are unsuitable for traditional solutions. For example, neural networks
have excellent performance in recognizing speech and images, writing stories and composing
music. This work focuses on generating image descriptions in regular English sentences,
which is also a task suitable for deep learning.

This work consists of 7 chapters in total. Firstly, chapter 2 introduces neural networks
and several key concepts, which are used later in this work. In chapter 3 current state-of-
the-art in the field of image captioning and summary of the key works will be presented.
Equipped by knowledge from previous chapters, I will propose an image captioning model
in chapter 4. Overview of the programming tools used for implementing neural nets is in
chapter 5, as well as description of implementation of my model. Chapter 6 discusses ex-
periments performed with my model, their results, and evaluation of the proposed solution.
The concluding chapter 7 serves as summary of the thesis and the important findings.

Chapter 2

Neural networks

General idea of artificial neural networks emerged after World War II. Perceptron, a single
artificial neuron, was created in 1958 by Frank Rosenblatt [10], but it became popular only
after combination with the backpropagation algorithm [5, 55]. At that time neural nets
have not reached massive popularity, not because they do not work, but because small
computing power of machines back then, and also the lack of datasets. Recently (after
2000), neural nets became popular again under the name of “deep learning” to emphasize
the use of several layers stacked on top of each other to create deep architectures, which
are far more practical than shallow ones. During this reinvention, neural nets have been
successfully applied in multiple fields like computer vision [21], speech recognition [18], and
natural language modeling [10].

Nowadays, various useful architectures, techniques and applications of neural nets are
introduced almost every day. As it is not possible to through all of them, in this chapter
I will describe only a handful, which are most significant and will be later used in the
research. This chapter is divided into three sections, each focusing on different type of
neural nets — feed-forward, recurrent, and convolutional. However, do not see this division
as strict and separating, tools introduced in one part can and will be used in different types
of networks.

2.1 Feed-forward neural nets

Feed-forward networks are simplest architecture of neural nets, yet they can solve many
real world tasks. Most commonly used in classification problems, feed-forward nets showed
very promising results, which later proved to be true. Later, they have been replaced by
convolutional nets, which are specific type of complex feed-forward neural net. However,
simple architectures still have place for utilization.

In this part I will cover linear neuron, rectifiers and other nonlinear functions used, and
dropout, as they are most important to the following work. Other tools like softmax layer,
loss functions, and training algorithms will be skipped.

Linear unit

In this type of neuron, the output of the unit is simply the weighted sum of its inputs added
to a bias term, described by equation

y = Waz+b. (2.1)

T T
Softplus

2 L Tanh |
Logistic
Rectifier

Figure 2.1: Nonlinear functions used in neural nets.

A combination of these neurons performs a linear transformation of the input vector. Ability
to perform only linear and affine transformations is also its weakness, as some kind of
nonlinear function needs to be added to produce more complicated functions. However it
is useful at the beginning and end of the network, to emphasize important features of the
input or output and change its dimensionality.

This type of unit is the most basic one. It was part of the Rosenblatt’s perceptron [10]
as well as the boolean function, which later evolved into nonlinear functions, like Rectifier
described further.

Rectifier and ReLLU

Combination of linear layers in neural network can result only in another linear layer, which
is useless for example on problems of nonlinear separation. To break free from limitations
induced, we need to introduce some kind of nonlinearity directly into the network. Most
commonly used method is to apply a nonlinear activation function to the output of a linear
neuron. As to which function, there are many suitable options, rectifier nowadays being
the most popular one.

In the context of neural networks, the rectifier is an activation function defined as

f(z) = max(0,x). (2.2)

Rectifier is usually used after a linear unit creating together Rectified Linear Unit (ReLU),
which showed improvements in restricted Boltzmann machines [13], speech processing [59],
and it is also default option in convolutional networks. This unit has several advantages
against other functions — in randomly initialized networks, only about 50% of units are
activated. There are no problems with vanishing gradient in large inputs. Computation
of the function is also more efficient than other functions. Issue with this function is non-
differentiability at zero, however it is differentiable at any point arbitrarily close to 0 and can
be replaced with softplus [12], which is analytic function smoothly approximating rectifier.
Currently, more variations of ReLU were introduced — Leaky ReLU, parametric ReLU, etc.
and their performance can be even better [50] than vanilla ReLUs.

Before ReLLU, popular functions were hyperbolic tangent and standard logistic function.
However, these functions are costly to compute, even though they can be replaced with

Present with Always
probability p. present.

(a) Standard neural net. (b) Applying dropout. (c) At training time. (c) At test time.

Figure 2.2: Applying dropout to a neural network.

polynomials. Hyperbolic tangent was preferred as better version of logistic function [37].
See how the discussed functions look at Figure 2.1.

Dropout

Dropout [22, 19] can be considered as one of the biggest recent inventions in the field of
neural networks. It is extremely simple and effective technique addressing the problem of
overfitting. It can be seen as type of regularization, together with techniques like L1 and
L2 regularization, and constraining maximum value of weights.

Dropout works with the idea of “dropping out” some of the unit activations in a layer,
that is setting them to zero, during training. This can be interpreted as sampling a neural
network from the full neural network, and only updating the parameters of the sampled
network for the given data. Visualisation is on Figure 2.2, parts a and b. Dropout behaves
differently during sampling phase — all the units are present, but their outputs are multiplied
by the same probability used before for dropping them out. See the part ¢ and d of Figure
2.2.

This technique should prevent complex co-adaptations, in which unit is only helpful in
the context of several other specific units. Each neuron instead learns to detect a feature
generally useful for computing the answer.

2.2 Recurrent neural nets

Feedforward neural nets are extremely powerful models, but they can be only applied to
problems with inputs and outputs of fixed dimensionality. This is a serious drawback, as
many of the real-world problems are defined as sequences with lengths that are unknown
to us beforehand. Recurrent neural networks were introduced soon after feed-forward nets
and they proved to be very useful in this kind of a task. There is vast amount of recurrent
neural network types, many not suitable for sequential tasks, like Hopfield networks [20],
which are very successful in what they do, but nevertheless not useful for us now.

Apart from classification, which can be more precise when using sequences, one of the
most important tasks is next value prediction. This core task can be then extended very
simply to predict arbitrary number of future values. Prediction problems are all around us,
from the weather forecast and stock market prediction to the autocomplete in smartphones
or web browsers. The image captioning problem, which is the main topic in this work,
includes the prediction (or generation) task too, as the caption is generated one character
at a time starting from the “base caption”. Detailed description is in the following chapters.

o 6 &

Figure 2.3: Unrolling of a recurrent neural net.

»
>

We can interpret recurrent neural network as very deep forward net with shared weights
and same inputs and outputs as before. This process of reinterpreting the network is called
RNN unrolling and is visualised in Figure 2.3. Layers of this very deep net spread forward
in time, together with the input sequence. This is very innovative idea, which enabled
training RNN with backpropagation through time, as we are not bound by time during
training.

Unrolling the networks on long sequences and creation of very deep neural nets caused
manifestation of the vanishing gradient problem, which is one of the most important is-
sues in RNNs. The problem occurs during training with gradient-based learning methods
like backpropagation. The chain rule in backpropagation multiplies gradients to compute
updates of weights and the traditional activation functions like hyperbolic tangent have
gradient in the range of (—1, 1), are the reasons why, the weights updates decrease expo-
nentially while approaching front layers of the network. The vanishing gradient problem
was formally identified by Hochreiter in 1991 [23], who, after further research, also proposed
one of the solutions to this problem in the form of Long Short-Term Memory.

Long Short-Term Memory unit and other architectures commonly used in RNNs are
discussed in following section 2.2.1. Second half (2.2.2) of this part explains how to process
text and model languages for applications with RNNs.

2.2.1 Recurrent architectures

RNNs have many different architectures, however, most of them are derived from the basic
fully recurrent network. This network do not have units separated into layers, as each of
them has a directed connection to every other unit. Rest of the architectures are special
cases of this one, as they group neurons into layers and implement only a subset of the
connections. Examples of these architectures can be Hopfield [26] and Elman [13] networks,
and Restricted Boltzmann Machines [18]. Different architectures are trying to connect
RNN with an external memory resource, which can be a tape in case of Neural Turing
Machines [19], a stack in Neural network Pushdown Automata [50], etc. During training
RNN unrolling can be applied to these architectures, although training can be quite difficult,
as explained earlier.

From here on in I will focus on an architecture called Long Short-Term Memory and ar-
chitectures derived from it, as they are very powerful and dominating the current field. These
units are carefully designed with the vanishing gradient problem in mind and perform better
than most of the other architectures.

=
K

Coi (N G
A)
tanh
i i A |G| of>P
0 0 tanh 0
wlwiw| [wlwlw| |wiw| | [w]w]w
ha |\ ITT JTUJT (U |n
W E— J

.
Figure 2.4: Variation of a LSTM.

Long Short-Term Memory

Long Short-Term Memory (LSTM) is a special type of recurrent network, able to learn long-
term dependencies. This architecture was introduced by Hochreiter and Schmidhuber [24]
after prior research of vanishing gradient problem, and later refined and popularized by
other researchers [15, 10].

LSTM was designed to remember a value for an arbitrary length of time. It contains
gates that determine, when the input is significant enough to remember, when it should
keep or forget the value, and when it should copy the value to the output. To understand
the flow of data, see the diagram of LSTM on Figure 2.4. All the gates can be described
by the following equations:

i = o(Wyixy + Wiihi—1 + WeiCi_1 + b;) (2.3)
fr = J(fowt + Whhi—1 + chct—l + bf) (2.4)
C; = tanh(Wyexy + Whehi_1 + be) (2.5)
Ci = 001 +i®C (2.6)
oy = U(Wmoﬁt + Whohi—1 + WeoCy + bo) (27)
ht = 0 ©® tanh(C’t) (28)
(x) : (2.9)
o(x) = .
1+e 2

In each time slice LSTM is using current input x;, last cell state C;_1 and unit output h;_1
to compute next cell state C; and output h;. Variables i¢, fi, o denote values of in following
order input, forget and output gates, which are used to control the information flow. LSTM
based on these equations is using total of 11 weight matrices, 4 bias vectors, and a standard
logistic function o defined in Equation (2.9). The operation ® denotes element-wise vector
product.

Equations (2.3) to (2.9) are not the only way to create an LSTM unit, they are a
variation, which was used for implementing the proposed model. As LSTM is very popular,

I'e
0
wilw v’vllvlv yllw
LL /
" J J J

[
Figure 2.5: Variation of a GRU.

many different forms were created. For example, original LSTM from 1997 [24] did not
included the “peephole connections” W;Ci_1, WerCi_1, and W,C;. These were added
later in work of Gers and Schmidhuber [I5]. Another change is to couple input gate i
and forget gate f;. Instead of separately deciding what to forget and when to input new
information, unit only forgets the value when something new is placed in its place. More
units based on LSTM and their comparison is in work of Greff, et al. [20].

Training of the LSTM based network can be performed effectively by standard meth-
ods like stochastic gradient descend in the form of backpropagation through time. Major
problem with vanishing gradients during training described earlier is not an issue as back-
propagated error is fed back to each of the gates.

Gated Recurrent Unit

Gated Recurrent Unit (GRU) [7] is slightly more dramatic variation on the LSTM theme.
It combines hidden state of the unit h; with the saved value Ci, merges input and forget
gates into one update gate z; and some smaller changes. Compare GRU diagram on Figure
2.5 with the previous LSTM figure. GRU is based on following set of equations:

re = o(Wyrxe + Whyphe—1 + by) (
2z = o(Wezwy + Wihy 1 +0.) (
by = tanh(Wopa, + Whn(he—1 @ 7¢) + by) (
he = (1—2) @ he + 2 © hyy (

On top of the Equations (2.10) to (2.13), GRU is using the standard logistic function o
defined in Equation (2.9). The operation ® again denotes the element-wise vector product.
As the unit is using only 4 weight matrices, 3 biases and 1 state variable, researchers studied
whether it can achieve the performance on same level as previous LSTM.

In Chung’s study [&], different types of recurrent units were compared on the polyphonic
music datasets. LSTM and GRU were performing significantly better than all of the other
architectures, with GRU slightly in the lead. According to Greff, et al. [20] on the other

10

hand, GRU is an average variation, slightly better than vanilla LSTM, with much simpler
architecture.

Jozefowicz’s study [30] tried to determine whether the LSTM architecture is optimal and
if such architecture exists. On variety of tasks and the data GRU outperformed LSTM on all
tasks with the exception of language modeling. On top of that, they identified architectures
that outperforms both LSTM and GRU. These architectures were found by evolutionary
algorithm working on candidate architectures represented by the computational graph. In
this work I will explore different type of language modeling than the one used in Jozefowicz’s
paper [30] and I will not focus on these new types of units. Interestingly they also confirmed
that LSTM nearly matched the GRU’s performance, when its forget gate bias was initialized
to a large value such as 1 or 2, and not to naive initialization around 0. This idea was already
presented by Gers [16] and can be interpreted in a way that LSTM will not explicitly forget
anything until it has learned to forget.

Generally, researchers agree that most of the LSTM variations, including GRU, are
roughly on the same performance level. As the changes introduced in GRU are simplifying
the standard LSTM model even though keeping the performance level, GRU has been
growing increasingly popular.

2.2.2 Modeling languages

With the addition of LSTM, recurrent neural nets quickly showed great potential in many
different types of sequence processing like speech recognition, signal prediction and modeling
languages. These result were further improved when researchers started stacking LSTMs
on top of each other. Language modeling has several ways to process input text and feed
it to the network. In this chapter, I will describe word and character level models, which
are most commonly used.

Word level representation of the text is used by most of the state-of-the-art models, have
been enhanced by many features and proved very effective for English. In this method, each
word is encoded to a vector of a constant length. The neural network then works only with
these encodings and does not have direct access to the word and its form. The advantage
of this approach is no need to teach the model exact spelling of the words, which also
means the model is not going to be confused by homographs'. The benefit also is that
encoded sequences are much shorter than sequences based on dividing text by character.
On the other hand, the disadvantage of this approach is that modeling non-word text, like
punctuation and long numbers, can be complicated.

All that is left, is to decide specific encoding for model to use. Simple way that comes
to mind is one-hot? or one-from-k encoding, which has its advantages, however, there are
several issues with it in this application. The task vocabulary often exceeds 100 000 records,
which means each input vector would be incredibly long. So long, issues with time complex-
ity of computations would appear. Luckily set of techniques called word embedding were
developed.

Word embedding [3] is a tool for mapping words or phrases from the vocabulary to
suitable vectors of real numbers in low dimensional space (around 200 — 500 dimensions)

LA homograph is a word that shares the same written form as another word but has a different meaning.
20One-hot encoded vector has exactly one high (’1’) value and all the others low (’0°).

11

relative to the vocabulary. For example,

W(horse) = (0.2, 0.4, 0.7, 0.1, ...), (2.14)
W (window) = (0.0, 0.6, 0.1, 0.9, ...). (2.15)

Vectors are usually randomly initialized and then trained to capture structure of the input
data to perform some task. An example can be skip-gram model [39], which mapped
783 millions words to vectors of 300 real numbers, while creating reasonable relationships
between them. Word embeddings show many interesting properties, like encoding analogies
between words as differences between their vectors [41], but I am not going to cover them
in more detail in this work.

Character level modeling has been considered as an alternative to word-level, but so far
had worse performance. Regardless, it is still considered as an option, because of the much
simpler representation of the input and output. Consider roughly 45 characters in English
text and over 100000 words created from them. Same input can be modeled in character
level by simple one hot encoding, instead of creating whole field of the word embeddings.
These models are also more suited for Czech, Russian, and other fusional® languages, which
heavily use prefixes and suffixes to create new words.

Character level models usually have smaller vocabulary size and tend to take more time
for training, as they need to learn spelling of the words and structure of a sentence, on
top of the same features of word level. However, with the properly trained character level
model, we can benefit from its greater generative abilities, on top of the very simple input
and output of the model.

2.3 Convolutional neural nets

Feed-forward neural nets together with backpropagation algorithm have showed very useful
for range of tasks and it has been even proven [9, 27] they can approximate any continuous
function. However, they are not very good in recognizing objects presented visually. As
every unit is connected to large amount of units in the previous layer (or all of them in
fully-connected layers), the number of weights grows rapidly with the size of the problem
and even more with the dimensionality. All these issues are becoming apparent even in
image processing, which has only two dimensions. Convolutional neural nets (CNN) were
introduced as a way to reduce the number of parameters involved, while exploiting the
spatial constraints of the input.

CNN ideas took inspiration from neurobiology, more precisely the organisation of neu-
rons in visual cortex of the cat. They were first used in the work of Homma [1], to process
a temporal signal, and their design was later improved by LeCun et al. [36]. Different CNN
architecture was proposed by Graupe [17] for decomposing one-dimensional EMG signals®.
Convolutional nets can be also used in natural language processing [33] and analysis of
three-dimensional data like videos [29] or volumetric data (e.g. 3D medical scans), but that
is not as common as image processing.

Basic architecture of CNN can be described by the following process:

3Fusional language is a type of language distinguished by its tendency to overlay many morphemes to
denote grammatical, syntactic, or semantic change.

4Electromyography (EMG) is an electrodiagnostic medicine technique for evaluating and recording the
electrical activity produced by muscles.

12

C3: f. maps 16@10x10
INPUT C1 :2feat2ure maps S4: f. maps 16@5x5
32x32 6@28x28

S2: f. maps
6@14x14

I
| Full conAection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection
Figure 2.6: Architecture of famous CNN LeNet-5. [30]

1. Convolve several small filters on the input.
2. Subsample this space of filter activations.
3. Repeat steps 1 and 2 until you are left with a sufficiently high level features.

4. Use a standard feed-forward neural net to solve the task, using the features
from step 3 as input.

Thus the CNN consist of alternating convolutional and subsampling layers, followed by
fully-connected feed-forward network. Diagram of the simple CNN architecture is on Figure
2.6. T will now go through the individual network segments and describe them.

Convolutional layer, which is most important and gave CNNs their name, is essentially
the same as mathematical convolution used elsewhere. Here it means to apply a ’filter’ over
an input at all possible offsets. This filter - in image processing and computer vision called
kernel - has a layer of connection weights with the same dimensionality as the input, but
with much smaller size. Despite the fact that there is many connections in one convolution,
which are even overlapping, the weights are tied together and only handful of parameters
per filter need to be updated during training. Usually, several filters, ranging from 5 to 100,
are applied to the input simultaneously in one layer. The main reason why it is possible
to use this architecture is the ability to stack convolutions on top of each other to create
more high-level from low-level features, while keeping the proportions of input.

As the output of the network usually do not have same dimensions of the input, ability
to directly control size of the features is needed. In CNNs it is provided by subsampling, or
in this version max pooling, layer. It is a simple operation that takes small non-overlapping
grid of the input tensor and outputs the maximum value of each part. By putting this
operation in between the convolutional layers, we can scale the current feature tensor and
detect higher level features than without it.

Nowadays, most popular way to introduce nonlinearity to CNN is inserting rectifiers
after convolutions, as they have excellent performance, surpassing any other unit [28, 13].
In the second, fully-connected part, mix of linear units and ReLUs is commonly used, with
applying dropout to these layers. Connection between convolutional and fully-connected
part is provided by a layer converting higher-dimensional output data from convolutions to
a one-dimensional input vector.

13

CNNs are useful in applications, where data has a spatial structure, which is useful to
capture in the model. Among these data belongs image processing and speech recognition.
One of the first and most famous examples of convolutional neural net is LeNet® [36], which
recognize handwritten digits from the MNIST database®. Figure 2.6 shows the architecture
of LeNet, version called LeNet-5.

®Demos and examples of LeNet: http://yann.lecun.com/exdb/lenet/
SMNIST database website: http://yann.lecun.com/exdb/mnist/

14

http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/mnist/

Chapter 3
Image Captioning

Scene understanding is one of the fundamental, but also most difficult tasks of computer
vision and ability to automatically generate text captions of an image or video can have
a great impact on lives of many. However, it is much more complicated than simple clas-
sification or object recognition tasks, because the model also need to understand relations
between the recognized objects and encode that relationship correctly in the caption.

In this chapter, I have done an overview of state-of-the-art approaches to the image
captioning task and more closely describe latest studies, which are the basis of this work
(section 3.1). Following section 3.2 cover popular datasets. Last section 3.3 covers evalua-
tion procedures, which are most commonly used for this task.

3.1 Related Work

Two main approaches to image captioning were popular, until neural networks dominated
the field. The first one used caption templates, which were filled by detected objects and
relations. Second was based on retrieval of similar captions from database and modifying
them to fit the current image. Question of similarity ranking has been addressed by many
papers, which are based on the idea of joint embedding vector space for both images and
captions [32], as it transforms estimation of similarity to a simple proximity measurement.
Both approaches included a generalization step to remove information relevant only to
current image, for example names.

These approaches were quite successful in describing images, but they are heavily hand-
designed. Also their text-generation power is fixated on the database/embeddings and is
not able to describe previously unseen compositions of objects. Over time these approaches
fell out of favor, as methods leveraging the power of neural networks emerged. However,
some of their ideas proved to be useful in the new environment and we can encounter them
in recent works [11].

Many of the new methods, which use neural nets, are inspired by the success in training
recurrent nets for machine translation. It is worth mentioning Sutskevers work [51], which
studied general sequence to sequence mapping by converting an input sequence to the fixed
length vector, which is then decoded to the output sequence. This encoder—decoder archi-
tecture is closely related to the autoencoders and work of Kalchbrenner and Blunsom [31],
who were first to map the entire input sequence to vector.

The introduced encoder—decoder architecture is important to the captioning task, be-
cause image description problem can be interpreted as a translation from an image to a

15

sentence. In this case, encoder part of the model is usually a convolutional neural net, as
they are excellent in the image classification [52]. Decoder part is the similar to the one in
machine translation models — an RNN or a type of LSTM, as the output for both tasks is
essentially the same.

Following the encoder—decoder idea, current image captioning research is shifting to-
wards models, which are trained end-to-end with some type of stochastic gradient descent
(SGD) algorithm. The reasons for the shift can be simplicity and a lot less hand design
than in other methods. Different type of the state-of-the-art models are based on proven
pipeline of key-word detection, sentence generation, and ranking, which exploit the power
of embedded neural networks, which specialize in single task. This approach is more closely
described in section discussing article From Captions to Visual Concepts and Back.

The current field is consolidating, thanks to MS COCO Captioning Challenge' and
dataset created for it. Simple public access to the necessary data makes model creation
easier and the best researchers can compete directly against each other by using MS COCO
evaluation server. In the rest of this section, I describe several works, which were submitted
to the challenge in 2015 and had the best performance. MS COCO dataset is described,
together with other datasets, in following section 3.2.

Show and Tell: A Neural Image Caption Generator

Show and Tell [51] is model created by Google researchers, which tied for the first place
in MS COCO Captioning Challenge with the following model From Captions to Visual
Concepts. The main idea of this work is to use recent advancements in machine translation
and apply them for image captioning. Model uses encoder—decoder architecture, with CNN
for the encoder part and RNN for the decoder part, as described earlier. Model is trained
to maximize the likelihood p(S|I) of producing a target sequence of words S = {51, 52, ...}
given an input image I.

Used convolutional neural net has been pre-trained for an image classification task and
last hidden layer of this network has been used as an input to the RNN decoder. The RNN
part of the network is made of LSTM units based on following equations:

it = o(Wayas + Wiil—1) (3.1)
fi = o(Wapzi + Wiphi1) (3.2)
Cy = tanh(Wyews + Whehi—1) (3.3)
C, = [0C1+i6C (3.4)
or = o(Wgoxs + Whohi—1) (3.5)
hy = o060 C (3.6)

Notation is same as in the chapter 2, ¢ is the standard logistic function defined in Equation
(2.9) and the operation ® denotes the element-wise vector product. It is worth noticing
the LSTM version used do not have “peephole connections”. Several more changes were
added — the second evaluation of hyperbolic tangent in Equation (3.6) is missing, as well
as biases in all equations.

The language model is working on the word-level, part of the RNN is word embed-
ding [39], which is trained together with the model. CNN, which is used to generate a
configuration vector from the image, is connected to the RNN at the beginning as the first

MS COCO Captioning Challenge: http://mscoco.org/dataset/#captions-challenge2015

16

http://mscoco.org/dataset/#captions-challenge2015

| log pi(S) | | log p2(S2) |
))
P

z

; @(ﬂ%l B
—>
-

4
HIy
HY
Hl

*]I
A
{

il
I
fies

A

g

t

> >
); —oo.>;
- -

LSTM
|

'y
+
»{[gé

A&
N3

) 1

J
1

image SN-I

Figure 3.1: Show and Tell image captioning model. [51]

)
(%]

o

—>
—
—

input before the generated sequence. Overall structure of the model is visualized on Figure
3.1 and can be represented by following equations:

z.1 = CNN(I) (3.7)
zy = WS tE{O...N—l} (38)
ps1 = LSTM(z;) tef{0...N—1} (3.9)

As the image and word encodings are used in the same way, model is effectively mapping
both images and words into the same vector space. During the sequence input, special start
word Sg and stop word Sy designated to mark start and end of the sequence are used.

The CNN component of the model has been initialized to an ImageNet trained model,
which helped quite a lot in terms of generalization. Word embeddings were left uninitialized
(initialized randomly) as they did not observed significant gains while using large corpus.
Dropout and ensebling used during training gave minor improvements. Model has been
trained using SGD with fixed learning rate and no momentum. For the embeddings vector
and the LSTM memory 512 dimensions were used. During the inference, beam search has
been used to improve the results.

From Captions to Visual Concepts and Back

This work [14] took quite a different approach than a previous one, however, both tied for
the first place in the captioning competition. This model is not trained end-to-end with a
single training algorithm rather it has three connected stages. Full pipeline of the model is
on the Figure 3.2 and its description follows.

First, model learns to extract nouns, verbs, and adjectives by applying CNN to regions
of the image. These words come from the vocabulary constructed with 1000 most common
words in the training captions. By running detector on the image regions, model is able to
produce a bag of bounding boxes, which represent the location of the appropriate word in
the image. Network used for the word detection is the 16-layered CNN, commonly referred
as VGGnet, from a conference paper [17].

17

crond Wioiing
A f/

\

1. detect . woman, crowd, cat,
words camera, holding, purple

— — A A purple camera with a woman. N\
2. generate A woman holding a camera in a crowd.

sentences

A woman holding a cat. _J
3. re-rank ' #1 Awoman holding a
sentences { camerain a crowd.)

Figure 3.2: From Captions to Visual Concepts caption generation pipeline. [14]

Second stage use the extracted words to guide a language model to generate sentences
likely to describe the image. The maximum entropy language model estimates the probabil-
ity of a word w; conditioned on the preceding words as well the words with high likelihood
detections, yet to be mentioned. This encourages all the words to be used, while avoiding
repetitions. A left-to-right beam search is used during generation. After extending each
sentence with a set of likely words, the top IV sentences are retained and the others pruned
away. The process continues until a maximum sentence length L is reached.

In the third stage, candidate captions are re-ranked using Minimum Error Rate Train-
ing [11] (MERT) and the best one is selected. MERT uses a linear combination of features
computed over the sentence, for example log-likelihood of the sequence or its length. One
of the features is Deep Multimodal Similarity Model (DMSM) score, which measures sim-
ilarity between images and text. The DMSM has been proposed in this paper and the
model trains two neural networks that map images and text fragments to a common vector
representation. These vectors are used to compute the cosine similarity score, which is then
sent to MERT.

As mentioned earlier, this model is the state-of-the-art on the MS COCO Captioning
Challenge, as it tied for the first place with the Show and Tell work. Their final and best
performing model used VGGnet, word detector score in maximum entropy language model,
proposed DMSM and use finetuned VGGnet features. According to human judgment,
generated captions are equal to or better than human-written captions 34% of the time.

Direct comparison of the From Captions to Visual Concepts approach with the Show
and Tell, which was presented earlier, is in the additional article [10] by the same authors.
They examine the issues of both approaches and achieve state-of-the-art performance by
combining key aspects of RNN and maximum entropy methods.

18

A
bird
flying
over

14x14 Feature Map

a
body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generationj

Figure 3.3: Show, Attend and Tell model architecture. [57]

Show, Attend and Tell: Neural Image Caption Generation with Visual Atten-
tion

Show, Attend and Tell [57] is method, made by researchers from universities in Toronto
and Montreal, which introduced an attention based model. Attention is one of the most
interesting parts of the human visual system. Rather than compressing an entire image
into a static representation, attention allows for salient features to dynamically come to
the forefront as needed. Proposed model has encoder-decoder architecture with feedback
connections for attention. Overall structure of the model is on Figure 3.3. Encoder part
use a CNN to extract set of feature/annotation vectors (not just one). Each of the vectors
correspond to a part of image. To obtain a correspondence between them, features from a
lower convolutional layer are used.

Decoder part is a LSTM network working of the word level, which generates, apart
from the word of the output, a context vector - a dynamic representation of the relevant
part of the image at time t. The paper explored two attention mechanisms computing
the context vector from the annotation vectors. First is the stochastic “hard” mechanism,
which interprets the values in the context vector as the probability that corresponding
location is the right place to focus, while producing the next word. Second is deterministic
“soft” mechanism introduced in [2], which gives the relative importance of the location by
blending values of all annotation vectors together. This method is fully trainable by the
standard SGD methods.

Article also shows how we can gain insight and interpret the results of the model by
visualizing where and on what was the attention focused. Examples of the attention visu-
alizations with both, correct and wrong generations, are on Figure 3.4. Visualizations show
that the model can attend even a “non-object” regions. This adds an extra layer of inter-
pretability to the output. The model learns alignments that correspond very strongly with
human intuition and, even, in the cases of mistakes, we can understand why the captions
were generated.

Similarly to previous article, Show, Attend and Tell used VGGnet [17], a CNN trained
on the ImageNet, which was not finetuned. Model was trained with several algorithms and
researchers found that for Flickr8k dataset, RMSProp worked best, while for Flickr30k and
MSCOCO datasets, Adam [34] algorithm was used. Performance during training was also
improved by creating minibatches of sentences with same length, which greatly improved
convergence speed.

19

Correct

A stop sign is on a road with a
mountain in the background.

—_—

—

Wrong

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.

Figure 3.4: Examples of Show, Attend and Tell attention. [57]

Visual Input Visual Features
-

Figure 3.5: The LRCN model architecture for video processing. [11]

Long-term Recurrent Convolutional Networks for Visual Recognition and De-
scription

The research group from Berkeley presented Long-term Recurrent Convolutional Networks
(LRCN) [11], which combines network with convolutional and long-range temporal layers
for several tasks. It is possible to apply LRCN to recognize activity performed on the
video (sequential input — fixed output), generate description of the image (fixed input +—
sequential output) or describe video (sequential input — sequential output).

Architecture of the proposed model, see Figure 3.5, is similar to the Show, Attend and
Tell, as image is processed by CNN and sent to the input of the LSTM in each time
step. Feedback attention connections are missing in this model. According to the task
specification, method can use separate convolutional networks, different for each time step
with specific input, or single CNN throughout all the time steps.

LRCN tied with Show, Attend and Tell in MS COCO Captioning Challenge for the
third place. However, this does not mean the models are equal in general performance, as
each of them focuses on different research topic.

20

3.2 Datasets

Large amounts of data are necessary requirement in training deep neural nets like CNNs and
RNNs, as well as sufficient computing power. Access to the machines and hardware suitable
for training has been made in recent years extremely easy, with the rise of virtualization
services. Obtaining enough data is different issue and it is currently the biggest problem.
Especially, creation of image captioning datasets is quite complicated. As there is no
automatized way to generate data, all the image descriptions have to be human-generated.
This is one of the reasons, only few specialized datasets are created.

There are two main options how to get images and captions. First way is, by using user-
generated data from an online service, most commonly Flickr?. However, these captions are
not made specifically for the task and could be prone to error. Second option is to gather
only images, again from Flickr or other online services, and create captions for direct use
in the dataset manually. Amazon Mechanical Turk® is heavily used for this task.

Following Table 3.1 lists the most popular datasets. All these datasets were created
directly for the image captioning task, with captions generated through Amazon Mechanical
Turk. Flickr8k [25], from 2013, was one of the first datasets created for this purpose. It has
been later expanded into Flickr30k [58]. The biggest dataset is Microsoft Common Objects
in Context (MS COCO) [6], created for the MS COCO captioning challenge. CIDEr [53]
datasets PASCAL-50S, ABSTRACT-50S are youngest mentioned, designed specifically for
evaluation with the CIDEr metric discussed in section 3.3.

Table 3.1: Image captioning datasets.

Captions

. Note
per image

Name Images

Images are divided - 82 783
MS COCO* 123 287 5 for training and 40 504 for
testing purposes.

An extension of Flickr8k
dataset.

Flickr30k® 31 783 5-6

Focused on people or ani-
Flickr8k® 8 092 5 mals (mainly dogs) perform-
ing some specific action.

Built upon images from
PASCAL-508" 1 000 50 the UIUC Pascal Sentence
Dataset.

2Flickr is a popular image hosting website and an online community. (https://www.flickr.com)

3 Amazon Mechanical Turk is crowdsourced Internet marketplace for tasks that computers are currently
unable to do. (https://www.mturk.com)

4MS COCO project: http://mscoco.org/dataset/

SFlickr30k project: http://shannon.cs.illinois.edu/DenotationGraph/

SFlickr8k project: http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html

"PASCAL-50S and ABSTRACT-50S: http://ramakrishnavedantam928.github.io/cider/

21

https://www.flickr.com
https://www.mturk.com
http://mscoco.org/dataset/
http://shannon.cs.illinois.edu/DenotationGraph/
http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
http://ramakrishnavedantam928.github.io/cider/

Table 3.1: Image captioning datasets.

Name Images Cap’.clons Note
per image
Built upon images from the
ABSTRACT-50S® 500 50 Abstract Scenes Dataset.
No photos.

3.3 Evaluation

Recent progress in fields like machine translation, which are very similar to image cap-
tioning, caused spike of interest in evaluating regular text output accuracy. Although,
sometimes it is not clear, if a description of an image is the best option available, some
degree of assessment is possible. The best results can be obtained by asking live raters
to score the usefulness of each description. Subjective scores can vary, but their average
over many raters are usually quite accurate. However, this method consumes tremendous
amount of time and external raters are necessary in most cases. Like with data generation,
tools like Amazon Mechanical Turk are used to great extent, but need for automated tools
is evident.

3.3.1 Automated metrics

Assuming that one has access to human-generated captions, which is ground truth in our
case, completely automated metrics are available. Even though all of them compute how
alike are model descriptions to human-generated, different ratings are used by different
metrics and even differences between used settings and implementations of one metric can
invalidate the results. This raises the question, how can we compare results of different
works, despite them using the “same” evaluation method. Microsoft group of researchers,
team responsible for MS COCO, addresses this issue in [6]. They created an evaluation
server’, which has many automated metrics, with several configurations, including all men-
tioned here. This server should serve as a reference point for comparison of image captioning
models.

Among the most popular metrics belong BLEU, METEOR, and CIDEr. The rest of this
section is describing and discussing their properties. BLEU (Bilingual Evaluation Under-
study) [15] has been the most commonly used metric, which was created in 2002 to evaluate
quality of machine translated text. Scores are computed on individual segments, usually
sentences. BLEU has high correlation with human judgments and is very popular, even for
captioning tasks. However, it is becoming outdated, as according to this metric, automatic
methods are now outperforming humans, which is senseless. Four different variations of
BLEU are used in MS COCO evaluation server.

METEOR (Metric for Evaluation of Translation with Explicit Ordering) [35] is another
metric for the evaluation of machine translation, slightly younger than BLEU, from 2007.
Scoring generated translations is performed by aligning them to one or more reference

8See footnote 7.
9MS COCO evaluation server: http://mscoco.org/dataset/#captions-upload.

22

http://mscoco.org/dataset/#captions-upload

translations. Metric was designed to fix some problems of the BLEU. It can also look for
synonyms and perform stemming on input words.

Metric designed directly to caption evaluation — CIDEr (Consensus-based Image De-
scription Evaluation) [53] was introduced in 2015. This is still a very new metric, but with
growing popularity as it correlate well with human judgment. Main idea of this metric is
improving quality of the metric with growing number of captions for the single image. This
can be observed on datasets introduced with it (see section 3.2).

23

Chapter 4

Model design

In the previous chapters, the basics of creating neural networks have been laid down, with
special focus on RNN units like LSTM and GRU, and CNNs. Chapter 2 also included
description of trends in language modeling with RNNs - word and character level models.
Following chapter 3 described the current approaches to image captioning and how are
state-of-the-art models designed. Chapter also introduced most popular image captioning
datasets and evaluation metrics in a short list.

Equipped with the knowledge of previous chapters. In is chapter I will propose the
architecture of an image captioning model and describe in detail each part and their con-
nections (section 4.1). Second part of this chapter (section 4.2) is about training procedure
of the proposed model - which algorithms and datasets are used, and other details.

4.1 Overall architecture

As a result of the previous research, I designed an image captioning model with the encoder—
decoder architecture, slightly based on the Show and Tell [541] and Show, Tell and At-
tend [57] models. In this section I describe the CNN encoder part of the model, then,
in separate sections 4.1.1 and 4.1.2, RNN modeling language and how to feed the image
encoding to the RNN. Throughout the section, all the descriptions refer to the diagram on
Figure 4.1, as each of them discuss different parts of the image.

The CNN used in this model is VGGnet [17] - a 16-layer network trained on ImageNet.
The same one as the one in From Captions to Visual Concepts and Show, Attend and Tell
papers. Input of the CNN is a fixed-size 224 x 224 RGB image, which passes through a stack
of convolutional layers with very small receptive fields: 3 x 3, and rectifiers. Throughout
the network, some of the convolutional layers are followed by max-pooling.

Original network produces a probability distribution over 1000 ImageNet classes. For
my purposes, I removed the last softmax layer, as well as last fully-connected layer fc8,
which is the approach used by From Captions to Visual Concepts. Thus, output of the
CNN has size of 4096, which is then propagated to the rest of the model.

The image encoding produced by CNN has to be preprocessed before entering the
RNN. For this purpose, I introduced an “adapter” network, which solves problems with
the hidden state initialization algorithm. Both, the adapter and algorithm are described in
section 4.1.2.

24

A A A

T - w o o

ogp(S)) - (logpS)) - (g p;(saj '

Linear) '- (Llnear

Linear

LSTMHLSTM
t

]
LSTM]—‘—D{LSTM]
J
J

t

LSTMJ—»[LSTM

t

LSTMJ—»[LSTM

:
. A A
<start> CIE et W

Figure 4.1: Architecture of the proposed model.

4.1.1 Language model

Language modeling RNN of this model is based on Section 2.2.2. Captions are generated
on character level, without any embeddings. Inputs and outputs of the RNN are the same
one-hot encoding. Set of characters, created from the whole training dataset, is completed
with two extra special characters <start> and <stop>, which respectively mark beginning
and the end of the caption. Since caption can be any sentence, its length is unbounded.

Structure of the recurrent network is sequential and can be considered small in com-
parison of other networks commonly used. See Figure 4.1. Core of the network is stack
of LSTM layers - experiments were performed on networks with 2 to 5 recurrent layers.
Size of LSTMs range from 200 to 500 units per layer, as networks with 150-250 units are
able to generate text on character level, without grammatical errors. Size of the network
is then increased to accommodate the need to generate correct captions and to distinguish
between them. One Linear layer is following LSTMs, transforming the output of the LSTM
to the size of the used one-hot encoding. On the very end of the network is a softmax layer,
generating the probability distribution of next character in the sequence.

The sequence generation starts by feeding the RNN with <start> symbol. Forward pass
through the network is computed and generated character is sampled from the probability
distribution. Sampled character is then sent to the network as input in the next time step.
This procedure is repeated until the <stop> symbol is sampled from the distribution.

4.1.2 Hidden state initialization

As the both necessary parts, “encoder” and “decoder”, have been described, the way of
connecting them is now required. Sending the image encoding to RNN as first input,
similarly to Show and Tell [54] is not possible, because character encoding of the caption
alters input significantly. Fortunately, LSTMs have a hidden state, a “cell”, which requires
initialization. As Show and Tell [51] demonstrated, showing the image encoding to the RNN
at the beginning of caption generation is enough, therefore, initialization of the LSTM’s

25

hidden state with proper image encoding based vector should suffice.

Hidden state of the LSTM is denoted in Equations (2.3) to (2.8) as vector Cy. As
the sequence processing, starting with input z; requires Cy, which has no specific value',
recurrent layers can be initialized by injecting a new state vector. Vector C has a definite
size for each LSTM layer, which is equal to the layer size and the output vector. For
example, in the LSTM with 200 units, although input vector being unrestrained, output
and hidden state vectors size will always be 200. Throughout time, the hidden state usually
takes values in range between [—2, 2], which align well to initialization around 0.

Output of the CNN is not suitable to be directly inserted to RNN, for several reasons.
First, it has a different size (4096), which is much more than necessary for LSTM. Second,
CNN uses ReLUs as nonlinearity, which do not produce negative output. This limits
the LSTM state space significantly. Both issues are possible to solve by introducing an
“adapter” network between the CNN and RNN in the model. The adapter can be very
small network, as solving the above mentioned problems is the only task required. In my
model, visualized on Figure 4.1, I created a network with one linear layer for adjusting size
of the output, followed by hyperbolic tangent and second linear layer, which should solve
the negative numbers issue.

Last question to cover in the initialization procedure is, how many of the RNN’s stacked
LSTM layers will be initialized by the adapter and how many will stay unbounded. Possible
solutions can range from initializing only the first recurrent layer to all the recurrent layers
in the network, or any count between them. While initializing multiple layers, matter of
whether all the layers will have the same input or each of them its own, has to be discussed.
As I have not found any adequate solutions and research to this topic, it is covered in
Chapter 6, as part of experiments with the model.

4.2 Training

Training is, together with architecture, one of the most important things in deep learning
models. Specific training procedure can decide, how fast can model learn the task and
whether it can learn the task at all. Proposed image captioning model is relatively simple,
from training point of view, as it is end-to-end trainable by standard gradient descent
methods. Training will be performed on training part of MS COCO dataset, mentioned in
section 3.2, which consists of 82 783 images and 5 captions per image.

Complete procedure is divided into two parts. First part works only with the language
model and train the LSTM layers to produce proper English words and sentences. In the
second stage, the encoder part of network - CNN and adapter, is connected to the model
and adds more constraints to the caption generation. Both training stages have appropriate
sections in the following text, describing them more thoroughly.

Pretraining RNN

As mentioned earlier, it is useful to train the language model, to the point it can gener-
ate English words and sequences, because words are often repeated across captions and
sentences generally have the same structure. This can be seen in the training dataset, as
it contains only 25 000 different words. Pretraining the RNN speed up the training and
we can also verify RNN trained properly before connecting it with the other parts of the
model.

! Altough LSTM vector Co does not have a specific value, random initialization is usually performed.

26

Loss function used in this work is the sum of the negative log likelihood of the character
at each step as follows:

N
L(S) = _Zlogpt(st)- (4.1)
t=1

During pretraining, the above loss is minimized with respect to all the parameters of the
RNN. Method used to minimize this loss is Adam [31], with parameters 5 = 0.92, 5y =
0.999, and learning rate o = 0.001. Training used minibatches of size 15, which is number
selected mostly for implementation reasons further discussed in chapter 5.

Full model training

With the language model trained to generate random sentences, it is very easy to connect the
rest of the model to it to perform full model training. Most of the information described in
this part is same to the pretraining, for example, loss function is virtually the same negative
log likelihood:

N
L(I,5) = _Zlogpt(st)‘ (4.2)
t=1

However, the loss is minimized with respect to all the parameters of RNN as well as the
adapter and CNN. Gradients propagated to the initial state of RNN are copied to the other
part of the network. Each part (CNN, adapter, RNN) has its own instance of gradient
descent algorithm, however, Adam [34], with same parameters ; = 0.92, f2 = 0.999, and
learning rate o = 0.001 is used for all three options. Minibatch size 15 was used.

During full model training, finetuning of CNN is optional. Finetuning can provide some
improvements in results, but it also greatly expands the number of training parameters. Not
training CNN increase training speed and allows easier localization of potential mistakes
related to input of the adapter or RNN.

Inference

There are multiple approaches that can be used to generate a sentence given an image. The
first one is simple Sampling, which just samples the first character according to p1, encode
the character and provide it as input, sample po and continue like this until the special
<stop> symbol is reached.

Second approach is called BeamSearch, which iteratively considers the set of the k best
sentences up to time ¢ as candidates to generate sentences of size ¢ + 1, and keep only the
resulting best k£ of them. This method can provide better results, however, in this thesis,
only Sampling was used.

27

Chapter 5

Implementation

With the necessary background and knowledge discussed in previous text, this chapter
contains an overview of computer programming tools used for implementing neural network
models (section 5.1). Then, in the second part of this chapter (sections 5.2, 5.3 and 5.4),
I describe a specific implementation of the image captioning model proposed in chapter 4,
which was created for this thesis, as well as tools for experimenting with the given model.

5.1 Tools

Recent popularity of deep learning caused creation of many programming tools and frame-
works, which can implement and alter neural network models. This section is a short
overview of these tools. Torch framework is more thoroughly described in separate part of
the text, as it is tool of my choice and has been used for implementing the proposed image
captioning model.

One of the tools most academic researchers in deep learning rely on is Theano® [4], which
is a Python library that works with mathematical expressions and matrices. It is built upon
NumPy to handle multidimensional arrays and compiles expressions before use for efficient
computation. Theano can be quite intimidating and non-intuitive for some people, as it
is focused on researchers and creating new neural network architectures. For this reason,
many tools and libraries has been created on top of Theano to simplify and streamline
development of standard models. Among the most popular are Keras”, Lasagne®, Blocks®,
all open-source and available on GitHub, and PyLearn2®.

Next Python library, completely independent of Theano, is TensorFlow®, a tool made
by Google, released in November 2015. It is used to process symbolic data flow graphs on
many different types of machines, ranging from smartphones to multiple GPU computers.
Interesting feature is the ability to perform partial subgraph computation, which allows
distributed training of the neural network. TensorBoard is a related tool worth mentioning,
which provides visualizations of training and evaluation of the model, tool missing in most
of the other libraries.

!Theano: http://deeplearning.net/software/theano/
?Keras: https://github.com/fchollet/keras

3Lasagne: https://lasagne.readthedocs.org/en/latest/
4Blocks: https://github.com/mila-udem/blocks
SPyLearn2: http://deeplearning.net/software/pylearn2/
STensorFlow: https://www.tensorflow.org/

28

http://deeplearning.net/software/theano/
https://github.com/fchollet/keras
https://lasagne.readthedocs.org/en/latest/
https://github.com/mila-udem/blocks
http://deeplearning.net/software/pylearn2/
https://www.tensorflow.org/

Python tools with the engine implemented in C/C++ are not the only ones available.
Caffe” is well-known and widely used library with the interface in C++. It performs very
well in the image classification and can be used as a source of many pre-trained models
hosted on the Caffe Model Zoo® site. It is also possible to use Deeplearning4j’, which is
neural networks library written for Java and Scala, and many other frameworks. Nowadays,
libraries are introduced almost every month, as this field is very alive, which also means
not everything has been implemented and users need to follow news about their tools, as
well as bug and feature trackers.

5.1.1 Torch

Torch'Y is an open source scientific computing framework and machine learning library for
the Lua programming language. Underlying implementation is using extremely fast LuaJIT
and C, but no need to code in C is required. Torch is not as popular in academic environment
as Theano, but it is used by several large companies including Google, DeepMind, Facebook,
and IBM, which also contribute to the project. Apart from company contributions, Torch
has a large ecosystem of community-driven packages'' with almost every tool needed for
machine learning, computer vision, and signal processing, and wide range of utilities. In
the rest of this section I will describe fundamental Torch packages, which are relevant to
my work.

The core package of Torch is torch, which is installed together with the library. It
contains data structures for multi-dimensional tensors and operations over them. This is the
most important part, as almost every package depends on them. Additionally, it provides
many utilities for accessing files, serializing objects, processing command-line parameters
and other useful utilities.

nn, nngraph

The base Torch provides necessary math structures, but the nn package allows simple
creation of neural networks with a common Module interface. Module represents a layer of
the network, which is the building block of the nets in Torch. Few examples can be Linear,
SoftMax, Dropout, and SpatialConvolution. Layers have forward() and backward()
method and can be joined together by module composites Sequential, Parallel and
Concat. These components allows creation of arbitrary graphs.

The nn as well contains loss functions, which are subclasses of the Criterion. Classes
ClassNLLCriterion and CrossEntropyCriterion contain common cross-entropy classifi-
cation criterion. Other regression and embedding criterions are also available together with
simple method to train the network with stochastic gradient descent.

Creating networks with complex graphs is quite complicated and tedious with the nn.
To make it easier, nngraph package has been introduced, which is build on the nn. the
nngraph bundles nn modules into graph nodes, which are linked together by specifying
inputs and outputs. Graphs can be visualized by dot () method and exported to vector
graphics.

"Caffe: http://caffe.berkeleyvision.org/

8Caffe Model Zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo
9Deeplearning4j: http://deeplearning4j.org/

0Torch: http://torch.ch/

"Wikipage with list of packages: https://github.com/torch/torch7/wiki/Cheatsheet

29

http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo
http://deeplearning4j.org/
http://torch.ch/
https://github.com/torch/torch7/wiki/Cheatsheet

Both packages are sufficient in network creation and provide even advanced features
like weight-sharing or weight-tying. However, they are mainly focused on feed-forward and
convolutional networks. Creating RNNs is possible, but it is very labor-intensive, as the
concept of unrolling has not been introduced in the nngraph.

rnn, dpnn

Torch’s rnn [38] package extends nn can be used to build recurrent neural nets, LSTMs,
GRUs, and so on. The package handles the unrolling of a network and provides several
options how to train a RNN. One of the ways is to use backwardOnline () method, which
calls forward() repeatedly and then go backward() in the opposite order. Other option
is to decorate the model with Sequencer and feed the sequence to the network in the form
of Lua table. This way, only one forward() and one backward() call is necessary.

rnn also provides module RecurrentAttention for implementing attention model [12]
and MaskZero, which handles minibatches of sequences with different length. It is worth
mentioning that creating complex recurrent networks with the nngraph package might be
difficult, as both packages are altering nn functionality and may collide.

Package dpnn provides many useful features that are not part of the main nn package.
These include decorators, with ability to change the behavior of an encapsulated module,
like Serial, which makes serialization of modules much more compact. Previously men-
tioned Sequencer and MaskZero are also decorators based on this package. Other nice tool
is OneHot layer, providing simple conversion of the input to one-hot encoding. The dpnn
package is imported with and used by rnn.

Other packages

As the number of community packages is enormous, I will list just a few, which are com-
monly used and related to the topic of this work:

e optim — Optimization library with algorithms like SGD, Adam, and more.
e image — Routines to load/save and manipulate images as torch tensors.

e cunn, clnn — CUDA and OpenCL backends for the nn package.

e Joadcaffe — Method for loading Caffe models in Torch.

e tds — Way to exceed LuaJIT memory limitations, by allocating outside
Lua-managed memory.

e word2vec — Pre-trained word embeddings and the distance metric.

5.2 Dataset MS COCO

Any proper implementation of deep learning model needs a lot of data to be implemented
and trained. For the model proposed in this thesis, I chose to work with the MS COCO
dataset. In this section I will describe how to access the dataset and what is the format of
the images and captions.

Dataset is available from the project website'?, in the form of separate archives for

12MS COCO project: http://mscoco.org/dataset/

30

http://mscoco.org/dataset/

training, testing, and validation images and corresponding archives for annotations. As the
archives are very large (over 20GB for image archives), dataset is also available through
Python API, which is able to provide only requested data and filter by given conditions.
More detailed description of the API is on the MS COCO website.

Annotations are stored using the JSON'? file format. File contains separate parts for
information about images, like width, height, name, license, and URL address, to download
them from the Internet. Caption part contain actual captions directly in the file, together
with references to the images described. Captions describing same image are not grouped
together in the JSON and they also do not have sequential ID. To get all the captions
related to one image, it is necessary to access all the captions and check the image they are
describing. Last part of the annotation file are URLSs to the licenses used by the images.
Full structure of the annotation file is in Appendix B.

JSON files can be loaded in Lua with the package cjson'®, which simplifies parsing of
the file and transformation to Lua data structures to simple method decode, and vice versa
with encode. Loaded file can be traversed with standard tools as simple Lua table.

Once the annotation file is processed and necessary images are selected, loading is done
by Torch package image mentioned in previous section. Image files are loaded by method
load directly to the Torch tensors with the dimensions according to number of channels,
width and height of the image. image loads images quite differently than commonly used
OpenCV method imread, as order of channels is R G B and value interval is [0,1]. This
causes additional image preprocessing, when using CNN expecting input in different form.

5.3 Model implementation

Model architecture proposed in Chapter 4 has been implemented in Lua and Torch. Refer
to Appendix C on how to install Torch and necessary packages. Code I wrote is grouped in
form of modular procedures, which operate over the data. Main points of entry are scripts
training.lua and sampling.lua, which contain the code connecting the other scripts
together. Examples how to use them is in 5.3.1.

Other scripts contain procedures solving parts of the problem. File cocodata.lua
is loading the annotation file, preprocessing images, and encode captions. RNN.lua con-
tains function creating the recurrent network according to the parameters. Other file
connections.lua contains functions connecting the output of adapter to the RNN and
sending the computed gradient back to the adapter. sample.lua has functions for gener-
ating captions with the current model.

Important file is OneHotZero.lua, which is a special type of layer and subclass of the
rnn package hierarchy. The layer create one-hot encoding of the single number input. On
top of that, layer can process zero input, which produces tensor of zeros. This feature is
useful for padding shorter captions in the minibatch.

Tools and scripts for pretraining RNN are in the subdirectory pretrainRNN/, which
follows the same structure as the rest of the implementation. pretraining.lua process
the command line parameters and train a RNN using scripts for general model training. As
the model processing differ significantly, separate sample.lua and sampling.lua scripts
were created.

13 JavaScript Object Notation is an open-standard format that uses human-readable text to transmit data
objects consisting of attribute-value pairs.
1T,ua CJSON project page: http://www.kyne.com.au/~mark/software/lua-cjson.php

31

http://www.kyne.com.au/~mark/software/lua-cjson.php

CNN

Processing the CNN part of the model is distinctly different, as it is loaded, rather than
created from scratch. As mentioned in Chapter 4, I used VGGnet [17] trained for the
classification task on ImageNet. Network was downloaded from Caffe Model Zoo'® and
converted with loadcaffe to Torch.

Although model is converted to Torch, it has been trained on the format of the input
and output, which is very specific and has to be taken into account. The input images
are expected to have channels in the B G R order. Images should be zero-centered by
mean pixel (rather than mean image) subtraction. The following B G R values should be
subtracted: [103.939, 116.779, 123.68]'.

Output of the VGGnet is probability distribution over 1000 ImageNet classes. As there
is no specification in the network of class order, file with exact order of classes is re-
quired to perform image classification. For Caffe implementation of VGGnet order file
synset_words.txt is available!.

5.3.1 Training

Training is implemented with the parameters discussed in Chapter 4. Each part of the
training is in separate directory, which contains training.lua file. These files load RNN
for the language model or create it from command line input, as well as CNN. Adapter part
of network is always created to fit the other parts of the model. Examples on how to use
these scripts follows, in dedicated sections for each training. See the manuals in Appendix
D.

For both training phases, the negative log likelihood, which is used as loss function, is
implemented in the Torch nn package as ClassNLLCriterion. Similarly, Adam optimiza-
tion algorithm is taken directly from the optim package, with no changes.

Training used minibatch approach, with multiple captions processed simultaneously.
Captions in the same minibatch have different lengths and shorter ones are padded with
zeros to match the longest caption. One-hot encoding used in the model had to be modi-
fied to process the padding. Modifications include OneHotZero layer discussed earlier and
MaskZero and MaskZeroCriterion decorators from package rnn, which alter the behavior
of loss function.

Pretraining language model

Training of the language model has been performed with minibatches of size 15. It is
possible to select how many LSTM layers will be included in the model, as well as size of
the layer. Usually used numbers are 2-5 layers, each within 200-500 units. Another option
is to include dropout after each recurrent layer.

Common way to run the training script is:

~/captioning/pretrainRNN$ th training.lua -recurLayer 3 -hiddenUnits 300 -
printError 20 -sample 100 -saveModel 10000 -modelName 3x300.torch

5Page describing the VGGnet in Caffe: https://gist.github.com/ksimonyan/211839e770£7b538e2d8

%Tmage color range should be [0, 255], which means Torch loaded images have to be multiplied by 255.

File with order of ImageNet classes available from https://github.com/torch/tutorials/blob/
master/7_imagenet_classification/synset_words.txt

32

https://gist.github.com/ksimonyan/211839e770f7b538e2d8
https://github.com/torch/tutorials/blob/master/7_imagenet_classification/synset_words.txt
https://github.com/torch/tutorials/blob/master/7_imagenet_classification/synset_words.txt

Parameters specify the size of the network and per how many minibatches should be
error and samples printed. One execution of the training script will train one epoch of
training, save the model each N minibatches and after the training finished.

Samples from the pretrained model can be generated by following command, where N
speficies number of captions generated.

~/captioning/pretrainRNN$ th sampling.lua -N 5 -modelName "~/RNN/2.0000__3x300.
torch"

Full model

Training of the full model with the image input was also performed wit minibatches of size
15. Training script has very similar parameters as the pretraining one, with RNN properties
and printing time. Important is to specify CNN and RNN models which were saved earlier
and are going to be connected, forming the captioning model.

Common way to run the training script is:

~/captioning$ th training.lua -pretrainedCNN ~/CNN/VGG_ILSVRC_16_layers_fc7.torch
-pretrainedRNN ~/RNN/2.0000__3x300.torch -initLayers 1 -printError
10 -sample 100 -saveModel 10000 -modelName 3x300.torch

Most important command line option is initLayers, which specify how many recurrent
layers will be initialized by the adapted CNN output. Option can be also set to 0, which
means all the LSTM layers will have the hidden state initialized.

Samples from the full model can be generated by almost identical sampling.lua call
as before:

~/captioning$ th sampling.lua -N 5 -modelName ~/combined_model/0.7244__3x300_£fc7.
torch

Hardware

Training RNNs is very computationally expensive task, which require GPUs to be rea-
sonably fast. Algorithms I used for training are efficient and use most recent and fastest
implementations of underlying libraries, but training on a laptop with regular CPU is too
slow for any purpose, taking several weeks. Most of the computations were performed on
MetaVO Metacentrum'® Czech academic grid, which offers free computational and storage
resources for students and academic staff.

Among others MetaVO offers clusters containing machines with 2x 8-core Intel Xeons
and 4x nVidia Tesla M2090 6GB or 2x nVidia Tesla K20 5GB. These two clusters were used
to train designed models. Pretraining RNN was performed on single GPU, as minibatch
size was carefully selected to fit model on the GPU memory. Memory was the main issue,
as RNN unrolling on larger minibatches quickly outgrow available resources.

8MetaVO Metacentrum website: https://metavo.metacentrum.cz/

33

https://metavo.metacentrum.cz/

Full model training was performed on node with two available GPUs. First was dedi-
cated to the language model RNN, with the same setup as before. Second contained loaded
CNN, together with adapter, and smaller resources, as there were no issues at this end.
Pretraining of the RNN took about one or two days. Full model training with CNN was
significantly slower with speed of two days per epoch.

5.4 Bag of Words experiments

Apart from training with the CNN, I have done more experiments with initializing the RNN
by bag of words (BOW) created from the caption. In bag of words representation, a text is
represented as the bag (multiset) of its words, disregarding grammar and even word order,
but keeping multiplicity. BOW was inserted to the model as input of the adapter, instead
of the CNN output. Images were not used in this experiment.

While generating the dictionary of possible words, its size was reduced by converting all
the words to lowercase, as well as removing commas, periods, and quotation marks from the
text. The MS COCO training dataset, after applying these reductions, has 25917 different
words, which were transformed to the tensor of the same size. The BOW tensor is after
creation treated same way as the CNN output.

This experiment was performed to ensure that each independent part of the network is
working and able to learn relevant mappings from input to the output. However, it has not
been very successful, as discussed in following chapter 6.

34

Chapter 6

Experiments

In previous chapters I made an overview of deep learning techniques for image captioning.
Based on those techniques, I proposed a model architecture, which was then implemented.
This chapter contains results of the model training in sections 6.1 and 6.2. As the results
are not very promising, nor satisfactory, experiments with BOW initialization follow in
section 6.3. Each section is concluded with discussion part, which describes how well model
performed, its important features and propose possible improvements.

This chapter include multiple graphs plotting average error (negative log likelihood) of
character generation relative to its position in the caption. The training dataset contains
very large number of captions, however, few captions are longer than others and average
errors for the end of these captions vary a lot. Refer to Figure 6.1 to length distribution
of training sequences. Due to a low number of very long sequences, it can be somewhat
misleading to pay too much attention to character errors after character on position 80.

T T

0.8 |- 1
g ®
(9}
c [)
o [)
3 [)
o 0.6 : o
Q [)
(2]
“— []
o [)
&
Jc 0.4 -
C
(V]
e
&

0.2 | n

0 1 1 1
0 20 40 60 80 100 120

Length

Figure 6.1: Distribution of caption lengths in the training data.

35

22 T T T T T

I I I
RNN 2x200 —@—
2 - RNN 3x300 —@— |A

RNN 4x400 —@—
1.8 —

Negative log likelihood

0.4 1 1 1 Il 1 1 1 1 Il
0 10 20 30 40 50 60 70 80 90

Character position

Figure 6.2: Pretrained RNN error based on character position in sequence.

6.1 Pretraining RNN

LSTM-based language model was independently pretrained on captions from the training
dataset. Many different versions were trained, varying in count and size of recurrent layers,
use of dropout, etc. Most of the variations have similar performance, therefore in this text
I will describe only three representative samples. First has two LSTM layers with 200 units
each, second has three layers with 300 units, and third has four layers with 400 units per
layer.

All models picked up structure of the text very quickly, generating reasonable English
sentences after 50% of the first epoch. Models were trained for 2 epochs in total, with
following captions generated after training:

========8AMPLING
A yellow man eating a box, like back of it in the snow.

========SAMPLING
A bathroom with a plate of food in a counter.

========SAMPLING
A couple of men standing on a covered hill with a ramp.

========SAMPLING
A black dog is getting ready to be a graffiti and tree.

Trained models were evaluated on the training dataset by computing average loss for
each position of character in the sequence. See the outcomes on Figure 6.2. Interesting
detail on the graph are first three or four positions, which tell that first character of the
caption is quite hard to predict, second character is the easiest one and the third most
complicated one. This observation can be justified by looking at the training dataset,

36

which has, most of the time, at the beginning the article “A” almost always followed by
space “ 7 and noun. Space between words is very easy to predict, and on the contrary it
is very hard to predict the first character of a word. More general observation is that the
error is rising for the first half of the caption and then decline in the second half, as the

RNN has enough information to predict rest of the sentence.

Results

Training multiple character level RNN to generate captions, show that smaller networks
from two recurrent layers can learn the predictions on the similar level as the larger ones.
Larger networks have slight edge in evaluating by negative log likelihood, but have much
larger computational cost.

High uncertainty of generation at the beginning of sequence is expected and caused by
no prior information about caption being inserted into the network. Generated captions
are sometime very unrealistic, but this is again caused by missing knowledge about the
real-world. Owverall, pretraining RNN to random caption generation based on character
prediction turned out well, within expected outcomes.

6.2 Language model initialization variations

Pretrained language models have been used in full model training, which introduced the
CNN and “adapter” parts. As in the previous training and experiments RNN variations
showed essentially same performance, only one configuration have been used — three-layered
LSTM with 300 units in one layer, which has been trained for two epochs. CNN part was
used in two different configurations - first used output of the fc7 layer of VGGnet as the
output of the network. Second used pool5 layer of the same network as the output. Both
options were adapted as the hidden state of one LSTM layer or all LSTM layers in the
network.

Unlike RNN pretraining, full model training has not improved performance at all, at
some cases performance even decreased. This applied to all four variations, which has been
trained. See the examples of sampling of model using fc7 output initializing the first LSTM
layer:

========5AMPLING==

TARGET ++++A railing in front of the beach with surfboards leaning on it.

e

SAMPLE ++++there is a suntoking court building is tocmed sestocars lices playing
door.

TARGET ++++A white and blue train under some palm trees in a city.

e o

SAMPLE ++++A desk next to a person standing in the field.

TARGET ++++A couple of men in a boat going through water, waving at the camera.

b+

SAMPLE ++++Two clocks and a man base and tracks and small hot dogs.

Samples show that the model was not able to learn even beginning of the description
and sometimes start to create incorrect or nonsensical English words, e.g. “sestocars”.

37

35 T T T T I I I I
CNN-fc7 3x300-1 ——
CNN-fc7 3x300 ——
3 CNN-pool5 3x300-1 —@— [
q' CNN-pool5 3x300
3)
8
< 25 a
£ 0
X
B 2} :
o
=
5)
Ul
9}
=
1 —l i
05 Il 1 1 1 Il Il Il Il

0 10 20 30 40 50 60 70 80 90
Character position

Figure 6.3: Error of RNN initialized with CNN based on character position in sequence.

Similarly to the pretraining, negative log likelihood loss function was used to evaluate
performance of the model. Figure 6.3 shows the average error of individual characters and
their position in sentence. Average errors have the same form as in previous graph, with
the beginning being very random or specific, depending on the exact character position,
and errors gradually rising in rest of the caption.

According to Figure 6.3 initializing the first LSTM layer is enough and performance is
better than while initializing the full LSTM stack. Although, as the performance is worse
than after pretraining,it can be said that one layer initialization is breaking the model less
than full RNN initialization.

Results

In the end, all the initialization variations based on the CNN output degraded performance
severely. As the works described in Chapter 3 use the same components and have signif-
icantly better performance, it is necessary to do more thorough research of the proposed
connection to identify the best solution, if it exists. This research would include experi-
ments with larger RNNs and deeper CNN layers used for initialization. Other solutions
could include adding the missing key component, something like word embeddings from
other works.

6.3 Bag of Words experiments

Full model training failure caused me to investigate, whether the initialized RNN can pro-
duce right captions at all. This evaluation should have been done preferably without the
interference of CNN, therefore the experiment with initialization by BOW created from the
target caption has been designed.

Two variations of BOW models have been trained, with adapted BOW code initializing
either all LSTM layers or only the first one. Sampling examples of the one layer initialization
variation:

38

2.4 T T T T T

T T T
BOW 3x300-1 —@—
2.2 : : = BOW 3x300 —@— |7

Negative log likelihood

0.4 Il 1 1 1 Il Il Il Il
0 10 20 30 40 50 60 70 80 90

Character position

Figure 6.4: Error of RNN initialized with BOW based on character position in sequence.

========5AMPLING
TARGET ++++A person on some skis jumping in the air.

i

SAMPLE ++++A person laying at a table with marhorot demilded ebattresss.

TARGET ++++A baseball player who just hit the ball running in a baseball game.

AR m R

SAMPLE ++++A baseball player in the sliwer ride the board airding a red is parked
as their holding the skateboard.

TARGET ++++A kitchen with furniture and kitchen accessories and other items.
+H++++ 4

SAMPLE ++++A leambed grass forhed red hicker and a umbrella in a park.

Samples show partial success of training, with correct phrases at the beginning of the
caption. However, at some cases RNN reaches state, in which the nonsensical words start
to appear. That can be caused by the short training stage.

Again, the error graph for BOW initialization is on Figure 6.4. Graph has the same
structure as previous ones — alternating high and low error rates for characters at the
beginning and gradually rising error as the caption continues. It is worth noting that the
actual error numbers are lower than in CNN initialization, but on the same level as with
no initialization at all, although error grows more rapidly.

Results

Experiments demonstrated partial success, as RNN was able to generate several correct
words, but proper caption fully relating to the target was not generated. As the BOW
encoding does not have much variability, more experiments with changing size of the RNN
might further improve the performance.

39

Chapter 7

Conclusion

Image captioning is problem more difficult than simple classification of images. Nowadays,
deep neural networks are dominating the field almost exclusively. In this work I explained
several features of neural networks, which are necessary for creation of image captioning
models, and created an overview of the state-of-the-art approaches to this problem. Deep
learning is research area with a great need of sufficient data, therefore I also listed several
biggest and most commonly used datasets. Description part was completed by listing
several popular evaluation metrics.

I proposed an image captioning model architecture, which has encoder—decoder archi-
tecture and character based language generator. Proposed model has been implemented in
Lua with Torch and Torch based libraries. After proper implementation, model performed
reasonably well in the pretraining phase. Randomly initialized RNN learnt to create ran-
dom English sentences, which can be captions. Full model training was not successful at all,
as no configuration of CNN, RNN or the initialization procedure proved to be correct. Ad-
ditional experiments with initialization by BOW vector were partially successful, as model
managed to generate one or two correct words at the beginning of the caption.

Further work on this task would include exploration of lower CNN layers for initialization
and learning representation of characters, instead of the one-hot encoding, and study of
different RNN sizes. However, the model is probably missing a key component, which
improves the output significantly, similarly as word embeddings in other contemporary
solutions.

40

Bibliography

1]

[10]

[11]

Les E. Atlas, Toshiteru Homma, and Robert J. Marks II. An Artificial Neural Net-
work for Spatio-Temporal Bipolar Patterns: Application to Phoneme Classification. In

Neural Information Processing Systems, pages 31-40. American Institute of Physics,
1988.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. CoRR, abs/1409.0473, 2014.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of Machine Learning Research, 3:1137-1155,
2003.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.
Theano: A CPU and GPU Math Compiler in Python . In Proceedings of the 9th
Python in Science Conference, pages 3 — 10, 2010.

Arthur Bryson and Yu-Chi Ho. Applied Optimal Control: Optimization, Estimation
and Control. Halsted Press book’. Taylor & Francis, 1975.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr
Dollar, and C. Lawrence Zitnick. Microsoft COCO Captions: Data Collection and
Evaluation Server. CoRR, abs/1504.00325, 2015.

Kyunghyun Cho, Bart van Merrienboer, Caglar Giilgehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. CoRR, abs/1406.1078, 2014.

Junyoung Chung, Caglar Gilgehre, KyungHyun Cho, and Yoshua Bengio. Empiri-
cal Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR,
abs/1412.3555, 2014.

G. Cybenko. Approximation by Superpositions of a Sigmoidal Function. Mathematics
of Control, Signals, and Systems, 2:303-314, 1989.

Jacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta, Li Deng, Xiaodong He, Geoffrey
Zweig, and Margaret Mitchell. Language Models for Image Captioning: The Quirks
and What Works. CoRR, abs/1505.01809, 2015.

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term Recurrent Convolutional
Networks for Visual Recognition and Description. CoRR, abs/1411.4389, 2014.

41

[12]

[13]
[14]

[16]

[17]

18]

[19]

[20]

[21]

[22]

Charles Dugas, Yoshua Bengio, Francois Bélisle, Claude Nadeau, and René Garcia.
Incorporating second-order functional knowledge for better option pricing. Advances
in neural information processing systems, pages 472-478, 2001.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179-211, 1990.

Hao Fang, Saurabh Gupta, Forrest N. Iandola, Rupesh K. Srivastava, Li Deng, Piotr
Dollar, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C. Platt, C. Lawrence
Zitnick, and Geoffrey Zweig. From Captions to Visual Concepts and Back. CoRR,
abs/1411.4952, 2014.

Felix A. Gers and Jiirgen Schmidhuber. Recurrent Nets that Time and Count. In
IJCNN (8), pages 189-194, 2000.

Felix A. Gers, Jiirgen Schmidhuber, and Fred A. Cummins. Learning to Forget: Con-
tinual Prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000.

D. Graupe, Ruey wen Liu, and George S. Moschytz. Applications of neural networks
to medical signal processing. In Decision and Control, 1988., Proceedings of the 27th
IEEE Conference on, pages 343-347 vol.1, December 1988.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech recognition
with deep recurrent neural networks. CoRR, abs/1303.5778, 2013.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. CoRR,
abs/1410.5401, 2014.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnik, Bas R. Steunebrink, and Jiirgen
Schmidhuber. LSTM: A Search Space Odyssey. CoRR, abs/1503.04069, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. CoRR, abs/1512.03385, 2015.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. CoRR, abs/1207.0580, 2012.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Master’s thests,
Technische Universitit Minchen, 1991.

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term Memory. Neural Com-
putation, 9(8):1735-1780, November 1997.

Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing Image Description as a
Ranking Task: Data, Models and Evaluation Metrics. Journal of Artificial Intelligence
Research, 47:853-899, 2013.

John J Hopfield. Neural networks and physical systems with emergent collective com-
putational abilities. In Proceedings of the national academy of sciences, volume 79,
pages 2554-2558. National Acad Sciences, 1982.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4:251-257, 1991.

42

28]

[29]

[30]

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What
is the Best Multi-Stage Architecture for Object Recognition? In Proceedings of the
International Conference on Computer Vision (ICCV’09). IEEE, 2009.

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3D Convolutional Neural Networks
for Human Action Recognition. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 35(1):221-231, 2013.

Rafal Jézefowicz, Wojciech Zaremba, and Ilya Sutskever. An Empirical Exploration of
Recurrent Network Architectures. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 23422350,
2015.

Nal Kalchbrenner and Phil Blunsom. Recurrent Continuous Translation Models. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1700-1709. Association for Computational Linguistics, 2013.

Andrej Karpathy and Fei-Fei Li. Deep Visual-Semantic Alignments for Generating
Image Descriptions. CoRR, abs/1412.2306, 2014.

Yoon Kim. Convolutional Neural Networks for Sentence Classification. CoRR,
abs/1408.5882, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
CoRR, abs/1412.6980, 2014.

Alon Lavie and Abhaya Agarwal. METEOR: An Automatic Metric for MT Eval-
uation with High Levels of Correlation with Human Judgments. In Proceedings of
the Second Workshop on Statistical Machine Translation, StatMT ’07, pages 228-231,
Stroudsburg, PA, USA, 2007. Association for Computational Linguistics.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied
to Document Recognition. In Proceedings of the IEEE, volume 86, pages 2278-2324,
November 1998.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9-48. Springer, 2012.

Nicholas Léonard, Sagar Waghmare, Yang Wang, and Jin-Hwa Kim. rnn : Recurrent
Library for Torch. CoRR, abs/1511.07889, 2015.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of
Word Representations in Vector Space. CoRR, abs/1301.3781, 2013.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudan-
pur. Recurrent neural network based language model. In INTERSPEECH 2010, 11th
Annual Conference of the International Speech Communication Association, September
26-30, 2010, pages 1045-1048, 2010.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig. Linguistic regularities in contin-
uous space word representations. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 2013.

43

[42]

[43]

[44]

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recurrent
Models of Visual Attention. CoRR, abs/1406.6247, 2014.

Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltz-
mann Machines. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages 807-814, 2010.

Franz Josef Och. Minimum error rate training in statistical machine translation. In
Proceedings of the 41st Annual Meeting on Association for Computational Linguistics,
volume 1, pages 160-167. Association for Computational Linguistics, 2003.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A Method
for Automatic Evaluation of Machine Translation. In Proceedings of the 40th An-
nual Meeting on Association for Computational Linguistics, ACL 02, pages 311-318,
Stroudsburg, PA, USA, 2002. Association for Computational Linguistics.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386-408, 1958.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. CoRR, abs/1409.1556, 2014.

P. Smolensky. Parallel distributed processing: Explorations in the microstructure of
cognition, vol. 1. chapter Information Processing in Dynamical Systems: Foundations
of Harmony Theory, pages 194-281. MIT Press, Cambridge, MA, USA, 1986.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research, 15:1929-1958, 2014.

Guo-Zheng Sun, C. Lee Giles, and H. H. Chen. The Neural Network Pushdown Au-
tomaton: Architecture, Dynamics and Training. In Adaptive Processing of Sequences
and Data Structures, pages 296—-345, London, 1998. Springer-Verlag.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with
Neural Networks. CoRR, abs/1409.3215, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going Deeper
with Convolutions. CoRR, abs/1409.4842, 2014.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. CIDEr: Consensus-
Based Image Description Evaluation. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and Tell:
A Neural Image Caption Generator. CoRR, abs/1411.4555, 2014.

P.J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Be-
havioral Sciences. Harvard University Press, 1974.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical Evaluation of Rectified
Activations in Convolutional Network. CoRR, abs/1505.00853, 2015.

44

[57]

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan
Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. Show, Attend and Tell: Neural
Image Caption Generation with Visual Attention. CoRR, abs/1502.03044, 2015.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descrip-
tions to visual denotations: New similarity metrics for semantic inference over event
descriptions. Transactions of the Association for Computational Linguistics, 2:67-78,
2014.

Matthew D Zeiler, Marc’Aurelio Ranzato, Rajat Monga, Min Mao, Kun Yang,
Quoc Viet Le, Patrick Nguyen, Alan Senior, Vincent Vanhoucke, Jeffrey Dean, et al.
On rectified linear units for speech processing. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Conference on, pages 3517-3521. IEEE,
2013.

45

List of Abbreviations

LRCN

BLEU

BOW

CIDEr

CNN

DMSM

GRU

LSTM

MERT

METEOR

MS COCO

ReLU

RNN

SGD

VGGnet

Long-term Recurrent Convolutional Networks. Image caption-
ing model [11].

Bilingual Evaluation Understudy. Evaluation metric for ma-
chine translation.

Bag of Words. Simplifying representation, in which a text is
represented as the bag (multiset) of its words.

Consensus-based Image Description Evaluation. Evaluation
metric for image captions.

Convolutional Neural Network.

Deep Multimodal Similarity Model. Score measuring similarity
between images and text.

Gated Recurrent Unit. Type of recurrent unit based on LSTM.

Long Short-Term Memory. Type of recurrent unit, which deals
with the vanishing gradient problem.

Minimum Error Rate Training. Method used for re-ranking cap-
tions based on several features.

Metric for Evaluation of Translation with Explicit Ordering.
Evaluation metric for machine translation. Enhanced BLEU

Microsoft Common Objects in Context. Computer vision
dataset and popular captioning and detection challenge.

Rectified Linear Unit. Type of unit combining linear unit and
rectifier as nonlinearity.

Recurrent Neural Network.

Stochastic Gradient Descent. Numeric method for achieving a
minimum of function. Used in neural network training.

16-layer CNN [17] trained for classifying ImageNet images.

46

Appendices

47

List of Appendices

CD Contents
MS COCO Annotation format

Installing Torch

g a & »

Scripts Manuals

D.1 RNN pretraining L e
D.2 Fullmodel o
D.3 Bagof Wordsmodels

48

49

50

51

Appendix A

CD Contents

Directory ‘ Content

captioning/ Torch scripts for full model training.
captioning/pretrainRNN/ | Tools for pretraining language model.
captioning/bagOfWords/ | Tools for experiments with bag of words input.

text/ IATEX source of this text.
text /fig/ Figures used in this text.
video/ Video presenting the work.

49

© 0 N O Ut W N

W oW W W W RN NN NN NN NN R e e e e
E R R R O © 0 N0 G E WD = O © 0N U W N RO

Appendix B

MS COCO Annotation format

info {

image {

}

"info"
"images"
"annotations"
"licenses"

"year"
"version"
"description"
"contributor"
"url"
"date_created"

nign
"width"
"height"
"file_name"
"license"
"flickr_url"
"coco_url"
"date_captured"

license {

}

n idll
"name"
llurlll

annotation {

llidll
"image_id"
"caption"

. info,

[image] ,
[annotation],
[license]

: int,
. str,
. str,
. str,
. str,
: datetime

. int,
. int,
: int,
. str,
. int,
. str,
. str,
: datetime

. int,
. str,
. str

. int,
. int,
. str

50

Appendix C

Installing Torch

in a terminal, run the commands WITHOUT sudo

git clone https://github.com/torch/distro.git ~/torch --recursive
cd ~/torch; bash install-deps;

./install.sh

activate Torch in current shell
~/torch/install/bin/torch-activate

reinstall basic nn package
luarocks remove nn
luarocks install nn

install necessary packages
luarocks install cunn
luarocks install cunnx
luarocks install rnn
luarocks install tds
luarocks install image

51

Appendix D

Scripts Manuals

D.1 RNN pretraining

Training
~/captioning/pretrainRNN$ th training.lua --help
Usage: th [options]

Train a RNN language model for generating image captions.

Options
-captionFile JSON file with the input data (captions, image names). [~/COCO/
captions_train2014. json]

-recurlLayers Number of recurrent layers. (At least one.) [3]
-hiddenUnits Number of units in hidden layers. (At least one.) [300]

-dropout Use dropout. [falsel

-batchSize Minibatch size. [15]

-printError Print error once per N minibatches. [10]

—-sample Try to sample once per N minibatches. [100]
-saveModel Save model once per N minibatches. [10000]
-modelName Filename of the model and training data. [rnn.torch]

-modelDirectory Directory where to save the model. [~/RNN/]

Sampling

~/captioning/pretrainRNN$ th sampling.lua --help
Usage: th [options]

Sample a language model for generating image captions.

Options
-modelName Filename of the model and training data. [~/RNN/rnn.torch]
-N How many captions will be generated. [4]

D.2 Full model

Training

~/captioning$ th training.lua --help

52

Usage: th [options]
Training of the CNN-RNN network for generating image captions.

Options

-captionFile JSON file with the input data (captions, image names). [~/COCO/
captions_train2014. json]

-imageDirectory Directory with the images named according to the caption file. [~/
C0CO/train2014/]

-pretrainedCNN Path to a ImageNet pretrained CNN in Torch format. [~/CNN/
VGG_ILSVRC_16_layers_fc7.torch]
-ft Finetune CNN on the dataset. (Enable CNN training.) [false]

-pretrainedRNN Path to a pretrained RNN. [~/RNN/2.0000__3x300.torch]

-rnnlayers If no RNN is provided, number of recurrent layers while creating
RNN. (At least one.) [3]
-rnnHidden If no RNN is provided, number of units in hidden layers while

creating RNN. (At least one.) [300]
-rnnDropout If no RNN is provided, use dropout while creating RNN. [false]

-initLayers How many reccurent layers initialize with CNN data. (0 - all of

them) [0]

-batchSize Minibatch size. [15]

-printError Print error once per N minibatches. [10]

-sample Try to sample once per N minibatches. [100]

-saveModel Save model once per N minibatches. [10000]

-modelName File name of the saved or loaded model and training data. [model.
torchl]

-modelDirectory Directory where to save the model. [~/combined_model/]

Sampling

~/captioning$ th sampling.lua --help
Usage: th [options]

Generate captions for images with trained model.

Options
-modelName Name of the model to be loaded. [model.torch]
-N How many captions will be generated. [3]

D.3 Bag of Words models

Training

~/captioning/bag0fWords$ th training.lua --help
Usage: th [options]

Training of the RNN network for generating image captions initialized with bag of
words.

Options

53

—-captionFile

JSON file with the input data (captions, image names). [~/COCO/

captions_train2014. json]

-imageDirectory Directory with the images with names according to the caption file

-pretrainedRNN Path to a pretrained RNN.

-rnnlLayers
-rnnHidden
-rnnDropout
-initLayers
-batchSize
-printError
-sample

-saveModel
-modelName

-modelDirectory Directory where to save the model.

[~/C0C0/train2014/]
[~/RNN/2.0000__3x300.torch]

If no RNN is provided, number of recurrent layers while creating
RNN. (At least omne.) [3]

If no RNN is provided, number of units in hidden layers while
creating RNN. (At least omne.) [300]

If no RNN is provided, use dropout while creating RNN. [false]
How many reccurent layers initialize with CNN data. (0 - all of
them) [0]

Minibatch size. [15]

Print error once per N minibatches. [10]

Try to sample once per N minibatches. [100]

Save model once per N minibatches. [10000]

File name of the saved or loaded model and training data. [
model_bag.torch]

[~/combined_model/]

Training with grouped captions

~/captioning/bagOfWords$ th trainingGrouped.lua --help
Usage: th [options]

Training of the RNN network for generating image captions initialized with bag of

Options

—-captionFile

words from all the image captions.

JSON file with the input data (captions, image names). [~/COCO/

captions_train2014. json]

-imageDirectory Directory with the images with names according to the caption file

-pretrainedRNN Path to a pretrained RNN.

-rnnlLayers
-rnnHidden
-rnnDropout
—-initLayers
-batchSize
-printError
-sample

-saveModel
-modelName

-modelDirectory Directory where to save the model.

[~/C0C0/train2014/]
[~/RNN/2.0000__3x300.torch]

If no RNN is provided, number of recurrent layers while creating
RNN. (At least one.) [3]

If no RNN is provided, number of units in hidden layers while
creating RNN. (At least omne.) [300]

If no RNN is provided, use dropout while creating RNN. [falsel
How many reccurent layers initialize with CNN data. (0 - all of
them) [0]

Minibatch size. [15]

Print error once per N minibatches. [10]

Try to sample once per N minibatches. [100]

Save model once per N minibatches. [10000]

File name of the saved or loaded model and training data. [
model_bag.torch]

[~/combined_model/]

54

	Introduction
	Neural networks
	Feed-forward neural nets
	Recurrent neural nets
	Recurrent architectures
	Modeling languages

	Convolutional neural nets

	Image Captioning
	Related Work
	Datasets
	Evaluation
	Automated metrics

	Model design
	Overall architecture
	Language model
	Hidden state initialization

	Training

	Implementation
	Tools
	Torch

	Dataset coco
	Model implementation
	Training

	Bag of Words experiments

	Experiments
	Pretraining rnn
	Language model initialization variations
	Bag of Words experiments

	Conclusion
	Bibliography
	List of Abbreviations
	Appendices
	List of Appendices

	CD Contents
	coco Annotation format
	Installing Torch
	Scripts Manuals
	RNN pretraining
	Full model
	Bag of Words models

