VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGHI
USTAV POCITACOVYCH SYSTEMU

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

TVORBA SPOLEHLIVOSTNICH MODELU PRO PO-
KROCILE DIGITALNi SYSTEMY

BAKALARSKA PRACE
BACHELOR’S THESIS

AUTOR PRACE MARIO WANKA
AUTHOR

BRNO 2015

VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

NN

FAKULTA INFORMACNICH TECHNOLOGHI
USTAV POCITACOVYCH SYSTEMU

FACULTY OF INFORMATION TECHNOLOGY
fll DEPARTMENT OF COMPUTER SYSTEMS

TVORBA SPOLEHLIVOSTNICH MODELU PRO PO-
KROCILE DIGITALNi SYSTEMY

CONSTRUCTION OF RELIABILITY MODELS FOR ADVANCED DIGITAL SYSTEMS

BAKALARSKA PRACE

BACHELOR’S THESIS

AUTOR PRACE MARIO WANKA
AUTHOR

VEDOUCI PRACE Ing. JAN KASTIL
SUPERVISOR

BRNO 2015

Abstrakt

Cilem této prace je simulovat vliv spolehlivosti obvodi detekujicich chybu u komponent po-
kroéilych digitdlnich systému. Prvné je definovana spolehlivost a skutec¢nosti s ni souvisejici
a jsou predstaveny Markovské modely. Tyto jsou vyuZity pro samotny simulator, ktery je
predstaveny v néasledujici kapitole. Jedna se o ad-hoc feseni a pouziti tohoto simulatoru
je detailné popsano. Stejné tak je popsano jeho chovani v priznych situacich a s riznou
konfiguraci. Na zavér jsou ukézany a diskutovany vysledky experimenti se spolehlivosti
obvodi detekujicich chybu pro rtizné modely. Dle vysledkt prace je zfejmé, ze zdsadnim
faktorem pro zajisténi spolehlivosti systému je kratkodobé maskovani chyby a dlouhodobé
udrzeni opravovatelnosti.

Abstract

The goal of this thesis is to simulate the impact of reliability of circuits designed to detect
failures in components of advanced digital systems. At first the reliability and terms related
are defined and Markov models are itroduced. These are used as logic for simulator, which
is introduced in next chapter. This simulator is an ad-hoc solution and it’s usage is thoughly
described, as well as it’s bahviour in various situations and configurations. In the end the
results of experiments with reliability of circuits designed to detect failures for multiple
models are shown and discussed. By the results of this thesis it is obvious, that the crutial
factor for system’s reliability ensurance is failure disguis in short-term view and repairing
ability in long-term view.

Klicova slova

Spolehlivost, Markovsky model, Systémy zatiZzené chybou, Stochasticky simulac¢ni algorit-
mus, Pravdépodobnost bezporuchového provozu

Keywords

Reliability, Markov model, systems with faults, Stochastic Simulation Algorithm, Probabi-
lity of failure-free service

Citace

Mario Wanka: Tvorba spolehlivostnich modelti pro pokrocilé digitalni systémy, bakalarska
prace, Brno, FIT VUT v Brné, 2015

Tvorba spolehlivostnich model pro pokrocilé digi-
talni systémy

Prohlaseni

Prohlasuji, ze jsem tuto bakalarskou praci vypracoval samostatné pod vedenim pana Ing.
Jana Kastila. Uvedl jsem vSechny literdrni prameny a publikace, ze kterych jsem cerpal.

Mario Wanka
18. kvétna 2015

Podékovani

Dékuji vedoucimu své prace za jeho trpélivost, ochotu se kterou pristupoval ke konzultacim
a celkovy zajem o praci.

(© Mario Wanka, 2015.

Tato prdace vznikla jako skolni dilo na Vysokém uceni technickém v Brné, Fakulté informa-
¢nich technologit. Prdce je chranéna autorskym zdkonem a jeji uZiti bez udélent oprdvnéni
autorem je mezdkonné, s vyjimkou zdkonem definovanych pripadai.

Contents

1 Introduction

2 Reliability and it’s models

2.1 Reliability oo e
2.1.1 Basicterms L e
2.1.2 Reliability indicators oo
2.1.3 Ways to achieve system’s reliability

2.2 Markovmodels e

3 Model implementation

3.1 Used technologies e
3.2 Definition of input xml file. oo Lo
3.2.1 Architecture
3.22 Correctness e e e e
3.23 Repairrules. L
3.24 Imunity L e
3.2.5 Computation e
3.3 The matrix of transition probabilities.
3.4 Simulation methods e
341 Numeric oL e e
3.4.2 Stochastic simulation algorithm
3.5 Simulation process e e e e e
3.5.1 Simulator usage.
3.5.2 Model preparation L
3.5.3 Simulationrun

4 Simulation results
4.1 Execution durations

4.1.1 Matrix generation duration
4.1.2 Impact of model size and simulation length
4.1.3 Impact of various time units on simulation
4.1.4 Impact of model behaviour on simulation length
4.2 Difference between numerical and ssa methods

4.3 Influence of component reliability

5 Conclusion

R R W oW W

O IEN BEN >IN ep R =)

10
10

12
12
12
13
13
13
13

15
15
15
16
18
20
21
22

26

Chapter 1

Introduction

The question of reliability is a crucial aspect of any system in existence. Even a - in theory -
flawlessly designed system is no use when we cannot rely on results which may be corrupted
by faults of components. So what are the ways to achieve reliability and what is the cost of
it? Possible approach is to use redundancy. But with three, five, etc. times more components,
the price of such system will rise the same way. Another problem is to find out how strong
redundancy is enough, especially considering systems running for years long. This is an
ideal case for simulation to take place.

The most precise way to measure reliability is, of course, on the operational system.
This is no problem with cheap systems whose failure causes no difficulties. But sending
hundreds shuttles with different equipment to space and test which holds for longer time or
create different systems for some medical equipment on which life of patients depends and
test which will not break is unthinkable. Devices on which life or health of people depends
or which damage will be extremly expensive must be reliable and this reliability must be
somehow proven.

A good way to prove reliability is to use computer simulations. Its advantages are
safety (no crashed shuttles or dead patients), price (huttles again, car crash tests, etc.),
speed (atom colision stretched to a minute or forrest growth pushed down to a minute)
and possibility to observe things we cannot in real (crash of galaxies). The disadvantage of
simulatin is, above all, the problem with model validity. Other disadvantages might be the
price of model creation, requirements on performance or inaccuracy of numerical solution.
All these factors are discussed in [13].

In case of advanced digital systems which are the topic of this thesis the Marcov models
are the optimal simulation system for solving given problem. As described in [10] a Markov
model is a stochastic system used to model randomly changing systems as a Moore machine
[3], meaning the next state is dependant only on the present state, not on the past progress.
As we need fully observable and autonomous system, the Markov chains, described in [8]
are used.

Reliability simulation, computed and measured in this thesis, is based on [15] Jan Trav-
nicek’s diploma thesis who implemented the proof of concept for this simulator and discussed
the advanced digital system simulation in general. My thesis contains brand-new implemen-
tation of simulator with slightly extended interface dicussing behaviour of the simulator in
various conditions and the impact of particular components results reliability. Above all,
the reliability of fault checkers in functional units.

Chapter 2

Reliability and it’s models

In general, reliability is an attribute of any system describing probability of success in
system’s actions. It may be defined as 1 - probability of failure. In common sense
you can say that reliability means how long keeps the system working and/or how often is
it (un)broken. However, this is not very accurate and ... reliable.

2.1 Reliability

e In research, the term reliability means repeatability or consistency. A measure is
considered reliable if it would give us the same result over and over again (assuming
that what we are measuring isn’t changing!) [10].

e General attribute of object based on ability to perform requested functions with values
preserved in defined technical conditions [1].

It is crutial to define what reliability really is and what values we need to observe before
we start simulating and measuring.

2.1.1 Basic terms

By [5], the incorrect states of system are fault, failure and error. Fault means any sys-
tem malfunction causing the system to perform in an unintended or unanticipated manner.
This foul behaviour might be treated in the system (ie. with redundancy of components)
so nothing will happen. In other case may this behaviour be innoticeeable or, with speci-
fic conditions met, cause failure. Failure is the inability of system to perform required
functions within specified performance requirements. Such behaviour may lead to an error
which is a discrepancy between expected and real value, state or behaviour of system.

In simulation we will consider two states of system failure-free where system is
running as supposed to and failing where failure occured and the results are incorrect.
All failures within this model are permanent and last until broken component is repaired.
Systems with possibility to repair their components are called renewable which will be
the most of systems simulated. Systems without ability to repair their components are
unrenewable [0].

2.1.2 Reliability indicators

Basical indicator of reliability is the probability of failure-free run R(t). Complementary
value of probability of failure-free run is the probability of systems failure which defines the
interval between system launch and any first occured failure. Relation between these two
values can be defined as

R(t) = 1-Q(t) (2.1)

As described in [7] the two fundamental indicators of reliability are Mean Time Between
Failures - MTBF and Mean Time To Repair - MTTR. With constant failure rate A defined
as the amount of failures per hour can MTBF be described as

T; =< (2.2)

Tr = - (23)

2.1.3 Ways to achieve system’s reliability

Apparently it’s required to achieve the highest reliability possible with, of course, the lowest
price possible. The straight way of increasing the reliability is for each component to lower
A - the noumber of failures in time. By lowering A all other attributes are improved but
the price of this process might be very high and there will always be some possibility of
failure. This process is called Fault avoidance. It means using techniques and procedures
which aim to avoid the introduction of faults during any phase of the safety lifecycle of the
safety-related system [5].

Other way to manage foul behaviour is to expect faults and handle them. System with
redundat m of n components (where m components from n must work) is able to hide up to
n —m component failures and work correctly. This is called Fault tolerance - the ability
of a unit to continue to perform a required function in the presence of faults [5]. Other
abilities of fault-tolerant systems are fault detections and fault recovery.

2.2 Markov models

With need of fully observable and autonomous system the Markov process(/chain) as the
specific model must be used. As described in [2] a Markov process is a stochastic process
whose behavior depends only upon the current state of the system. The particular sequence
of steps by which the system entered the current state is irrelevant to it’s future behavior.
Markov state-space models have four main categories:

e Discrete space and discrete time
e Discrete space and continuous time
e Continuous space and discrete time

e Continuous space and continuous time

With two possible states of system - working or broken and time steps defined by
real numers the second category - discrete space and continuous time will be used. A
model is defined by a set of states and a vector of transitions for each state which is
optimal to represent as matrix of transition probabilities. A vector of transitions consists of
probabilities for transition from given state to any other. With set of states it is necessary
to define which states are broken and which are correct.

Chapter 3

Model implementation

To measure the impact of reliability of checking components on the complete system’s
reliability we need a simulator to run a Markov model. Such simulator is a part of this thesis
and can be found on attached CD. The implementation is based on [15] preserving backward
compatibility on program’s interface and keeping pseudo-codes of both simulation methods
and arcitecture of a program on high level of abstraction. Simulations were executed on pc
with Intel Core i5-3470 CPU @ 3.20GHz, 16 GB RAM under x64 Win 8.1.

3.1 Used technologies

With need of minimalistic command line interface, high performance, sophisticated mathe-
matical methods and multi-platform support Python [11] as programming language was
the choice, specifically Python 2.7.x. Application is written by 00P paradigm and for
more complex mathematical operations uses the NumPy library [9]. For model definition the
Extensible Markup Language - XML [12] is used. This choice was done on the former design
and was preserved to keep the backward compatibility with existing models.

With multiple data on output of simulator, mostly sets of noumbers, their visualisation
is required. First type of data is the dot graph drawed by Graphviz [4]. Dot graph represents
states and transitions of matrix of transition probabilities described in 3.3. Second data type
on the output is the simulation result. This is a set of pairs giving the time and reliability.
To plot these values Gnuplot was used.

3.2 Definition of input xml file

As mentioned in 3.5.1, the first parameter of application is path to xml input file. This file
is expected to be in standatd xml [12] format and must contain data defined in this section.
Namely elements architecture, correctness, repairRules, imunity and computation.
As requierd by xml standard, on first level contains the input file single root element which
contains elements mentioned above as subelements. Any other data than these five sections
and their content are ignored. Data format is based on Jan Travnicek’s diploma thesis [?]
which is based on work from CSE’2012 conference [14]. The accuracy of simulation results
is strightly dependant on values of all components. It is, however, not easy and sometimes
impossible to gain them as mentioned in [14].

3.2.1 Architecture

This section as it’s name suggests describes components of model. Element architecture
contains set of component-types each defined in component element. This element has
two attributes, name and count. The name attribute defines type of modelated component
and the count attribute gives amount of these components in system. It is convenient to
give names so that each component begins with a unique letter. This has no impact on
functionality of simulator. Graphviz uses first letters of components to build name for
state in graph of transition probabilities (state name consists of first letters of names of
components and count of working components of given type in state).

In comparisom with the original structure each component element has three subele-
ments - lambda, mu and rel. All three elements contain single decimal value (given in
decimal or exponential form). Lambda value is as previously defined A\, constant failure rate
of given component meaning noumber of failures per hour. Mu value is as previously defined
|4 constant repair rate of given component meaning noumber of repairs per hour possible.
Last, new, value rel defines reliability of checkers inside unit. Default rel value expected
is 1 when lowered for any component it means that checker may fail to find out that this
component is broken by given probability. Probability of correct behaviour of whole system
is always lowered by lowered value of checker’s reliability.

Complete architecture definition can be seen in 3.1. Model shown defines simple NMR
system with five redundant functional units FU, single multiplexor MUX (used to aggregate
results of functional units) and single repairing unit GPDRC.

Algorithm 3.1: Example of architecture definition

<architecture>
<component name="FU” count="5">
<lambda> 3.358e—6 </lambda>
<> 9.977e—5 </mu>
<rel> 1 </rel>
</component>
<component name="MUX’ count="1">
<lambda> 0.00000015 </lambda>
<mu> 0.0000999 </mu>
<rel> 1 </rel>
</component>
<component name="GPDRC” count="1">
<lambda> 7.388e—7 </lambda>
<mu> 9.9e—5 </mu>
<rel> 0.8 </rel>
</component>
</architecture>

3.2.2 Correctness

Section correctness defines set of states considered correct by the definition of the model.
This means that a state is correct when sufficient amount of components works correctly.
Element correctness contains set of subelements correct where each of these subelemets
defines single minimal correct state. Minimal means, for example, that when correct defines
three of five functional units are needed for system to work correctly the simulator takes all

five, four and three working units as correct state. This feature is implemented to save work
with creating model so it’s not necessary to write down all states explicitly (it is assumed
that the system cannot be broken with more components correctly running while running
correctly with fewer correctly running components).

Each correct element contains a set of component subelements each defining the
amount of components of given type required for that state to be correct. Component
element contains two attributes - name and count. The name attribute gives a name of
a component type previously defined in architecture, the count attribute gives the mini-
mal amount of components needed for that state to be correct as described above. Values
recieved from correctness section are checked by comparism to architecture - states
defined as correct must exist in model’s architecture (it is not possibe to define components
that does not exist or higher amount of components as correct then the model contains).

On example 3.2 is shown a possible definition of correctness for previous example of
NMR system. System is correct when multiplexor MUX and three or more functional units
FU are forrect. It would be possible to write down other two states with four and five correct
FU’s but as explained above these records are redundant and would make no difference on
the model definition.

Algorithm 3.2: Example of correctness definition

<correctness>
<correct>
<component name="MUX’ count="1"/>
<component name="FU” count="3" />
</correct>
</correctness>

3.2.3 Repair rules

This section defines rules by which may the simulator generate repairing transitions. Xml
element for repair rules-section is namedrepairRules. It’s content consists of a set of
component elements and a single priorRules element. Each component element conta-
ins two attributes - name and count. The name attribute defines component-type from
architecture needed for system to make repairs and the count attribute defines the amount
of these component’s needed to work. With no component given the system needs no exact
component to repair other components. This can mean that, for example, repairing compo-
nent is outside of the modelated system. On the other hand with component count higher
than count defined in architecture there will never be enough repairing components
working and no repairs will be done. Both these extremes are correct.

The priorRules element contains non-empty set of rules (always at least one) by which
a single component may be picked to be repared in each state of system. With fully defined
rules there is always a deterministic way to find the component to be repaired. On the other
hand in case when more components have for given state the same priority one of them will
be picked by pseudo-random decision. Important is that at any time none or one component
may be repared (or broken - up to sigle action in one time point). Single rule is defined
by priorityRule element with attribute value. This value is an integer giving priority of
rule where rules with higher priority will be considered first. When more rules have same
value of priority their order is undefined and a pseudo-random decision is used to pick
one of them first. It is appropriate that the rule with lowest priority has unique value and

no required component defined because this rule is used as default rule with no needed
componets running in situations when no other suitable rule can be found. PriorityRule
element contains two sets of subelements. The first set consists of component elements and
the second of priorityVal elements.

Element component contains two attributes - name and count. The name attribute gives
the name components type the count attribute the exact amount of given component-
type units needed to be correctly working for applying rule that is being processed. This
means that a rule is picked when all components mentioned have exactly that amount of
working units as defined in the rule. The second element type priorityVal is used to
define priority of components within given rule. PriorityVal has single attribute - name
which defines name of components type. Within priorityVal is a single integer number
defining priority for given component. This priority defines order in which components will
be picked for repair. First suitable component found will be picked. Non-unique component-
priority values are processed the same way as non-unique rule-priority values this means
that from components with the same priority one will be picked pseudo-randomly. Naturally
the name attribute is checked for being defined in architecture in both component and
priorityVal.

It is not possible to gain more components then defined in architecture by repair. Rule
defining such action is correct and will be processed, however never picked so it is pointless
to set such rule. Apropriate definition of repairing rules is crutial for system’s reliabilty
and necessary for expected system’s behaviour. For example 3.3 is shown a possible way
to define reraire rules for previously defined system. When some FU is broken, one of the
explicit rules is picked. The same behaviour would be achieved with defining rule for every
state with any broken component or just the last basic rule. This would define priority of
each component and say to repair anything broken in given order.

Algorithm 3.3: Example of repair rules definition

<repairRules>
<component name="GPDRC” count="1"/>
<priorRules>
<priorityRule value="5">
<component name="FU” count="1"/>
<component name="MUX’ count ="1"/>
<priorityVal name="FU’>1</priorityVal>
</priorityRule>
<priorityRule value="47">
<component name="FU” count="2"/>

<component name="MUX’ count ="1"/>
<priorityVal name="FU’>1</priorityVal>
</priorityRule>

<priorityRule value="3">
<component name="FU” count="3" />
<component name="MUX’ count ="1"/>
<priorityVal name="FU”>1</priorityVal>
</priorityRule>
<priorityRule value="2">
<component name="FU” count="4" />
<component name="MUX’ count ="1"/>

<priorityVal name="FU’>1</priorityVal>

</priorityRule>

<priorityRule value="1">
<priorityVal name="MUX’>2</priorityVal>
<priorityVal name="FU’>1</priorityVal>

</priorityRule>

</priorRules>
</repairRules>

3.2.4 Imunity

Imunity section defines components that cannot be broken. This means that all compo-
nents listed will always work correctly and system with all units imune will be abolutely
reliable. Element imunity contains set of component subelements. Component element con-
tains two attributes - name and count. The name attribute defines components-type name
from architecture and the count attribute the amount of units of given type that will be
unbreakable during simulation. For model with no imune components the section imunity
is left empty.

For example 3.4 the definition of imunity is shown. Namely unbreakable repairing unit
GPDRC.

Algorithm 3.4: Example of imunity definition
<imunity>
<component name="GPDRC” count="1"/>
</imunity>

3.2.5 Computation

This last section gives informations for simulation run. Element computation contains two
subelements - time and samples both containing a single integer value. The value of time
attribute defines simulation length by setting the number of time points computed. It is
important to use the same time unit for computing A and p values for all components. In
examle 3.5 the miliseconds are used. In next chapter will be shown the impact of various
units and differences in simulations.

The second subelement of computation - samples - gives the amount of output values
stored in the output file. The amount of samples must be lower than the length of simulation
defined in time. It is impossible to output more values than the simulator counts. The length
of simulation and the number of samples combined gives the length of single simulation step.
The length of one step is equal to division of time by noumber of samples. For this time
the simulator runs and counts and when it hits the end of step the overall probability of
system’s correctness is written down. For example 3.5 are fourty milion milliseconds given
divided into houndred steps. With these settings simulator will count approximately eleven
hours of simulation time with one step taking approximately 6.66 minutes.

Algorithm 3.5: Example of computation definition

<computation>
<time>40000000</time>
<samples>100</samples>

</computation>

10

3.3 The matrix of transition probabilities

After reading and parsing all input data the matrix of transition probabilities must be
created. This matrix contains probabilities of transitions to other states for each state and
is used by both numerical and ssa algorithm. To generate such matrix the set of all states
possible must exit.

Generating statespace is done with modified depth first search algorithm [17]. With
complete architecture on stack as initial state the top state is popped and expanded to stack
by decresing the amount of each unit per newly expanded state. To prevent redundancy in
generated states when a new state is picked from the top of the stack a human-readable
hash is generated and saved. When expandinding new states their hashes are compared to
the set of existing hashes and new states, that are duplicit, are ignored. Processed state
after giving all child states is appended to list which stands for the final statespace. This
list of states is immutable and position of state is used as it’s index. The first state contains
no broken unit and all the other states are expanded form this one. Compared to standard
depth first search algorithm we need to find all possible states so the algorithm is not
stopped until there is any element on the stack.

09999001 099990008

Nm |
FUGIMD [gy] FOGIML |20
™ LF

0599896742 ”-99??2:-“
3
Am
FIGIMO fp——— o ———=Fenn| g
0.999393384 1 T T 0999893364
T ‘\2\! Y
AMm 3
el FFIGIMLL w 0.999890006
.

0599890026 1 ; — Lm | e I I
oo "

0999586663 FIGIMD [—{ mona | .
059988331 I
L3 : 4 2 [Lo /\\ T 099988664S

099998306 -
Lm F3GIMO0 Iib F4GIND -

- fe. | FiGIMI |
/ﬁ \’\\(m — Lm R
\rfsml/fi Lf _—

e — Mf

Graph 3.1: Grapg of matrix of transaction probabilities for model defined in 3.2

With statespace as a vector of states the matrix of transition probabilities is a carte-
sian product computed as this vector squared. Than for every row representing a state all
possible transitions are generated. First is tried to break each component and if this action
leads to a legal state the probability of transition 3.1 is written into a row on position
of generated state. After generating all breaking-transitions single transition for repair is
chosen if given state is repairable. For such state the repairing rules are walked through in
order of their priority and by the first suitable a component is chosen to be repaired. This is
done by writing p value of component being repaired on row’s index of state with repaired
component.

trans_probability = Acomponent_broken * Num_of _working_comps_be fore_breaking (3.1)

The size of matrix is equal to the square of statespace state which grows exponentially
with the amount of components with most cells equal to zero (because there is a transaction

11

only to adjectant states). With such matrix it becomes hard to work after having more than
a few states. To provide a way to read the matrix more easily it may be shown as a graph of
states and transactions between them. Such graph contains the amount of states equal or
less the the statespace (units imune that wont break will preserve the generation of doubled
amout of states). The graph of transaction probabilities for model of NMR system defined
above can be seen in 3.1. A state is defined by first letters of names of component type
and amount of these components working. A state where the system is working correctly
is dwawn as circle on the other hand the state where system is broken is drawn as square.
Arrows between states show transitions with probability of given transition above.
Language used to describe transition graph is dot [1]. After computing the matrix of
transaction probabilities a .dot file describing this is automatically generated and stored
as path_of output.dot next to simulation output file. Before the simulation is started the
simulator calls system’s utility to translate dot to pdf. If dot command is not present or
cannot be executed, warning is raised and simulator continues to begin the simulation.

3.4 Simulation methods

For simulation computation there are two implemented methods. In theory, both of them
give the same results what, however requiers correct model setting. Both methods, their
advantages and disadvateges, will be described in this section.

3.4.1 Numeric

The numeric method for solving Markov model is based on periodical matrix multiplication.
For every time point the matrix of transition probabilities is multiplied with row vector.
Each value in vector gives probability for model to be found in that state. Sum of all
values in vector meaning sum of all transition probabilities is always equal to one. Sum of
probabilities of all states defined as correct equals the probability of system’s failure-free
run as defined in 2.1.2. This value is the desired result of simulation.

Before computation the vector must be initializet to single state by setting the proba-
bility of model to be found in this state to one. By default the simulation begins in fully
working state but this may be changed. After this initialization the simulation starts loo-
ping multiplying actual vector with matrix in every step. The result of such multiplication
is a new vector for time t + 1, used in next iteration. When sample time is reached the
probability of system’s failure-free run is counted and written into results.

3.4.2 Stochastic simulation algorithm

The basical principle of ssa is to literally simulate behaviour of given system. This is done
by randomly switching to next state after random time both by probabilities given by
the matrix of transition probabilities. Single run of simulation is single experiment with
Markov chain with continuous time. Result of such experiment is information that system
is in given time whether working correctly or not. This information is recorded in the end
of each simulation step as well as in the numeric method. To gain requested probability
it is necessary to repeat this cumputation. After sufficient amount of repetitions the final
probability of system’s failure-free run per time is counted as arithmetical mean of values
for given time.

12

It is a little bit tricky to obtain the sufficient value of repetition. With the number of
repetitions R is the relative error E of simulation described in 3.2. On this relation can be
seen that to increase the result accuracy by ten time it is necessary to repeat the simulation
hundred more times [13].

(3.2)

S~

3.5 Simulation process

With all fundamental theoretical parts of simulation described it is time to describe the
complete run of simulation script in more practical way.

3.5.1 Simulator usage

As mentioned before the application is used via command line. The file to execute is main.py
which calls all other modules. Expected parameters are: path to input xml file (described
earlier), path of output file to be generated and the name of simulation method (numeric,
ssa), for ssa method the number of iterations as required parameter and number of paralel
processes as optional parametr (default is one and paralelism is not implemented yet but
interface is prepared fot thes option).

Simulation output is simple text file with values showing probability of failure-free run of
system in time. Amount of values is given in input xml by samples. Format of a sample (row)
is one integer number showing simulation time and decimal number showing probability
of systems’s failure free run for given time. These two numbers are separated with space
and ended with new-line. Second possible output is a graph showing transitions between
states representing matrix of transition probabilities. This graph, however, is generated for
small-enought amount of states only. The limit of states for graph generation is set to 128.

3.5.2 Model preparation

After params parsing with Params class from inout.py module, the input data are loaded.
All informations are obtained from XML file described above and then parsed into internal
representation. This is done in class Data from inpout.py module which has methods to
parse input XML and stores gained data in dicts and tuples as data-object’s attributes.
The next step is matrix creation. This is done by making an instance of Matrix from
module matrix.py. The object’s initialization takes care of all necessary actions as state-
space generation and matrix creation. In addition matrix object contains all supportive
methods for any action related to matrix. With params read, data parsed and matrix pre-
pared, the last step before simulation is to create Simulator object from simulator.py
module. Simulator class wraps simulation computation which is started with method run.

3.5.3 Simulation run

When simulation is run Simulator picks chosen method and aggregates results recieved
writing them into output file.

When Numeric method is chosen then, as described in 3.4.1, row vector set to initial
state is created. The main simulation loop beginns cycling over simulation steps. Each step
is a nested while loop cycling over each time point computing one matrix computation with

13

numpy . dot method. After finishing nested loop, an actual probability of system’s failure-free
run is computed and saved as sample into result dict.

Computation of ssa method is significantlymore complicated. At first the lambda-vector
is created. By original algorithm are these values supposed to be computated during simu-
lation. With optimalization described in [15] these values are pre-computed. Whole simu-
lation is being repeated in wrapping for cycle that many time set in input parameter. The
simulation itself runs in a while cycle to the end of simulation time. Algorithm skips time
points where nothing happens and resolves actions of component breaking and repair and
records probability of system’s failure-free run after time of one simulation step. To skip
simulation of system which is definitly broken the simulator writes default zero value from
such moment on.

14

Chapter 4

Simulation results

With model defined and working it is time to proceed to simulation itself and description
of experiments done. Upcoming chapter is supposed to be the core of this thesis. First some
statistic about program execution will be mentioned like the length of script run or impact
simulation time on simulation methods. Another topic to be discussed is the difference
between both simulation methods impact of model size and simulation length and accuracy
of their results. After making all these variabilities clear it is possible to start experimenting
with component’s reliability. For all graphs showing reliability of system both simulation
methods were used. The numerical results are always drawn with simple line, the ssa results
with points.

4.1 Execution durations

The first, practical issue for any simulation is indeed the length of simulation run. To
measure time within the script a standard python module profile was used. In simulation
there are two significant parts that may take noticeable time and it is possible to measure
them separately. Generation of statespace and matrix of transition probabilities, dependant
on the amount of components, is the first one. The second is the simulation itself which is
more tricky. Even not considering the fact of having two methods the simulation itself is
dependant on size of the model and it’s length which adds another dimension into results.

4.1.1 DMatrix generation duration

As mentioned above the execution time of matrix generation is directly dependant on nou-
mber of components. In graph 4.1 is shown the dependancy of time in seconds on noumber
of components. The time needed for matrix generation is rising exponetialy, however the
absolute value of time grows to one minute for biggest models computable on machine
mentioned in 3. The capabilities of machine allow the model to limitly grow to one hundred
thousand states. That is multiply more than the simulator is able to compute. The time of
practically used models is between fractions of second and single seconds and so it is not
necessary to observe this anymore.

15

80 T T T T T T T
time needed for generation of given amount of components —+—

70 -

60 —

Execution time [seconds]
o
=
T

10 - — e

o h S 1 1 1 1 1 1 1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Noumber of components in model

Graph 4.1: Matrix generation time

4.1.2 Impact of model size and simulation length

It is obvious how both model size and simulation length influence the length of execution
of simulation. The bigger model we use the longer it takes to compute one step and the
more steps have to be computed the more time it takes. The unpredictible and interesting
information is the real execution time. Model used for this experiment is the one defined
above in 3.2 with FU units making the tested amount of units and correctnes moved to be
greater than the half of the amount FU units. Used simulation time unit is milliseconds.
The progress of execution duration for numerical method can be seen on the graph 4.2.
One line indicates one model and it’s execution duration in time. The size of the model is
mentioned in the key of the graph.

100 T T
5 components —+—
90 10 components —
15 components —#%—
80 25 components —&— —
50 components
- 75 components
100 components —@—
60 - B

70

50— N

40 - -

Execution time [seconds]

20 - B

10 -

0 le+006 2e+006 3e+006 4e+006 5Se+006 6e+006 7e+006 Be+006 O9e+006 1e+00:

Simulation time [milliseconds]

Graph 4.2: Numeric simulation times

As expected, with growing simulation time, the execution duration grows lineary, each
time unit means one multiplication of matrix and nothing else happens. What is more

16

interesting is the inconherent growth of execution time with regard to the size of used model.
The time of execution is partially linear. A more detailed graph is shown on 4.3. Here was the
time measured again for single simulation length, namely hundred thousand milliseconds,
and more different models in sizes from five to hundret components. This behaviour is most
probably caused by numpy’s attitude to computers memory or computation optimalization
moving in levels of matrix size. To prove the source of this behaviour more research would
be needed but since it has no impact on simulation results it will stay only mentioned.

1.2 T T T T T T T T T
time to space —+— o
/X
1+ / .
//F —t
W /
T osf —t b
5 -
o
3 /
‘o /
E 06F / 1
c —
k=] 1
= 7
g 04 / E
3 .-'r
/
/
/
0.2 - P 4
o
il 1 1 1 1 1 1 1 1 1
1] 10 20 30 40 50 1] 70 80 a0 100

Noumber of components in model

Graph 4.3: Detail of simulation time dependance on size of statespace

As the stochastic simulation algorithm uses no sophisticated computation methods with
regard to the size of model an even growth of execution duration can be seen. However with
more dynamic simulation computation is the growth not that stable in time. This stability
may be dependat even on simulation result and is discuddes in 4.1.4.

140 T T T T T T T T T
5 components —+—

10 components

120 — 15 components —#%— b
25 components —&—
50 components
75 components

100 components —@—

=
@ =) =
=] = =

Execution time [seconds]

s
=1

=)
=

0 le+006 2e+006 3e+006 4e+006 5Se+006 6e+006 7e+006 Be+006 O9e+006 1e+00:

Simulation time [milliseconds]

Graph 4.4: Ssa simulation times

17

4.1.3 Impact of various time units on simulation

While modeling systems that operate in units of millisecond it is expected to keep this
resolution and simulate system with that precision. On the other hand it is required to
experiment wint models running for years or decades which is computationaly very exacting.
Considering the definition of A and p 2.1.2 as number of failures and repairs in one hour
it might be possible to simulate the system in lower resolution with the same results and
faster simulation execution. Experiments with various time units use model defined above
without imunity for repairing GPDRC unot and with simulation time of one day.

1 T T T T T T T T
milliseconds —+—
seconds

0.8 b
c |
2
o |
& i
o 0.6 7 b
= |
2 |
e |
o |
£ 04 .
=} |
o ¥
2 ¥
2 \
a |

0.2 L b

¥
Y
0 b R
0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 8e+007 Qe+00:

Simulation time [milliseconds]

Graph 4.5: Simulations with different time units for numeric method

As can be seen on graph 4.5, results for numerical method seem to be perfectly equal.
The difference between both results before the graph gets steady is about one and half
hundreth of percent. Considering possible inacurracy caused by model definition and other
factors influenting result such difference is unimportant. Result of third experiment with
minutes is not shown because with current model the numeric method fails to compute with
too high values of A and u. For another enlargement of simulator time units redefinition of
A and p would be required.

This is however not necessary. As shown in 4.1.2 the execution time of numeric method
grows lineary with simulation length. This was confirmed again for the execution of model
counting by milliseconds ran for nearly five minutes model counting by seconds ran for 0.36
sec. and model counting by minutes (nonsense result has no inpact on execution duration)
ran for 0.054 sec.

18

1 T T T T T T T T
milliseconds ——
seconds
minutes —#%—

0.8 b
c
2
@
&
o 06 -
2
0
b
o
E 04 .
=
[}
0
2
o

0.2 B

0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 Be+007 9e+l0:

Simulation time [milliseconds]

Graph 4.6: Simulations with different time units for ssa method

More interesting results came from experiment 4.6 with ssa method. The ssa simulation
results, alike the numeric, differ a little but still inconsiderably. The detail of difference is
shown on graph 4.7. From the nature of ssa method the results differ more than at numeric
computation but still the highest difference nears 5%.

As the ssa algorithm resolves just actions im model and skips time where nothing
happens the execution time of all the models was similar. Namely 1.32 sec. for model
counting by milliseconds, 1.35 sec. for model counting by seconds and 1.32 sec. for model
counting by minutes. The size of simulation time unit has no effect on the execution duration
for ssa method.

o T T T T T T T
0.35 milliseconds —+—

seconds
0.3 F minutes —#%— o

0.25
0.2
0.15

0.1

Probability of failure-free run

0.05 -

ot
! 1 1 1 1 1 1 1
-1e+006 0 1le+006 2e+006 3e+006 4e+006 5e+006 6e+006

Simulation time [milliseconds]

Graph 4.7: Detail of simulations with different time units for ssa method

With inconsiderable influence on results distinct improvement of numeric simulation
and no effect on ssa the second may be declared as optimal time unit for experiments with
greater simulation time. This modification is necesarry even for ssa to keep the same models
for both methods.

19

4.1.4 Impact of model behaviour on simulation length

The last remarkable aspect of executions is the relation between simulation and simulator
behaviour. It would be expectable that events within simulation will have no effect on it’s
execution. This is true for the numeric method. On graph 4.8 is shown progress of reliability
for model without repairing unit, a model with repairing unit that can be broken and model
with imune repairing unit. All three model ran for about 2.5 sec. with difference of tenths
of seconds.

no repair —+—
repairing

imunity —#%—
0.8 - b

os f]
0.4 1‘ 4
0.2 ~\» 4

0 LR

0 100000 200000 300000 400000 500000 600000 70000C

Probability of failure-free run

Simulation time [seconds]

Graph 4.8: Long term simulation with different repairs by numeric method

The simulations with ssa method shown on graph 4.9 with approximately same results
has extremely variable execution times. The first two models both breaking quickly have
execution time about one second. Model without repairs finished in 0.8 sec., model with
breakable repairs in 1.25 sec. In opposite of fast execution for models which break stand
simulation of model of system that keeps working like model with imune repairing unit.
Execution of this model took 440 sec.

1 T T T
air —+—
repairing
imunity —#%—
0.8 [~ N
c
2 |
@
&
o 06 I u
5
2 |
“
o
£ o4y .
=
[}
o
2 |
o
0.2 m -
|
[L R R R R R
0 100000 200000 300000 400000 500000 600000 70000C

Simulation time [seconds]

Graph 4.9: Detail of simulations with different time units for ssa method

20

4.2 Difference between numerical and ssa methods

As each method uses different ways to compute results of simulation it is expectabe to gain
not exactly equal results from both methods. Graph 4.10 shows results of both methods on
different models. The unbreakable results are from model defined above, the breakable use
the same model but with imunity section left empty so the repairing units will stop working
sooner or later.

1 R t t
% numeric breakable
0.9 - ssa breakable B
ssa unbreakable *

0.8 + . numeric unbreakable B
5
= 07k \ .
o 06F % .
i x
E o5 N .
e o
o oy
g - _
£ 04 Y
= »
[o] e
| 03F 4
& T

0.2 Ly .

0 1 1 1 1 _ —
0 1e+006 2e+006 3e+006 4e+006 Se+00¢

Simulation time [milliseconds]

Graph 4.10: Comparism of results of simulation methods

As can be seen, ssa results approximate numeric results with no big difference. After
thousand repetitions of model simulation with ssa method is the deflection from numerical
results up to one tenth of percent and ssa results oscilate around numerical. This behaviour
is shown on detail 4.11 from graph 4.10. As the result of ssa method is an aritmetical mean
3.4.2 its graph will always be fuzzy. With sufficient amount of repetitions becomes this
volatility inconsiderable.

1.015 T T T T T T T T T
numeric breakable
ssa breakable
1.01 - ssa unbreakable * 7
numeric unbreakable
S 1.005F b
2
@
@
= - 4
T 1
i) * ¥ ¥ k¥
5 * ¥ * ¥ * ¥ ¥ *
= * * ¥ * * ¥ ¥
J_U * * * * * * X * *
= 00951 * ¥ * ¥ * * E
o
=g
£ *
=] 0.99 - = _
[}
o
o
& pess e
0.98 - -
1 1 1 1 1 1 1 1 1

600000 800000 le+006 1.2e+0061.4e+006 1.6e+006 1.8e+006 2e+006 2.2e+006 2.4e+006

Simulation time [milliseconds]

Graph 4.11: Detail of comparism between simulation methods

21

4.3 Influence of component reliability

With knowladge of simulator’s behaviour it is time to discuss the results of experiments with
various reliability level for different systems. Models used in upcomming set of experiments
are based on NMR model with five functional units defined above 3.2. First system to
test is TMR - Triple Modular Redundancy (a NMR with tree redundant functional units)
then a fifteen unit NMR - N-Moduler Redundancy. Goal of these experiments is to show

what system’s redundancy is need for which reliability and if the FU’s unit redundancy is
enought to keep the system working.

T T
TMR. without repair by numeric method
\ TMR without repair by ssa method
\ TMR with repair by numeric method
0.8 TMR. with repair by ssa method 0O

= \ | NMR without repair by numeric method
= | X NMR without repair by ssa method
E \ 8 NMR with repair by numeric method
& 0.6 - I|I a NMR with repair by ssa method 2
= |
e \
e T
o |
£ o4r |
3 '.
o \
2 ¥
o i
\.
0.2 - \
1
kY
= = = o 0 g T T
\“*-_ AAAAAA
0 ’
0 1e+006 2e+006 3e+006 4e+006 Se+l0t

Simulation time [milliseconds]
Graph 4.12: Comparism of endurance of systems with growing redundancy

On graph 4.12 are shown the results of both TMR and NMR model ran without repair and
than with it. It can be seen that with full reliability of checkers are results of both models
for equivalent situations similar. Regardless of repair the NMR model keeps giving correct
results for a slightly longer time but than break never the less. Let us see what happens

after adding the aspect of functional unit’s checkers reliability to these systems for now
behaving similarly.

T

100% checkers by numeric
100% checkers by ssa
7 W 80% checkers by numeric
0.8 Tou 80% checkersbyssa O -
Rl 60% checkers by numeric
60% checkers by ssa
40% checkers by numeric
0.6 g 40% checkers by ssa &
20% checkers by numeric
20% checkers by ssa v

1e-10% checkers by numeric
04 & le-10% checkers by ssa ¢

Probability of failure-free run

02k b

<

ks

0
0 00001\..\1 L
0 le+006 2e+006 3e+006 4e+006 Se+00¢

n

Simulation time [milliseconds]

Graph 4.13: Impact of FU’s checkers reliability on TMR system

22

As first, the TMR model was tested. This experiment consists of repeated simulations by
both numeric and ssa method constantly decreasing the functional unit’s checkers reliability.
The value of reliability began on 100% and decreased by 20% for each simulation run. The
last value was not 0% as this is forbidden by simulators definition but was limity converging
to zero, namely 1e-10%. Results of these ten experiments can be seen on graph 4.13.

Until there is any reliability of checkers left the impact is almost inconsiderable. With
repairing unit unbroken the lower checker’s reliability is constantly slightly decresing the
probability of system’s failure-free run. This constant lowering can be seen on absolutaly
unreliable checkers where the repairing unit almost stops repairing - not knowing the fun-
cional units are broken.

T T

e 100% checkers by numeric ——
g 100% checkers by ssa
A 80% checkers by numeric
p.a - | AR 80% checkersbyssa 0O A
\ 60% checkers by numeric
60% checkers by ssa
40% checkers by numeric
40% checkers by ssa -
20% checkers by numeric

20% checkersbyssa =

1e-10% checkers by numeric

le-10% checkersbyssa ¢ |

=8

0.6

0.4 -

Probability of failure-free run

0.2

0 1e+006 2e+006 3e+006 4e+006 Se+l0t

Simulation time [milliseconds]

Graph 4.14: Impact of FU’s checkers reliability on 15-unit NMR system

The same set of experiments was done for the NMR model, results of this second set
of experiments is shown on graph 4.14. Progress of behaviour of both TMR and NMR is
relatively similar but few crutial diferences can be seen. The most distinctive difference
is the continuous decresing of system’s probability of failure-free run with the decreasing
of checkers reliability. This is caused by repairing unit’s unability to manage to repair
such amount of broken units. Based on this experiment we could say that - from long-
term view - the higher functional unit’s redundancy in system with unreliable checkers
means deterioration of system’s probablity of failure free run. On the other hand, another
important difference can be seen. In the beginning of simulation time the TMR system drops
is’t probability before or gets steady for a while what does not happen for the NMR system.
From this short-term view, the higher functional unit’s redundancy prevents the system’s
probability drop by keeping enough units working. This difference is more clearly shown on
graphs 4.15 and 4.16 and will be discuseed later more in detail.

As can be seen on graphs 4.13 and 4.14 increasing the redundancy of functional units
increases the probability of system’s failure-free run in short-term view a little but with
any amount of these units sooner or later the system will inevitably break. This point of
breaking may be the time when the repairing unit itself breaks and the system works just for
the time until enough components break. Another set of experiments was done to measure
the impact of repairing units amount. System chosen was NMR with five functional units
and one to five repairing units. Results measured in this second set of experiments are
shown in graphs 4.15 and 4.16.

23

15 T
1 repair by numeric ——

1 repair by ssa -
2 repairs by numeric
2repairsbyssa O A
T, 3 repairs by numeric
. ‘wiv 3 repair by ssa -
. ¥ 4 repairs by numeric
3 YY% 4 repairs by ssa -
5 repairs by numeric
Srepairsbyssa v |

0.9

0.7 -

=8

0.6

0.4 -

0.3 -

Probabiltty of failure-free run
=]
w
T

01

0 1 1 1 1
0 1e+006 2e+006 3e+006 4e+006 Se+l0t

Simulation time [milliseconds]

Graph 4.15: Impact of repairing units amount on system with high FU’s checkers reliability

In graph 4.15 can be seen the set of results from extepriments with functional unit’s
checkers reliability equal to 80%. The short-term probability of system’s failure-free run is
kept high by sufficient redundancy of funcional units which is able to disguise faul results
from units that are broken. With adding repairing units the time before the system starts
to break increases logaritmically - with more repairing units the time rise by a single new
repairing unit is lowering. Even with decreased reliability of checkers is the system with
redundancy of repairing units able to keep working. The same can be seen on graph 4.16.
The level of relevancy of functional units reliability was set to 20% which is extremely low.

155 T T T T
1 repair by numeric ——
0.9 1 repair by ssa -
2 repairs by numeric

0.8 2repairsbyssa O
c 3 repairs by numeric
2 07f 3 repairs by ssa -
b3 4 repairs by numeric
= ' N
o 06 4 repairsbyssa & 4
5 5 repairs by numeric
& 05 Srepairsbyssa v
“
o
EF 04
=}
[}
2 03
<
o

0.2 -

0.1

il 1 1 1 1
0 le+006 2e+006 3e+006 4e+006 Se+00¢

Simulation time [milliseconds]

Graph 4.16: Impact of repairing units amount on system with low FU’s checkers reliability

However, it is obvious that lowering reliability of functional unit’s checkers constantly
decreases the the reliability of system as mentioned above. While not knowing that functi-
onal units are broken the repairing units will not repair them as frequently as necesary and
so the system will return errors more often. In similar time as the system with more reliable
checkers starts the system with unreliable checkers to break. From these facts it is obvious
that reliability of checkers has no impact on system’s long-term probability of failure-free

24

run, on the other hand the redundancy of funcional units is necesary for system to work
correcly in a short period of time. Set of redundant units is able to give correct result with
some units broken as defined in 2.1.3. For a long period of time it is, however, necessary
to ensure the repair of units. For a breakable repairing unit this is again possible with
redundancy. The amount of repairing units needed is dependant on demanded possibility
that at least one repairing unit will work in time. The value can be counted from repairing
component’s lambda value 2.1.2 and the amount of repairing units as

Rycp =1 — (A x amount_of repairing_units) (4.1)

25

Chapter 5

Conclusion

After inheritng a work with some progress the biggest challange was to understand what
and how it does. First step was the math behind simulator, namely the theory of reliability
and the ways to compute and simulate it as Markov models. Equiped with this knowledge
the second challenge was to understand simulator application from [15]. This application
was supposed to be extended and used for experiments but as it was mainly a proof of
concept for simulation methods it was appropriate to implement it from scratch.

The brand new verion is writen by object oriented paradigm and keeps only the the abs-
tract concept (read input, make matrix, run simulation) and simulation algorithms which
are optimalized and their implementation is not a part of this thesis. For requested experi-
ments few extensions were done above all the possibility to define reliability of fault-checkers
for each unit type. Other modifications are for example the change of internal data storage
or lambda-transition value fix (the old version did not took in consideration that posibility
of breaking single component of set is it’s lambda multiplied by the amount of components
in this set).

With this application as minimal implementation needed for this thesis there are many
possibilities to improve it. From the technical point of view the ssa simulation may be coum-
puted in more paralel thread as the computation is repeated for hundred or thousand times
and the results are agregated. From the conceptual product point of view the possibility of
starting in somehow broken state of system might be interesting.

Possibilities of usage of the simulater are unlimited and other researches may be done.
The results of research made in this thesis will be used for a paper.

26

References

1]
2]

CSN 010102. 1993.

Butler, R. W.; Johnson, S. C.: Techniques for Modeling the Reliability of
Fault-Tolerant Systems With the Markov State-Space Approach. Langley Research
Center - Hampton, Virginia, 1995.

Cohen, D. I. A.: Introduction to Computer Theory. Prentice-Hall, 1997,
iSBN 978-0-471-13772-6.

Graphviz developers: Graphviz [online]. http://www.graphviz.org/, [cit.
2015-05-18].

Harzati, V.: Difference between Fault, Failure and Error, [online].
https://vikashazrati.wordpress.com/2008/10/30/fault-failure-error/, [cit.
2015-05-07].

Hlavicka, J.; Racek, S.; Golan, P.; aj.: Cislicové systémy odolné proti poruchdm.
Praha: Vydavatelstvi CVUT, 1992, iSBN 80-01-00852-5.

Kopetz, H.: Design Principles for Disributed Embadded Applications. Springer, 2011,
iSBN 978-1-4419-8236-0.

Meyn, S.; Tweedie, R. L.: Markov chains and stochastic stability. Cambridge:
Cambridge university press, 2009, iSBN 978-0-521-73182-9.

Numpy developers: NumPy [online]. http://www.numpy.org/, 2008 [cit. 2015-05-03].

Pukite, P.; Pukite, J.: Modeling for reliability analysis: Markov modeling for
reliability, maintainability, safety and supportability analysis of complex systems.
New York: IEEE Press, 1998, iSBN 0-7803-3482-5.

Python community: Python [online|. http://www.python.org/, [cit. 2015-05-03].

Quin, L.: Extensible Markup Language (XML), [online|. http://www.w3.org/XML/,
[cit. 2015-05-04].

Rabova, Z.; Janousek, V.; Peringer, P.; aj.: Modelovdni a simulace. Brno: VUT, 1992,
iSBN 80-214-0480-9.

Straka, M.; Kastil, J.; Kotasek, Z.: Methodology for Reliability Analysis of
FPGA-based Fault Tolerant Systems. In CSE’2012 International Scientific

Conference on Computer Science and Engineering. The University of Technology
Kosice, 2012, 146-153 s., iSBN 978-80-8143-049-7.

27

[15] Travnicek, J.: Twvorba spolehlivostnich modeli pro pokrocilé cislicové systémy. FIT
VUT v Brng, 2013.

[16] Trochim, W. M.: Theory of Reliability [online].
http://www.socialresearchmethods.net/kb/reliablt.php, 2006-10-20 [cit.
2015-05-02].

[17] Zbotil, F.; Zbotil, F.: Zdklady umelé inteligence. Brno: VUT, 2012.

28

	Introduction
	Reliability and it's models
	Reliability
	Basic terms
	Reliability indicators
	Ways to achieve system's reliability

	Markov models

	Model implementation
	Used technologies
	Definition of input xml file
	Architecture
	Correctness
	Repair rules
	Imunity
	Computation

	The matrix of transition probabilities
	Simulation methods
	Numeric
	Stochastic simulation algorithm

	Simulation process
	Simulator usage
	Model preparation
	Simulation run

	Simulation results
	Execution durations
	Matrix generation duration
	Impact of model size and simulation length
	Impact of various time units on simulation
	Impact of model behaviour on simulation length

	Difference between numerical and ssa methods
	Influence of component reliability

	Conclusion

