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Abstract: This paper introduces new integrated analog cells fabricated in a C035 I3T25 0.35-µm ON
Semiconductor process suitable for a modular design of advanced active elements with multiple
terminals and controllable features. We developed and realized five analog cells on a single integrated
circuit (IC), namely a voltage differencing differential buffer, a voltage multiplier with current output
in full complementary metal–oxide–semiconductor (CMOS) form, a voltage multiplier with current
output with a bipolar core, a current-controlled current conveyor of the second generation with
four current outputs, and a single-input and single-output adjustable current amplifier. These cells
(sub-blocks of the manufactured IC device), designed to operate in a bandwidth of up to tens of MHz,
can be used as a construction set for building a variety of advanced active elements, offering up to four
independently adjustable internal parameters. The performances of all individual cells were verified
by extensive laboratory measurements, and the obtained results were compared to simulations in the
Cadence IC6 tool. The definition and assembly of a newly specified advanced active element, namely
a current-controlled voltage differencing current conveyor transconductance amplifier (CC-VDCCTA),
is shown as an example of modular interconnection of the selected cells. This device was implemented
in a newly synthesized topology of an electronically linearly tunable quadrature oscillator. Features
of this active element were verified by simulations and experimental measurements.

Keywords: advanced active elements; CMOS; electronic control; circuit synthesis and design;
oscillator; modular approach

1. Introduction

Active elements (AEs) are the most important subparts of analog and mixed signal processing
systems [1]. They are frequently used in various simple electronic circuits, such as linear filters [2,3] and
signal generators [4], and also in complex nonlinear applications [5,6]. Bipolar and unipolar transistors,
as active devices [7–9], can be directly applied in the circuit synthesis and design. This approach
seems to be beneficial in gaining operation at high-frequency bands [10]. However, in these cases,
the dynamics and linearity of the circuits are usually very restricted (tens of mV; see, for example,
Reference [9]).
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Moreover, these circuits require proper biasing and bias point setting [11], which in general are
not easy tasks. The interconnection of transistor-only circuits with other systems requires AC coupling.
Some systems [12] use such a high number of transistors that the complexity is similar to standard AEs
(e.g., operational amplifiers (OAs)). Furthermore, when electronic controllability is required, then this
must be solved separately for each design.

Standard AEs [1–3,13], which have been known for decades, usually utilize a quite high number
of transistors. However, they have certain advantages: For instance, no external biasing and bias point
settings, stabilized parameters with a minimized influence of temperature changes and fabrication
mismatches, many types of easy applications, possible DC coupling of the input/output signals, and a
relatively large and linear dynamic range. Standard commercial AEs are fabricated in bipolar junction
transistor (BJT) technologies or complementary metal–oxide–semiconductor (CMOS) technologies
as standalone devices to use in particular applications, usually in combination with other devices.
Another possibility is to integrate the whole system using these AEs and additional components on a
chip (system-on-a-chip) [14]. An OA [1,2,13,15] is a basic and widespread AE that belongs to the group
of AEs without controllable parameters. It serves as the design for well-known linear and nonlinear
building blocks of analog systems. On the other hand, the simplest noncontrollable AE (i.e., a current
follower or inverter (CF/I) [13]) also offers a very simple interterminal transfer relation and is very
useful for many applications [16]. AEs, known as noncontrollable current conveyors (CCs) [2,13,17–19],
combine voltage-mode (VM) and current-mode (CM) signal processing operations. CCs can also be
implemented through the specific interconnection of other discrete devices in various VM and CM
applications [20]. It is important to note that the previously mentioned AEs do not have the feature of
electronic controllability of their parameters.

The simplest electronically adjustable AEs have a single controllable internal parameter.
The operational transconductance amplifier (OTA) [21] represents a typical example of the conversion
of input voltage difference to an output current through controllable transconductance (gm) [22].
The electronic control of the voltage gain (A) [23] is also very important in many applications.
Variable gain amplifiers (VGAs), referred to as AEs with a controllable A, can be obtained by the
particular interconnection between OTAs and CCs [3,13,24] or are accessible as standalone commercial
devices [25]. Variants of CCs with controllable internal parameters are also available. They usually
allow for adjusting one of the following parameters: The resistance of the current input terminal
(RX) [26], current gain (B) between terminals [27–29], and voltage gain (A) [30] between terminals.

Multiparameter controllability, in the frame of AEs, has been introduced recently. First, CCs and
current amplifiers (CAs) with these features target the controllability of parameters Rx and B [31–34].
These multiparametric features are beneficial especially for signal generation and filtering in order to
extend the available range of tunability [34,35].

In this work, advanced AEs bring together different simple active subparts, referred to as cells.
The combination of an OTA and CC [36,37] represents a typical example of a voltage differencing
current conveyor (VDCC). Such a construction of advanced AEs is known as a modular approach (or
design). The commercially available integrated circuit (IC) OPA860 [20] can be understood as a modular
device because it consists of a CC and voltage buffer (VB) in the same IC package, and both parts can
be used independently or are interconnected outside the package. A current feedback operational
amplifier (CFOA), in the form of an AD844 chip [38], can be understood similarly (a CC of the second
generation and a VB). However, in this case, both subparts are also connected internally. The same idea
was also used for the design and construction of integrated universal current and voltage conveyors
(UCCs and UVCs) [39,40]. Note that the above-discussed examples (the OPA860, AD844, UCCs, and
UVCs) of a “modular design” are not examples of electronically controllable AEs. Typical examples
of advanced and also electronically controllable modular AEs, fabricated in an IC form, have been
discussed in References [36,37,41,42]. An example of an advanced AE bringing three controllable
parameters (gm, Rx, B) into one device can be found in Reference [43], where a modification of the
VDCC (behavioral model) was presented. Many other concepts were introduced in References [3,4],
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and especially in Reference [13]. These AEs are described and compared to our design in detail in
Section 2.

1.1. Contribution of the Paper

This paper introduces a newly fabricated IC (an ON Semiconductor 0.35-µm I3T25 CMOS
process [44]) that allows for a modular design of various advanced AEs with several controllable
parameters. Our concept was based on five newly designed different cells included on the chip, namely
(a) a voltage differencing differential buffer (VDDB), (b) a voltage multiplier (MLT) with current output
in full CMOS form (CMOS MLT), (c) a voltage multiplier with current output with a bipolar core (BJT
MLT), (d) a current-controlled current conveyor of the second generation (CCCII) with four current
outputs, and (e) a single-input and single-output adjustable current amplifier (CA). The topological
novelty of the presented cells is described by the following points:

(1) A new topology of VDDB device with an additional section of differential pairs (to obtain
additional voltage input) is proposed. Compared to standard OA topology [45,46], this is a
significant change with better dynamics than topology used in Reference [47] and references
cited therein;

(2) A new topology of CMOS MLT with a current output terminal is proposed. It contains additional
linearizing blocks (not used in the most similar topology [48]) and a “current-boosting” OTA
stage in order to increase dynamic range and decrease the linearity error. Note that the multiplier
in Reference [48] operated with an input voltage range ±100 mV, but our CMOS MLT design
provides ±500 mV. Therefore, the dynamics are significantly improved;

(3) A standard Gilbert core-based [49] BJT MLT was designed in order to obtain a more accurate
device than the CMOS MLT (in general, the accuracy of the CMOS design is a problem). It has a
larger transconductance constant and better symmetry of output swing currents than the CMOS
MLT does. Moreover, our BJT MLT concept, compared to Reference [48], has a current output
terminal instead of a voltage output terminal. Thanks to the presence of two multipliers (CMOS
and BJT) in our IC package, an extension of the controllability of new advanced AEs is possible;

(4) Compared to Reference [50], a modified CCCII cell topology with full mirroring of currents from
differential stage (pair) to four output terminals is presented. The main innovation is in specific
biasing current reference generation for output mirrors and driving the value of RX (which was
not the intention of Reference [50]). In contrast to our solution, the concept in Reference [50] is
not capable of providing a large dynamic range and output cascoding due to its bias sources
(voltage drop in real MOS elements) when very low supply voltage used;

(5) A current amplifier cell with a completely new topology, designed for low-power purposes,
is presented. Good linearity in a dynamic range of ±200 µA, linear control of current gain,
low input (around 1 Ω) and excellent output resistance, and low power consumption are the
main advantages of the proposed concept.

It is important to mention that the design and fabrication of these cells and topologies have not
been provided in I3T25 0.35-µm (±1.65-V supply) technology before. The functionality of our design,
especially in the case of multipliers and low-voltage technologies, was confirmed. Supply voltage
restrictions made the design process more sophisticated, requiring special additional counterparts
in the case of MLTs (namely linearization and boosting stages) due to a limited output current
swing. Therefore, our cell design is original (newly designed transistor sizes and bias conditions) and
optimized (significant modifications and extensions of basic topologies) for selected technology and
anticipated applications.

1.2. Organization of the Paper

The rest of this paper is structured as follows. Section 2 contains a comparison of our manufactured
IC device with commercially available devices and similar modular approaches. Section 3 introduces
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the fabricated device and the features of its partial cells. Selected results that describe the performances
of the realized cells of our IC are presented in Section 4. An example of the interconnection of cells
assembled in the new advanced controllable AE and its application example (a novel topology of a
quadrature oscillator), including a complete analysis (simulation and experimental measurements)
and comparisons to state-of-the-art solutions, are presented in Section 5. Finally, Section 6 concludes
this paper with an overview of the achieved results.

2. Related Solutions of Modular Concepts

In this section, we compare commercial devices as well as already known modular concepts of IC
devices to our proposal.

The general purpose of the implemented cells follows recent requirements for the development
of advanced electronically controllable multiterminal active devices. Standard design requirements
for novel applications suppose the availability of multiple current output terminals (a CCCII cell) for
current-mode operations, voltage differencing/summing operations (a VDDB cell) for voltage-mode
processing, multiplication, electronic controllability of the transformation between voltage and current
(MLT cells), and gain variability (in our case the current gain of CA). These principles can be used
either separately or together depending on the complexity and considered features of the advanced
AE. Particularly, features connected with multiplication may lead to nonstandard advanced AEs that
are currently unknown and not defined in the state-of-the-art. Such a phenomenon should also be
interesting in the synthesis and design of new applications in circuit theory, automatization and control
theory, communications, and measurement. Many known advanced AEs, for instance in References [3]
and [13], or new types and modifications of AEs can be constructed as the interconnections of several
cells in our new IC (see the selected application example in this paper).

Table 1 gives an overview and comparison of typical commercially available examples of modular
devices [20,38], as well as relevant customized and fabricated ICs offering interconnections of internal
cells ([36,37,39–42]). From this overview we can recognize the following drawbacks:

(a) Low variability (low number of cells [20,36–40]);
(b) Internal cells only, with basic functionality (two cells in the package, and one of them is a voltage

buffer [20,38]);
(c) No electronic controllability of the parameters [20,38–40];
(d) Limited electronic controllability (single parameter only [41,42]);
(e) Differential/summing voltage operations are not available (except [39,40]);
(f) Multiplicative operations are not available (except [36,37]).

In contrast to previously fabricated modular cells (or commercial devices AD844 [38] and
OPA860 [20]), our new proposal offers many useful features simultaneously:

(a) Five various cells (independent active cells implementing four different types of operations)
are available;

(b) A significantly improved variability in interconnection (compared to References [20,36–41],
the number of possible combinations is higher);

(c) Four independent electronically controllable parameters of three types (2 gm, RX, and B); and
(d) Differential and summing voltage operations as well as multiplicative operations are available.
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Table 1. Comparison of typical examples of commercially available devices to relevant customized modular IC devices.

References

Number of
Cells

(Internal
Subparts)

Types of Cells (Number and Purpose
of Terminals)

Independent
Cells (No
Internal

Interconnection)

Variability in
Interconnection

Electronically
Controllable
Parameters

Number of
Electronically
Controllable
Parameters

Types of
Electronically
Controllable
Parameters

Differential/Summing
Voltage Operations

Available

Multiplicative
Operations

Technology
(Fabrication

Process)

[20] 2
1 current conveyor (1 voltage input, 1 current

input, 1 current output); Yes Yes No 0 - No No BJT
commercial1 voltage buffer (1 input, 1 output)

[36,37] 2

1 current-controlled current conveyor (1 voltage
input, 1 current input, 2 curren outputs);

Yes Yes Yes 2 1 gm, 1 RX No Yes
CMOS
0.7-µm1 CMOS multiplier (4 voltage inputs,

1 current output)

[38] 2
1 current conveyor (1 voltage input, 1 current

input, 1 current output); No No No 0 - No No BJT
commercial1 voltage buffer (1 input, 1 output)

[39,40] 2

1 universal multiterminal current conveyor (3
voltage inputs, 1 current input, 4 current outputs);

Yes Yes No 0 - Yes No
CMOS

0.35-µm1 current conveyor (1 voltage input, 1 current
input, 1 current output)

[41] 2
1 current conveyor (1 voltage input, 1 current

input, 1 current output); Yes Yes Yes 1 gm No No
CMOS
0.7-µm1 OTA stage (2 voltage inputs, 1 current output)

[42] 5

2 current differentiators (2 current inputs,
1 current output); 2 current conveyors (1 voltage

input, 1 current input, 1 current output); Yes Yes Yes 4 gm No No
CMOS
0.7-µm

1 OTA stage (2 voltage inputs, 1 current output)

This work 5

1 VDDB (3 voltage inputs, 1 voltage output);

Yes Yes Yes 4 2 gm, 1 RX, 1 B Yes Yes
CMOS/BJT

0.35-µm

1 current-controlled current conveyor (1 voltage
input, 1 current input, 4 current outputs);

1 CMOS multiplier (4 voltage inputs,
1 current output);

1 BJT multiplier (4 voltage inputs, 1 current
output); 1 current amplifier (1 current input,

1 current output)

Notes: gm, transconductance; RX, resistance of current input terminal; B, current gain. Note that the simplest solutions [20,38] (commercially available devices) were added only for
comparison purposes, and they are not typical representatives of complex modular ICs. CMOS: complementary metal–oxide–semiconductor; OTA: operational transconductance amplifier;
VDDB: voltage differencing differential buffer.
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Our developed IC (including its cells) significantly extends the current state-of-the-art through
additional features and controllable parameters (see comparison of typical and similar concepts in
Table 1) that were not simultaneously available in the mentioned previous works.

Despite the existence of the “modular approach” presented in this paper, there are also different
methods for the assembly/synthesis and classification of AEs [51–53]. The work in Reference [51]
focused on a systematic algorithm that employed a nullor-based description of active devices and their
counterparts. It gives a comprehensive list of AEs synthesized from voltage and current followers,
MOS building blocks (e.g., current mirrors), MOS elements, and complex parts (several types of
current conveyors). The difference between our work and Reference [51] is in the depth of abstraction.
The compilation of modern active elements used in Reference [51] goes to the origin of structures
(elementary subparts of CMOS topology). Our work, in accordance with the modular approach,
supposes the existence of basic building cells (OTAs, amplifiers, etc.). Their interconnection is not
always systematic, but heuristic and based on experience determining the best way to interconnect
according to the requirements of common applications. A similar classification was also presented
in Reference [52], where nullor-based models were used as generalized descriptions of the circuit
behavior that can be obtained by different methods of synthesis, interconnection, and understanding of
equivalence (reciprocity principles, transformation between voltage- and current-mode and vice versa,
etc.). The discussed circuit models of various active subparts (each of them can be constructed through
different ways (the interconnection of MOS building parts)) are known in circuit theory as pathological
elements. Generally, previous approaches have simply followed the basic idea of synthesis (a single
theoretical description of their operations can be obtained in several ways).

The proposed modular design can also be compared to fully integrated (including passive
elements) solutions of so-called field-programmable analog arrays (FPAAs) [53]. Very good variability
and easy availability of various interconnections of internal components (full integrators, amplifiers,
nonlinear operations, etc.) are strong advantages of the FPAA-based designs. However, in comparison
to our concept, some of their features are not beneficial:

(a) Continuous electronic control is not available (FPAAs are tunable digitally in discrete steps);
(b) Not favorable frequency features (the expected speed of applications and operation of signal

paths up to tens of kHz);
(c) High power consumption (in hundreds of mW);
(d) Not a fully analog solution (additional mixed-mode subsystems and control circuits, including a

clock signal, are required in an IC), and therefore the overall complexity is much higher; and
(e) A high cost of available development kits.

3. A Developed Integrated Device for the Modular Design of Active Elements

Although there are many up-to-date technologies available, technology with a 0.35-µm minimum
size for transistors is very useful in an analog circuit design. In the case of digital or mixed digital and
analog circuit design, newer technologies represent a better choice. However, in the pure analog design
(our case), such small transistors cause significant problems, for instance due to their non-idealities
(e.g., channel length modulation effects). Therefore, we selected ON Semiconductor C035 0.35-µm
I3T25 technology [44]. It is available in the frame of the Europractice university consortium, and it
is a very good compromise between cost and performance for its intended purposes. The proposed
modular concept consists of five completely independent cells (a VDDB, CMOS MLT, BJT MLT, CCCII,
and CA) within a single package. For fast and comfortable manipulation, the fabricated device was
embedded into a DIL28 ceramic package. The designed cells are described in the following subsections,
supplemented by both simulation (Cadence IC6 Spectre simulator with an I3T25 process design kit) and
experimental results (see Appendix A). AC transfer responses and impedance plots were obtained by
an HP 4395 A (a vector network analyzer) and an Agilent 4294 A (an impedance analyzer). Note that the
power supply voltage had a nominal value of ±1.65 V in all simulations and experiments. The overall
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quiescent power consumption of the whole IC was maximally 45 mW. Figure 1 shows the contents of
the IC package and an illustration of the designed top layout, with dimensions of 1526 × 1526 µm.
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3.1. Voltage Differencing Differential Buffer (VDDB)

A folded cascode design of an OA [45,46] served as inspiration for the design of the VDDB (see
Figure 2). In this active subpart, a full negative feedback was established. Three input voltages at
high-impedance inputs, marked as VY1–VY3, are processed to the output low-impedance terminal VW
according to the following formula:

VY1 −VY2 + VY3 = VW . (1)

The proposed CMOS topology, including the designed aspect ratios of transistors (W/L) and bias
conditions, is shown in Appendix A (Figure A1).Electronics 2019, 8, x FOR PEER REVIEW 8 of 28 
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Figure 2. Schematic symbol and interterminal transfer relation of the voltage differencing differential
buffer (VDDB).

3.2. Voltage Multipliers with Current Output (CMOS MLT, BJT MLT)

This cell (see Figure 3 (left)) enables the multiplication of two differential input voltages (requiring
two pairs of terminals: VX1, VX2 and VY1, VY2) in the form of output current IZ. It has beneficial
features for circuit synthesis, especially for the construction of lossy and lossless integrator blocks [21]
employing grounded capacitors.



Electronics 2019, 8, 568 8 of 26

 

X1

IZ

VX1

VX2

IX1 = 0

IX2 = 0 MLT

CMOS core

(VX1 ‒VX2)∙(VY1 ‒VY2)∙k = IZ

ZX2
Y1
Y2

IY1 = 0

IY2 = 0
VY1

VY2 k = 1.3 mA/V2

 

X1

IZ

VX1

VX2

IX1 = 0

IX2 = 0 MLT

BJT core

(VX1 ‒VX2)∙(VY1 ‒VY2)∙k = IZ

ZX2
Y1
Y2

IY1 = 0

IY2 = 0
VY1

VY2 k = 4.9 mA/V2

 
Figure 3. Schematic symbol and description of the ideal interterminal transfer relation of the voltage 
multiplier to the current output CMOS MLT (left) and BJT MLT (right). 

The bidirectional arrow at the output indicates that both polarities of the output current are 
possible. This topology consists of a linearizing section, a multiplying core and an additional output 
stage to boost the output current. The most similar solution can be found in Reference [48], but 
without linearizing sections (see Figure A2 in the Appendix A). The linearizing blocks increase 
linearity through the input voltage range but also decrease the level of output current. Here, the 
output current swing is limited to ±low tens of μA. The issue of limited output swing can be solved 
by the increased gain factor of current mirrors. Such a step significantly degrades the bandwidth of 
the MLT (increasing area of gate = increasing gate capacity). Therefore, our topology for the CMOS 
MLT contains two output resistive loads (not used in Reference [48]) and includes additional 
“current-boosting” OTA stage for amplification and then conversion of voltage difference at these 
loads to current at the output terminal. The only similarity between our concept and the previous 
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transconductance constant k could be useful. In order to significantly increase the value of k, a BJT 
solution as a core part of the MLT seemed to be promising. Therefore, a standard bipolar Gilbert core 
[49] (see Figure A3 in Appendix A) of the multiplier (BJT MLT), shown in Figure 3 (right), could be 
useful because of its beneficial features. The same “boosting” OTA stage serves the same purpose as 
in the case of the CMOS MLT. Moreover, differences between the simulation and measurement 
results (including fabrication mismatches) were expected to be not so significant in this case (see the 
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The CCCII is a very important part of the integrated device (and it also occupies a large part of 
the chip area). It addresses the requirement for an active cell suitable for current-mode signal 
processing and therefore for providing multiple current outputs. It offers the mentioned useful 
features as well as intentional electronic control of the resistance of current input terminal X (Figure 
4). We selected the topology of a differential pair with full negative feedback, similarly to References 
[45,46,50]. The current output terminals of the fabricated cell were based on cascoded current 
mirrors (Figure A4 in Appendix A) in order to reduce systematic and matching DC offsets and 
inaccuracies. 

Figure 3. Schematic symbol and description of the ideal interterminal transfer relation of the voltage
multiplier to the current output CMOS MLT (left) and BJT MLT (right).

The bidirectional arrow at the output indicates that both polarities of the output current are
possible. This topology consists of a linearizing section, a multiplying core and an additional output
stage to boost the output current. The most similar solution can be found in Reference [48], but without
linearizing sections (see Figure A2 in the Appendix A). The linearizing blocks increase linearity through
the input voltage range but also decrease the level of output current. Here, the output current swing
is limited to ±low tens of µA. The issue of limited output swing can be solved by the increased gain
factor of current mirrors. Such a step significantly degrades the bandwidth of the MLT (increasing area
of gate = increasing gate capacity). Therefore, our topology for the CMOS MLT contains two output
resistive loads (not used in Reference [48]) and includes additional “current-boosting” OTA stage for
amplification and then conversion of voltage difference at these loads to current at the output terminal.
The only similarity between our concept and the previous one [48] can be found in the multiplying
core. However, it was redesigned for our purposes, with different aspect ratios of transistors designed
with different technology. The ideal transfer relation between input voltage pairs and output current
has a form,

(VX1 −VX2)(VY1 −VY2)k = IZ, (2)

where k is a constant given by technological parameters, designed aspect ratios of specific transistors,
and circuit components of internal topology (see Figure A2 in Appendix A).

The experimental analysis of the CMOS MLT revealed a large impact of fabrication mismatches
on its performance. In some applications, different MLT cells having a high value of transconductance
constant k could be useful. In order to significantly increase the value of k, a BJT solution as a core part
of the MLT seemed to be promising. Therefore, a standard bipolar Gilbert core [49] (see Figure A3
in Appendix A) of the multiplier (BJT MLT), shown in Figure 3 (right), could be useful because of its
beneficial features. The same “boosting” OTA stage serves the same purpose as in the case of the CMOS
MLT. Moreover, differences between the simulation and measurement results (including fabrication
mismatches) were expected to be not so significant in this case (see the results in sub-Section 4.2 and
Tables A2 and A3 in Appendix A). Therefore, a BJT MLT was also included in our IC. The ideal transfer
relation is identical to Equation (2), but the values of k are different.

3.3. Current-Controlled Current Conveyor of the Second Generation (CCCII)

The CCCII is a very important part of the integrated device (and it also occupies a large part of the
chip area). It addresses the requirement for an active cell suitable for current-mode signal processing
and therefore for providing multiple current outputs. It offers the mentioned useful features as well
as intentional electronic control of the resistance of current input terminal X (Figure 4). We selected
the topology of a differential pair with full negative feedback, similarly to References [45,46,50].
The current output terminals of the fabricated cell were based on cascoded current mirrors (Figure A4
in Appendix A) in order to reduce systematic and matching DC offsets and inaccuracies.
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Figure 4. Schematic symbol and description of the ideal interterminal transfer relations of the 
current-controlled current conveyor of the second generation (CCCII). 

3.4. Current Amplifier with Controllable Current Gain (CA) 

The adjustable current gain of the CA is a very useful feature in the synthesis of current and 
mixed mode circuits. Figure 5 shows the single-input single-output concept of this cell available in 
the designed IC device. Its topology is shown in Figure A5 in Appendix A. Parameter B represents 
the electronically adjustable current gain as a relation between the input and the output current (Io = B∙Ii). 
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current-controlled current conveyor of the second generation (CCCII).

3.4. Current Amplifier with Controllable Current Gain (CA)

The adjustable current gain of the CA is a very useful feature in the synthesis of current and
mixed mode circuits. Figure 5 shows the single-input single-output concept of this cell available in the
designed IC device. Its topology is shown in Figure A5 in Appendix A. Parameter B represents the
electronically adjustable current gain as a relation between the input and the output current (Io = B·Ii). 
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Figure 5. Schematic symbol and description of the ideal interterminal transfer relations of the 
adjustable current amplifier (CA).  

Figure 5. Schematic symbol and description of the ideal interterminal transfer relations of the adjustable
current amplifier (CA).

4. Experimentally Tested Features of the Proposed Cells

In this section, performances of the proposed cells of the manufactured IC device are presented.
For this purpose, results selected from the simulations and measurements are presented and discussed.
The complete analysis is available in Appendix A (see Tables A1–A5).

4.1. The VDDB

Compared to previous implementations [47] and references cited therein, the most important
features of this device are as follows: Favorable dynamics (±700 mV), very high resistance of voltage
inputs (100 MΩ), total harmonic distortion (THD) lower than 0.5%, and a frequency bandwidth
higher than 45 MHz for all possible transfers from input(s) to output (see Figure 6). The output
impedance was very low (<1 Ω) at low frequencies. It started to increase above 10 kHz (<10 Ω at
1 MHz), which is common behavior for such a topology. The printed circuit board (PCB) used for the
experimental measurements caused increasing terminal and nodal parasitic capacities (about 10–15 pF
higher than expected from simulations). It was valid for all experimental results presented in this work.
An overview of the simulation and experimental results is summarized in Table A1 (see Appendix A).
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actually extended the concept of an OTA [21,22] because the operation of multiplication could be 
used for a simple change in the polarity of the output current. Table A2 indicates the expected 
differences between the simulated and measured transconductance values (gm-s). These differences 
were mainly caused by different values of k in the case of simulation (k ≅ –1.8 mA/V2) and 
measurement (k ≅ –1.3 mA/V2). This parameter significantly depended on temperature and 
fabrication mismatches. The inaccuracy resulted from a variation in the transconductance 
parameters of partial transistors (thermal voltage) and the non-equal bulk and source voltages (the 
threshold voltage is influenced) of differential pairs. The design recommendations of the CMOS 
process supposed that bulks are connected to the highest (P-type/channel MOS) or the lowest 
(N-type/channel MOS) voltage potentials in the circuit. Therefore, all bulks of NMOS elements are 
connected to negative supply voltage, and bulks of PMOS types are connected to positive supply 
voltage. Note that the dispersion of k was predicted from so-called process corner, supply voltage, 
and temperature variation (PVT) analyses. The experimentally obtained value fell into the expected 
range of possible deviation (see Figure 7). High input impedances (100 MΩ) represent an important 
advantage of this cell. In real experiments, the driving of transconductance was possible up to 660 μS. 

Figure 6. Selected results of the measured and simulated responses of the VDDB: (left) DC transfer
responses Y1–3→W; (right) magnitude AC transfer responses Y1–3→W.

4.2. The CMOS MLT and BJT MLT

The features of the multiplier were tested in the form of emulating behavior of the OTA in two
configurations: (1) the X2, Y2 terminals are grounded, X1 (signal input), Z (signal output (X1 → Z,
indicated in Table A2)), and Y1 (DC driving voltage); and (2) Y1 (signal input), Z (signal output (Y1→ Z,
indicated in Table A3)), X1 (DC driving voltage), and X2, Y2 are grounded. This configuration actually
extended the concept of an OTA [21,22] because the operation of multiplication could be used for a
simple change in the polarity of the output current. Table A2 indicates the expected differences between
the simulated and measured transconductance values (gm-s). These differences were mainly caused by
different values of k in the case of simulation (k � –1.8 mA/V2) and measurement (k � –1.3 mA/V2).
This parameter significantly depended on temperature and fabrication mismatches. The inaccuracy
resulted from a variation in the transconductance parameters of partial transistors (thermal voltage)
and the non-equal bulk and source voltages (the threshold voltage is influenced) of differential pairs.
The design recommendations of the CMOS process supposed that bulks are connected to the highest
(P-type/channel MOS) or the lowest (N-type/channel MOS) voltage potentials in the circuit. Therefore,
all bulks of NMOS elements are connected to negative supply voltage, and bulks of PMOS types are
connected to positive supply voltage. Note that the dispersion of k was predicted from so-called process
corner, supply voltage, and temperature variation (PVT) analyses. The experimentally obtained value
fell into the expected range of possible deviation (see Figure 7). High input impedances (100 MΩ)
represent an important advantage of this cell. In real experiments, the driving of transconductance
was possible up to 660 µS. Deviation from the maximum simulated value (about 1000 µS) was given by
the uncertainty of k. This was acceptable when fabrication mismatches were considered. The output
impedances (real parts) remained above 100 kΩ for the highest value of driving DC voltage VX (the
worst case). The measured linear dynamic input range was ±500 mV. The THD of the CMOS MLT
reached, maximally, 1.5%. This was higher than in the case of the VDDB, but was still very acceptable.

Compared to the CMOS MLT solution, the BJT core of the MLT substantially improved the
performance of the DC accuracy and k. The transconductance constant value reached k � 4.8 mA/V2

(simulated) and k � 4.9 mA/V2 (measured). The obtained results (simulation and measurement),
summarized in Table A3 (see Appendix A), indicated better accuracy and correspondence of simulated
and measured transfer responses than in the case of the CMOS MLT. In comparison to the CMOS
MLT solution, this represents a very important advantage. Input impedances achieved lower values
in the BJT case (due to the bipolar input stage), but they were still sufficiently high for most of the
applications. The input dynamic range with linear behavior was slightly higher, ±600 mV and ±700
mV in the simulation and from measurement, respectively. The frequency bandwidth of only 39 MHz
could be considered to be some kind of limitation in particular cases, but it was obtained for a very low
driving voltage. The range of possible transconductance controls was wider (measuring up to 2400 µS)
than in the case of the CMOS MLT (measuring up to 660 µS). The output resistance achieved values
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>100 kΩ (even for the highest control voltages). The THD values were similar to the previous case.
Exemplary DC and AC transfer responses are plotted in Figure 8.

Deviation from the maximum simulated value (about 1000 μS) was given by the uncertainty of k. 
This was acceptable when fabrication mismatches were considered. The output impedances (real 
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measured linear dynamic input range was ±500 mV. The THD of the CMOS MLT reached, 
maximally, 1.5%. This was higher than in the case of the VDDB, but was still very acceptable. 
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4.3. CCCII

All-important results are summarized in Table A4 (see Appendix A). Dynamic ranges of the
current transfers (X→ Z1–4) of the CCCII cell were from ±80 µA up to ±1700 µA, depending on the bias
current Iset_Rx (driving RX as RX � 3.5·IB

–1/2). Correspondence between Cadence and the experimental
results in most of the DC/AC parameters was relatively high. In the worst case, the lowest usable
frequency bandwidth was 37 MHz, but it was possible to reach 50 MHz for the highest Iset_Rx at
specific transfers.

The input impedance (Y terminal) again reached very high values (100 MΩ), and the output
impedances were acceptable (>60 kΩ) even for the maximal Iset_Rx setting (the worst case). Note that
quite large levels of currents were supposed to be processed. Therefore, quiescent DC bias currents
in the branches of the output stages were also quite high (hundreds of µA). The THD levels were
maximally up to 0.1%. Selected features of the CCCII are shown in Figure 9.

It is worth noting that the dependence of RX (simulation: from 2320 Ω→ 240 Ω) on Iset_Rx (see
Table A4) was visible from 5 µA to 350 µA, but there was a significant difference between the simulation
and measurement results. This was caused by a natural and expected change in the operation regime
of transistors in the structure (the starts of this change in the case of simulations and in the case of a
real circuit were different).
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Table A5 (see Appendix A) describes all-important features of the CA. The current gain (a 
constant between the output and input current) was defined as B ≅ 75∙103∙Iset_B and can be adjusted by 
the DC driving current Iset_B. The linearity of the DC transfer response was excellent (despite 
dynamics limited to ±200 μA), as well as input and output resistances are/were too. However, this 
cell targets low-power applications (the main purpose) and not speed. The frequency features of this 
cell were the worst from all units included in our IC (not overcoming 1.6 MHz, see Figure 10 (left)). 
A comparison of the real behavior of the CA cell (see Table A5) to Cadence design (nominal) showed 
the inaccuracy of DC as well as AC performances (Figure 10), especially for higher values of driving 
current Iset_B. Its power consumption was the lowest of all of the designed cells (at least five times). 
This is the reason why this cell is appropriate for low-power applications. The current gain control 
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measurement results for Iset_B > 15 μA are given through uncertainty of the setting of the operational 
regime of particular transistors in the topology (simulations). The evaluated distortion was not 
higher than 0.6% in the case of this cell. 
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Table A5 (see Appendix A) describes all-important features of the CA. The current gain (a constant
between the output and input current) was defined as B � 75·103
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to ±200 µA), as well as input and output resistances are/were too. However, this cell targets low-power
applications (the main purpose) and not speed. The frequency features of this cell were the worst from
all units included in our IC (not overcoming 1.6 MHz, see Figure 10 (left)). A comparison of the real
behavior of the CA cell (see Table A5) to Cadence design (nominal) showed the inaccuracy of DC as
well as AC performances (Figure 10), especially for higher values of driving current Iset_B. Its power
consumption was the lowest of all of the designed cells (at least five times). This is the reason why
this cell is appropriate for low-power applications. The current gain control was designed for an Iset_B
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of internal cells in accordance with the principle and methodology introduced in Reference [13]. 
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parameters, namely gm1, RX, and gm2. Note that the outer terminals of the AE are distinguished from 
inner (cell) terminals by the symbol “ * ”. This AE is characterized by the following operation. MLT1 
transforms the differential input voltage from the p* and n* terminals to the current (through the 
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second auxiliary terminal, marked as Zb*. The voltage drop obtained at the external impedance, 
connected to this terminal, is again transformed to the current. It flows from MLT2 (where the third 
controllable parameter gm2 is available) at the x* terminal (Ix* = ±VZb*∙gm2). Note that the 
implementation of the MLTs in the AE concept allows for a simple change of polarity for the output 
currents IZa*, IZb*, and Ix* (i.e., transconductance polarity). We refer to this device as a 
current-controlled voltage differencing current conveyor transconductance amplifier 
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5. Example Interconnection of Internal Cells: A Novel Advanced Active Element

Internal cells (the VDDB, CCCII, CMOS MLT, BJT MLT, and CA) of the developed integrated
device may be interconnected externally in order to create many types of advanced AEs. The principle
of “modular approach” was presented in the overview of standard, modern and newly defined AEs.
Their role in new proposals has been discussed in literature. For more details, see References [3,13].
The following text presents one possible novel configuration and interconnection of internal cells in
accordance with the principle and methodology introduced in Reference [13].
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Figure 11 shows the concept of an advanced AE that has three independently adjustable parameters,
namely gm1, RX, and gm2. Note that the outer terminals of the AE are distinguished from inner (cell)
terminals by the symbol “ * ”. This AE is characterized by the following operation. MLT1 transforms
the differential input voltage from the p* and n* terminals to the current (through the controllable
transconductance, gm1) flowing out of the auxiliary terminal za* (IZa* = ± (Vp* – Vn*)·gm1). The voltage
input Y of the CCCII is connected to this terminal to process the voltage drop at external impedance,
which is connected to this terminal. The voltage at za* also appears at the terminal X* (if not grounded).
When the current is flowing through terminal X*, then relation VX* = VZa* + RXIX* is valid (RX is
also electronically controllable). The CCCII creates a direct copy of IX* (IZb* = IX*) at the second
auxiliary terminal, marked as Zb*. The voltage drop obtained at the external impedance, connected to
this terminal, is again transformed to the current. It flows from MLT2 (where the third controllable
parameter gm2 is available) at the x* terminal (Ix* = ±VZb*·gm2). Note that the implementation of the
MLTs in the AE concept allows for a simple change of polarity for the output currents IZa*, IZb*, and Ix*

(i.e., transconductance polarity). We refer to this device as a current-controlled voltage differencing
current conveyor transconductance amplifier (CC-VDCCTA).
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Figure 11. Example of the interconnection of three cells of the fabricated IC, defining an advanced 
active element (AE) with three adjustable parameters: a so-called current-controlled voltage 
differencing current conveyor transconductance amplifier (CC-VDCCTA). 

5.1. Application Example: CC-VDCCTA-Based Quadrature Oscillator 

A simple oscillator enabling the linear tunability of frequency (oscillations) can be realized by 
utilizing a single CC-VDCCTA (see Figure 11) and four passive components. Its circuit is plotted in 
Figure 12. The characteristic equation has the following form: 
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Figure 11. Example of the interconnection of three cells of the fabricated IC, defining an advanced active
element (AE) with three adjustable parameters: a so-called current-controlled voltage differencing
current conveyor transconductance amplifier (CC-VDCCTA).

Application Example: CC-VDCCTA-Based Quadrature Oscillator

A simple oscillator enabling the linear tunability of frequency (oscillations) can be realized by
utilizing a single CC-VDCCTA (see Figure 11) and four passive components. Its circuit is plotted in
Figure 12. The characteristic equation has the following form:

s2 +
(1−Rgm2)

C2R
s +

gm1

C1C2(RX + Rext)
= 0, (3)

where the condition for oscillation (CO) is fulfilled at R.gm2 ≥ 1. The frequency of oscillation (FO) and
the relation between generated signals are given respectively by Equations (4) and (5).

Equations (4) and (5) have simple expressions:

ω0 =

√
gm1

C1C2(RX + Rext)
, (4)

V1

V2
=
−gm1

sC1

∣∣∣∣∣
s= jω0

⇒
V1

V2
= j

√
(RX + Rext)gm1. (5)
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Parameters gm2 or R are suitable for automatized CO control (amplitude stabilization). Note that the 
circuit is able to operate without external Rext. However, direct grounding of the X terminal of the 
CC-VDCCTA causes operation with lower linearity. Therefore, THD also increases significantly. A 
small value of Rext increases linearity and the dynamics of signal processing. 

The features of the proposed circuit were verified by Cadence Spectre simulations and by 
laboratory experiments, in which a real fabricated IC device was used. An Agilent 4395A 
network/spectrum/impedance analyzer and a DS1204B oscilloscope were used for these purposes. 
Figure 13 depicts the PCB realized for verification purposes. There were several auxiliary circuits on 
this PCB, including voltage buffers, in order to optimize output (for measurement purposes) with a 
50-Ω load (Agilent 4395A). 
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Simultaneous adjustment of RX + Rext and gm1 (gm1 = 1/(RX + Rext)) ensures linear tuning of the
FO while keeping output levels constant with the quadrature phase shift during the tuning process.
Parameters gm2 or R are suitable for automatized CO control (amplitude stabilization). Note that
the circuit is able to operate without external Rext. However, direct grounding of the X terminal of
the CC-VDCCTA causes operation with lower linearity. Therefore, THD also increases significantly.
A small value of Rext increases linearity and the dynamics of signal processing.

The features of the proposed circuit were verified by Cadence Spectre simulations and by
laboratory experiments, in which a real fabricated IC device was used. An Agilent 4395A
network/spectrum/impedance analyzer and a DS1204B oscilloscope were used for these purposes.
Figure 13 depicts the PCB realized for verification purposes. There were several auxiliary circuits on
this PCB, including voltage buffers, in order to optimize output (for measurement purposes) with a
50-Ω load (Agilent 4395A). 

 
Figure 13. PCB for experimental verification of applications with fabricated chips shown in case of 
using only one IC package as discussed in the paper (implementation of the designed oscillator). 

A practical example of the design of the above-described oscillator starts with the following 
parameters: f0 = 159 kHz (oscillation frequency), C1 = C2 = C = 1 nF, Rx = 420 Ω (Iset_Rx = 100 μA), Rext = 
82 Ω, and R = 4.7 kΩ. Next, calculations from Equation (4) lead to gm1 = 1 mS (Vset_gm1 = 0.2 V). We 
designed and realized an amplitude stabilization circuit (CO control) of this oscillator (see Figure 14) 
based on the regulation of R. It was supplied from the node of C2 and was used in all experimental 
tests. The circuit contained a high-input impedance adjustable amplifier with an OA and a voltage 
doubler/multiplier controlling the junction field effect transistor (J-FET)-based controllable resistor 
connected to the node of C2 (in parallel to R = 4.7 kΩ). The value of gm2 was kept to about 540 μS 
(Vset_gm2 = 0.3 V). The measured waveforms and their spectral analyses are shown in Figure 15. 

  

Figure 13. PCB for experimental verification of applications with fabricated chips shown in case of
using only one IC package as discussed in the paper (implementation of the designed oscillator).

A practical example of the design of the above-described oscillator starts with the following
parameters: f 0 = 159 kHz (oscillation frequency), C1 = C2 = C = 1 nF, Rx = 420 Ω (Iset_Rx = 100 µA),
Rext = 82 Ω, and R = 4.7 kΩ. Next, calculations from Equation (4) lead to gm1 = 1 mS (Vset_gm1 = 0.2 V).
We designed and realized an amplitude stabilization circuit (CO control) of this oscillator (see Figure 14)
based on the regulation of R. It was supplied from the node of C2 and was used in all experimental
tests. The circuit contained a high-input impedance adjustable amplifier with an OA and a voltage
doubler/multiplier controlling the junction field effect transistor (J-FET)-based controllable resistor
connected to the node of C2 (in parallel to R = 4.7 kΩ). The value of gm2 was kept to about 540 µS
(Vset_gm2 = 0.3 V). The measured waveforms and their spectral analyses are shown in Figure 15.
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The limited bandwidth and parasitic features of the AEs do not influence the considered
low-frequency design significantly. This was confirmed by experimental measurements in the time
domain (see Figure 15), where we obtained f 0 = 164 kHz (very close to the expected 159 kHz). A spectral
analysis yielded THD values of 0.8% and 1.3% (obtained for V1 and V2, respectively).

Figure 16 (left) shows the character of tunability and behavior of the output responses when
f 0 is tuned by gm1 (Vset_gm1) and RX (RX + Rext) simultaneously. Note that the low value of Rext =

82 Ω in these tests kept RX as a dominant source in the adjustment of f 0. The value of RX + Rext

(connected actually in a series) was set from 500 Ω to 5 kΩ (Iset_Rx = 100→ 10 µA), and the value of
gm1 was adjusted in the opposite direction, from 196 µS to 2 mS (Vset_gm1 = 0.041→ 0.41 V). When
this setting was considered, the oscillator offered an ideal tuning range for the FO: f 0 = 32 kHz→ 319
kHz (10:1). Cadence simulations yielded tunability from 43 kHz to 295 kHz (7:1), and the laboratory
experiments provided the adjustment between 38 kHz and 337 kHz (9:1). The phase shift fluctuated
around 90◦, with a maximal deviation of ±2◦ in these bands. The amplitude levels, as well as their
ratio, were almost constant during the measured FO tuning (see Figure 16 (right)).

The benefits of the proposed oscillator (available simultaneously) were as follows: (a) all passive
elements were grounded, (b) simple electronic controllability, (c) a linear type of tunability, (d) a fully
uncoupled FO and CO, (e) two possible ways (driving of gm2 or R) for the implementation of the
system for automatic amplitude stabilization, and (f) constant output levels and phase shift when
oscillation frequency was tuned.

Table 2 compares the features of our design to relevant solutions of similar oscillators (single
advanced AE-based circuits). Based on an analysis of the considered concepts, the solution in
Reference [54] offered the most similar features. However, the option of tunability was not tested,
electronic linear tunability was not even possible, and electronic control of internal RX in the AE
was not supposed. Interesting features were also available in the case of the solution presented in
Reference [55]. However, this oscillator did not provide quadrature outputs with constant signal levels
(when FO was tuned).
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Table 2. A comparison of recently published and the most similar electronically controllable quadrature oscillators based on a single active element and a
grounded capacitor.

References Active
Elements

No. of Auxiliary
High Impedance

Terminals Z

No. of
Controllable
Parameters
of Device

No. of
Passive

Elements

Parameters
for f 0 Control

Trend of
Electronic
Tunability

Fulfillment
of CO Given
by Parameter

No. of
Parameters
Suitable for
CO Control

FO and CO
Fully

Uncoupled

Constant Output
Amplitude While

f 0 Is Tuned

Chip
Area/Cell

Area (mm2)

Power
Consumption
(Full IC/ Cells)

(mW)

[36] VDCC 1 2 4 gm nonlinear R valuea 1 Yes No 4/0.79 -/45
[55] ZC-CG-VDCC 1 3 4 gm, RX linear B 1 Yes Nob N/A -/7
[56] VDTA 1 2 3 gm nonlinear R valuea 1 Yes No N/A N/A
[57] DVCCTA 1 1c 5 gm, RX N/A R valuea 2 Yes N/A N/A N/A
[58] DDTA 1 1 3 gm nonlinear C value 0 No N/A N/A N/A

Figure 11 CC-VDCCTA 2 3 4 gm1, RX linear gm2, R valuea 2 Yes Yes 2.34/0.35 45/34

Notes: CC-VDCCTA: current-controlled voltage differencing CCTA; DDTA: differential difference transconductance amplifier; DVCCTA: differential voltage current conveyor
transconductance amplifier; VDCC: voltage differencing current conveyor; VDTA: voltage differencing current conveyor; ZC-CG-VDCC: Z-copy controlled gain VDCC; N/A: not available,
not solved, or not tested; gm: transconductance; RX: resistance of current input terminal; B: adjustable current gain. a Value of passive element. b Multiphase type of oscillator where
quadrature output is also available: However, constant amplitudes (when tuned) are generated only with a 45◦phase shift. c RX not implemented in the AE as electronically controllable
(RX = external passive element), and electronic FO tunability available in nonlinear form only (but not tested).
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levels of V1 and V2 versus f 0.

The use of several internal cells in a frame of the single IC package may indicate that the
implementation of simple OTA cells (for instance, the well-known solution from References [59,60])
brings simpler topologies of linearly tunable oscillators. Based on the comparison of the structure
from Figure 12 (including three adjustable internal cells) and solutions of the oscillators, shown in
References [59,60], we can assess that three OTAs (having three gm parameters) are not sufficient for
fully linear tuning of frequency of oscillations even when we accept an unfavorable disturbance of
the ratio of output amplitudes during the tuning procedure. The quadrature and linearly tunable
solutions, employing OTAs, require at least four active devices (see Reference [59]) and, in addition,
also an amplitude stabilization (AGC) as a circuit. From the viewpoint of the number of active devices,
our solution brings a reduction in the needed number of active devices (when internal IC cells are
counted as discrete parts).

Many applications require several current outputs (implementation of OTAs [3,4,13]).
In Reference [54], a perfect example of the synthesis of a multiphase oscillator requiring an active
device with several current output terminals was presented. A similar thing can be ensured in our IC
modular approach when the CCCII cell is used as a current distributor [16] (Y terminal connected to
the ground and current Iset_Rx is adjusted to the highest value in order to obtain the lowest RX value).
This current distributor extends the number of output currents of both polarities when it is connected
through the X terminal to the current output z of the MLT (forming the OTA part) in the IC package.

6. Conclusions

The presented concept of “modular approach” leads to interesting constructions of advanced AEs,
which have multiterminal and multiparameter (single, two, three, or four independently controllable
parameters) features. Several of them have already been defined in Reference [13]. However, many of
them have not been presented in the literature until now. A fabricated IC device allows various
implementations of AEs in different systems of continuous analog and mixed signal processing.
Frequency features of cells (units and tens of MHz), given significantly by the used technology
I3T25, predetermine the proposed systems for operation to up to hundreds of kHz and units of MHz,
with sufficient dynamic ranges of the processed signals. A brief comparison of the most important
features of the proposed active cells is presented in Table 3.

The proposed and realized AEs can be easily applied in the field of analog signal processing
(synthetic immittance functions, filters, oscillators, etc.). The functionality of the modular design of AEs
was verified, and one application example (an oscillator) of a newly defined concept (CC-VDCCTA)
was presented in this paper in detail. Smooth operating and real measurement results, in comparison
to theory and expectations, confirmed the suitability of the modular approach in the development of
new circuit applications.
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Table 3. Brief comparison of the selected important measured features of the proposed cells included
in the IC.

Cell Frequency Features
(Bandwidth) a

DC Features and
Linearity

(Dynamics)
Input Impedance Output

Impedance
Quiescent Power
Consumption a

Accuracy of Simulation
Results with Results of

Experiments
(Design Stage)

VDDB Good (>45 MHz) Good (±700 mV) High (100 MΩ) Low (good)
(0.5 Ω) Average (9.1 mW) High

CMOS MLT Average (>30 MHz) Good (±500 mV) High (100 MΩ) Average
(>100 kΩ) Average (7.8 mW) Within expected range

(process variation)

BJT MLT Good (>40 MHz) Good (±700 mV) Average (170 kΩ) Average
(>100 kΩ) Average (9.5 mW) Good

CCCII Good (>37 MHz) Good (±500 mV, Y)
(to ±1700 µA, X)

High (100 MΩ, Y)
Average

(0.28→ 3.4 kΩ, X)

Average
(>60 kΩ) High (16.8 mW) Good

CA Low (<1.6 MHz)
Average (but

excellent linearity)
(±180 µA)

Low b (1.4 Ω)
High (good)

(>3 MΩ) Low (1.7 mW) Average

Notes: All numerical results are measured values; a in frame of the IC device; b this is a significant advantage in the
case of CA.

This paper showed and explained the results and performances of all of the designed cells.
An application example actually utilized only a part of them. The employment of more cells or
different combinations of cells goes beyond the aims of this paper and is a topic of our future research.
Nevertheless, the presented example sufficiently explains the purpose of the developed IC (assembly
and implementation of advanced AEs) and indicates how the new (or modified) advanced AE can be
usefully utilized in an application. This application example was selected because of the usefulness of
several adjustable parameters for tunability purposes of the oscillator.
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Appendix A

This appendix includes the integrated internal topologies of the proposed cells of the manufactured
IC device. Furthermore, their performance analyses (simulation versus measurement) are presented
in detail.
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Figure A1. Full CMOS topology of the voltage differencing differential buffer (VDDB). 
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Table A1. Summary of simulated and measured performances of the VDDB cell.

Parameters/Conditions Simulation Results
(Nominal Run) Measured Results Error (Measured vs

Simulated) Design Target

Small-signal AC transfer

KY1 → W (−3 dB) 1.00 [-] (51.6 MHz) 1.02 [-] (55.4 MHz) +2% (+7%) 1 (≥30 MHz)
KY2 → W (−3 dB) 1.00 [-] (54.3 MHz) 1.02 [-] (61.6 MHz) +2% (+13%) 1 (≥30 MHz)
KY3 → W (−3 dB) 1.00 [-] (51.3 MHz) 1.01 [-] (45.1 MHz) +1% (–12%) 1 (≥30 MHz)

Input dynamic range

Y1,2,3 →W ≥ ±700 mV ≥ ±700 mV 0% ≥±500 mV

Input DC offset (Monte Carlo)

systematic + statistical
(mismatch, 3 sigma; 99.7%) real

Y1,3 →W −0.57 ± 20.5 mV |10| mV expected statistical range -
Y2 →W −0.57 ± 20.5 mV |10| mV expected statistical range -

Total harmonic distortion (for input voltage 500 mVpk-pk, 1 kHz)

THD Y1,2,3→W <0.10% - <1%

Terminal impedances

RY1,2,3, CY1,2,3 ≥1 GΩ, 2.8 pF 100 MΩ, 13 pF - >50 kΩ
RW, LW 0.37 Ω, 4.3 µH 0.54 Ω, 4.3 µH - <10 Ω

measured quiescent power consumption: 9.1 mW

Basic principle: The topology of the VDDB included an OA-based folded cascoded core.
The difference between the standard topology in References [45,46] and our proposal consisted of the
following: (a) additional differential NMOS and PMOS pairs (Mp3–4, Mn3–4) were used to obtain two
additional voltage inputs, where one of them was used for full negative feedback. The low-impedance
voltage output was solved as a class A source follower (M9).
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Figure A2. Full CMOS topology of the voltage multiplier with current output (CMOS MLT). 
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Table A2. Summary of simulated and measured performance of the CMOS MTL cell.

Parameters/Conditions Simulation Results
(Nominal Run) Measured Results Error (Measured

vs Simulated) Design Target

Small-signal AC transfer

gm (X1 → Z) (−3 dB)
for VY1 = ±0.05→±0.50 V ±98→± 975 µS (≥53.0 MHz) ±45→± 650 µS

(≥30.0 MHz)
–54%→ –33%

(–43%)
≥100 µS→≥1000 µS

(≥30 MHz)
gm (Y1 → Z) (−3 dB)

for VX1 = ±0.05→±0.50 V ±98→± 980 µS (≥44.0 MHz) ±60→± 665 µS
(≥44.0 MHz)

–39%→ –32%
(0%)

≥100 µS→≥1000 µS
(≥30 MHz)

Input DC dynamic range

X1 → Z
for VY1 = ± 0.05→± 0.50 V ≥±500 mV ≥±500 mV 0% ≥±500 mV

Y1 → Z
for VX1 = ± 0.05→± 0.50 V ≥±600 mV ≥±600 mV 0% ≥±500 mV

Input DC offset (Monte Carlo)

systematic + statistical
(mismatch, 3 sigma; 99.7%) real maximum

X1 → Z for VY1 = ± 0.5 V 3.3 ± 63 mV |6| mV expected statistical
range -

Y1 → Z for VX1 = ±0.5 V 3.2 ± 66 mV |18| mV expected statistical
range -

Total harmonic distortion (for input voltage 500 mVpk-pk, 1 kHz)

THD X1 → Z for VY1 = ± 0.1 V ≤0.16% - <1%
THD X1 → Z for VY1 = ± 0.5 V ≤0.14% - <1%
THD Y1 → Z for VX1 = ± 0.1 V ≤1.45% - <1%
THD Y1 → Zfor VX1 = ± 0.5 V ≤0.45% - <1%

Terminal impedances

RX1 , CX1 for all VY1 ≥1 GΩ, 2.5 pF 100 MΩ, 10–24 pF - >50 kΩ
RY1, CY1 for all VX1 ≥1 GΩ, 2.5 pF 100 MΩ, 14 pF - >50 kΩ

RZ, CZ for VX1 = ± 0.50 V 1.55 MΩ, 5.3 pF ≥100 kΩ, 16.2 pF - >50 kΩ

measured quiescent power consumption: 7.8 mW

Basic principle: Two input differential voltages were processed by linearizing segments (Mx1-2

and My1-2) in order to extend the linear range of the DC transfer. Each linearizing segment worked
as an operational transconductance amplifier with very low but highly linear (from the viewpoint
of signal level) transconductance (practically given by degradation resistor Rb, and therefore high
linearity between the input differential voltage and the output current was ensured) with a differential
current output that performed differential output voltage at two identical resistive loads. Then, both
output voltages were connected to the multiplying core (the basic concept introduced in Reference [48]).
A boosting OTA section (differential pair M7–8) was used because of the low output level (low gain) of
the current (tens of µA instead of hundreds of µA) when the output of the multiplying core, through
appropriate current mirrors, was taken directly out.
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Table A3. Summary of simulated and measured performances of the BJT MTL cell.

Parameters/Conditions Simulation Results
(Nominal Run) Measured Results Error (Measured

vs Simulated) Design Target

Small-signal AC transfer

gm(X1 → Z) (-3 dB)
for VY1 = ± 0.05→±0.50 V

±222→±2220 µS
(≥53.0 MHz)

±250→ 2340 µS
(≥52.0 MHz)

+13%→ +5%
(–2%)

±200→± 2000 µS
(≥30 MHz)

gm(Y1 → Z) (-3 dB)
for VX1 = ±0.05→±0.50 V

±222→±2210 µS
(≥53.0 MHz)

±250→ 2350 µS
(≥39.0 MHz)

+13%→ +6%
(–26%)

±200→± 2000 µS
(≥30 MHz)

Input DC dynamic range

X1 → Z
for VY1 = ±0.05→±0.50 V ≥±600 mV ≥±700 mV +17% ≥±500 mV

Y1 → Z
for VX1 = ±0.05→±0.50 V ≥±600 mV ≥±700 mV +17% ≥±500 mV

Input DC offset (Monte Carlo)

systematic + statistical
(mismatch, 3 sigma; 99.7%) real maximum

X1 → Z for VY1 = ±0.5 V −1.4 ± 29 mV |14| mV expected statistical
range -

Y1 → Z for VX1 = ±0.5 V −1.3 ± 29 mV |15| mV expected statistical
range -

Total harmonic distortion (for input voltage 500 mVpk-pk, 1 kHz)

THD X1 → Z for VY1 = ±0.1 V ≤0.32% - <1%
THD X1 → Z for VY1 = ±0.5 V ≤0.47% - <1%
THD Y1 → Z for VX1 = ±0.1 V ≤0.17% - <1%
THD Y1 → Zfor VX1 = ±0.5 V ≤0.44% - <1%

Terminal impedances

RX1 , CX1 for all VY1 129 kΩ, 2.8 pF 176 kΩ, 18.3 pF - >50 kΩ
RY1 , CY1 for all VX1 127 kΩ, 2.8 pF 173 kΩ, 15.4 pF - >50 kΩ

RZ, CZ for VX1 = ±0.50 V 803 kΩ, 3.9 pF ≥100 kΩ, 16.1 pF - >50 kΩ

measured quiescent power consumption: 9.5 mW

Basic principle: This cell was prepared for high-precision applications (inaccuracies in CMOS
MLT were expected). In accordance with Reference [49], a linearizing segment was applied to one
differential voltage, and the linearizing procedure was different than with the CMOS MLT. It uses
exponential/logarithmic dependence of the collector current on base-emitter voltage and linearization
of the gm (differential pair) stage by the degradation resistor (Ra). The attenuation of the signal through
the linearizing segment was less significant than with the CMOS MLT. The boosting OTA is also
presented in this case due to the same reasons as with the CMOS MLT. In our design, for the highest
bandwidth, it was always better to use an additional block than increase the current mirror ratio to a
value of 1:100 (a high increase in the Cgs parasitic capacity in the node of the current mirror and drop
of bandwidth).
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Table A4. Summary of the simulated and measured performances of the CCCII cell.

Parameters/Conditions
Simulation Results (Nominal

Run with Input/Output
Capacity 5 pF)

Measured Results Error (Measured vs Simulated) Design Target

Small-signal AC transfer

KX → z1 (−3 dB) for Iset_Rx = 350 µA 1.00 [-] (49.6 MHz) 0.98 [-] (51.5 MHz) –2% (+9%) 1 (≥30 MHz)
KX → z2 (−3 dB) for Iset_Rx = 350 µA 1.00 [-] (49.6 MHz) 0.98 [-] (47.5 MHz) –2% (–4%) 1 (≥30 MHz)
KX → z3 (−3 dB) for Iset_Rx = 350 µA 0.93 [-] (41.1 MHz) 1.00 [-] (37.0 MHz) +7% (–10%) 1 (≥30 MHz)
KX → z4 (−3 dB) for Iset_Rx = 350 µA 0.93 [-] (41.1 MHz) 1.00 [-] (38.7 MHz) +7% (–5%) 1 (≥30 MHz)
KY → X (−3 dB) for Iset_Rx = 350 µA 1.00 [-] (52.1 MHz) 1.00 [-] (49.7 MHz) 0% (–5%) 1 (≥30 MHz)

GBWX → Z1 for Iset_Rx = 10→350 µA 12.7→ 49.6 MHz 11→ 51.5 MHz –13%→ +4% -
GBWX → Z2 for Iset_Rx = 10→350 µA 12.7→ 49.6 MHz 9.8→ 47.5 MHz –23%→ –4% -
GBWX → Z3 for Iset_Rx = 10→350 µA 10.8→ 41.1 MHz 7.8→ 37 MHz –28%→ –10% -
GBWX → Z4 for Iset_Rx = 10→350 µA 10.8→ 41.1 MHz 8→ 38.7 MHz –26%→ –6% -
GBWY → X for Iset_Rx = 10→350 µA 11.9→ 52.1 MHz 6.1→ 49.7 MHz –49%→ –5% -

Input DC dynamic range

X→ Z1-4 for Iset_Rx = 10→ 350 µA ±80→±1700 µA ±99→±1700 µA +24%→ +0% ±100→±1000 µA
Y→ X for Iset_Rx = 10, 350 µA ≥±500 mV ≥±1000 mV +100% ≥±500 mV

Input DC offset (Monte Carlo)

systematic + statistical
(mismatch, 3 sigma; 99.7%) real

X→ Z1 for Iset_Rx = 100 µA 0.047 ± 8.2 µA −5.4 µA expected stat. range -
X→ Z2 for Iset_Rx = 100 µA 0.047 ± 8.2 µA −0.05 µA expected stat. range -
X→ Z3 for Iset_Rx = 100 µA −0.043 ± 12.0 µA 0.65 µA expected stat. range -
X→ Z4 for Iset_Rx = 100 µA −0.043 ± 12.0 µA −0.64 µA expected stat. range -
Y→ X for Iset_Rx = 100 µA 0.336 ± 3.771 mV 2.5 mV expected stat. range -

Total harmonic distortion

THD X → z1,2 for Iset_Rx = 50, 350 µA
(for input current 100 µApk-pk, 1 kHz) 0.04, 0.07% - <1%

THD X → z3,4 for Iset_Rx = 50, 350 µA
(for input current 100 µApk-pk, 1 kHz) 0.003, 0.11% - <1%

THD Y → X for Iset_Rx = 50 and 200 µA
(for input voltage 500 mVpk-pk, 1 kHz) 0.08, 0.07% - <1%

Terminal impedances

RX, CX for Iset_Rx = 5→ 350 µA 2320→ 240 Ω, 10 pF 6670→ 280 Ω, 20 pF +188%→ +17% 2500→ 250 Ω
RY, CY for all Iset_Rx ≥1 GΩ, 2.7 pF 100 MΩ,14.5 pF - >50 kΩ

Rz1,2, Cz1,2 for Iset_Rx = 5 µA 52 MΩ, 4.8 pF 100 MΩ, 15.9 pF - >50 kΩ
Rz1,2, Cz1,2 for Iset_Rx = 350 µA 44 kΩ, 4.8 pF 66 kΩ, 15.9 pF - >50 kΩ
Rz3,4, Cz3,4 for Iset_Rx = 5 µA 106 MΩ, 2.5 pF 100 MΩ, 15.9 pF - >50 kΩ

Rz3,4, Cz3,4 for Iset_Rx = 350 µA 49 kΩ, 2.5 pF 82 kΩ, 15.9 pF - >50 kΩ

measured quiescent power consumption: 16.8 mW
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Basic principle: The topology of the CCCII was based on a differential pair (M1-2) with full
negative feedback that allowed for a simple control of terminal resistance X as an inversely proportional
function of gm by bias current. Then, the current difference of the differential pair was taken out by
cascoded current mirrors. The ideal scheme of this idea is shown in Reference [50], but our solution
had some significant modifications. One of them consists in the full mirroring of currents from the
differential pair. Then, symmetrical dynamics of the current and voltage responses (no DC drop on
bias sources) was available. The next modification included cascoded and multiple current outputs. 

M1 M2
20/4 20/4

2 k Ω

I bi
as

 =
 2

0 
μA

M58

Rb

8/0.5

8/4

M54

VDD = +1.65 V

VSS = -1.65 V

i

o

Iset_B

M59

2/4

M3

15/5
M4

15/5

2.4 pF
Cc

M19
138/0.4

M60

96/4
M61

16/4

M55

96/0.5

M5
120/2

M6

120/2
M7

15/2

M56

16/0.5

M33

10/0.5

M42

10/20

M34

10/0.5

M43

10/20

M35

2/0.5

M44

2/20

M8

8/2

M20

8/0.4

M9

320/2

M10

80/2

M21

80/0.4

M57

40/0.5

M62

40/4

M31

80/2
M32

80/2

M40

80/0.7

M41

80/0.7

M63

20/34
M64

20/34

M11
80/2

M22

80/0.4

M12

10/10
M13
12/10

M14

12/10

M45

10/20
M65

10/20

M66
120/20

M67

6/20

M68

6/20

M23
8/20

M24
8/20

M15

10/10
M16

10/10

M48

10/10

M49
10/10

M46
20/3

M69
48/3

M25
160/1.8

M26
160/1.8

M37
200/0.4

M36
200/0.4

M50
64/0.5

M51
128/0.5

M70
64/2.4

M71
128/2.4

M27
320/1.8

M38
400/0.4

M28
160/1.8

M39
200/0.4

M47
20/3

M72
48/3

M52
10/10

M53
10/10

M17

10/10
M18

10/10

M29
8/20

M30

8/20

M74

6/20

M73

6/20

VDD = +1.65 V

VSS = -1.65 V

 

Figure A5. Full CMOS topology of the adjustable current amplifier (CA). 
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Figure A5. Full CMOS topology of the adjustable current amplifier (CA).

Table A5. Summary of simulated and measured performances of the CA cell.

Parameters/Conditions Simulation Results
(Nominal Run) Measured Results Error (Measured

vs Simulated) Design Target

Small-signal AC transfer

K(i→ o) [-] for Iset_B = 1→22.5 µA 0.08→ 6.35 0.07→ 2.14 –12%→ –8% 0.1→ 1.0

K(i→ o) [dB] (−3 dB) for Iset_B = 1 µA –22.3→ 16 dB
(0.69→ 2.89 MHz)

–23.4→ 6.6 dB
(0.46→ 1.56 MHz) –12%→ –66%

B [-] for Iset_B = 1→ 22.5 µA 0.076→ 6.346 0.067→ 2.138 +5%→ –59%
GBW i→o for Iset_B = 1→ 22.5 µA 0.69→ 2.89 MHz 0.46→ 1.56 MHz –33%→ –46% ≥100 kHz

Input dynamic range

I→ o for Iset_B = 1→ 22.5 µA ≥±200 µA ≥±180 µA –10% ≥±150 µA

Input DC offset (systematic)

I→ o for Iset_B = 1→ 22.5 µA 0.04→ 0.06 µA 6→−9 µA expected stat.
range -

Total harmonic distortion (for input current 100 µA Apk-pk, 1 kHz)

THD I → o for Iset_B = 12.5 µA 0.14% - <1%

Terminal (input/output) impedances

Ri, Li for all Iset_B 0.91 Ω, 31 µH 1.4 Ω, 42 µH - <10 Ω
Ro, Co for Iset_B = 1→ 22.5 µA 80 MΩ→ 59 kΩ, 3.9 pF 30 MΩ→ 3 MΩ, 14.1 pF - >1 MΩ

measured quiescent power consumption: 1.7 mW
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Basic principle: A part of this cell used a very similar but not identical to principle of CCCII.
The input stage (see top part of Figure A5) consisted of an OTA section with a full negative feedback.
After processing and DC-shifting the signal in both polarities, the current gain-controlling part was
connected (see bottom part of Figure A5). Both branches were tied together in the output stage,
including current mirrors.
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