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Abstract: A discrete planar system

x(k+1) = Ax(k)+B1x(k−m1)+B2x(k−m2), k≥ 0

is analysed, wherem1, m2 are constant integer delays, 0< m1 < m2, A,B1,B2 are constant 2× 2
matrices,A = (ai j ), Bl = (bl

i j ), i, j = 1,2, l = 1,2 andx: {−m2,−m2 + 1, . . .} → R2. We get new
results on conditional stability and asymptotic conditional stability.
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1 INTRODUCTION

We investigate discrete planar systems

x(k+1) = Ax(k)+B1x(k−m1)+B2x(k−m2) (1)

wherem1, m2 are constant integer delays, 0< m1 < m2, k∈ Z∞
0 , A,B1,B2 are constant 2×2 matrices,

A = (ai j ), Bl = (bl
i j ), i, j = 1,2, l = 1,2, Bl 6= Θ, l = 1,2, Θ is 2×2 zero matrix andx: Z∞

−m2
→ R2,

Zq
s := {s,s+1, . . . ,q}. Consider initial problem

x(k) = ϕ(k) (2)

for (1) wherek = −m2,−m2 + 1, . . . ,0 with ϕ : Z0
−m2

→ R2. It is well-known that the initial prob-
lem (1), (2) has a unique solution onZ∞

−m2
.

Define a norm of a 2×2 matrixA = {ai j}2
i, j=1 as

‖A‖= max{|a11|+ |a12|, |a21|+ |a22|}

and, for 2×1 vectorsx = (x1,x2)T , an vector norm

‖x‖= max{|x1|, |x2|}.

For a discrete vectorψ : Z0
−m2

→ R2 we define

‖ψ‖m2
:= max{‖ψ(−m2)‖,‖ψ(−m2 +1)‖, . . . ,‖ψ(0)‖}.

Definition 1 The zero solution x(k) = 0, k∈ Z∞
−m2

of (1) is said to be

a) Stable if, givenε > 0 and k0≥ 0, there existsδ = δ(ε,k0) such thatϕ(k), k∈ Zk0
k0−m2

, ‖ϕ‖m2
< δ

implies‖x(k,k0,ϕ)‖< ε for all k≥ k0, uniformly stable ifδ may be chosen independently of k0,
unstable if it is not stable;
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b) Asymptotically stable ifit is stable andlimk→∞ ‖x(k)‖= 0;

c) Conditionally stable (conditionally asymptotically stable) if it is stable (asymptotically stable)
under the condition that a subspace P of the space all initial data withdimP satisfying

1 < dimP < 2(m2 +1)

is fixed.

The equation
D := det

(
A+λ−m1B1 +λ−m2B2−λI

)
= 0 (3)

whereI is the unit 2×2 matrix,λ ∈C is characteristic equation to (1) and characteristic equation to

x(k+1) = Ax(k) (4)

is
det(A−λI) = 0. (5)

Definition 2 [1] The system (1) is called a weakly delayed system if the characteristic equations (3),
(5) corresponding to systems (1) and (4) are equal, i.e. if, for everyλ ∈C\{0}, D= det(A−λI).

We consider a linear transformationx(k) = Sy(k) with a nonsingular 2×2 matrixS . Then, the discrete
system fory is

y(k+1) = AS y(k)+B1Sy(k−m1)+B2Sy(k−m2) (6)

with AS = S−1AS, BlS = S−1Bl S wherel = 1,2.

Lemma 1 [1] If (1) is a weakly delayed system, then its arbitrary linear nonsingular transformation
x(k) = Sy(k) again leads to a weakly delayed system(6).

Following theorem is a criterion indicating whether a system is weakly delayed.

Theorem 1 [1] System (1) is a weakly delayed system if and only if the following conditions hold
simultaneously:

bl
11+bl

22 = 0,

∣∣∣∣bl
11 bl

12
bl

21 bl
22

∣∣∣∣ = 0,

∣∣∣∣a11 a12

bl
21 bl

22

∣∣∣∣+ ∣∣∣∣bl
11 bl

12
a21 a22

∣∣∣∣ = 0, l = 1,2, (7)

∣∣∣∣b1
11 b1

12
b2

21 b2
22

∣∣∣∣+ ∣∣∣∣b2
11 b2

12
b1

21 b1
22

∣∣∣∣ = 0. (8)

For every matrixA there exists a nonsingular matrixS transforming it to the corresponding Jordan
matrix form Λ, i.e. Λ = S−1AS, where the form ofΛ depends on the roots of the characteristic
equation (5), i.e. on the roots of

λ2− (a11+a22)λ+(a11a22−a12a21) = 0. (9)

It the following we will assume that (9) has two real distinct rootsλ1, λ2. ThenΛ = Λ1 where

Λ1 =
(

λ1 0
0 λ2

)
. (10)

The transformationy(k) = S−1x(k) transforms (1) into a system

y(k+1) = Λy(k)+B∗1y(k−m1)+B∗2y(k−m2), k∈ Z∞
0 (11)
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with B∗l = S−1Bl S, B∗l = (b∗li j ), l = 1,2, i, j = 1,2. The initial problem (2) transforms to

y(k) = ϕ∗(k),

k∈ Z0
−m2

, whereϕ∗(k) = S−1ϕ(k). DefineΦ1(k) := (0,ϕ∗1(k))T , Φ2(k) := (ϕ∗2(k),0)T , k∈ Z0
−m2

.

In the contribution we deal with what is called conditional stability and asymptotic conditional sta-
bility of linear weakly delayed discrete systems (1). We derive sufficient conditions for asymptotic
conditional stability if|λ1| ≤ q < 1 and|λ2| ≥ 1 or if |λ2| ≤ q < 1 and|λ1| ≥ 1, and sufficient condi-
tions for conditional stability if|λ1|= 1 and|λ2|> 1 or if |λ2|= 1 and|λ1|> 1. Obtained results on
conditional stability are new and are given in Theorems 2–5. To prove them we use explicit analytic
formulas, derived in [1].

2 CONDITIONAL STABILITY

Let Λ = Λ1. From the necessary and sufficient conditions (7)–(8) for (11) it follows that (1) is weakly
delayed if and only if either

I) b∗l11 = b∗l22 = b∗l21 = 0, b∗l12 6= 0, l = 1,2,

or
II ) b∗l11 = b∗l22 = b∗l12 = 0, b∗l21 6= 0, l = 1,2.

Theorem 2If the case I) occurs,|λ1| ≤ q < 1, |λ2| ≥ 1 andϕ∗2(0) =0, then the zero solution of(1) is
conditionally asymptotically stable.

Proof: In this case,ϕ∗(0) = (ϕ∗1(0),0)T andΦ2(0) = (ϕ∗2(0),0)T = (0,0). As it follows from [1] the
solution of the initial problem (1), (2) isx(k) = Sy(k), k∈ Z∞

−m2
where

y(k) = ϕ∗(k) if k∈ Z0
−m2

,

y(k) = Λk
1ϕ∗(0)+

k−1

∑
r=0

λk−1−r
1

[
b∗112Φ2(r−m1)+b∗212Φ2(r−m2)

]
if k∈ Zm1+1

1 ,

y(k) = Λk
1ϕ∗(0)+

k−1

∑
r=0

λk−1−r
1

[
b∗212Φ2(r−m1)

]
+b∗112

[ m1

∑
r=0

λk−1−r
1 Φ2(r−m2)

+Φ2(0)
k−1

∑
r=m1+1

λk−1−r
1 λr−m1

2

]
if k∈ Zm2+1

m1+2,

y(k) = Λk
1ϕ∗(0)+b∗112

[ m1

∑
r=0

λk−1−r
1 Φ2(r−m1)+Φ2(0)

k−1

∑
r=m1+1

λk−1−r
1 λr−m1

2

]

+b∗212

[ m2

∑
r=0

λk−1−r
1 Φ2(r−m2)+Φ2(0)

k−1

∑
r=m2+1

λk−1−r
1 λr−m2

2

]
if k∈ Z∞

m2+2.

For k∈ Z∞
mn+2, we get

‖y(k)‖ ≤ ‖Λk
1ϕ∗(0)‖+

∥∥∥∥∥b∗112

[ m1

∑
r=0

λk−1−r
1 Φ2(r−m1)+Φ2(0)

k−1

∑
r=m1+1

λk−1−r
1 λr−m1

2

]∥∥∥∥∥
+

∥∥∥∥∥b∗212

[ m2

∑
r=0

λk−1−r
1 Φ2(r−m2) +Φ2(0)

k−1

∑
r=m2+1

λk−1−r
1 λr−m2

2

]∥∥∥∥∥
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≤
∥∥∥∥(

λk
1 0

0 λk
2

)(
ϕ∗1(0)

0

)∥∥∥∥+|b∗112|
[ m1

∑
r=0

|λ1|k−1−r‖Φ2(r−m1)‖+‖Φ2(0)‖
k−1

∑
r=m1+1

|λ1|k−1−r |λ2|r−m1

]

+|b∗212|
[ m2

∑
r=0

|λ1|k−1−r‖Φ2(r−m2)‖+‖Φ2(0)‖
k−1

∑
r=m2+1

|λ1|k−1−r |λ2|r−m2

]

≤ |λ1|k‖ϕ∗1(0)‖+ |b∗112|
[ m1

∑
r=0

|λ1|k−1−r‖Φ2(r−m1)‖
]
+ |b∗212|

[ m2

∑
r=0

|λ1|k−1−r‖Φ2(r−m2)‖
]

≤ qk‖ϕ∗‖m2 + |b∗112|
[ m1

∑
r=0

qk−1−r‖ϕ∗‖m2

]
+ |b∗212|

[ m2

∑
r=0

qk−1−r‖ϕ∗‖m2

]

≤
[
qk + |b∗112|

m1

∑
r=0

qk−1−r + |b∗212|
m2

∑
r=0

qk−1−r
]
‖ϕ∗‖m2

≤
[
qk + |b∗112|

(
qk−1−m1

1−qm1+1

1−q

)
+ |b∗212|

(
qk−1−m2

1−qm2+1

1−q

)]
‖ϕ∗‖m2

= qk
[
1+ |b∗112|

q−m1−1−1
1−q

+ |b∗212|
q−m2−1−1

1−q

]
‖ϕ∗‖m2.

Now, it is easy to see that
lim
k→∞

‖y(k)‖= 0.

Similarly can be proved the following theorem.

Theorem 3 If the case II) occurs,|λ2| ≤ q < 1, |λ1| ≥ 1 andϕ∗1(0) = 0, then the zero solution of(1)
is conditionally asymptotically stable.

Theorem 4 If the case I) occurs,|λ1| = 1, |λ2| > 1 and ϕ∗2(0) = 0, then the zero solution of(1) is
conditionally stable.

Proof: We, perform the proof similarly to that of Theorem 2. We have,ϕ∗(0) = (ϕ∗1(0),0)T and
Φ2(0) = (ϕ∗2(0),0)T = (0,0). Fork∈ Z∞

m2+2, we get

‖y(k)‖ ≤ ‖Λk
1ϕ∗(0)‖+

∥∥∥∥∥b∗112

[ m1

∑
r=0

λk−1−r
1 Φ2(r−m1)+Φ2(0)

k−1

∑
r=m1+1

λk−1−r
1 λr−m1

2

]∥∥∥∥∥
+

∥∥∥∥∥b∗212

[ m2

∑
r=0

λk−1−r
1 Φ2(r−m2)+Φ2(0)

k−1

∑
r=m2+1

λk−1−r
1 λr−m2

2

]∥∥∥∥∥
≤

∥∥∥∥(
λk

1 0
0 λk

2

)(
ϕ∗1(0)

0

)∥∥∥∥+|b∗112|
[ m1

∑
r=0

|λ1|k−1−r‖Φ2(r−m1)‖+‖Φ2(0)‖
k−1

∑
r=m1+1

|λ1|k−1−r |λ2|r−m1

]

+|b∗212|
[ m2

∑
r=0

|λ1|k−1−r‖Φ2(r−m2)‖+‖Φ2(0)‖
k−1

∑
r=m2+1

|λ1|k−1−r |λ2|r−m2

]

≤ |λ1|k‖ϕ∗1(0)‖+ |b∗112|
[ m1

∑
r=0

|λ1|k−1−r‖Φ2(r−m1)‖
]
+ |b∗212|

[ m2

∑
r=0

|λ1|k−1−r‖Φ2(r−m2)‖
]

≤ |λ1|k‖ϕ∗1(0)‖+ |b∗112|
[ m1

∑
r=0

|λ1|k−1−r‖Φ2(r−m1)‖
]

+ |b∗212|
[ m2

∑
r=0

|λ1|k−1−r‖Φ2(r−m2)‖
]
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≤ ‖ϕ∗‖m2 + |b∗112|
[ m1

∑
r=0

+|b∗212|
[ m2

∑
r=0

‖ϕ∗‖m2

]
≤

[
1+ |b∗112|(m1 +1)+|b∗212|(m2 +1)

]
‖ϕ∗‖m2.

We set
M := 1+ |b∗112|(m1 +1)+|b∗212|(m2 +1), δ := ε/3.

This equality implies
‖y(k)‖ ≤M‖ϕ∗‖m2 < ε,k∈ Z∞

m2+2

if ‖ϕ∗‖m2 < δ.

Theorem 5 If the case II) occurs,|λ2| = 1, |λ1| > 1 andϕ∗1(0) = 0, then the zero solution of(1) is
conditionally stable.

The proof can be performed similarly to that of Theorem 4.

3 CONCLUSION

In the paper are derived sufficient conditions for conditional stability and asymptotic conditional
stability of linear weakly delayed discrete systems (1) when the Jordan form of the matrixA is rep-
resented by the matrixΛ1 defined by (10). For further results related to weakly delayed systems and
representations of solutions of discrete systems we refer to [1]–[6] and to the references therein. Some
stability results can be found, e.g. in [7].
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