WEAKLY DELAYED PLANAR LINEAR DISCRETE SYSTEMS AND CONDITIONAL STABILITY

Jan Šafařík
Doctoral Degree Programme (I), FEEC BUT
E-mail: xsafar19@stud.feec.vutbr.cz

Supervised by: Josef Diblík

E-mail: diblik@feec.vutbr.cz

Abstract: A discrete planar system

$$
x(k+1)=A x(k)+B_{1} x\left(k-m_{1}\right)+B_{2} x\left(k-m_{2}\right), k \geq 0
$$

is analysed, where m_{1}, m_{2} are constant integer delays, $0<m_{1}<m_{2}, A, B_{1}, B_{2}$ are constant 2×2 matrices, $A=\left(a_{i j}\right), B_{l}=\left(b_{i j}^{l}\right), i, j=1,2, l=1,2$ and $x:\left\{-m_{2},-m_{2}+1, \ldots\right\} \rightarrow R^{2}$. We get new results on conditional stability and asymptotic conditional stability.
Keywords: Conditional stability, conditional asymptotic stability, weakly delayed system, discrete system

1 INTRODUCTION

We investigate discrete planar systems

$$
\begin{equation*}
x(k+1)=A x(k)+B_{1} x\left(k-m_{1}\right)+B_{2} x\left(k-m_{2}\right) \tag{1}
\end{equation*}
$$

where m_{1}, m_{2} are constant integer delays, $0<m_{1}<m_{2}, k \in Z_{0}^{\infty}, A, B_{1}, B_{2}$ are constant 2×2 matrices, $A=\left(a_{i j}\right), B_{l}=\left(b_{i j}^{l}\right), i, j=1,2, l=1,2, B_{l} \neq \Theta, l=1,2, \Theta$ is 2×2 zero matrix and $x: Z_{-m_{2}}^{\infty} \rightarrow R^{2}$, $Z_{s}^{q}:=\{s, s+1, \ldots, q\}$. Consider initial problem

$$
\begin{equation*}
x(k)=\varphi(k) \tag{2}
\end{equation*}
$$

for (1) where $k=-m_{2},-m_{2}+1, \ldots, 0$ with $\varphi: Z_{-m_{2}}^{0} \rightarrow R^{2}$. It is well-known that the initial problem (1), (2) has a unique solution on $Z_{-m_{2}}^{\infty}$.
Define a norm of a 2×2 matrix $A=\left\{a_{i j}\right\}_{i, j=1}^{2}$ as

$$
\|A\|=\max \left\{\left|a_{11}\right|+\left|a_{12}\right|,\left|a_{21}\right|+\left|a_{22}\right|\right\}
$$

and, for 2×1 vectors $x=\left(x_{1}, x_{2}\right)^{T}$, an vector norm

$$
\|x\|=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\} .
$$

For a discrete vector $\psi: Z_{-m_{2}}^{0} \rightarrow R^{2}$ we define

$$
\|\psi\|_{m_{2}}:=\max \left\{\left\|\psi\left(-m_{2}\right)\right\|,\left\|\psi\left(-m_{2}+1\right)\right\|, \ldots,\|\psi(0)\|\right\}
$$

Definition 1 The zero solution $x(k)=0, k \in Z_{-m_{2}}^{\infty}$ of (1) is said to be
a) Stable if, given $\varepsilon>0$ and $k_{0} \geq 0$, there exists $\delta=\delta\left(\varepsilon, k_{0}\right)$ such that $\varphi(k), k \in Z_{k_{0}-m_{2}}^{k_{0}},\|\varphi\|_{m_{2}}<\delta$ implies $\left\|x\left(k, k_{0}, \varphi\right)\right\|<\varepsilon$ for all $k \geq k_{0}$, uniformly stable if δ may be chosen independently of k_{0}, unstable if it is not stable;
b) Asymptotically stable if it is stable and $\lim _{k \rightarrow \infty}\|x(k)\|=0$;
c) Conditionally stable (conditionally asymptotically stable) if it is stable (asymptotically stable) under the condition that a subspace P of the space all initial data with $\operatorname{dim} P$ satisfying

$$
1<\operatorname{dim} P<2\left(m_{2}+1\right)
$$

is fixed.
The equation

$$
\begin{equation*}
D:=\operatorname{det}\left(A+\lambda^{-m_{1}} B_{1}+\lambda^{-m_{2}} B_{2}-\lambda I\right)=0 \tag{3}
\end{equation*}
$$

where I is the unit 2×2 matrix, $\lambda \in C$ is characteristic equation to (1) and characteristic equation to

$$
\begin{equation*}
x(k+1)=A x(k) \tag{4}
\end{equation*}
$$

is

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 . \tag{5}
\end{equation*}
$$

Definition 2 [1] The system (1) is called a weakly delayed system if the characteristic equations (3), (5) corresponding to systems (1) and (4) are equal, i.e. if, for every $\lambda \in C \backslash\{0\}$, $D=\operatorname{det}(A-\lambda I)$.

We consider a linear transformation $x(k)=\mathcal{S} y(k)$ with a nonsingular 2×2 matrix \mathcal{S}. Then, the discrete system for y is

$$
\begin{equation*}
y(k+1)=A_{\mathcal{S}} y(k)+B_{1 S} y\left(k-m_{1}\right)+B_{2 S} y\left(k-m_{2}\right) \tag{6}
\end{equation*}
$$

with $A_{S}=\mathcal{S}^{-1} A \mathcal{S}, B_{l S}=\mathcal{S}^{-1} B_{l} \mathcal{S}$ where $l=1,2$.
Lemma $1[1]$ If (1) is a weakly delayed system, then its arbitrary linear nonsingular transformation $x(k)=S y(k)$ again leads to a weakly delayed system (6).
Following theorem is a criterion indicating whether a system is weakly delayed.
Theorem 1 [1] System (1) is a weakly delayed system if and only if the following conditions hold simultaneously:

$$
\begin{gather*}
b_{11}^{l}+b_{22}^{l}=0,\left|\begin{array}{ll}
b_{11}^{l} & b_{12}^{l} \\
b_{21}^{l} & b_{22}^{l}
\end{array}\right|=0,\left|\begin{array}{ll}
a_{11} & a_{12} \\
b_{21}^{l} & b_{22}^{l}
\end{array}\right|+\left|\begin{array}{ll}
b_{11}^{l} & b_{12}^{l} \\
a_{21} & a_{22}
\end{array}\right|=0, \quad l=1,2, \tag{7}\\
\left|\begin{array}{ll}
b_{11}^{1} & b_{12}^{1} \\
b_{21}^{2} & b_{22}^{2}
\end{array}\right|+\left|\begin{array}{ll}
b_{11}^{2} & b_{12}^{2} \\
b_{21}^{1} & b_{22}^{1}
\end{array}\right|=0 . \tag{8}
\end{gather*}
$$

For every matrix A there exists a nonsingular matrix S transforming it to the corresponding Jordan matrix form Λ, i.e. $\Lambda=S^{-1} A S$, where the form of Λ depends on the roots of the characteristic equation (5), i.e. on the roots of

$$
\begin{equation*}
\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+\left(a_{11} a_{22}-a_{12} a_{21}\right)=0 . \tag{9}
\end{equation*}
$$

It the following we will assume that (9) has two real distinct roots λ_{1}, λ_{2}. Then $\Lambda=\Lambda_{1}$ where

$$
\Lambda_{1}=\left(\begin{array}{cc}
\lambda_{1} & 0 \tag{10}\\
0 & \lambda_{2}
\end{array}\right)
$$

The transformation $y(k)=S^{-1} x(k)$ transforms (1) into a system

$$
\begin{equation*}
y(k+1)=\Lambda y(k)+B_{1}^{*} y\left(k-m_{1}\right)+B_{2}^{*} y\left(k-m_{2}\right), k \in Z_{0}^{\infty} \tag{11}
\end{equation*}
$$

with $B_{l}^{*}=S^{-1} B_{l} S, B_{l}^{*}=\left(b_{i j}^{* l}\right), l=1,2, i, j=1,2$. The initial problem (2) transforms to

$$
y(k)=\varphi^{*}(k),
$$

$k \in Z_{-m_{2}}^{0}$, where $\varphi^{*}(k)=S^{-1} \varphi(k)$. Define $\Phi_{1}(k):=\left(0, \varphi_{1}^{*}(k)\right)^{T}, \Phi_{2}(k):=\left(\varphi_{2}^{*}(k), 0\right)^{T}, k \in Z_{-m_{2}}^{0}$.
In the contribution we deal with what is called conditional stability and asymptotic conditional stability of linear weakly delayed discrete systems (1). We derive sufficient conditions for asymptotic conditional stability if $\left|\lambda_{1}\right| \leq q<1$ and $\left|\lambda_{2}\right| \geq 1$ or if $\left|\lambda_{2}\right| \leq q<1$ and $\left|\lambda_{1}\right| \geq 1$, and sufficient conditions for conditional stability if $\left|\lambda_{1}\right|=1$ and $\left|\lambda_{2}\right|>1$ or if $\left|\lambda_{2}\right|=1$ and $\left|\lambda_{1}\right|>1$. Obtained results on conditional stability are new and are given in Theorems $2-5$. To prove them we use explicit analytic formulas, derived in [1].

2 CONDITIONAL STABILITY

Let $\Lambda=\Lambda_{1}$. From the necessary and sufficient conditions (7)-(8) for (11) it follows that (1) is weakly delayed if and only if either

$$
\text { I) } b_{11}^{* l}=b_{22}^{* l}=b_{21}^{* l}=0, b_{12}^{* l} \neq 0, l=1,2,
$$

or

$$
\text { II) } b_{11}^{* l}=b_{22}^{* l}=b_{12}^{* l}=0, b_{21}^{* l} \neq 0, l=1,2 .
$$

Theorem 2 If the case I) occurs, $\left|\lambda_{1}\right| \leq q<1,\left|\lambda_{2}\right| \geq 1$ and $\varphi_{2}^{*}(0)=0$, then the zero solution of (1) is conditionally asymptotically stable.
Proof: In this case, $\varphi^{*}(0)=\left(\varphi_{1}^{*}(0), 0\right)^{T}$ and $\Phi_{2}(0)=\left(\varphi_{2}^{*}(0), 0\right)^{T}=(0,0)$. As it follows from [1] the solution of the initial problem (1), (2) is $x(k)=S y(k), k \in Z_{-m_{2}}^{\infty}$ where

$$
\begin{gathered}
y(k)=\varphi^{*}(k) \quad \text { if } k \in Z_{-m_{2}}^{0}, \\
y(k)=\Lambda_{1}^{k} \varphi^{*}(0)+\sum_{r=0}^{k-1} \lambda_{1}^{k-1-r}\left[b_{12}^{* 1} \Phi_{2}\left(r-m_{1}\right)+b_{12}^{* 2} \Phi_{2}\left(r-m_{2}\right)\right] \quad \text { if } k \in Z_{1}^{m_{1}+1}, \\
y(k)=\Lambda_{1}^{k} \varphi^{*}(0)+\sum_{r=0}^{k-1} \lambda_{1}^{k-1-r}\left[b_{12}^{* 2} \Phi_{2}\left(r-m_{1}\right)\right]+b_{12}^{* 1}\left[\sum_{r=0}^{m_{1}} \lambda_{1}^{k-1-r} \Phi_{2}\left(r-m_{2}\right)\right. \\
\left.+\Phi_{2}(0) \sum_{r=m_{1}+1}^{k-1} \lambda_{1}^{k-1-r} \lambda_{2}^{r-m_{1}}\right] \text { if } k \in Z_{m_{1}+2}^{m_{2}+1}, \\
y(k)=\Lambda_{1}^{k} \varphi^{*}(0)+b_{12}^{* 1}\left[\sum_{r=0}^{m_{1}} \lambda_{1}^{k-1-r} \Phi_{2}\left(r-m_{1}\right)+\Phi_{2}(0) \sum_{r=m_{1}+1}^{k-1} \lambda_{1}^{k-1-r} \lambda_{2}^{r-m_{1}}\right] \\
+b_{12}^{* 2}\left[\sum_{r=0}^{m_{2}} \lambda_{1}^{k-1-r} \Phi_{2}\left(r-m_{2}\right)+\Phi_{2}(0) \sum_{r=m_{2}+1}^{k-1} \lambda_{1}^{k-1-r} \lambda_{2}^{r-m_{2}}\right] \text { if } k \in Z_{m_{2}+2}^{\infty} .
\end{gathered}
$$

For $k \in Z_{m_{n}+2}^{\infty}$, we get

$$
\begin{aligned}
\|y(k)\| \leq & \left\|\Lambda_{1}^{k} \varphi^{*}(0)\right\|+\left\|b_{12}^{* 1}\left[\sum_{r=0}^{m_{1}} \lambda_{1}^{k-1-r} \Phi_{2}\left(r-m_{1}\right)+\Phi_{2}(0) \sum_{r=m_{1}+1}^{k-1} \lambda_{1}^{k-1-r} \lambda_{2}^{r-m_{1}}\right]\right\| \\
& +\left\|b_{12}^{* 2}\left[\sum_{r=0}^{m_{2}} \lambda_{1}^{k-1-r} \Phi_{2}\left(r-m_{2}\right)+\Phi_{2}(0) \sum_{r=m_{2}+1}^{k-1} \lambda_{1}^{k-1-r} \lambda_{2}^{r-m_{2}}\right]\right\|
\end{aligned}
$$

$$
\begin{gathered}
\leq\left\|\left(\begin{array}{cc}
\lambda_{1}^{k} & 0 \\
0 & \lambda_{2}^{k}
\end{array}\right)\binom{\varphi_{1}^{*}(0)}{0}\right\|+\left|b_{12}^{* 1}\right|\left[\sum_{r=0}^{m_{1}}\left|\lambda_{1}\right|^{k-1-r}\left\|\Phi_{2}\left(r-m_{1}\right)\right\|+\left\|\Phi_{2}(0)\right\| \sum_{r=m_{1}+1}^{k-1}\left|\lambda_{1}\right|^{k-1-r}\left|\lambda_{2}\right|^{r-m_{1}}\right] \\
+\left|b_{12}^{* 2}\right|\left[\sum_{r=0}^{m_{2}}\left|\lambda_{1}\right|^{k-1-r}\left\|\Phi_{2}\left(r-m_{2}\right)\right\|+\left\|\Phi_{2}(0)\right\| \sum_{r=m_{2}+1}^{k-1}\left|\lambda_{1}\right|^{k-1-r}\left|\lambda_{2}\right|^{r-m_{2}}\right] \\
\leq\left|\lambda_{1}\right|^{k}\left\|\varphi_{1}^{*}(0)\right\|+\left|b_{12}^{* 1}\right|\left[\sum_{r=0}^{m_{1}}\left|\lambda_{1}\right|^{k-1-r}\left\|\Phi_{2}\left(r-m_{1}\right)\right\|\right]+\left|b_{12}^{* 2}\right|\left[\sum_{r=0}^{m_{2}}\left|\lambda_{1}\right|^{k-1-r}\left\|\Phi_{2}\left(r-m_{2}\right)\right\|\right] \\
\left.\leq q^{k}\left\|\varphi^{*}\right\|_{m_{2}}+\left|b_{12}^{* 1}\right| \mid \sum_{r=0}^{m_{1}} q^{k-1-r}\left\|\varphi^{*}\right\|_{m_{2}}\right]+\left|b_{12}^{* 2}\right|\left[\sum_{r=0}^{m_{2}} q^{k-1-r}\left\|\varphi^{*}\right\|_{m_{2}}\right] \\
\leq\left[q^{k}+\left|b_{12}^{* 1}\right| \sum_{r=0}^{m_{1}} q^{k-1-r}+\left|b_{12}^{* 2}\right| \sum_{r=0}^{m_{2}} q^{k-1-r}\right]\left\|\varphi^{*}\right\|_{m_{2}} \\
\leq\left[q^{k}+\left|b_{12}^{* 1}\right|\left(q^{k-1-m_{1}} \frac{1-q^{m_{1}+1}}{1-q}\right)+\left|b_{12}^{* 2}\right|\left(q^{k-1-m_{2}} \frac{1-q^{m_{2}+1}}{1-q}\right)\right]\left\|\varphi^{*}\right\|_{m_{2}} \\
=q^{k}\left[1+\left|b_{12}^{* 1}\right| \frac{q^{-m_{1}-1}-1}{1-q}+\left|b_{12}^{* 2}\right| \frac{q^{-m_{2}-1}-1}{1-q}\right]\left\|\varphi^{*}\right\|_{m_{2}} .
\end{gathered}
$$

Now, it is easy to see that

$$
\lim _{k \rightarrow \infty}\|y(k)\|=0
$$

Similarly can be proved the following theorem.
Theorem 3 If the case II) occurs, $\left|\lambda_{2}\right| \leq q<1,\left|\lambda_{1}\right| \geq 1$ and $\varphi_{1}^{*}(0)=0$, then the zero solution of (1) is conditionally asymptotically stable.

Theorem 4 If the case I) occurs, $\left|\lambda_{1}\right|=1,\left|\lambda_{2}\right|>1$ and $\varphi_{2}^{*}(0)=0$, then the zero solution of (1) is conditionally stable.

Proof: We, perform the proof similarly to that of Theorem 2. We have, $\varphi^{*}(0)=\left(\varphi_{1}^{*}(0), 0\right)^{T}$ and $\Phi_{2}(0)=\left(\varphi_{2}^{*}(0), 0\right)^{T}=(0,0)$. For $k \in Z_{m_{2}+2}^{\infty}$, we get

$$
\begin{gathered}
\|y(k)\| \leq\left\|\Lambda_{1}^{k} \varphi^{*}(0)\right\|+\left\|b_{12}^{*}\left[\sum_{r=0}^{m_{1}} \lambda_{1}^{k-1-r} \Phi_{2}\left(r-m_{1}\right)+\Phi_{2}(0) \sum_{r=m_{1}+1}^{k-1} \lambda_{1}^{k-1-r} \lambda_{2}^{r-m_{1}}\right]\right\| \\
+\left\|b_{12}^{* 2}\left[\sum_{r=0}^{m_{2}} \lambda_{1}^{k-1-r} \Phi_{2}\left(r-m_{2}\right)+\Phi_{2}(0) \sum_{r=m_{2}+1}^{k-1} \lambda_{1}^{k-1-r} \lambda_{2}^{r-m_{2}}\right]\right\| \\
\leq\left\|\left(\begin{array}{cc}
\lambda_{1}^{k} & 0 \\
0 & \lambda_{2}^{k}
\end{array}\right)\binom{\varphi_{1}^{*}(0)}{0}\right\|+\left|b_{12}^{* 1}\right|\left[\sum_{r=0}^{m_{1}}\left|\lambda_{1}\right|^{k-1-r}\left\|\Phi_{2}\left(r-m_{1}\right)\right\|+\left\|\Phi_{2}(0)\right\| \sum_{r=m_{1}+1}^{k-1}\left|\lambda_{1}\right|^{k-1-r}\left|\lambda_{2}\right|^{r-m_{1}}\right] \\
+\left|b_{12}^{* 2}\right|\left[\sum_{r=0}^{m_{2}}\left|\lambda_{1}\right|^{k-1-r}\left\|\Phi_{2}\left(r-m_{2}\right)\right\|+\left\|\Phi_{2}(0)\right\| \sum_{r=m_{2}+1}^{k-1}\left|\lambda_{1}\right|^{k-1-r}\left|\lambda_{2}\right|^{r-m_{2}}\right] \\
\leq\left|\lambda_{1}\right|^{k}\left\|\varphi_{1}^{*}(0)\right\|+\left|b_{12}^{* 1}\right|\left[\sum_{r=0}^{m_{1}}\left|\lambda_{1}\right|^{k-1-r}\left\|\Phi_{2}\left(r-m_{1}\right)\right\|\right]+\left|b_{12}^{* 2}\right|\left[\sum_{r=0}^{m_{2}}\left|\lambda_{1}\right|^{k-1-r}\left\|\Phi_{2}\left(r-m_{2}\right)\right\|\right] \\
\leq\left|\lambda_{1}\right|^{k}\left\|\left|\varphi_{1}^{*}(0) \|+\left|b_{12}^{* 1}\right|\left[\sum_{r=0}^{m_{1}}\left|\lambda_{1}\right|^{k-1-r}\left\|\Phi_{2}\left(r-m_{1}\right)\right\|\right]+\left|b_{12}^{* 2}\right|\left[\sum_{r=0}^{m_{2}}\left|\lambda_{1}\right|^{k-1-r}\left\|\Phi_{2}\left(r-m_{2}\right)\right\|\right]\right.\right.
\end{gathered}
$$

$$
\begin{aligned}
& \leq\left\|\varphi^{*}\right\|_{m_{2}}+\left|b_{12}^{* 1}\right|\left[\sum_{r=0}^{m_{1}}+\left|b_{12}^{* 2}\right|\left[\sum_{r=0}^{m_{2}}\left\|\varphi^{*}\right\|_{m_{2}}\right]\right. \\
\leq & {\left[1+\left|b_{12}^{* 1}\right|\left(m_{1}+1\right)+\left|b_{12}^{* 2}\right|\left(m_{2}+1\right)\right]\left\|\varphi^{*}\right\|_{m_{2}} . }
\end{aligned}
$$

We set

$$
M:=1+\left|b_{12}^{* 1}\right|\left(m_{1}+1\right)+\left|b_{12}^{* 2}\right|\left(m_{2}+1\right), \delta:=\varepsilon / 3
$$

This equality implies

$$
\|y(k)\| \leq M\left\|\varphi^{*}\right\|_{m_{2}}<\varepsilon, k \in Z_{m_{2}+2}^{\infty}
$$

if $\left\|\varphi^{*}\right\|_{m_{2}}<\delta$.
Theorem 5 If the case II) occurs, $\left|\lambda_{2}\right|=1,\left|\lambda_{1}\right|>1$ and $\varphi_{1}^{*}(0)=0$, then the zero solution of (1) is conditionally stable.
The proof can be performed similarly to that of Theorem 4.

3 CONCLUSION

In the paper are derived sufficient conditions for conditional stability and asymptotic conditional stability of linear weakly delayed discrete systems (1) when the Jordan form of the matrix A is represented by the matrix Λ_{1} defined by (10). For further results related to weakly delayed systems and representations of solutions of discrete systems we refer to [1]-[6] and to the references therein. Some stability results can be found, e.g. in [7].

ACKNOWLEDGEMENTS

The author was supported by the Grant FEKT-S-11-2-921 of Faculty of Electrical Engineering and Communication, BUT.

REFERENCES

[1] Diblík, J., Halfarová, H.: Explicit general solution of planar linear discrete systems with constant coefficient and weak delays, Adv. Difference Equ., 2013, Art. number: 50, doi:10.1186/1687-1847-2013-50, 1-29.
[2] Diblík, J., Halfarová, H.: General explicit solution of planar weakly delayed linear discrete systems and pasting its solutions, Abstr. Appl. Anal., 2014, doi:10.1155/2014/627295, 1-37.
[3] Diblík, J., Khusainov, D., Šmarda, Z.: Construction of the general solution of planar linear discrete systems with constant coefficients and weak delay, Adv. Difference Equ., 2009, Art. ID 784935, doi:10.1155/2009/784935, 1-18.
[4] Diblík, J., Morávková, B.: Representation of the solutions of linear discrete systems with constant coefficients and two delays, Abstr. Appl. Anal., 2014 , Art. ID 320476, 1-19.
[5] Medved', M., Pospísil, M.: Representation and stability of solutions of systems of difference equations with multiple delays and linear parts defined by pairwise permutable matrices, Commun. Appl. Anal., 17, 2013, no. 1, 21-45.
[6] Medved', M. Škripková, L.: Sufficient conditions for the exponential stability of delay difference equations with linear parts defined by permutable matrices, Electron. J. Qual. Theory Differ. Equ., 2012, no. 22, 1-13.
[7] Elaydi, S. N.: An Introduction to Difference Equations, Third Edition, Springer, 2005.

