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Abstrakt
Detekce objekt̊u v poč́ıtačovém viděńı je slož́ıtá úloha. Velmi populárńı a rozš́ı̌rená metoda

pro detekci je využit́ı statistických klasifikátor̊u a skenovaćıch oken. Pro učeńı kalsifikátor̊u

se často použ́ıvá algoritmus AdaBoost (nebo jeho modifikace), protože dosahuje vysoké

úspěšnosti detekce, ńızkého počtu chybných detekćı a je vhodný pro detekci v reálném čase.

Implementaci detekce objekt̊u je možné provést r̊uznými zp̊usoby a lze využ́ıt vlastnosti

konkrétńı architektury, pro urychleńı detekce. Pro akceleraci je možné využ́ıt grafické

procesory, v́ıcejádrové architektury, SIMD instrukce, nebo programovatelný hardware. Tato

práce představuje metodu optimalizace, která vylepšuje výkon detekce objekt̊u s ohledem na

cenovou funkci zadanou uživatelem. Metoda rozděluje předem natrénovaný klasifikátor do

několika r̊uzných implementaćı, tak aby celková cena klasifikace byla minimalizována. Metoda

je verifikována na základńım experimentu, kdy je klasifikátor rozdělen do předzpracovaćı

jednotku v FPGA a do jednotky ve standardńım PC.

Abstract
Detection of objects in computer vision is a complex task. One of most popular and well

explored approaches is the use of statistical classifiers and scanning windows. In this approach,

classifiers learned by AdaBoost algorithm (or some modification) are often used as they

achieve low error rates, high detection rates and they are suitable for detection in real-time

applications. Object detection run-time which uses such classifiers can be implemented

by various methods and properties of underlying architecture can be used for speed-up of

the detection. For the purpose of acceleration, graphics hardware, multi-core architectures,

SIMD or other means can be used. The detection is often implemented on programmable

hardware. The contribution of this thesis is to introduce an optimization technique which

enhances object detection performance with respect to an user defined cost function. The

optimization balances computations of previously learned classifiers between two or more

run-time implementations in order to minimize the cost function. The optimization method

is verified on a basic example – division of a classifier to a pre-processing unit implemented

in FPGA, and a post-processing unit in standard PC.
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CHAPTER 1

Introduction

Many real life applications could use information about objects captured by a camera.

In user interfaces, for example, a camera can be used as an alternative input device.

The computer can capture the scene in front of the computer and analyse it in

order to find the user’s face and analyse the user’s gestures. Such input can be

used to control the computer without a keyboard or mouse. Other applications,

like traffic control or surveillance systems, use detection of objects to automatically

count people, check licence plates or record traffic violations. Object detection is an

important part of such systems.

Visual object detection is one of the most challenging tasks in computer vision.

The goal of object detection is to localize the target object in an input image using

visual features. During past decades, researchers tried to solve this problem and

developed a vast number of methods for machine learning, information extraction and

object representation. Object detectors are in most cases based on detection from

2D imagery produced by a camera (operating in a visible light spectrum or in near

infra red or even far infra red, depending on its application). Lately, the advances in

the capturing of 3D data along with 2D imagery and intensive research allowed for

exploitation of depth information in object detectors which results in more advanced

and precise detectors. There exists consumer devices that can produce fast and

reliable depth information – e.g. Microsoft Kinect (based on infra camera and stereo

matching) and also a range of ToF (Time of Flight) cameras that can bring depth

information directly from a single image sensor (based on light travel time). 2D

intensity image is, however, still the main source for recognition and detection. This

thesis focuses on the acceleration of object detection from 2D images using statistical

classifiers. However, the principles described in the work can be used in more general
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cases.

A very popular approach to the object detection is exploitation of statistical

classifiers and scanning windows technique. The classifier is learned by a machine

learning algorithm, typically supervised or semi-supervised. Among the large number

of statistical machine learning methods, the most prominent in real-time object

detection is the Adaptive Boosting algorithm and its modifications. This method

became so popular (due to its simplicity and performance) that it found its way to

commercial systems that use object detection. For example, some driving assistants

in modern vehicles use detection of pedestrians, traffic signs and other objects to

inform driver about situation in front of the vehicle. Most consumer digital still

cameras can use face detection as side information for focusing and exposition

measurement. The cameras even use the detection of a smile to release the shutter.

Biometric systems (such as user recognition) use detection and analysis of faces.

Such systems can be used for user access systems (user login to the computer, for

example). Human-computer interfaces can use face detection and gesture tracking

as an input for a computer that can be used by physically challenged persons. And

there exists more applications – traffic surveillance, security, navigation, etc.

The approach with scanning windows has been known for a long time. In this

principle, selection of sub-windows of the input image is analyzed by a classifier

which makes decision about the presence or absence of an object. The first successful

algorithms were developed in the late 1980’s and early 1990’s but they became popular

after Viola and Jones in 2001 introduced their framework for rapid object detection.

In their approach, they exploited the Adaptive Boosting algorithm in combination

with inaccurate classifiers based on simple image features (Haar wavelets). It was

demonstrated that this framework can produce very precise classifiers with low

computational complexity suitable even for real-time applications. Since then, their

approach was improved by using other learning schemes, classifier structures and

image features.

A suitable property of AdaBoost-based detectors is that they are easily imple-

mented in both software and hardware. But although the detection with this method

is very fast, it is often not fast enough for the target applications that are gradu-

ally more and more demanding. Therefore, either more powerful hardware must

be used, or some optimizations must take place. All examples given above would

benefit from acceleration or optimization of the detection process. It would lead to

a faster response time or lower power consumption. Borrowing from David Marr’s

three level model, optimizations can be done on computational, algorithmic and

implementational levels. Exploitation of computational and algorithmic optimization

can reduce complexity of computations by employing more effective algorithms and

data representations. For example, important computational optimization is in the

building of an attentional cascade of classifiers which directs computational power to
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image areas where the occurrence of target objects is more probable. Anther example

can be in the integral representation of an image which allows for the summing of

an arbitrary sized rectangular area of an image in constant time instead of linear

time (when using pixel values only). It is used for fast calculation of Haar feature

responses. On the lower level, algorithms can be optimized at an implementation

level by exploiting underlying hardware architecture – better use of an instruction set,

use of parallelism, custom hardware, etc. A good example of this type of optimization

is the porting of algorithms to graphic hardware (e.g. nVidia’s Compute Unified

Device Architecture) where many simple computational elements are available, or

implementation of the detection in FPGA (Field Programmable Gate Array) chips.

The focus in this thesis is on implementational acceleration of the detection

process. The contribution is the introduction of a technique for the composition of

different implementations of object detection in order to enhance its performance

with respect to a user defined cost function. The composition balances computations

between two or more implementations in order to minimize the cost function. The

method is based on an analysis of a previously learned classifier and knowledge of

properties of the implementations which executes detection. The method is verified

in the example where a classifier is divided into two evaluation phases. Tirst executed

in a hardware unit and the second executed in software using implementation with

different properties. The classifiers in the thesis are learned by the WaldBoost

algorithm and they are frontal face detectors. Image features used are LBP (Local

Binary Patterns) and LRF (Local Rank Functions). This combination of learning

algorithm and image features can be considered as a state of the art in real-time

object detection with scanning-window classifiers.

The thesis is structured as follows. The next section gives an introduction

to object detection with classifiers and gives a detailed description of AdaBoost

machine learning algorithm and describes advanced learning methods based on this

algorithm. Feature extraction methods used in state of the art systems are described

in Section 3. Section 4 gives a deeper insight into optimization methods that can be

used to accelerate detection of objects. Section 5 describes in detail experimental

implementations of the detection run-time exploiting data parallelism in different

ways. The main contribution of this thesis – the optimization method – is described

in Section 6 and experiments with the method. Experiments, result and application

potential are discussed in Section 7. The thesis is concluded in Section 8 with some

remarks for future research.



CHAPTER 2

Object Detection using Classifiers

Detection and localization of objects is a complex process where images or image

sequences are analyzed in order to search for occurrences of a particular class of

objects. The definition of object varies and it is largely application dependent. It is

often defined by a set of annotated example images from which a machine learning

algorithm automatically derives an internal object class model. Such object classes

can be, for example, pedestrians, cars, faces, animals, etc. The output of a detector

is information about object position and its size in the input image. Fig. 2.1 shows

examples of the detection of facial features and cars.

face

car

car

Figure 2.1: Examples of detection of objects. Left, detection of face and facial
features; right, detection of cars (Sources: BioID database, UIUC car database).

Many object detection methods with different properties exist. It is important to

select the one which is suitable for a particular application in order to satisfy needed

precision and speed of detection. The simplest one is perhaps template matching [10]

which can detect a pattern corresponding to a template in the input image. There

are more advanced methods which employ template matching in different ways. For

example, in [35] they build templates from histograms of gradient orientations for
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multiple views of an object. There are even methods that use a sequence of template

matching and pooling steps resulting in a feature vector classified by a Support Vector

Machine (SVM [87]) classifier [79, 78, 80]. Other methods are based on detection

of object parts and searching for their consistent configuration corresponding to a

target object [56, 20, 52, 19].

Perhaps the most widely used detection technique at present is based on sliding

windows and classifiers [62, 88]. In this class of methods, each area of the input

image is subject to a classification which decides if the target object is present or

not in the area. Papageorgiou et al. [62] used a set of Haar features classified by

an SVM classifier to get reliable detection. Viola and Jones used a similar idea

but they used another learning algorithm — Adaptive Boosting which selects and

orders elementary (weak) classifiers by their importance. Moreover, they proposed

an attentional cascade which allowed for the detection to be executed in real-time.

They reported 15 frames per second on a 384× 288 pixel image which was the fastest

object detection system at the time, about 15 times faster than Rowley et al. [70]

and about 600 times faster than Schneiderman-Kanade detector [75].

2.1 Classification Overview

Formally, a classifier is a function f : χ→ N that for input data x ∈ χ decides its

category y ∈ N to which the data belongs. In the case of object detection with

classifiers, the input is a sample image (represented by a set of features) and the

decision is the background or object (i.e. y ∈ {−1, 1}).
The classifier is typically learned by a machine learning algorithm where input

is a set of n training samples {(x1, y1) . . . (xn, yn)}. The output is the learned

classification function f . Fig. 2.2 summarizes the learning process. Features are first

extracted from training images — every image is then represented in the learning

algorithm by its features, x, and a class label, y. Machine learning then generates a

classification function which can distinguish between object and background images.

x1,y1

x2,y2

x3,y3

...

xn,yn

feature

extraction

machine

learning
f(x)

Training data

Database of images

Figure 2.2: Scheme of machine learning. Features extracted from training images
along with image labels form the training set used for learning the decision function.
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The classification function can be learned by various methods. A learning method

needs to deal with a large number of training samples with a high dimensionality

of data representation and with noise in the data. Learning algorithms are often

based on statistical properties of the training data in a feature space. The Nearest

Neighbor (k-NN) classifier [18] assigns the sample to the class which makes a majority

on k nearest training samples. When a large training set is used, the search for the

nearest samples may be slow (in general, but it is implementation dependent) and

thus it is not typically used for rapid object detection. Logistic regression [37] fits

logit function to the feature space in order to maximize the probability of a correct

classification. The Support Vector Machines (SVM) [87] search for the best separating

hyperplane in the feature space. SVMs were successfully used for object detection

by Papageorgiou et al. [62] in combination with Haar features and by Mutch and

Lowe [59] in combination with Gabor filters. Artificial Neural Networks (ANN) [18]

uses the sample as an input for a network of artificial neurons. A successful example

of the application of ANN to object detection is face detection [70]. The Boosting

algorithms [22, 23] constructs a classifier from simple inaccurate classifiers which

taken together makes a very accurate one. Boosting has very interesting properties

from the object detection point of view, and it is very suitable for rapid detection

[88, 44, 83]. It is used in this thesis as the algorithm for classifier learning. The list

above is certainly not complete: it points out some methods that can be used for

learning the classifiers. For a review of other methods for classification learning, the

reader may refer to [18, 5].

feature

extraction f(x)
x y

Figure 2.3: Classification of an image. Features extracted from an image are supplied
to the previously learned function to estimate the label of the image.

The classifier, shown in Fig. 2.3, can decide if the input sample is or is not an

object of interest. Object detection with classifiers is achieved by an analysis of each

sub-window of input image by the classifier. The sub-windows are taken from all

positions and scales (and possibly other transformation depending on the particular

application). This method is called the sliding window detection. The number of

analyzed samples is very high, reaching hundreds of thousands per image and thus

the resulting classifier should have a very low false alarm rate. On the other hand,

each object appears in multiple neighboring sub-windows and thus a false negative

rate does not necessarily need to be zero and some detections can be, in fact, missed.

It is only required that at least one of these positive sub-windows are hit by the
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classifier.

bg

face

bg

Figure 2.4: Detection with sliding window (image source: BioID face database).

The detection with sliding windows is exploited in many works. In [62] they

use an overcomplete set of Haar-like features and an SVM classifier as the basis for

a general object detection framework. A similar approach was used in [88] where

they use AdaBoost. In [16] authors use histograms of oriented gradients as an input

for an SVM classifier in order to detect pedestrians. In [84] the authors propose

an emulator of key point detectors using a sliding window detector based on the

WaldBoost algorithm.

In this chapter, the Adaptive Boosting learning algorithm and modifications of

this method are described as grounds for this thesis.

2.2 Adaptive Boosting

The Adaptive Boosting [22] and other boosting methods [26, 24, 66, 71] is a method for

combining weak classifiers ht : χ→ R into one strong classifier Ht. The combination

is a weighted average where responses of the weak classifiers are multiplied by weights

α determining their importance. A weak classifier is a function that decides object

class with a smaller error rate than the random decision. The strong classifier decides

the object class more reliably than the individual weak classifiers.

Historically, AdaBoost has its roots in PAC (Probably Approximately Correct)

learning framework developed by Valiant [86, 28]. Boosting was first described by

Schapire [72] where he introduced a polynomial algorithm for learning. A more

efficient version was introduced by Freund [22] and Real AdaBoost was described by

Freund and Schapire [23]. The AdaBoost, as a general machine learning algorithm,

can be applied to a number of problems including object detection, recognition [45]

and tracking [3].
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2.2.1 The Algorithm

In the following section, the algorithm used by Viola and Jones [88] is described.

They used a discrete variant of AdaBoost [22] where each weak classifier makes a

decision about the object class and the strong classifier can thus be viewed as a

voting procedure. They used simple decision stump weak classifiers (thresholds) and

Haar features that are very simple to evaluate.

Algorithm 1 Discrete AdaBoost as used by Viola and Jones

Input: set of samples (x1, y1) . . . (xn, yn) where x ∈ Rn and y ∈ {−1, 1} for negative
and positive samples, respectively.

Output: strong classifier H
1: Initialize weights w1,i = 1

2m for samples with y = 1 and w1,i = 1
2l for samples

with y = −1, where m and l are the number of positive and negative samples,
respectively.

2: for t = 1 . . . T do
3: Normalize the weights,

wt,i =
wt,i∑n
j=1wt,j

so that wt is probability distribution
4: For each feature, j, train a classifier hj . The error is evaluated with respect to

wt,

εj =
∑
j

wt,i|hj(xi)− yi|

5: Choose classifier, ht, with lowest error εt.
6: Update weights:

wt+1,i = wt,iβ
1−ei
t

where ei = 0 if sample xi is classified correctly, ei = 1 otherwise, and β = εt
1−εt

7: end for
8: The final strong classifier is:

H(x) = sgn

(
T∑
t=1

αtht(x)

)

where αt = log 1
βt

In the principle, AdaBoost greedily selects weak classifiers from a large set.

Algorithm 1 shows the learning process. The input is a set of annotated training

samples (x, y), x ∈ χ, y ∈ {−1, 1}, and a set of weak classifiers h : χ → {−1, 1}.
For each training sample i, the algorithm keeps its weight wi which represents its

importance for learning. Samples with high weights have more influence on the

selection of weak classifiers. The weight in some sense expresses how hard is to

classify the given sample. Using the sample weight, the algorithm focuses on the

hard samples. In the beginning, the weights are initialized evenly for all positive and
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negative samples.

The algorithm is iterative. In each iteration, one weak classifier is selected to

the strong classifier from a large pool. In more detail, the algorithm first adjusts

the parameters of all the weak classifiers in order to behave best on the current set

of samples taking their weights into account. The weak classifier with the lowest

weighted classification error is added into the strong classifier. At the end of iteration,

the samples are re-weighted using the error of the selected weak classifier. Through

this mechanism, the algorithm gradually adapts to samples that are hard to classify,

decreasing the classification error of the strong classifier.

It has been proven [23] that the training error decreases with each iteration of

the algorithm. Moreover, it has been proven that the error is upper-bounded by

an exponential function. This gives a theoretical warranty that the training error

drops exponentially when weak classifiers (at least slightly) better than the random

function are used. The algorithm execution time is proportional to: the number of

training samples, the number of weak classifiers in the training and the number of

weak classifiers selected to the strong classifier.

2.2.2 Weak Classifiers

Viola and Jones used simple decision stump weak classifiers based on a single Haar

feature. Equation (2.1) shows the calculation of the weak classifier response, where

f(x) is the response of the feature, p is the polarity of the response and θ is the

decision threshold.

hj(x) =

{
1 if pjfj(x) < pjθj

−1 otherwise
(2.1)

During learning, parameters pj and θj for each weak classifier hj (i.e. using

different features as an input) are estimated in order to minimize the error function

εj from Algorithm 1. Fig. 2.5 shows distributions of feature responses for positive

and negative classes and the plot of εj for different settings of θj (pj = 1 is assumed).

The optimal setting of θj is in the minima of εj .

An improved AdaBoost algorithm, Real AdaBoost proposed by Schapire and

Singer [73], allows for using real-valued weak classifiers which does not vote for an

object class, but they rather express their confidence about the presence of the target

object class. The weak classifiers in Real AdaBoost are in the form h : χ → R
incorporating the α from Alhorithm 1 directly into the weak classifier. An example

of such weak classifier is space partitioning weak classifier whose input is the discrete

feature response f : χ → N. The weak classifier contains a partitioning function

l : N → R which assigns a response to a feature response. Such weak classifiers

can be easily implemented by a look-up table. The learning of such weak classifiers
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Figure 2.5: Examples of decision stump learning for two different features fj . Each
plot shows histograms of feature responses for positive and negative classes and the
error function εj . (a) shows the case when the two classes are separated well by the
feature; and (b) when the classes are not separated well.

consist of assigning the values to the look-up table function lj in order to minimize

the error function εj (which is defined slightly differently in Real AdaBoost [73]).

2.2.3 Algorithm Modifications

Discrete and Real AdaBoost were gradualy improved to address deferent aspects of

learning. Asymmetric AdaBoost [89] take into account the fact that the classes in

deteection tasks are highly skewed (there are much more background samples than

face samples for example) and modifies the loss function of the Real AdaBoost such

that the cost of a false negative is higher than the cost of a false positive classification.

As a result, the classifiers have higher detection rates and lower false positive rates.

In [53] the authors propose FloatBoost algorithm which extends the Real Ad-

aBoost with conditional exclusion which after a selection of every weak classifiers

performs a backtrack [65]. The backtrack removes from the strong classifier all

weak classifiers that can cause higher error rates. Classifiers learned by FloatBoost

have lower error rates. It takes, however, longer time to train classifiers due to the

backtrack phase.

And there are more modifications, e.g. AdaBoost.MH [24], Kullback-Lieber

Boosting [55], AdaBoost with totally corrective updates [81], Linear Programming

Boosting [17].

2.3 Advanced Classifier Structures

The original AdaBoost learning produces classifiers consisting of potentially many

weak classifiers selected from a large set of weak classifiers. The number can easily
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reach up to hundreds and thousands of weak classifiers. For each analyzed sub-

window, all the selected weak classifiers have to be evaluated (H(x) in Algorithm 1).

The computational complexity of detection with classic AdaBoost classifiers is thus

lower compared to approaches like SVM or ANN where all supplied features are

typically used. Advanced structures of classifiers lower the computational demands

even more by evaluating only a part of the weak classifiers. They use the fact that

the AdaBoost orders weak classifiers by their importance and that the decision about

the sample class can be reached by using only a subset of the most important weak

classifiers.

2.3.1 The Attentional Cascade

The reason why the Viola and Jones’ approach was so successful was due to the

attentional cascade. A pure AdaBoost classifier, which consists of thousands of

classifiers cannot be evaluated with the necessary speed. The attentional cascade

of classifiers is a mechanism that directs computational power to image areas that

are harder to recognize, and ultimately it lowers the computational complexity of

detection by several orders of magnitude.

sample

x

Reject sample

Further

processing1 2 3 4
T T T T

F F F F

Figure 2.6: Attentional cascade of classifiers. In each node (stage) a sample x is
classified. It can be rejected and the classification ends in the node, otherwise it is
sent to the subsequent node.

Essentially, the cascade, shown in Fig. 2.6, is a degenerated decision tree, where

nodes are classifiers (i.e. they consist of one or more weak hypotheses) which decides

if a given sample is background or whether it may be an object. If the decision is

an object, the sample is passed on to the subsequent node or otherwise it is thrown

away. The cascade is trained so that first stages with very low complexity reject

rapidly background samples and keep almost all positive samples. Later stages focus

on achieving a low false alarm rate. Background samples are thus processed on

average by very few weak classifiers, which ultimately lead to a rapid decrease in

computational complexity as background samples constitute a majority of samples

(typically more than 99 % of analyzed samples).

Fig. 2.7 shows ROC curve of face detectors trained by Viola and Jones [88]. Note

that the detectors have very low false alarm rates and high detection date at the

same time.
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Figure 2.7: ROC curve for Viola and Jones face detector (Source [88]).

2.3.2 Soft Cascade

Although the cascade is an effective algorithmic acceleration of the detection process,

it is a rather ad-hoc solution which was later improved [8, 9, 97]. The cascade,

however, completely discards information between stages and thus every stage begins

classification from scratch even though the classification problem is very similar in

subsequent stages. An information propagated from one stage to the next one could

help the classification. This idea was used by many authors in order to create better

classification structures than the original cascade.

Xiao et al. [93] do not divide a classifier into stages and instead creates one long

classifier. This classifier has on some points defined thresholds similar to those in

the cascade. Sochman and Matas [82] and Huang et al. [41] use response of previous

stage as the first weak classifier of the next stage. Classifiers produced by these

methods are shorter and faster than those produced by the original cascade.

The most effective cascade-like detection structure is the soft-cascade by Bourdev

and Brandt [6]. The soft-cascade produces one long classifier and sets thresholds

after each weak classifier. It is similar to the original cascade where each stage

consists of only one weak classifier. The thresholds are calculated after the classifier

is learned and are restricted to be exponential functions with one parameter. The free

parameter is optimized in order to give the best speed for a given target detection

rate. The method for threshold selection proposed by the Bourdev [6] is not very

practical nor optimal. Another method that produces the soft-cascade was proposed

by the authors Šochman and Matas [83]. In this case the thresholds are set in

an optimal way. The algorithm comes with a rigorous theoretical background and

produces the fastest classifiers.
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2.3.3 WaldBoost

WaldBoost is built on the top of Real AdaBoost [74, 23] and extends it with Wald’s

Sequential Probability Ratio Test (SPRT) [90]. SPRT is used to generate an optimal

sequential decision strategy on measurements (weak classifiers) selected by AdaBoost.

Given a weak learner algorithm, training data {(x1, y1) . . . , (xn, yn)}, x ∈ χ, y ∈
{−1,+1} and a target false negative rate α, the WaldBoost algorithm finds a decision

strategy with a miss rate lower than the α and the average evaluation time is minimal.

WaldBoost uses real AdaBoost to iteratively select the most informative weak

classifiers ht. The threshold θt is then selected in each iteration so that as many

negative training samples are rejected as possible while satisfying the false negative

rate constraint imposed by α.

After learning, the classifier is described by selected hypotheses ht and thresholds

θt. The evaluation of the classifier is Equation 2.2 which is a slightly modified version

of H(x) from Algorithm 1.

Ht(x) =
t∑
i=1

hi(x)

St =

{
−1 when Ht(x) > θt

Otherwise evaluate St+1

(2.2)
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Figure 2.8: (a) ROC curves for classifiers with different false negative rate. (b)
average speed of the classifiers. One should note that the classifier with α = 0.2
calculates less than two weak classifiers per window on average while keeping a very
high detection rate.

From the implementation point of view, given the sample x, the classifier sequen-

tially evaluates functions ht(x), t ∈ 0, 1.., T , and accumulates the strong classifier

response Ht. In each step t the Ht is compared to θt and the sample is rejected when

Ht(x) < θt, otherwise the evaluation proceeds with the step t+ 1.
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The WaldBoost algorithm learns an optimal decision strategy for target false

negative rate and it can be considered as a state of the art in learning ensemble

classifiers. Fig. 2.8 shows ROC curves and average speed plots of face detectors

learned with the WaldBoost algorithm with different settings of α.



CHAPTER 3

Feature Extraction

The performance of object detection is to a large extent influenced by the underlying

feature extraction method. There are two main properties of features extracted from

an image – a) descriptive power and b) computational complexity. The goal in rapid

object detection is to use computationally simple yet, highly descriptive features.

In the vast majority of cases, these two properties are mutually exclusive. Thus

there are computationally simple features with low descriptive power (e.g. isolated

pixels, sum of area intensity) or complex and hard to compute features with high

descriptive power (Gabor wavelets [51], HoG [16], SIFT and SURF [57, 4], etc.). A

close to ideal approached Viola and Jones [88] with their Haar features calculated in

constant time from an integral representation of an image. Another good example

can be Local Binary Patterns (LBP) [60, 98] that are very simple to compute while

they keep a very high descriptive power.

The feature extraction is strongly application dependent and not all features are

suitable for all tasks. For example, Haar-like features and LBPs were successfully

applied to the problem of face detection [88, 98], while in the task of pedestrian

detection, a better choice is Histograms of Oriented Gradients (HoG) [16] which

encode shape rather than image texture. When analyzing videos, features extracted

from sequences – dynamic features – can provide important information for detection

of target objects [44, 15, 99]. Selection of proper features for a particular task is thus

the keystone of a successful application.

This chapter describes the most common feature extraction methods in the field

of rapid object detection with boosted classifiers. It should be noted that the list of

features is not complete and more feature types suitable for the detection exist.
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Figure 3.1: Shapes of convolution kernels typically used to calculate a Haar feature
response.

3.1 Haar-like Features

The Haar-like features, or simply Haar features, are wavelet features which extract

local frequency information. They are based on the theoretical work by A.Haar [27]

who described the composition of arbitrary functions from specific wavelets. Similar

to Gabor wavelets [51], the Haar wavelets responds to oriented edges and bars in

images. It has been argued that this information is crucial for object description [68]

as neurons with similar properties were found in primate and human visual system

[42, 58, 78]. The Haar features were successfully exploited for feature extraction

by Papageorgiou et al. [62, 61] in a general object detection framework and, most

notably, by Viola and Jones [88] in their real-time object detection system. The Haar

features are the most widely used method feature extraction in many implementations

of object detection (both hardware and software) e.g. [88, 91, 85, 25, 50, 7, 43].

The features are based on the calculation of convolution of an input image with

Haar wavelet. Typically used wavelets are shown in Fig. 3.1. The great advantage

of the Haar features is the simplicity of their evaluation. When using an integral

representation of the image [14, 88], each feature can be calculated in constant time

regardless of its size. The Lienhart and Maydt [54] extend the integral representation

with a new integral image which allow for calculating features rotated by 45 degrees.

A

A

(a)

A

A+D-B-C

B

C D

(b)

Figure 3.2: Principle of integral representation of an image: (a) point A stores the
sum of image values marked by the gray area; (b) the sum of a rectangular area can
be achieved by accessing only the values in the corners of the rectangle.

Standard integral image is calculated by (3.1). Every pixel of the integral image

stores a sum of pixels in the rectangle defined by image origin and the pixel. Knowing

values A, B, C and D in the corners of a rectangular area (see Fig. 3.2 right), the

sum s of the area can be obtained by (3.2).
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I(x, y) =
∑

u<x,v<y

i(u, v) (3.1)

s = A+D −B − C (3.2)

Summing of rectangular areas is a basic operation needed for a Haar feature

response calculation – responses of individual blocks are added together to produce

the feature response (Fig. 3.3). The response of an arbitrary Haar feature is then

calculated from an integral image by accessing only the corner points of individual

feature blocks.

A B C

D
E

F

G H I

-1

-1

1

1

-(A-B-D+E)+(B-C-E+F)+(D-E-G+H)-(E-F-H+I)

-A+2B-C+2D-4E+2F-G+2H-I

Figure 3.3: An Example of the calculation of Haar feature response. Knowing values
from an integral image in the corners of the feature blocks (A to I), the response can
be calculated by the formulas written on the right side – i.e. simple operations with
values from an integral image.

It is obvious that the response of the feature depends on the local contrast

and thus it is not invariant to changes in light conditions in the image which is

information that is not interesting in a vast majority of cases. The feature response

can be normalized in order to suppress this information. The typical choice for

normalization is the local energy of the image or local standard deviation of the

values in the image.

3.2 Local Binary Patterns

Historically, the Local Binary patterns (LBP) were introduced as a local descriptor for

an analysis of static textures [60, 63] and later for analysis of dynamic textures [99].

It has also been successfully used as a feature for face detection [98] and recognition

[2, 11] and many other tasks. The feature (see Fig. 3.4) is based on the sampling of

the local neighborhood and constructing a binary code from the values of samples.

The feature captures the local shape of image intensity but not the intensity and

energy itself which makes it invariant to monotonous changes in image intensity.

In the most common form, the feature is evaluated by (3.3), where v is a set of

samples, c is value of the central sample and N is the number of samples.

LBP (v, c) =
N∑
i=0

(vi > c)2i (3.3)
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v

Figure 3.4: Evaluation of the Local Binary Pattern feature. Values of v and c are
obtained from an image and then the feature response is evaluated.

There are other forms of LBP which can be used. The modifications address both,

sampling and sample evaluation. The samples do not need to be located in a circle.

They can be in a regular grid or placed completely irregularly. The sampling function

is not restricted, and convolution with different kernels can be used to obtain the

sample values. The number of samples can be changed to create features with more

bits. The samples do not need to be compared with thecentral sample by vi > c and

other measure can be chosen (e.g. |vi− c| > t which yields 1 when a sample is similar

to the center and 0 otherwise). By the modification of these parameters, features

with different properties can be created. For example, in CS-LBP [30] opposite

samples on the perimeter of the circle are compared creating a 4 bit code. Kalal [49]

uses simple 2 bit LBP for image gradient estimation.

v0 v1 v2

v3

v4v5v6

v7 c

Figure 3.5: Multi-block LBP feature. Samples are taken by convolution of the image
with a rectangular kernel. In this case a 2× 3 pixel kernel is used.

In the field of object detection, the most common choice of samples is a convolution

with a rectangular kernel (see Fig. 3.5), which can be obtained from an integral

representation of an image in constant time [98].

3.3 Local Rank Functions

The Local Rank Function (LRF) image features [94, 39, 34] were developed at the

Faculty of Information Technology as an alternative to the commonly used state of

the art image features such as LBP and Haar. The features were designed with their
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hardware implementation on mind. Their implementation by circuitry is very simple

and their performance is comparable to the above mentioned features.

The LRF features are based on the formalism described in [34] which evaluates

the response of a feature as a function of ranks of a selected subset of coefficients

obtained from an image by a sampling function. This formalism is very general

and allows for the construction of many different types of features with different

properties. The feature is defined by the image sampling function, positions of

samples in the image, selection of ranked coefficients and the function evaluating the

response.

R(v, 8) = 6

R(v, 5) = 4

24 27 35 64 89 87866263

LRD(v, 8, 5) = 2

LRP(v, 8, 5) = 64

vv0 v1 v2

v3 v4 v5

v6 v7 v8

Figure 3.6: The evaluation of the LRF-based features with two ranks. Samples v
first obtained from an image, ranks of selected items are calculated and finally the
feature response is calculated using a formula for the particular feature type.

A reasonable choice for image features is rectangular samples located in a regular

3 × 3 grid as shown in Fig. 3.6. This configuration resembles a multi-block LBP

feature [98]. Samples taken from the image form a vector of coefficients v from

which the feature is evaluated using ranks of selected items. The rank of an item is

calculated by (3.4) which calculates the position of k-th item in an ordered sequence

of v.

R(v, k) =
∑1, if vk < vi

0, Otherwise
(3.4)

Functions evaluating a feature response are shown in 3.5. The simplest feature

Local Rank just returns the rank of an item which is an integer from interval 〈0, 8〉 .

More complex one are Local Rank Differences which returns the difference of ranks

of two items (which is in the range 〈−8, 8〉 ), and Local Rank Patterns which return

rank values concatenated to a single integer number in the range 〈0, 99〉 .

LR(v, a) = R(v, a) (3.5a)

LRD(v, a, b) = R(v, a)−R(v, b) (3.5b)

LRP (v, a, b) = 10R(v, a) +R(v, b) (3.5c)
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Features based on local ranks were successfully used in rapid object detection

[34] with a performance similar to Haar-like features and LBP.

3.4 Histograms of Oriented Gradients

Another feature extraction method frequently used in pattern recognition is the

Histogram of oriented gradients (HoG). The feature, in the simplest form, captures

the distribution of image gradient orientations in a local image area discarding their

spatial relations [16, 100]. In principle, the feature first collects a histogram where

each bin reflects the amount of gradients in the particular direction in the area

defined by the feature. The histogram is then processed in order to evaluate the

feature response.

0°180°

0°180°

Figure 3.7: Calculation of two different HoG features. On the left is original image.
In the middle, local histograms are superimposed on the original image. Areas of
features is marked by the rectangles. On the right are histograms corresponding
to the features. In this case, the response of the features is the value of the second
histogram bin marked by the dark gray. (Image source: BioID face database)

Image gradients can be calculated by various methods [21]. The simplest way is

to obtain image derivatives in x and y directions by Equations (3.6) and calculate

gradient direction θ and magnitude r for each pixel by Equation (3.7). The histogram

of magnitudes in different directions is then created.

Ix = I ∗
[

1 0 −1
]

Iy = I ∗
[

1 0 −1
]T

(3.6)

r =
√
I2x + I2y θ = atan

(
Iy
Ix

)
(3.7)

The histogram is then processed in order to obtain the feature response. Multiple

choices on how to calculate the response exist. The most obvious one is to select one

bin and take its normalized value (shown in Fig. 3.7). Or the response can be an

orientation with the highest magnitude. In some applications (especially recognition

tasks), the whole histogram can serve as a feature.
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3.5 Other Feature Types

Sparse Granular Features

Feature extraction methods mentioned above are rather standard and often used in

practical applications. However, this field is still explored in order to search for more

efficient extractors in terms of computational complexity and descriptive power.

Sparse Granular Features proposed by Huang et al. [40] are a generalization of

Haar features. In this case a feature is composed from blocks whose meaning is the

same as in Haar features. The difference is that the number of blocks is not restricted

and the block weights are not restricted either. Such features are very close to the

general convolution filter.

Figure 3.8: First four features selected by Vector Boosting and optimized by the
heuristic algorithm (source [40]).

The number of all features that can be constructed in a given window is extremely

large due to the amount of free parameters – number of blocks, weights of blocks,

block positions and sizes. The number of features is far larger than the number of

Haar features) and thus it is not possible (or it is not reasonable in most cases) to

search exhaustively for the best feature in the complete set. Huang et al. used a

heuristic search method that is initialized by a set of Haar features which is iteratively

adapted by moving the blocks, adding new blocks, deleting the blocks, etc.

3D Haar Features

The natural generalization of Haar wavelets from 2D to 3D space was proposed by

Cui et al. [15]. Instead of an integral image, the authors compute integral volume,

in which the sums of 3D blocks can be easily calculated.

Shapes of features are shown in Figure 3.9. This variant of Haar features

provides information about changes of appearance in time and thus can be in certain

applications more robust than purely static Haar features.

Patterns of Motion and Appearance

Another generalization of Haar features are patterns of motion and appearance

proposed by Jones et al. [44]. These features operate on the differences of image

pairs. From two consecutive images, five differentials are generated – the difference
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Figure 3.9: Seven types of 3D haar features (Source [15]).

of the first frame and one pixels shifts of the second frame – ∆, L,R, U,D frames

shown in Figure 3.10. These differential images give elemental motion information

on which feature responses are calculated.

Figure 3.10: Source images on the left are processed and differentials are generated
(source [44]).

The features are defined as rectangular regions which calculate the difference

between ∆ and one of L,R,U,D frames, or Haar wavelets calculated in the differential

or intensity frames. These features thus provide information about the motion and

appearance of certain areas of image. These features are efficient in applications

where motion is an important property of detected objects (e.g. pedestrian detection).

Gabor Wavelets

Convolution of an input image with a Gabor wavelet [51] (see Figure 3.11) can be used

as a feature. Similar to Haar features, the Gabor wavelets provide a response to local

frequencies with a good tradeoff between spatial and frequency localization. They

are computationally costly and do not seem to be more effective than Haar features

in practical applications of object detection [13]. They have, however, interesting

applications in the field of object recognition and categorization [68, 78, 76, 77].

PCA, LDA and others

Other linear functions that can be used as features are projections obtained through

PCA or LDA [5]. More advanced methods of feature extraction exist. The features

do not need to be pre-defined, and they can be learned from data in order to get

features that are fine-tuned for detection or recognition of a particular object type
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Figure 3.11: Example of gabor wavelets (source [51]).

[1, 20, 69]. Such features are very effective but, similar to Gabor wavelets, they are

computationally costly as they often calculate general convolution with an input

image or do other transformations.



CHAPTER 4

Architectures and Acceleration

Viola and Jones [88] developed the first system able to operate in real-time (i.e. with

a sufficient frame rate and low delay). They reported 15 frames per second which was

at the time about fifteen times faster than the comparable state of the art system [70].

Other systems used classifications schemes and feature extraction methods which

were too demanding in terms of computational resources. Although the detection

scheme employed by AdaBoost Cascade or WaldBoost is very effective, it is suitable

for real-time applications only in certain conditions (e.g. low resolution image, low

frame rate, etc.). When detection of small objects is required, high resolution images

have to be analyzed. For the detection of fast events, high speed video streams have

to by processed. In surveillance systems, detection of multiple types of objects and

processing of multiple streams are required. All these applications are computationaly

demanding and using some acceleration techniques would improve their performance.

Acceleration can be done in several ways. On the algorithmic level, the speed-up

can be achieved by modification of classifier structure, for example cascade classifiers

is more optimal than pure AdaBoost. Another modification is that the classifier

can use information from the current sub-window in order to predict responses on

neighboring positions of a sub-window [95]. Other approaches are possible as well.

Besides the algorithmic acceleration, the implementation can be fine-tuned to

better exploit the underlying computational architecture. Most of the contemporary

CPUs offer two or more computing cores. This allows for execution of a parallel

code to accelerate computations. The CPUs also offer advanced instructions such as

SSE in the Intel CPUs, or NEON in ARM, which are not typically directly used in

compilers (due to lack of constructs in source programming languages), but they are

used rather for automatic optimization of some operations (such as simple loops).
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Such instructions can be used as well for the acceleration of some computations

during object detection.

Another architecture that can be used with benefit for the acceleration is graphics

hardware. From an historical point of view, the graphics hardware was used for

processing of geometrical primitives (vertexes, lines, triangles, etc.) and rasterize

them on a screen. The best known interfaces for the graphics hardware control

are SGI’s OpenGL and Microsoft’s DirectX. The GPUs process geometry using

shaders – small sub-routines executed on the graphics processor. Shaders were at first

restricted so as to be very simple. As the technology went forward, most restrictions

were dropped, but the shaders could still process only geometry and raster images.

Recent advances in GPU technology dropped the restrictions completely and user

programs can execute unrestricted code. Graphics hardware which is able to execute

such a code is called General Purpose GPU or GP-GPU. Example of GP-GPU

architecture is nVidia’s CUDA (Compute Unified Device Architecture). Most power

of the GP-GPU is in parallelism. The code is organized in kernels which are logically

organizes in grids and blocks and automatically mapped to the computing elements

in the graphics processor.

Of course, there is the possibility to implement the detection in custom hardware

such as FPGA or ASIC chips. In such architectures, special hardware structures

can be created in order to compute a classifier response. It is, however, tricky to

implement the detection directly in such devices as the designer has to cope with

limited memory and other resource limitations. The performance of the resulting

hardware unit is typically comparable with the best PC and GPU implementations.

The benefits of hardware implementation include low power consumption and the

possibility of integration in embedded systems.

4.1 Levels of Acceleration

In order to better understand where the main sources of acceleration of object

detection are, it is necessary to describe the detection algorithm which is basically an

application of WaldBoost Equation (2.2) from Section 2.3.3 on every position of the

input image. The algorithm, described in the Listing 4.1, contains three key functions

– eval stage for evaluation of a response of a weak classifier on a particular position

in the input image; eval classifier for evaluation of the response of the strong

classifier on a particular position in the image; and scan image for the processing of

the whole input image. The results of image scanning are positive responses which

are stored in list r.

f loat e v a l s t a g e ( Image img , Stage s , int x , int y )

{
int re sponse ;
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// ’ s ’ co n ta i ns f e a t u r e parameters :

// − p o s i t i o n r e l a t i v e to x , y , s i z e , e t c .

// c a l c u l a t e f e a t u r e response accord ing to parameters in ’ s ’

// e . g . LRD, LRP, LBP or o t her

return s . p r ed i c t i o n [ re sponse ] ;

}

f loat e v a l c l a s s i f i e r ( Image img , C l a s s i f i e r c , int x , int y )

{
f loat re sponse = 0 . 0 ;

for ( int i = 0 ; i < c . s tage count ; ++i )

{
Stage s = c . s t ag e s [ i ] ;

r e sponse += eva l s t a g e ( img , s , x , y ) ;

i f ( re sponse < s . th r e sho ld )

{
return re sponse ;

}
}
return re sponse ;

}

void scan image ( Image img , C l a s s i f i e r c , Resu l t s r )

{
r . c l e a r ( ) ;

for ( int y = 0 ; y < img . he ight − c . he ight ; ++y)

for ( int x = 0 ; x < img . width − c . width ; ++x)

{
f loat re sponse = e v a l c l a s s i f i e r ( img , c , x , y ) ;

i f ( re sponse > 0)

{
r . add (x , y , re sponse ) ;

}
}

// ’ r ’ con ta i ns l i s t o f p o s i t i v e d e t e c t i o n s

}

Listing 4.1: Pseudocode of the detection with all important parts.

4.1.1 Parallelization on Multi-core Architectures

On the multi-core architectures a process can be parallelized by the control-flow

transformation employing more computing elements. These are pretty straightforward

methods for performance improvement which can be exploited by rather simple means

(like threads, OpenMP [12], Intel Thread Building Blocks (TBB) [67], Posix threads,

etc). This parallelization can occur in the scan image or eval classifier functions,

or even above the scan image function, taking into account the framework in Listing
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Figure 4.1: Speed-up limit on multi-core architectures as a function of the number of
processing elements. For the highly parallelizable problems (i.e. those with p ≈ 1)
the speed-up S is nearly linear.

The speed-up can be described in the terms of Amdahl’s law (see Fig. 4.1), and

it is limited by Equation (4.1) where s is the speed-up of particular parallelized part

and p fraction of computations performed by the non-parallelized part. When p is

close to 1 (i.e. most computations are done in parallel), the speed-up is nearly linear

with the number of computing elements.

S =
1

(1− p) + p
s

(4.1)

Processing of multiple frames

Speed-up in this case, illustrated in Fig. 4.2, is almost equal to the number of frames

processed concurrently as the overhead is minimal. It could be achieved by the

parallel execution of the scan image function.

Source

t t-1 t-2

Results

t-2

t-1

Figure 4.2: Frames going from a source (camera, video, etc.) are distributed between
processing nodes. Each node processes the whole frame and returns results.
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Processing multiple sub-windows

In this case, illustrated in Fig. 4.3, the input image is divided into non-overlapping

parts which are processed by dedicated processing elements (i.e parallel exection of

eval classifier function on different image locations). The results can be collected

separately for each part and merged after the frame is processed, or they can be

written to shared memory. This method is suitable for multi-core CPUs [29] and

especially for architectures such as GP-GPU where hundreds of general-purpose

computing elements are available [32].

Results

Figure 4.3: The source image is divided into parts, and each part is processed by a
processing node.

Processing of multiple weak classifiers in the same sub-window

In this case, illustrated in Fig. 4.4, the whole image is processed by the sequential

control flow (i.e. sub-windows are processed one-by-one) and features evaluated

within the window are passed to different computing elements. This is beneficial in

schemes such as AdaBoost where the known number of features is evaluated in each

window. In soft-cascades, however, the number of features evaluated in the window

is not known in advance and thus this kind of parallelization is problematic to use.

Results

classifier

+

Figure 4.4: During the classification of a sub-window, different parts of classifier
are processed by dedicated computing nodes. The results of the nodes are merged,
producing classification result for the sub-window.

4.1.2 Acceleration on SIMD Architectures

Beside the traditional execution of a code on more computing elements, there is data

parallelism where more data items (sometimes called vectors) are processed by one

instruction within a computing element – SIMD (Single Instruction Multiple Data).
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CPUs typically contain standard instruction set which processes integers and floats.

This set is extended with a set of vector instructions which work over vectors of data

stored in registers. Vector instructions typically include standard arithmetic and logic

instructions, instructions for data access and other data manipulation instructions

(load/store, packing, unpacking, etc.). This is the case of general purpose CPUs like

Intel, AMD or PowerPC. Besides the general purpose CPUs, there are GP-GPU,

successors of traditional GPUs that can execute parallel kernels on data and be

viewed as advanced SIMD processors.

+ + + + add

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

x

y

z

zi=xi+yi

Figure 4.5: Vector instruction for adding in 4-wide SIMD unit. The input x and y is
treated as a vector with 4 items which are processed and output z is calculated.

Probably the most influential and widespread SIMD architecture is used in

Intel processors and their SSE (Streaming SIMD Extension) instruction set. The

predecessor of the SSE dates back to 1998 when Intel introduced their MMX (Multi

Media Extension) instruction set which was similar to SPARC VIS or MIPS MDMX.

These instructions extended standard x86 instruction set with 60 vector instructions

working over 64 bit registers. In the SSE, the MMX functionality was preserved and

the set was extended with new vector instructions, presently working with 128 bit

vectors. Intel progressively updated the set in their new CPUs reaching over 200

vector instructions in SSE4. The instruction sets are upgraded with new instruction

sets such as Advanced Vector Extensions (AVX), or Fused Multiply-Add (FMA).

The SIMD principles can be used with great benefits in applications where large

data is processed, for example image processing (FIR filtering). Each instruction can

load a bunch of data and apply an operation on them. Then, for example, memory

copying can be accelerated by moving blocks of data instead of individual bytes. On

the other hand, not all algorithms can be vectorized as the flow control depends on

the data in many cases.

Most programming languages, however, have no constructs which enable vector

processing and the compiler has to figure out itself where the SIMD can be used –

auto-vectorization. Such a technique is applicable for simple loops (such as matrix

multiplication and dot product, etc.). The code has to be sometimes rewritten to

employ the data parallelism (e.g. using assembler) and in some cases, the whole
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problem has to be re-structured in order to make it more convenient for SIMD

processing. This implies inevitable human labor.

Data Parallelism in Object Detection

The main application of data parallelism is in feature extraction. There are two main

options on how to employ it. First, keep the evaluation code as is and calculate

N spatially close responses simultaneously. While this method is pretty clear, it

causes some problems since SIMD architectures may be sensitive to data alignment

and unaligned memory references may be slow. The second method is to calculate

only a single feature at the time and process all feature data in parallel using SIMD

instructions. This method also brings problems but they are solved by a simple

rearrangement of image pixels in memory. The advantage of this approach is that

all features can be processed by a fixed instruction chain without loops [31, 46].

Application of SIMD (particularly Intel SSE) for feature extraction is discussed in

detail in Section 5.

4.2 Graphics Hardware

Implementation of object detection in GPU was historically done using programmable

shaders [64, 33]; however, contemporary state of the art is in GP-GPU programming

languages, such as CUDA or OpenCL [32]. GP-GPUs programmed using one of

these languages present one of the most powerful and efficient computational devices.

When used for object detection, GP-GPUs can be seen as a SIMD device with a

high level of parallelism. Unfortunately, the high level of parallelism is difficult to

employ in WaldBoost detection as the amount of computation in adjacent positions

in the image is not correlated and in general is quite unpredictable, which in fact

heavily complicates the usage of the computational resources.

The efficient implementation of object detection using CUDA [32] solves problems

of two main domains: the classifier operating on one fixed-size window, and parallel

execution of this classifier on different locations of the input image. The problem of

object detection by statistical classifiers can be divided into these steps:

� loading and representing the classifier data

� image pre-processing

� classifier evaluation

� retrieving results

The constant data containing the classifier (image features’ parameters, prediction

values of the weak hypotheses summed by the algorithm and WaldBoost thresholds)
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could be accommodated in texture memory or constant memory of the CUDA

architecture. These data are accessed during the evaluation of each feature at each

position, so the demands for access speed are critical. Programs that are run on the

graphics hardware using CUDA are executed as kernels; where each kernel has a

number of blocks and each block is further organized into threads. The code of the

threads consumes hardware resources: registers and shared memory. This limits the

number of threads that can be efficiently executed in a block (both the maximal and

minimal number of threads).

One thread computes one or more locations of the scanning window in the image.

The image window locations are therefore divided into rectangular tiles which are

solved by different thread blocks. Experiments showed that the suitable number of

threads per block was around 128. Executing blocks for only 128 pixels of the image

would not be efficient, so we chose that one thread calculated more than one position

of window – a whole column of pixels in a rectangular tile. A good consequence of

this layout is the easy control of the resources used by one block: the number of

threads is determined by the width of the tile, and the height controls the whole

number of processed window positions by the block. The tile can extend over the

whole height of the image or just a part of it.

When the kernel is started, the image data is referenced by texturing units from

the multi-resolution pyramid and the parameters of the classifier are read from the

constant memory. When the window position is recognized as the searched object,

the coordinates are written into the global memory. In order to avoid collisions of

concurrently running threads and blocks, atomic increment (atomicInc()) of one

shared word in the global memory is used for synchronization. This operation is

rather costly, but the positive detections are so rare that this means of output can be

afforded. As a consequence, the results of the whole process are at the end available

in one spot of the global memory, which can be easily made available on the host

computer.

The main property of the CUDA implementation is that the CUDA outperforms

the CPU implementation mainly for high resolution videos. This can be explained

by extra overhead connected with transferring the image to the GPU, starting the

kernel programs, retrieving the results, etc. These overhead operations typically

consume constant time independent of the problem size, so they are better amortized

in high-resolution videos.

4.3 Programmable Hardware

The run-time for object detection does not necessarily have to be only implemented

in software; programmable hardware is one of the options as well, namely Field

Programmable Gate Arrays (FPGA) [92, 91, 85, 96, 25, 36, 50, 43]. While the
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algorithms of object detection are in principle the same for software and hardware,

the hardware platform offers features largely different from the software and thus

the optimal methods to implement detection in programmable hardware are often

different from the ones used in software. In many cases, the hardware implementation

can be more efficient than the software implementation.

The key features, important for object detection that are beneficial for hardware

implementation, include: massive parallelism achievable with good performance/-

electrical power ratio, variable data path width in hardware adjustable to exact

algorithmic needs, simple implementation of bit manipulation and logical functions,

and nearly seamless complex control and data flow implementation. Of course, the

hardware implementation also has severe limitations, the most important being the

limited complexity of the hardware circuits, expensive computational resources for

complex mathematical functions, relatively limited memory structures and, in most

cases, lower clock speed comparing to the processors.

Complete Detection in Programmable Hardware

The typical methods of complete object detection in programmable hardware are

feasible to implement using a sequential engine (possibly micro-programmable), that

performs detection location by location, weak classifier by weak classifier until a

decision is reached. As the evaluation of each weak classifier is relatively complex,

the operation of the sequential unit is pipelined and so that several instances can be

running in parallel. Different image locations, in general, require a different number

of weak classifiers in oredr to be evaluated. These facts lead to relatively complex

timing and synchronization of processing; however, very good performance can be

achieved [96].
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Figure 4.6: Block structure of object detection circuit proposed in [96].

Synthesized Object Detection Circuits

In a situation, where complete evaluation of the detection is not required (e.g. in the

case when a powerful CPU is available), programmable hardware can be exploited



Algorithmic Accelerations 33

for pre-processing rather than for complete detection. Probably the best approach is

synthesis of fixed-function circuits from the results of the machine learning process

on demand for each classifier. Such a synthesized circuit is most efficient when

processing small fixed number of weak classifiers for every evaluated position. While

some of the weak classifiers are in such case evaluated unnecessarily (assuming the

WaldBoost based classifiers), the average price of weak classifier implementation is

still often much lower than in the sequential machine described above. The main

advantage of this approach is that all the weak classifiers can be evaluated in parallel.

However, as each weak classifier consumes chip resources, only a very small number

of weak classifiers can be implemented this way.

4.4 Algorithmic Accelerations

Exploiting Neighbors for Faster Detection

In scanning window object detection using a soft cascade detector, each image sub-

window is processed independently. However, much information is shared between

neighboring positions and utilizing this information can increase the speed of detection.

In order to utilize the shared information, a suppression classifiers [95] can be learned

to predict the responses of the original detection classier at neighboring positions.

Computation of the original detector can then be suppressed at positions for which

this prediction is negative and confident enough (see Fig. 4.7).

Positions already
excluded earlier

Already resolved
positions

Current
position

Predictions

Positions excluded due
to current prediction

Figure 4.7: Principle of neighborhood suppression. The classifier evaluated on a
position and prediction of decisions for neighboring positions.

In the case of space partitioning weak hypotheses (see Section 2.3.3), the suppres-

sion classifiers can be made computationally very efficient by re-using the features ht

computed by the original classifier. In that case, adding the suppression classifiers

just increases size of the look-up table l : N→ R. As a result, the response of every

feature is transformed by a set of look-up tables in order to obtain responses on

both the current position and the neighboring positions. Using suppression classifier
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can decrease the amount of computations, even several times without the loss of

detection performance.

Early Non-Maxima Suppression

Detection of objects by a scanning window usually employs some kind of non-maxima

suppression in order to select a position with the highest classifier response from a

small neighborhood in position and scale. The suppressed detections have no influence

on the resulting detection and it may not be necessary to compute the detectors

completely in these positions. In other applications only the highest response on a

number of samples is of interest as well. Examples of such applications are speaker

and person recognition where a short utterance or face image is matched by a classifier

to templates from a database.

The main idea of Early non-Maxima Suppression [32] (EnMS) is to perform non-

maxima suppression already during computation of classifiers and stop computing

classifiers for objects having very low probability that they will reach the best score

in the set of the competing objects. EnMS employs learning framework similar to

WaldBoost, using the Conditioned Sequential Probability Ratio Test [32].



CHAPTER 5

Exploitation of SIMD for Feature Response Computation

Object detection speed is one of the important properties of an implementation

of object detection run-time. Speed is dependent on the classification algorithm,

image features used, image representation, implementation of the feature extraction

algorithm and other possible aspects. In the soft cascade detectors, the feature

extraction constitutes a vast majority of computations during the object detection

and thus speed-up of the extraction algorithm speeds up the whole detection.

This section presents methods that use properties of SIMD architectures for

the acceleration of an evaluation of a feature response. It is focused around the

WaldBoost classification scheme and LBP, LRP and LRD low-level features which are

especially SIMD-friendly. Ideas presented in this section are mainly from [31, 34, 46]

with some added new ideas.

5.1 Representation of a Classifier

5.1.1 Features and Weak Classifiers

Three types of features are primarily considered in this work – Local Binary Patterns,

Local Rank Differences and Local Rank Patterns. The methods presented in the

following sections are not, however, constrained to use these features, which are used

rather as suitable examples. Only space partitioning weak classifiers are considered

in this thesis since they exhibit good results and are easy to implement by using

look-up tables.

The previous definitions of features in Sections 3.2 and 3.3 were fairly general –

they allowed for using a various number of image samples, spatial arrangements of the

samples, sampling functions, etc. A more practical definition from the implementation
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Figure 5.1: Parametrization of features. The position x, y is given relative to an
analyzed window and the size of the feature block w, h is given in pixels.

min max

LBP 0 255
LRD -8 8
LRP 0 99

Table 5.1: Studied types of features and their response ranges.

point of view follows. The features are evaluated from a set of spatially close samples

taken from an input image arranged in a 3× 3 regular grid. Sampling function is

a convolution with a rectangular kernel. The image feature, as shown in Fig. 5.1,

is composed from nine blocks, and the samples can be expressed as sums of pixels

which fall into the particular block. These samples are then evaluated by a feature

evaluation formula which outputs the response of the feature. Possible responses of

such features are summarized in Table 5.1.

The feature is parametrized by its position x, y relative to the classified window

and by the size of its blocks w, h, and possibly by other parameters needed for

evaluation (e.g. rank indices in LRD and LRP). Response of a feature is used as an

input for the weak classifier which for each possible response of the feature assigns a

real number.

f loat e v a l l b p s t a g e ( Image img , Stage s , int x , int y )

{
int samples [ 9 ] ;

// Gather samples d e f i n e d by f e a t u r e

// p o s i t i o n and s i z e : s . x , s . y , s .w, s . h

// C r i t i c a l par t o f the e v a l u a t i o n

int lbp = 0 ;

for ( int i = 0 ; i < 8 ; ++i )

{
lbp |= ( samples [ i ] > samples [ 4 ] ) << i ;

}

return s . p r ed i c t i o n [ lbp ] ; // response o f weak c l a s s i f i e r

}
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f loat e v a l l r d s t a g e ( Image img , Stage s , int x , int y )

{
int samples [ 9 ] ;

// Gather samples

int countA=0; countB=0;

for ( int i = 0 ; i < 9 ; ++i )

{
i f ( samples [ i ] > samples [ s .A] ) countA++;

i f ( samples [ i ] > samples [ s .B ] ) countB++;

}
return s . p r ed i c t i o n [ ( countB − countA ) + 8 ] ;

}

f loat e v a l l r p s t a g e ( Image img , Stage s , int x , int y )

{
int samples [ 9 ] ;

// Gather samples

int countA=0; countB=0;

for ( int i = 0 ; i < 9 ; ++i )

{
i f ( samples [ i ] > samples [ s .A] ) countA++;

i f ( samples [ i ] > samples [ s .B ] ) countB++;

}
return s . p r ed i c t i o n [10 * countB + countA ] ;

}

Listing 5.1: LBP, LRD and LRP evaluation codes as typically implemented.

The Listing 5.1 extends the code in Listing 4.1 with functions for the evaluation

of features – implementation of feature extraction algorithms described previously

in Section 3.2 and 3.3. The sample gathering phase obtains samples from an image.

The particular method depends on the type of the input image and its pre-processing.

The rest of the code, the loop, calculates the response. It should be noted that the

feature evaluation can be repeated even millions of times during the detection, and

doing this inefficiently results in a serious bottleneck.

5.1.2 Strong Classifier

A strong classifier learned by the WaldBoost algorithm contains an ordered set of

weak classifiers, each containing one image feature. The classifier, illustrated in

Fig. 5.2, is parametrized typically by the size of the detection window, number of

the weak classifiers and type of features.
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Figure 5.2: Schematic view of a strong classifier which is basically a sequence of weak
hypotheses and their parameters.

5.2 Input Pre-processing and Data Access

Lets focus on what is the input for the feature extraction. The input image is

in the form of an intensity raster. This can be pre-processed in order to make

the representation clearer for the detection and to simplify the detection by the

pre-calculation of necessary values. In our case, several types of pre-processing make

sense.

1. No pre-processing – Evaluation directly on the intensity image. The coefficients

for feature evaluation can be calculated directly by summing the intensities in

the image. While this is suitable for small features, large features are computed

very slowly. This approach is not efficient either in terms of computational

complexity or memory access.

2. Integral image – An integral image allows for the summing of an arbitrary

rectangular area in constant time and is more suitable for feature evaluation.

It is advantageously used for the calculation of Haar-like features. Each

rectangular area can be summed by accessing its corners in the integral image.

On the other hand, it is efficient for features of larger sizes which are not

necessary in detectors.

3. Convolution images – The best choice (in most cases) is to pre-calculate

sampling functions. Feature evaluation is then only a matter of the loading of

the coefficients and their processing.

4. Pre-calculated feature – Some feature types are allowed to be pre-calculated in

order to minimize the amount of computations in the detection phase. In the

case of this thesis, the LBP feature response can be pre-calculated for every

position in the image.
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5.2.1 Evaluation without Pre-Processing

The intensity image can be used for a feature evaluation without any pre-processing

in an obvious way. Nine samples, defined by feature parameters x, y, w, h, has to be

obtained from image f – pixels belonging to the feature blocks are simply summed

up by Equation 5.1, producing values for feature evaluation.

response

feature

Figure 5.3: Features can be evaluated directly on an intensity image by summing
pixels in the blocks.

In Equation 5.1, the m and n are horizontal and vertical indices of block (m ∈
{0, 1, 2} , n ∈ {0, 1, 2}) and the values of S are used as samples for feature evaluation.

Sm,n =

w−1∑
u=0

h−1∑
v=0

f(x+mw + u, y + nh+ v) (5.1)

Although the simplest, this method is the worst one in most cases. The complexity

of a sample calculation grows linearly with the number of pixels in a feature block.

This is efficient for only very small features (up to 2 × 2 pixels per block). This

method is selected as a reference in this thesis since only small features are considered.

5.2.2 Using Integral Image

Pre-processing with an integral image is known as a solution that allows for summing

arbitrary areas of the input in constant time. By accessing only corner pixels of each

area, values can be summed.

The integral image, defined in Section 3.1 by Equation 3.1, can be used by an

application of Equation 3.2 to each block. This means that the 16 values in the

corners of feature blocks (see Fig. 5.4) has to be accessed in order to obtain the nine

values for feature evaluation. Coordinates S of the pixels in integral image F are

defined by Equation 5.2.

S = {x, x+ w, x+ 2w, x+ 3w} × {y, y + h, y + 2h, y + 3h} (5.2)

The integral image is especially convenient for the evaluation of large features.

Small features, however, are calculated with less efficiency.
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integral

response

feature

Figure 5.4: Feature evaluation on an integral image. The feature represented by
blocks in intensity image (left), is represented by a set of samples in the integral
image (right). From these samples, a response can be calculated.

5.2.3 Using Convolution Images

A sampling function for feature evaluation can be pre-calculated as well (i.e. for each

type of sampling, an image with sample values can be created). This necessarily

means that for each sampling function (feature size) a new image has to be calculated

which means some overhead. This overhead is lowered by the fact that the sample

values do not need to be calculated for each feature during the classification phase.

convolution

response

feature

sampling functions

Figure 5.5: Feature evaluation on a pre-convolved image. First, the intensity image
(left) is convolved with all needed sampling functions and convolved images (right)
are created. A feature is then represented as a set of nine pixels in a particular image.

A sampling function c = f ∗ g is pre-calculated by the convolution of the input

image f with kernel gw.h representing a sample. Feature is parametrized by its

position in an image x, y and its size w, h which is also size of the convolution kernel

g.

S = {x, x+ w, x+ 2w} × {y, y + h, y + 2h} (5.3)

A feature in this image is then always represented by values in coordinates

defined by Cartesian product S in Equation 5.3. Therefore, obtaining feature data

has constant complexity. The drawback is the necessity to pre-calculate an image for
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every feature size and thus it is important to keep the number of different sizes low.

Block Re-arrangement

Convolved images can be stored (or rather rearranged) in the memory in a special

way to put pixels belonging to the same feature close together in order to minimize

the number of memory accesses and to make further computations more SIMD

friendly.

The block rearrangement stores responses produced by the adjacent positions of

the convolution kernel in consecutive memory addresses. Such a memory layout can

be viewed as an image, where the responses produced by the adjacent positions of

convolution kernel are its sub-images. Although, the data is localized better, which

is important for SIMD processing, there is a need for a more complex addressing

which has to take into account the block structure of the image. Given a feature

with parameters x, y, w, h, where x, y is the absolute feature position in an image.

The data for the feature is in the image for w, h sampling on coordinates calculated

by Equation 5.4 in the block defined by Equation 5.5.

(x′, y′) = (x÷ w, y ÷ h) (5.4)

(u, v) = (x mod w, y mod h) (5.5)

This rearrangement can be efficiently used in the pre-processing as an intermediate

step for the feature response pre-calculation described in Section 5.2.4.

Local Re-arrangement

A locally rearranged image is suitable for fast loading of image feature data by SIMD

instructions. It has the same structure as a block-rearranged image, but in addition

it rearranges small blocks of 2 × 2 pixels to be stored in a single 32 bit word, as

shown in Fig. 5.6.

32 bit

Figure 5.6: On the left, a source block rearranged image and the local rearrangement
of the image.

In this memory layout, loading continuous 64 bit-aligned 64 bits from two

consecutive rows, 4 × 4 convolution results can be obtained (i.e. two 64 bit data
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accesses and load 16 data items). A feature data is located in a 3× 3 sub-window of

this block. The localization of data for the feature is very high, but more complex

addressing than in the case of block rearrangement is needed, though. Given a

feature with parameters x, y, w, h, where x, y is the absolute feature position in an

image. The convolution image in which the data for the feature is located is defined

by w, h. The feature is located in image block u, v (Equation 5.8) in a 4 × 4 area

with coordinates x′′, y′′ (Equation 5.7). And the shift of the feature within the 4× 4

area is defined by m,n (Equation 5.9).

(x′, y′) = (x÷ w, y ÷ h) (5.6)

(x′′, y′′) = 2 (x′ ÷ 2, y′ ÷ 2) (5.7)

(u, v) = (x mod w, y mod h) (5.8)

(m,n) = (x′ − x′′, y′ − y′′) (5.9)

Blo
ck
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(0,0)
(0,1)

(1,0)
(1,1)

(u,v)

x''

y'' m

n

32 bit word

Data to load

Figure 5.7: Addressing in a locally rearranged image. The image, divided into block
(u, v), is stored in memory so that each 2× 2 pixels is located in a word. From the
feature position x, y, its parameters for addressing can be calculated.

The advantage of such a rearrangement is that data for every feature can be

loaded efficiently by only two 64 bit data accesses. Even though this pre-processing

seems to be rather complex, it can be implemented very efficiently and the complex

addressing can be to great extent pre-calculated and implemented using look-up

tables.

5.2.4 Feature Pre-calculation

Not only can the sampling function be pre-calculated, but the feature response can

be pre-calculated too. The motivation is that during detection, the feature response

on different positions have to be obtained. This action may even be repeated millions
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of times, and some features might be accessed more than one time. Pre-calculating

the response can thus speed-up some cases.

feature

calculation

response

feature

pre-calculated features

Figure 5.8: Feature evaluation using a pre-calculated response.

What is needed is a feature response for every position in an image which considers

all feature parameters. This means that not every feature types are suitable for this

kind of pre-processing. In the case of the LBP feature, only images for different

feature sizes have to be calculated (e.g. 4 images when using sample sizes up to

2× 2 pixels). But in the case of the LRD feature with same sample sizes as the LBP,

the number is 144 because not only responses for different feature sizes have to be

calculated, but different combination of ranks must be considered too.

The efficiency of this method is dependent on the number of accesses to each

feature. When a feature is needed more than one time during the whole detection, it

may be reasonable to pre-calculate it. On the other hand, when it is needed only

once, or even not at all, pre-processing is inefficient. This is the reason why the

LBP pre-calculation is reasonable. On each position of an image, there are four

pre-calculated values, and there is large probability that all of them are needed

during the detection. Moreover, each feature is likely to be needed more than once.

The LRD pre-calculation, on the other hand, has on each position 144 pre-calculated

values. It is also very unlikely that all of them are needed during the detection, and

most of the computations in the pre-processing are thus unnecessary. In the case of

non-parametrized features (except for position and size) like LBP, this method is

efficient – obtaining a response of a feature is reduced to only one memory reference.

(x′, y′) = (x÷ w, y ÷ h) (5.10)

(u, v) = (x mod w, y mod h) (5.11)

As a source for feature pre-calculation any type of image can be used. It can

be calculated directly on an intensity image or from an integral image. The most

convenient way, however, is to use block-rearranged convolution images as the features
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are represented always as 3× 3 pixel blocks and the responses can be calculated by

a simple SIMD code (see Section 5.3.3). The addressing, similar to the convolved

images is, however, a little more complex. Let us consider a feature with parameters

x, y, w, h where the x, y is the absolute position in an image. The image with the

feature response is defined by w, h (and possibly by other parameters). The feature

response is on the coordinates x′, y′ in block u, v from equations (5.10) and (5.11).

5.3 Feature Evaluation using SIMD

5.3.1 Calculating a Single Response

This subsection deals with the situation when only a single feature response is

evaluated. It is the standard way on how to implement the classifier evaluation on

an image. Fig. 5.9 shows how the feature evaluation using SIMD works in principle.

First, the samples are loaded from the image into an SIMD register and then the

data are processed by a fixed chain of instructions in order to get the response.

load_data

v1 v2 v3

v4 v5 v6

v7 v8 v9

v1 v2 v3 v4 v5 v6 v7 v8 v9

SIMD

Response

image

Figure 5.9: All data for feature evaluation can be loaded as an SIMD vector and
processed in a data-parallel fashion.

The pseudocode in Listing 5.2 shows the feature response calculation for LBP, LRP

and LRD. Given a feature with parameters x, y, w, h we can obtain the feature data

from a particular image representation (integral, intensity or convolved) by function

load data which deals with addressing in the particular image representation. Most

convenient, in this case, are local rearranged convolution images, but any type can

be used. The data type vector stands for the SIMD data type (e.g. m128i register

type in the case of Intel’s SSE). The function expand expands a particular sample to

its full vector width and sum vector sums all vector items. All used operations have

their equivalent in common SIMD instruction sets in modern CPUs.

f loat eva l l bp s imd ( int x , int y , TStage s )

{
vec to r weights = {1 , 2 , 4 , 8 , 16 , 32 , 64 , 128} ;
v ec to r samples = load data ( img , x+s . x , y+s . y , s .w, s . h ) ;
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vec to r c ent e r = expand ( samples , 4 ) ;

int lbp = sum vector ( ( samples > cente r ) * weights ) ;

return s . alpha [ lbp ] ;

}

f loat e va l l r d s imd ( int x , int y , TStage s )

{
vec to r samples = load data ( img , x+s . x , y+s . y , s .w, s . h ) ;

vec to r A = expand ( samples , s .A) ;

vec to r B = expand ( samples , s .B) ;

l r d = sum vector ( samples > A) − sum vector ( samples > B) ;

return s . alpha [ l r d + 8 ] ;

}

f loat e va l l r p s imd ( int x , int y , TStage s )

{
vec to r samples = load data ( img , x+s . x , y+s . y , s .w, s . h ) ;

vec to r A = expand ( samples , s .A) ;

vec to r B = expand ( samples , s .B) ;

l r p = 10 * sum vector ( samples > A) + sum vector ( samples > B) ;

return s . alpha [ l r p ] ;

}

Listing 5.2: LBP, LRD and LRP evaluation codes using vector processing functions.

In the evaluation of the LBP feature (eval lbp simd function), right after data

loading, the first central sample is expanded to its full register width. The expanded

value is then compared to all others producing intermediate results which is used as

a mask for a vector with weights. Each weight corresponds to a value of a bit in the

LBP code. Masked weights are summed up producing the LBP response.

The evaluation of LRD and LRP (eval lrd simd and eval lbp simd functions)

are very similar to each other. They are parametrized by values A and B which

are indices of items in the data from which ranks are calculated. The values v[a]

and v[b] are expanded to their full register width and compared to all other values.

Intermediate results can be interpreted as vectors in which items that are higher

than item A (resp B) are marked (i.e. the number of such items are ranks of item A

(resp. B)). Ranks are calculated by summing the intermediate results and the values

are simply used to calculate the LRD or LRP value.

5.3.2 Calculating Multiple Responses

After each evaluated weak hypothesis a decision about rejection is made, when

evaluating a classifier. This is due to the structure of WaldBoost classifiers which is

sequential in nature. While this is important in early stages of classification, in later

stages the decision has to be made less often (as shown in experiments) and the price
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for evaluating features separately could be very high. Moreover “bunch” evaluation

of weak classifiers is beneficial in AdaBoost classifiers where all weak classifiers have

to be evaluated.
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Figure 5.10: Data for multiple features can be loaded as SIMD vectors and all of
them can be evaluated simultaneously.

void eva l lbp s imd bunch ( int x , int y , TStage s [ 1 6 ] , f loat * h)

{
const int order [ 8 ] = {0 , 1 , 2 , 5 , 8 , 7 , 6 , 3} ;
v ec to r v [ 9 ] = load data ( img , s ) ;

vec to r w = {1} ;
v ec to r re sponse = {0} ;

for ( int i = 0 ; i < 8 ; ++i )

{
i f ( v [ order [ i ] ] > v [ 4 ] )

r e sponse |= w;

w <<= 1 ;

}

for ( int i = 0 ; i < 16 ; ++i )

h [ i ] = s [ i ] . a lpha [ re sponse [ i ] ] ;

}

Listing 5.3: The code for “bunch” evaluation of 16 LBP features (128 bit (16 × 8

bits) where SIMD is assumed). The load data function in this case loads data for

all features to 9 variables which are then processed by a data-parallel code. Sixteen

responses of weak hypotheses are returned as a result (h).

The evaluation of responses of a bunch of features can be efficiently rewritten to

use SIMD instructions to evaluate all features by a short sequence of instructions.

The Listing 5.3 shows the algorithm which calculates a bunch of 16 LBP features.

Codes for LRP and LRD could be made analogically. It should be noted that the

code is very similar to the sequential one (see Listing 5.1), but in this case, one

sample is replaced by a bunch of 16 samples.
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5.3.3 Pre-processing the Image

The above methods extracted a feature response during the classifier evaluation.

Then the feature response is pre-calculated (i.e. when the extraction is done during

the pre-processing stage), during the detection only one memory reference has to be

made to get the response.

a
b
c

img dst

x
y

N

N-2 results

Figure 5.11: In SIMD, multiple spatially close feature responses can be calculated by
a simple code.

In principle, illustrated in Fig. 5.11, when using N-wide SIMD, N-2 responses

of spatially close features can be calculated by a simple code (see Listing 5.4). The

code on the given position x, y in the image loads N pixels from 3 consecutive rows.

The responses are then produced by using differently shifted versions of the data,

producing N results. Only N − 2 of the results are, however, valid.

void eva l lbp s imd bunch ( Image img , Image dst , int x , int y )

{
vec to r a , b , c ;

vec to r r e s u l t = ze ro s ;

vec to r w = {1} ;

a = load data ( img , x , y ) ;

b = load data ( img , x , y+1);

c = load data ( img , x , y+2);

r e s u l t |= (w & (( a >> 8) > b ) ) ; w <<= 1 ;

r e s u l t |= (w & (( a ) > b ) ) ; w <<= 1 ;

r e s u l t |= (w & (( a << 8) > b ) ) ; w <<= 1 ;

r e s u l t |= (w & (( b << 8) > b ) ) ; w <<= 1 ;

r e s u l t |= (w & (( c << 8) > b ) ) ; w <<= 1 ;

r e s u l t |= (w & (( c ) > b ) ) ; w <<= 1 ;

r e s u l t |= (w & (( c >> 8) > b ) ) ; w <<= 1 ;

r e s u l t |= (w & (( b >> 8) > b ) ) ;

// w r i t e masked r e s u l t to the d s t

}

void preproce s s image lbp ( Image src , Image dst )

{
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for ( int y = 0 ; y < s r c . he ight −2; ++y)

for ( int x = 0 ; x < s r c . width−16; x += 14)

eva l lbp s imd bunch ( Image img , Image dst , int x , int y ) ;

}

Listing 5.4: Pre-Calculation of a LBP feature responses on an SIMD.

The function pre-process image lbp in Listing 5.4 processes the whole image.

It should by noted that when calling eval lbp simd bunch for some y and y+ 1, two

lines of data are the same in both cases and it is not necessary to load them. The

code can be simply modified to address this issue – process N pixels wide vertical

strip of image.

The evaluation of a feature during the classifier response calculation is then only

a matter of one memory access (see Section 5.2.4).

5.4 Implementation with Intel SSE

The principles described in Section 5.2 and 5.3 were used for implementation of

a software library for object detection. The library uses Intel’s Streaming SIMD

Extension (SSE) instruction set. The SSE is supported by modern compilers (such as

GNU Compiler Collection or Microsoft Visual Studio) in the assembly language and

it is also supported as a library of intrinsic functions (i.e. a function call is translated

during compilation to a single instruction). The library is published as free software1

and it can be used in other applications that use object detection with classifiers.

As classifiers, the library supports XML files produced by the experimental

framework for research on detection classifiers [38] developed at Brno University

of Technology. The framework is also available on-line2 for public use [47] where a

user can upload data and learn his own classifiers. The classifiers, however, do not

need to be stored in XML and the library supports classifiers in the form of a static

structure in C source code. Such a representation is suitable for embedded devices

or applications with built-in detectors.

5.4.1 Pre-processing

The library implements pre-processing methods described in Section 5.2. The input

is an intensity image which is transformed to a pre-processed image (see Fig 5.12)

which is an abstract image that can hold any form of image (e.g. a convolution with

block rearrangement).

It should be noted that the pre-processing is not accelerated with the exception

of pre-calculation of the LBP operator. Implementing the functions more efficiently

1<http://medusa.fit.vutbr.cz/libabr>
2<http://medusa.fit.vutbr.cz/detect>
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Figure 5.12: Scheme of pre-processing used in the library. The programmer can
select which representations have to be calculated during the pre-processing.

would result in an improved performance. For the purposes of this thesis, however,

the speed of the pre-processing is of little importance.

5.4.2 Object Detection

The pre-processed image is an input of the object detection. The other input is

a structure with classifier parameters. The library implements five main methods

(see Table 5.2) of detection which differs by the image structure on which they are

evaluated.

Preprocess

Source image Image layout

Figure 5.13: Scaled versions of the input image are placed on a larger image which is
pre-processed. Object detection is then executed on this image in order to detect
multi-scale objects.

Every method scans the input image in a single scale (i.e. it returns positions
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of objects which has the size of the classification window). Multi-scale detection is

achieved by putting scaled versions of the input on the larger image – image layout

(see Fig. 5.13) similar to [32]. The detection of differently sized objects can then be

performed in a single scale. The results after detection have to be transformed back

to a normal image space. The main advantage of image layouting is that only one

image is used and the image data are more compact in the memory. The drawback is

that the image contains unused areas which are processed uselessly. However, the

fraction of such areas is very low.

Run-time Input Bunch eval. Ops. per feature Mem. accesses per feature
Intensity Intensity image no 33 — 60 9 — 36
Integral Integral image no 40 16
SSE-A Convolved image no 7 2
SSE-B Convolved image yes (16) 11 9
SSE-C Pre-calculated LBP no 1 1

Table 5.2: Summary of properties of different run-times implemented in the library.

Table 5.2 summarizes properties of the implementation in the library. The column

input describes what pre-processing is needed for the run-time. The column bunch

eval. says whether the run-time evaluates weak classifiers sequentially or in a bunch.

The Ops. per feature is the number of operations related to the evaluation of the

feature (the response evaluation without addressing, data access and other overhead),

and Mem. accesses per feature is the number of accesses to memory related to the

loading of feature data (without addressing and other calculations). From the values,

one can get a notion of complexity of the evaluation of features. The values, however,

do not include addressing of data and pre-processing. The effeciency of the feature

extraction is the subject of measurements in Section 7.1.

5.4.3 Benchmark

A widely used software implementation of the object detection is the OpenCV

Haar Cascade which can be considered as a baseline. The main properties of this

implementation are the following: the usage of AdaBoost Cascade classifier with

Haar features and LBP features, support of multiple cores via the TBB interface

(Intel Thread Building Blocks), and canny pruning which allows for skipping image

areas with a low probability of target object occurrence.

The OpenCV Cascade implementation was compared to the SSE-A implemen-

tation described in Section 5. Detectors supplied with the OpenCV package were

used. A competing classifier contains 1000 LBP based weak classifiers learned by

WaldBoost with a false negative rate set to α = 0.2. All classifiers were tested on the

CMU dataset (130 images) in order to obtain ROC points. OpenCV, however, does

not offer a setting of the detection threshold and only one point for a classifier can
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Figure 5.14: Comparison of classifiers supplied with the OpenCV 2.3 to the WaldBoost
classifier. The Haar Cascade Alt has a similar error rate to the WaldBoost. The
LBP classifier using the same features, however, has a larger error rate and a false
positive rate.

be obtained. Comparison of the classifiers is shown in Fig. 5.14. The closest match

to the WaldBoost classifier in terms of error rate is Haar Cascade Alt.

The benchmark was executed on PC (Intel Core i5 with 4 cores, 3.3GHz. 4GB

RAM, Debian Linux 32bit) and it tested the multi-scale detection performance on

the CMU dataset. Fig. 5.15 shows the detection time dependency on the input

image resolution for all tested classifiers. The time includes image pre-processing and

multiscale detection of objects in all image positions. The SSE-A implementation

is approximately 1.2 times faster than the OpenCV Haar Cascade when using a

classifier with similar error rates (Haar Alt Cascade). Compared to the OpenCV

LBP Cascade, the WaldBoost runtime is slower by approximately 2 times. Such a

comparison, however, is unfair as the OpenCV classifier is less accurate, which makes

it inherently faster.
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CHAPTER 6

Classification Cost and its Minimization

This chapter presents the contribution of the thesis – minimization of classification

cost of WaldBoost classifiers through a combination of different run-time implemen-

tations of object detection. Sources of the classification cost are twofold. Firstly, the

classifier has its inherent cost given by the learning process. When executing the

classification on a set of images, there is an average number of weak classifiers that

has to be evaluated in order to reach a decision. Classifiers executing a lower number

of weak classifiers are faster and therefore have a lower cost. Secondly, the cost

is a property of the classification engine in which the object detection is executed.

The engine can be implemented by various methods – parallel evaluation of weak

classifiers, parallel evaluation of image sub-windows, etc.; and on various platforms

offering different means of classifier evaluation – SIMD, FPGA, etc. The knowledge

of the classifier properties and properties of the detection engines can be used for

reduction of computational effort. The reduction can be performed by combining two

or more detection engines, each executing a different part of the classifier [48] (e.g.

a hardware pre-processing unit connected to a post-processing unit on traditional

CPU). The reduction can be applied to various types of cost (computations, memory,

hardware price, etc.) as its formulation is general. In this thesis, the interest is in the

minimization of computational effort and the relative cost thus roughly corresponds

to the computational time (except where otherwise noted).

6.1 Classifier Properties

The main property of WaldBoost classifiers is the probability of evaluating a weak

classifier, reflecting on how often a weak classifier is executed during detection. This
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value p can be calculated for every stage i from statistics obtained on a dataset

of images. Due to rejection nature of WaldBoost classifiers, the sequence of pi is

decreasing. The first stage is evaluated always (i.e. the p0 = 1). An example of such

statistics is shown in Fig. 6.1 (left). The evaluation probability captures intrinsic

computational complexity of the classifier.
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Figure 6.1: Example of classifier statistics. On the left, stage execution probability.
On the right, the number of evaluated weak classifiers on average for a particular
length of the classifier.

The classifier statistics depends mainly on the classifier rejection rate – on how

rapidly are negaive samples rejected by early weak classifiers. A classifier can have

different statistics when using different implementations of the evaluation. For

example, consider an implementation which evaluates four weak classifiers in one

step and applying the thresholds after this “bunch” evaluation. The first four weak

classifiers would have probability of evaluation equal to 1, even though execution of

all of them is not necessary in most cases. The next four would have a probability

of execution equal to each other, and so on. Therefore, the classifier statistics is a

property of the classifier and the implementation of its evaluation.

6.2 Cost Evaluation

In the case of the AdaBoost and WaldBoost classifiers the total cost C is proportional

to the sum of individual costs of executed weak classifiers which can be calculated by

(6.1). The T is the length of classifier, k is the overall classifier cost which symbolizes

evaluation cost on a particular platform on which the classification is implemented.

The p is the probability of execution of particular weak classifier (see Section 6.1).

The c is relative cost of the weak classifier evaluation which addresses the possibility

that the weak classifiers have different costs (due to the use of different features, for

example).
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C = k
T∑
i=1

pici (6.1)

When analyzing real classifiers, p can be obtained from the statistics on input

images and can be obtained c by time measurement or other cost estimation and

k can be set to a constant value (k = 1). In Fig 6.1, the plot on the left shows a

value of pi and the plot on the right shows the area under the pi curve which is

proportional to the amount of computational resources needed for the evaluation of

the classifier.

In object detection, homogeneous classifiers are most common (i.e. those with

all weak classifiers of the same type and with the same type of features). In such

cases, the cost of a weak classifier is constant ci = c. Additionally in AdaBoost, all

weak classifiers are executed every time and the probability of executing all weak

classifiers is equal to pi = 1. The C from (6.1) can be thus simplified to C(AB) (for

AdaBoost) and C(WB) (for WaldBoost) in (6.2).

C(AB) = knc C(WB) = kc
n∑
i=1

pi (6.2)

Considering a classifier of length T , the value C gives us an expected cost of

evaluation of the classifier. The measure is abstract and it can express different facts

about the analyzed classifier. For example, when the c is set to 1, the cost expresses

the number of weak classifiers executed in average; or when set according to time

needed to evaluate a particular classifier, the C expresses the average time needed to

evaluate the classifier.

6.3 Cost Minimization

Besides the properties of a classifier, the properties of run-time implementation

also contributes to the total cost. Implementations with different properties exist

– differences can be in the design of the feature extraction, image scan, multi-scale

detection, etc. Imagine, for example, an implementation A which can very efficiently

evaluate K > 1 weak classifiers in a row, but it always evaluates all of them no

matter how many weak classifiers are actually needed for the evaluation. It could be

the pre-processing unit implemented in hardware which rejects areas without the

occurrence of target object. The other implementation B in software can evaluate

the classifier in a standard way. The computational cost for one feature in A is much

lower than in B, but implementing the whole classifier in the hardware is hard to

achieve due to limited resources. Moreover it could be uneconomic to do so as the

hardware resources are relatively expensive.
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C = arg min
0≤u≤T

(
k1

u−1∑
i=0

p1,ic1,i + k2

T−1∑
i=u

p2,ic2,i

)
(6.3)

x y

Classifier

Implemenation A

(FPGA)

Implemenation B

(software)

u

h1 h2 h3 hT

Figure 6.2: Composition of two implementations of classification. First u classifires
are evaluated in FPGA and the rest in software.

Both implementations can be put together in a composed implementation as

illustrated in Fig. 6.2. The problem here is on how many weak classifiers should

be put into a hardware unit and on how many are left for the software. The cost

of both parts can be measured and sum of the individual costs of both parts gives

us a total cost C. The composition with the minimal total cost can be found using

Equation (6.3).
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Figure 6.3: An example of minimization of total cost for a two-phase classifier. The
horizontal axis corresponds to the division point of the classifier. The vertical axis is
the cost of the composition. In this case, the first phase always evaluates all weak
classifiers and the second phase evaluates weak classifiers one by one. The black dot
marks the division with a minimal cost.

The composition of two phases can be fine tuned by one parameter – division

point u. Equation 6.3 shows the minimization problem. The C is the total minimal

cost of the evaluation; u is point of classifier division; and k, c and p correspond to

the parameters of the cost computation from Equation 6.1. Fig. 6.3 shows values of

C for different settings of u. It should be noted that although the properties p of
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classifier are the same for both parts, the p can be in general different for each part.

This is due to the structure of the evaluation in the particular implementation which

can force different probabilities of feature evaluation for example by evaluating more

features in one step (see Section 6.1).

When going beyond the example given above, more than two phases of evaluation

can be used. And the minimization problem is thus multi-dimensional. In general

cases described by (6.4), the classifier division is defined by vector u whose values are

searched for in order to find the best composition of parts with different properties.

It should be noted that ui can be equal to ui+1 and some parts (evaluation imple-

mentations) could be in fact skipped when they do not contribute to the minimal

cost in the composition.

C = arg min
u

M∑
m=1

km um−1∑
i=um−1

pm,icm,i


s.t.

u0 = 0

uM = T

ui−1 ≤ ui, 0 ≤ i ≤M

(6.4)

In practical applications, it is easy to get the stage execution probabilities p – it

reflects classifier behavior on images. On the other hand, it could be tricky to identify

values of c and k. It has to be done by a careful examination of the performance

of the particular implementation of the detection on the target application (e.g. by

precise measurement of time needed for executing the weak classifier).



CHAPTER 7

Experiments and Results

The objective of the experiments is to test the hypothesis about minimization of

total cost using a composition of classifier run-time implementations presented in

Chapter 6. Firstly, the implementations used in this thesis are described and their

performance is measured. This measurement serves as a cost estimation in subsequent

experiment. Secondly, the evaluation metric used in the thesis is the improvement of

performance of object detection.

7.1 Classification Cost Measurements

7.1.1 Experimental Setup

Classifiers used in the experiments were face detectors trained with the WaldBoost

algorithm in an experimental framework developed at the Faculty of Information

Technology [38]. Twelve classifiers with different properties were used – for each

feature type (LBP, LRD, LRP) classifiers with α ∈ {0.02, 0.05, 0.1, 0.2} were used

(see Section 2.3.3). Features with maximum 2 × 2 pixel blocks were used to meet

requirements of all run-time implementations (see Section 5).

As a baseline, a software implementation working on an integral image was

selected, as it is a standard way of implementation of the detection. The other used

implementations in software were implementations that use an SSE intruction either

for pre-processing or evaluation of features. Properties of run-time implementations

are summarized in Table 5.2.

Additionally, an FPGA pre-processing unit (FPGA) is used in the experiments.

This unit can contain up to N classifiers and it always evaluates all weak classifiers

in parallel and thus works as a simple AdaBoost unit which applies WaldBoost
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thresholds after the evaluation of all weak hypotheses.

PC1 PC2

CPU Intel Core i5 Intel Core2
Cores 4 2

Frequency 3.3 GHz 800 MHz
Memory 4 GB 1 GB

OS Debian 32 bit Ubuntu 11.04 32bit

Table 7.1: Specifications of the two machines used in the experiments.

The cost of software implementations correspond to the time needed for the

evaluation of a weak classifier. The time was measured on a dataset of 130 images

(CMU dataset) with different resolution and content. Each image was processed ten

times and the times were averaged. In total, the cost was evaluated from around 26

million classifications which is enough to get an accurate estimate. The measurement

was performed on two different computers (Table 7.1) with CPU frequency set to

a constant value (i.e. no automatic frequency scaling allowed) and a single-thread

code was used.

The cost of the classifier in the hardware implementation was set as an area

needed for the classifier in the FPGA circuit, reflecting the cost of the chip. In these

experiments, the cost is set constantly to ci = 1
N where N corresponds to a number of

weak classifiers which can be efficiently stored in a typical low cost FPGA. The value

depends on a feature type and the hardware used; N = 50 is assumed in experiments.

Certainly, better cost functions could be found. For example, cost incorporating

properties of a real divice – such as feature evaluation speed or or price of the device.

The cost selected in this work is selected in order to illustrate the principle of cost

minimization. In general, by setting the cots to a low value, we simply say that the

cost of the hardware unit is not of much interest to us, and conversely, by setting

the cost to a large value, we say that the cost of the hardware is very important.

For each classifier, stage execution probability (see Section 6.1) was obtained

from detection results on the CMU dataset.

7.1.2 Cost Measurements

Table 7.2 shows measurements of classification cost ci for different types of features

for different implementations. The cost value reflects time needed for the evaluation

of a weak classifier and thus it depends only on the feature type used. The costs for

all classifiers (with the same feature type) were thus averaged in order to get more

precise estimate.

On the left side, Fig. 7.1 shows stage execution probabilities pi for the classifiers

in the experiments. It should be noted that pi for classifiers with higher false negative
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PC1 PC2
LBP LRD LRP LBP LRD LRP

INTEGRAL (ref.) 0.0421 0.0466 0.0464 0.2244 0.2465 0.2403
SSE-A 0.0236 0.0269 0.0306 0.1211 0.1000 0.1020
SSE-B 0.0114 0.0129 0.0117 0.0659 0.0765 0.0704
SSE-C 0.015 – – 0.100 – –

Table 7.2: Costs ci of weak hypotheses evaluation in different implementations of
detection run-time on two different computers used in the experiments. Note that
the SSE-C implementation can evaluate only LBP features.

rate α decrease faster. This results in a lower number of weak classifiers evaluated on

average, and ultimately, to higher classification speed compared to the more accurate

classifiers with a lower false negative rate. The right column of Fig. 7.1 shows the

speed comparison of the classifiers – the average number of weak classifiers evaluated

per window.
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Figure 7.1: Left column, stage execution probabilities for classifiers used in the
experiments. Right column shows how the classifier cost (measured in number of
weak classifiers) grows with length of the classifier. Note that all axes are shown in
logarithmic scale.
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7.2 Cost Minimization

This section gives results of classification cost minimization based on results described

in the previous section. First, compositions of classifier implementations used in the

experiments are described. Then the results are presented and compared to real

measurements.

7.2.1 Experimental Setup

In this experiment, classifiers were divided into two parts. The first part is evaluated

in the hardware pre-processing unit. The second part is left for evaluation in the

software using one of the above described run-time implementations. The classifier

cost estimation method and cost minimization described in Section 6 is used to

estimate the optimal length of the pre-processing unit according to the cost measure

defined in Section 7.1. The optimization objective is thus minimization of the circuit

area and, at the same time, minimization of the amount of computations in the

software. By combination of such diverse cost measures the result (total cost C)

given by the cost evaluation can be viewed as a ’relative cost’ but the interpretation

of the value might be somewhat problematical. This does not, however, matter too

much as we do not care about the value of the cost, but instead care about the

position of the minima.

7.2.2 Minimization and Measurements

Figures 7.2 to 7.4 shows results of the minimization of total cost on PC1 for different

feature types used. Figures 7.5 to Fig. 7.7 shows the same for PC2. The plots show

dependence of total cost on the setting of a classifier divison point. The division with

minimal cost is marked by a circle. It should be noted that slower classifiers (low

false negative rates, α) result in a longer part in the hardware unit, meaning that the

hardware should take care of the majority of computations and the “post-processing”

is left for the software. Another notable fact is that when using slower implementation

in the software (or slower computer), the larger part of computations is left for the

hardware unit. This means that faster computers/implementations tend to compute

more weak classifiers in the software.

Comparison of the optimization and real measurement in a few selected cases is

shown in Figures 7.8 to 7.11. It should be noted that although the scale of curves

is different, the position of the minima is approximately in the place predicted by

the optimization. The difference is mainly caused by the overhead introduced by

the switching of run-time during the detection and other effects not included in the

predictions (caching, memory bandwidth, etc.). The optimization thus predicts a

good point of classifier division with respect to the user defined cost function.
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Figure 7.2: Search for an optimal division point on PC1. Classifiers were divided
into two parts, the first one is executed in FPGA and the second in PC1 (different
run-time implementations are shown as curves in plots). Plots (a), (b), (c) and (d)
shows the cost evaluation for four different classifiers with α of 0.02, 0.05, 0.1 and
0.2 respectively. LBP features were used. The position with minimal cost is marked
by a point.
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Figure 7.3: Search for optimal division point on PC1. In this case, classifiers with
LRD features were used.
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Figure 7.4: Search for optimal division point on PC1. In this case, classifiers with
LRP features were used.
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Figure 7.5: Search for an optimal division point on PC2. Classifiers were divided
into two parts: the first one was executed in FPGA and the second in PC2 (different
run-time implementations are shown as curves in plots). Plots (a), (b), (c) and (d)
shows the cost evaluation for four different classifiers with α of 0.02, 0.05, 0.1 and
0.2 respectively. LBP features were used. The position with minimal cost is marked
by a point.
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Figure 7.6: Search for optimal division point on PC2. In this case, classifiers with
LRD features were used.
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Figure 7.7: Search for optimal division point on PC2. In this case, classifiers with
LRP features were used.
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Figure 7.8: Comparison of optimization results with measurements on PC1. Each
couple of plots shows (left) result of optimization and (right) result of measurement.
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Figure 7.9: Comparison of optimization results with measurements on PC1. Each
couple of plots shows (left) result of optimization and (right) result of measurement.
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Figure 7.10: Comparison of optimization results with measurements on PC2.
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Figure 7.11: Comparison of optimization results with measurements on PC2.
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7.3 Results Discussion

7.3.1 Classification Costs

In this thesis five software implementations with different properties were used for

the experiments.

The evaluation of weak classifiers in the SSE implementations is about two

or three times faster than in the reference implementation due to the use of SSE

instructions. The need of preprocessing, however, slightly lowers the computational

efficiency. The SSE-A can be used in general as it evaluates classifiers in a standard

one-by-one manner and has no restrictions (except for the size of the features). The

SSE-B implementation comes with the fastest evaluation of weak classifiers due to

the ’bunch’ evaluation. The reference implementation cost is more than three times

slower. The SSE-B on the whole, can be ineffectient to use for the complete detection

since it evaluates weaker classifiers due to the ’bunch’ manner of the evaluation. The

average number of hypotheses (Fig. 7.1, left) is in most cases lower than 10 and some

classifiers need only about two weak hypotheses on average to make the decision.

The SSE-B thus evaluates many weak classifiers in vain. The SSE-B is beneficial

in later phases of the evaluation as experiments in Section 7.2 shows. The benefit

is, however, very small as the computations in the end of the classifier takes only

a small fraction of the total amount of computations. The SSE-C implementation

benefits from pre-calculation of the LBP operator which makes the evaluation of

weak classifiers very easy. In the proprocessing, it is necessary to create a convolved

image and then preprocess this image in order to calculate the LBP operator, which

can be inefficient.

The implementations used in the experiments are pure WaldBoost with no

additional improvements. It can be efficient to add, for example, Neighborhood

suppression (see Section 4.4) to the evaluation. The price would be a larger overhead

during the classifier evaluation, because each feature response needs to be transformed

by multiple look-up tables predicting labels for neighboring sub-windows. The benefit

would be large improvement of computational time as a large fraction of sub-window

classifications would never happen. The Neighborhood suppression would alter the

stage execution probabilities such that p1 < 1, thus affecting the total cost C. The

costs ci of the weak classifiers in Table 7.2 would not be changed as the features

are extracted in the same way. Using such an improvement would not, however,

effectient when feature pre-calculation is used due to the fact that the pre-processing

calculates all the features from an input image. The Neighborhood Suppression

rejects a position even before the classification of it is executed (using prediction

from other position). This would lead to many unnecessary computations during the

pre-processing.
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7.3.2 Cost Minimization and Measurements

The cost function can be evaluated for a classifier with the knowledge of the properties

of the classifier and the costs of implementations in which the classifier is executed.

The costs can be measured (when possible) or estimated in some way. The cost is

a quantitative measure which allows us to rate different compositions of run-time

implementations and select the one with the lowest cost – reduce computational

effort, memory demands, power consumption or other user-defined parameters.

In the presented case, the objective was to estimate the cost of different com-

positions of a hypothetical hardware unit with different software implementations.

The cost of the hardware unit was chosen as a linear function in order to illustrate

the principle of the cost evaluation and its minimization. The costs of the software

implementations were measured for a set of classifiers (with different features and

false negative rates) on two different computers. The results show that the cost can

be minimized by a combination of a short hardware unit and software post-processing.

The length of pre-processing depends on many factors, notably properties of the

particular classifier, the implementation of the detection run-time and the computer

executing the detection. The results sugests that it is reasonable to use longer pre-

processing in cases when a slow classifier (low false negative rate) or a slow computer

is used – for such an example see Fig. 7.2a or Fig. 7.5a. And conversely, when a

fast classifier or fast computer is used, the pre-processing unit can be shorter or can

be even rendered useless – see Fig. 7.2d. The theoretical estimates are supported

by measurements on the two computers. For this comparison, see Figures 7.8 to

7.11. In the figures, the left plot shows the theoretical evaluation of the cost, and the

right plot shows the value of the measured cost. The differences between theoretical

estimates and measurements are results of effects that were not included in the

estimates. These are, for example, caching, operating system switching of other tasks,

measurement methods, etc.

7.3.3 Application Field

The minimization of the classification cost can be applied on problems where the

classification run-time can be divided into two (or more) parts with different properties.

There can be pure hardware applications dividing the detection to parallel and

sequential parts. The parallel part typically takes more resources, but it is very fast.

The sequential part is typically smaller and slower due to the need of sequential

evaluation of the weak classifiers. The classification cost minimization can predict

the best lengths (number of weak classifiers) for each part in order to get the fastest

solution or a solution which fits the particular hardware platform in terms of hardware

resources. Alternatively, there can be software implementations combined together

in order to get the fastest detection. And of course, combined applications where
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the detection pre-processing is done by the fast hardware unit with the results being

sent for post-processing to the software. The minimizations of the cost can balance

computations between the hardware and software module.

Application of such minimization can be, for example, in surveillance or traffic

control where many types of objects have to be detected. The minimization can

be used for the design of a low-cost and low-power pre-processing unit. Similar

applications can be found in the design of consumer digital still cameras which can

detect different types of objects.



CHAPTER 8

Conclusion

Implementation of object detection is a complex task. When done without care,

the process can be ineffecient, which could mean that performance is low or power

consumed is too high. When high frame rates are desired, or when many types of

objects need to be detected, or high resolution images have to be processed, powerful

hardware and/or some acceleration techniques have to be used.

This thesis in Sections 2 and 3 reviewed detection of objects through classification

and focused on WaldBoost-based classifiers with Local Rank Functions and Local

Binary Patterns as image features. Section 4 summarized techiques usable for the

acceleration of object detection with a focus on implementational acceleration through

parallelism and algorithmic accelerations through prediction of labels of several close

positions of sub-windows and early suppression of non-maximal responses. The

use of data parallelism is discussed in more detail in Section 5. The thesis focused

on the acceleration of detection through a combination of several implementations

of object detection with known properties into a coherent unit. The contribution

of the thesis is a method for evaluation of the cost of such combinations and the

minimization of the cost presented in Section 6. In the experiments presented in

Section 7, tested compositions of a hypothetical hardware unit with few selected

implementations in the software. It turns out that it is indeed beneficial to divide the

classifier evaluation into two (or even more) parts. This division allows for moving

a significant portion of computations into the implementation which can efficiently

reject most of background sub-windows and leave the remaining computations for a

potentially slower software unit. These results are supported by measurements The

optimization of the division can be tuned for the particular classifier and hardware

on which the detection is executed.
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The principles described in this thesis can be used to, for example, to automatically

tune object detection for the best performance with respect to the properties of the

classifier and the machine on which the detection is executed, by combination of more

implementations of the classifier evaluation. Other example can be a design of smart

cameras which can produce, along with standard image, an image pre-processed by

a classifier or directly parameters of detected objects. The cost minimization allows

for the composition of parallel and sequential hardware units and the cost criterion

used for minimization can be, for example, power consumption, chip area, etc.

Further research includes implementation of the object detection in a hardware

unit, combination of this unit with software implementation in an embedded platform

and fine tuning of this combination by using the cost evaluation and minimization.

The possible criteria for the minimization includes power consumption of the whole

system and processing speed.
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