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Featured Application: Active analog filters are widely used for frequency duplexing in radar and
radio communication systems, impedance matching in power amplifiers, anti-aliasing in data
converters and in many other areas.

Abstract: A recently developed active building block, namely Voltage Differencing Extra X Current
Conveyor (VD-EXCCII), is employed in the design of multi input single output (MISO), electronically
tunable mixed-mode universal filter. The filter provides low pass (LP), high pass (HP), band pass
(BP), band reject (BR) and all pass (AP) responses in current-mode (CM), voltage-mode (VM), trans-
impedance-mode (TIM) and trans-admittance-mode (TAM). The filter employs a single VD-EXCCII,
three resistors and two capacitors. Additionally, a CM single input multi output (SIMO) filter can
be derived from the same circuit topology by only adding current output terminals. The attractive
features of the filter include: (i) the ability to operate in all four modes, (ii) the tunability of the Q factor
independent of pole frequency, (iii) the low output impedance for the VM filter, (iv) the high output
impedance current output for CM and TAM filters and (v) no requirement for double/negative input
signals (voltage/current) for response realization. The VD-EXCCII and its layout is designed and
validated in Cadence Virtuoso using 0.18 µm pdk from Silterra Malaysia with a supply voltage of
±1.25 V. The operation of the filter is examined at the 8.0844 MHz characteristic frequency. A non-
ideal parasitic and sensitivity analysis is also carried out to study the effect of process and components
spread on the filter performance.

Keywords: communication; current conveyor; current-mode; mixed-mode; voltage-mode; universal
filter; signal processing; VD-EXCCII

1. Introduction

The current-mode (CM) active building blocks (ABBs) are widely employed in design-
ing universal frequency filters. The CM ABBs exhibits greater linearity, wide bandwidth,
simple structure, low power consumption and enhanced dynamic range [1–5]. Extensive
number of filter topologies using CM ABBs can be found in the literature. However, the
majority of the previously proposed filters can work only in single mode of operation
i.e., CM, voltage-mode (VM), trans-impedance-mode (TIM) or trans-admittance-mode
(TAM) [1–3,5]. In present-day intricate signal processing systems, the interaction between
CM and VM circuits is required. This task can be accomplished by TAM and TIM filters
that not only perform signal processing, but also provide interfacing between VM and CM
systems [6–10]. The development of mixed-mode universal filters that can provide low
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pass (LP), high pass (HP), band pass (BP), band reject (BR) and all pass (AP) filter responses
in CM, VM, TAM and TIM modes of operation are best suited for the task.

Numerous exemplary mixed-mode filter structures have been developed that employ
different variants of the CM ABBs [8–12]. The filters can be segregated in two broad categories
single input multi output (SIMO) and multi input single output (MISO) type. The MISO filter
configuration is one of the most sought after. The filters can be compared on many criteria,
some important measures of comparison are: (i) number of ABBs employed, (ii) number of
passive components needed, (iii) employment of all grounded passive components, (iv) no
requirement for resistive matching except for AP response, (v) provision to control quality
factor (Q) independent of the center frequency, (vi) ability to provide all five filter responses
in all four modes of operation, (vii) low output impedance for VM mode, (viii) availability
of explicit current output in CM and TAM modes, (ix) no requirement for double/negative
input signals (voltage/current), (x) inbuilt tunability and (xi) test frequency. A detailed
comparison of the state-of-the-art MISO filters with the proposed design is presented in
Table 1 [6–39] and Table 2 [7,9,12,13,19,20,24–27,29,37–41] It can be inferred from the tables
that the filter structures in [6–13,15–24,26,28–39] employ more than one ABB. The designs
in [6,7,10,12,22,28–30,36,37,39,41] use more than five passive components. The filter struc-
tures proposed by [6,7,9–13,18,19,21,24,25,27,30,32,33,36,39] do not provide frequency control
independent of quality factor. The filter structures [6,8,9,11,13–16,18,21,23,25–28,32,34,35,41]
do not provide all five filter responses in VM, CM, TAM and TIM operation. The filter struc-
tures [6,7,10–12,14,16,22,25,27–30,34,36,37,39,41] lack inbuilt tunability property. In addition,
only four mixed mode filter structures [14,25,27,40] employing a single ABB can be currently
found in the literature. Moreover, among single ABBs based mixed mode filters only [40]
provides all five filter responses in all four modes of operation. Furthermore, the design
in [40] does not provided VM response at low impedance node. It can be deduced from the
literature survey that a limited number of mixed-mode filters are available, and to fill this
technological void, additional novel mixed-mode filter structures are needed.

In the literature, numerous CM ABBs can be found, each having its own merits. In
this research, the Voltage Differencing Extra X Current Conveyor (VD-EXCCII) is intro-
duced and utilized in the design of mixed-mode filter. The proposed VD-EXCCII can be
considered a universal ABB, as it can realize many popular and widely employed CM
ABBs as special case. The proposed VD-EXCCII can realize second generation current
conveyor (CCII), voltage differencing current conveyor (VDCC), differential difference
current conveyor (DDCC), voltage differencing transconductance amplifier (VDTA), volt-
age differencing buffered amplifier (VDBA), current backward transconductance amplifier
(CBTA) and operational transconductance amplifier (OTA) by proper interconnection of
its input and output terminals, thereby making it an inherently universal ABB. This will
allow designers to employ VD-EXCCII instead of using each separate ABBs to test their
designs, thus reducing the cost and time to market. The filter design requires a single
VD-EXCCII, two capacitors and three resistors. The striking features of the proposed
filters are: (i) employment of single active block (VD-EXCCII), (ii) ability to work in all
four modes of operation, (iii) provision for inbuilt tunability, (iv) the filter enjoy low ac-
tive and passive sensitivities. Moreover, the filter enjoy all (iv–x) properties mentioned
in Table 2. The design simulation of the VD-EXCCII is done in Cadence Virtuoso using
Silterra Malaysia 0.18 µm PDK. The post-layout simulation results are in good agreement
with the theoretical predictions.
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Table 1. Comparative study of the state-of-the-art mixed-mode designs.

References Number of ABBs
Filter Responses Realized Passive

Components Inbuilt
Tunability

Control of Q
Independent of

Frequency

Grounded
Passive

ComponentsVM CM TAM TIM R C

[6]/2004 5-CCII All Five All Five - - 7 2 No No No
[7]/2004 7-CCII All Five All Five All Five All Five 8 2 No No No
[8]/2003 4-CCCII HP, BP, LP, BR HP, BP, LP, BR HP, BP, LP, BR HP, BP, LP, BR 0 2 Yes Yes Yes
[9]/2003 6-OTA All Five All Five - - 0 2 Yes No Yes
[10]/2005 4-CFOA All Five All Five All Five All Five 9 2 No No No
[11]/2006 2-FTFN HP, BP, LP HP, BP, LP HP, BP BP, LP 3 2 No No No
[12]/2006 3-CCII All Five All Five All Five All Five 4 3 No No No
[13]/2008 4-OTA HP, BP, LP All Five All Five HP, BP, LP 0 2 Yes No Yes
[14]/2009 1-FDCCII All Five All Five BP, HP All Five 3 2 No Yes No
[15]/2009 5-MOCCCII HP, BP, LP HP, BP, LP HP, BP, LP HP, BP, LP 0 2 Yes Yes Yes
[16]/2009 3-DVCC LP, BP, BR All Five All Five BP, LP 3 2 No Yes Yes
[17]/2009 5-OTA All Five All Five All Five All Five 0 2 Yes Yes Yes
[18]/2011 3-CCCCTA HP, LP, BP All Five All Five HP, LP, BP 0 2 Yes No Yes
[19]/2010 5-OTA All Five All Five All Five All Five 0 2 Yes No Yes
[20]/2010 2-MOCCCII All Five All Five All Five All Five 2 2 Yes Yes No
[21]/2010 2-CCCCTA LP, BP All Five All Five LP, BP 0 2 Yes No No
[22]/2011 3-DDCC All Five All Five All Five All Five 4 2 No Yes No
[23]/2012 6-OTA All Five All Five HP, BP All Five 0 2 Yes Yes Yes
[24]/2013 4-MOCCCII All Five All Five All Five All Five 0 2 Yes No Yes
[25]/2013 1-FDCCII All Five HP, BP, LP HP, BP LP, BP 2 2 No No No
[26]/2013 2-VDTA All Five - All Five - 0 2 Yes Yes Yes
[27]/2010 1-CFOA All Five BR, BP, LP - - 3 2 No No No
[28]/2015 3-DDCC HP, BP, LP HP, BP, LP - - 5 3 No Yes No
[29]/2016 1-FDCCII+, 1-DDCC All Five All Five All Five All Five 6 2 No Yes No
[30]/2016 2-FDCCII All Five All Five All Five All Five 5 2 No No No
[31]/2017 3-CCCCTA All Five All Five All Five All Five 0 2 Yes Yes Yes
[32]/2017 3-VDTA HP, LP, BP - All Five - 0 2 Yes No Yes
[33]/2017 6-OTA All Five All Five All Five All Five 0 2 Yes No Yes
[34]/2017 1-DVCC+, 1MOCCII - All Five - All Five 3 2 No Yes No
[35]/2017 4-OTA - All Five All Five - 0 2 Yes Yes Yes
[36]/2018 2-FDCCII All Five All Five All Five All Five 4 2 No No No
[37]/2018 5-DVCCII All Five All Five All Five All Five 5 2 No Yes Yes
[38]/2019 5-OTA All Five All Five All Five All Five 0 2 Yes Yes Yes
[39]/2020 3-DDCC All Five All Five All Five All Five 4 2 No No No
This work 1-VD-EXCCII All Five All Five All Five All Five 3 2 Yes Yes No

Note: ‘-’ Cannot function in the given mode of operation.
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Table 2. Comparative study of the state-of-the-art MISO mixed mode filter designs with the proposed filter.

References Mode of
Operation (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi)

[9]/2003 MISO 6-OTA 2C Yes Yes No No No Yes Yes Yes -
[7]/2004 MISO 7-CCII 2C+8R No Yes No Yes No Yes Yes No -

[12]/2006 MISO 3-CCII 3C+4R+, 2-switch No No No Yes No Yes Yes No -
[13]/2008 MISO 4-OTA 2C Yes Yes No No No Yes Yes Yes 2.25 MHz
[19]/2010 MISO 5-OTA 2C Yes Yes No Yes No Yes No Yes 1.59 MHz
[20]/2010 MISO 2-MOCCCII 2C+2R No Yes Yes Yes No Yes Yes Yes 1.27 MHz
[27]/2010 MISO 1-CFOA 2C+3R No No Yes No No Yes No No 12.7MHz
[24]/2013 MISO 4-MOCCCII 2C Yes Yes No Yes Yes Yes No Yes -
[25]/2013 MISO 1-FDCCII 2C+2R No Yes No No No Yes Yes No 10 MHz
[26]/2013 MISO 2-VDTA 2C Yes Yes Yes No No Yes Yes Yes 1 MHz
[29]/2016 MISO 1-FDCCII+, 1-DDCC 2C+6R No Yes Yes Yes No Yes No No 1.59 MHz
[40]/2016 MISO 1-MCCTA 2C+2R No Yes Yes Yes No Yes Yes Yes 12.16 MHz
[37]/2018 MISO 5-DVCC 2C+5R Yes Yes Yes Yes No Yes Yes No 1MHz
[41]/2018 MISO 4-CCII 2C+4R Yes Yes Yes No No Yes Yes No 31.8 MHz
[38]/2019 MISO 5-OTA 2C Yes Yes Yes Yes No Yes Yes Yes 3.390 MHz
[39]/2020 MISO 3-DDCCII 2C+4R No Yes No Yes No Yes Yes No 3.978 MHz
This work MISO 1-VD-EXCCII 2C+3R No Yes Yes Yes Yes Yes Yes Yes 8.0844 MHz
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2. Voltage Differencing Extra X Current Conveyor (VD-EXCCII)

The proposed Voltage Differencing Extra X current conveyor (VD-EXCCII) is derived
by connecting extra X second generation current conveyor (EXCCII) [42] and operational
transconductance amplifier (OTA). The first stage comprises of OTA followed by the
CCII with two current input terminals. The developed active element has characteristics
of CCII and tunable OTA in one structure. The voltage-current (V–I) characteristics of
the developed VD-EXCCII are presented in Equations (1)–(4) and the block diagram is
presented in Figure 1.

IW = IWC+ = −IWC− = gm1(VP −VN) (1)

VXP = VXN = VW (2)

IXP = IZP+ = −IZP− (3)

IXN = IZN+ = −IZN− (4)
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The CMOS implementation of VD-EXCCII is given in Figure 2. The first stage consists
of OTA MOS transistors (M1–M14). The output current of the transconductor depends on
the voltage difference (VP −VN). Assuming that all transistors are operating in saturation
region and the transistors (M1–M2) have equal width to length ratio, the output current is
given by:

IW = IWC+ = −IWC− = gm1(VP −VN) =
(√

2IBiasKi

)
(VP −VN) (5)

where the transconductance parameter Ki = µCox
W
2L

, (i = 1, 2), W is the effective channel
width, L is the effective length of the channel, Cox is the gate oxide capacitance per unit
area and µ is the carrier mobility.

The second stage is made up of hybrid voltage and current followers (M15–M44). The
voltage developed at node W is transferred to nodes XP and XN . In the same way the input
current from XP node is transferred to ZP+ and ZP−. Furthermore, the input current from
XN node is transferred to ZN+ and ZN−. The current flowing in the ZN and ZP terminals
are independent of each other. The class AB output stage is utilized in the output stage,
as it is suitable for low voltage operation and better dynamic range [2]. The current and
voltage reference circuits available in the literature [43] can be employed to generate the
IBias and VBias for the circuit.
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The small signal analysis yields the expression relating VW , VXP and VXN . The analy-
sis is carried out for the differential stage formed by transistors (M15–M24, M39–M42). The
voltage transfer ratio between the W and XP node can be derived as given in Equation (6).

αP =
VXP
VW

=

r039r040

r039 + r040
(gm39 + gm40)

r0p

2
gm18

r039r040

r039 + r040
(gm39 + gm40)

r0p

2
gm17 + 1
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where r0p = r017//r021, r0 is the output resistance of the MOS transistor and gmi is the
transconductance of the MOS transistor Mi. Similarly, the voltage transfer gain αN is
computed as:

αN =
VXN
VW
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βP =
IZP
IXP
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r041r042

r041 + r042
(gm41 + gm42) + RZLOAD

r039r040

r039 + r040
(gm39 + gm40)

r039r040

r039 + r040
(gm39 + gm40) + RXLOAD
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The terminal resistance of XN and XP terminals is calculated as given in Equations (10)
and (11). The ZP+, ZN+ and WC+ resistance are presented in Equations (12)–(14).

RXP =
1

r039r040

r039 + r040
(gm39 + gm40)

r0p

2
gm18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 26 

𝛼 = = ( )( ) ≌  
(6) 

where 𝑟 = 𝑟 //𝑟 , 𝑟  is the output resistance of the MOS transistor and 𝑔  is the 
transconductance of the MOS transistor 𝑀 . Similarly, the voltage transfer gain 𝛼  is computed as:  𝛼 = 𝑉𝑉 ≌ 𝑔𝑔  (7) 

The current transfer ratios are derived as given in Equations (8–9): 

𝛽 = = ( )( )( )( )
 ≌ ( )( ) (8) 

𝛽 =  ≌ ( )( ) (9) 

The terminal resistance of 𝑋  and 𝑋  terminals is calculated as given in Equations (10)–(11). 
The 𝑍 , 𝑍  and 𝑊  resistance are presented in Equations (12)–(14). 𝑅 = ( )  ≌ ( ) (10) 

𝑅  ≌ ( ) (11) 

where 𝑟 = 𝑟 //𝑟  and 𝑟 = 𝑟 //𝑟 . 𝑅 = 𝑟 𝑟𝑟 + 𝑟  (12) 𝑅 = 𝑟 𝑟𝑟 + 𝑟  (13) 𝑅 = 𝑟 𝑟𝑟 + 𝑟  (14) 

The 𝑍 , 𝑍  and 𝑊  node impedances are found to be high given by the parallel output 
resistance of the MOS transistors. 

3. Proposed Electronically Tunable Mixed-Mode Universal Filter 

The proposed MISO mixed mode filter is presented in Figure 3. It provides all five filter 
responses in VM, TAM, TIM and CM modes of operation. The minimum component filter employs 
a single VD-EXCCII, three resistors and two capacitors. The main attributes of the filter are: (i) use of 
a single active element, (ii) employment of only five passive components, (iii) no need for capacitive 
matching condition, (iv) availability of VM output from low impedance terminal, (v) availability of 
TAM and CM output from high impedance terminals, (vi) no requirement for negative/double input 
signals for response realization, (vii) inbuilt tunability of Q independent of frequency and (viii) in 
TIM mode, the filter gain can be adjusted without affecting 𝜔  and Q.  

2
r0pgm18(gm39 + gm40)

(10)

RXN

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 26 

𝛼 = = ( )( ) ≌  
(6) 

where 𝑟 = 𝑟 //𝑟 , 𝑟  is the output resistance of the MOS transistor and 𝑔  is the 
transconductance of the MOS transistor 𝑀 . Similarly, the voltage transfer gain 𝛼  is computed as:  𝛼 = 𝑉𝑉 ≌ 𝑔𝑔  (7) 

The current transfer ratios are derived as given in Equations (8–9): 

𝛽 = = ( )( )( )( )
 ≌ ( )( ) (8) 

𝛽 =  ≌ ( )( ) (9) 

The terminal resistance of 𝑋  and 𝑋  terminals is calculated as given in Equations (10)–(11). 
The 𝑍 , 𝑍  and 𝑊  resistance are presented in Equations (12)–(14). 𝑅 = ( )  ≌ ( ) (10) 

𝑅  ≌ ( ) (11) 

where 𝑟 = 𝑟 //𝑟  and 𝑟 = 𝑟 //𝑟 . 𝑅 = 𝑟 𝑟𝑟 + 𝑟  (12) 𝑅 = 𝑟 𝑟𝑟 + 𝑟  (13) 𝑅 = 𝑟 𝑟𝑟 + 𝑟  (14) 

The 𝑍 , 𝑍  and 𝑊  node impedances are found to be high given by the parallel output 
resistance of the MOS transistors. 

3. Proposed Electronically Tunable Mixed-Mode Universal Filter 

The proposed MISO mixed mode filter is presented in Figure 3. It provides all five filter 
responses in VM, TAM, TIM and CM modes of operation. The minimum component filter employs 
a single VD-EXCCII, three resistors and two capacitors. The main attributes of the filter are: (i) use of 
a single active element, (ii) employment of only five passive components, (iii) no need for capacitive 
matching condition, (iv) availability of VM output from low impedance terminal, (v) availability of 
TAM and CM output from high impedance terminals, (vi) no requirement for negative/double input 
signals for response realization, (vii) inbuilt tunability of Q independent of frequency and (viii) in 
TIM mode, the filter gain can be adjusted without affecting 𝜔  and Q.  

2
r0ngm15(gm23 + gm24)
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where r0p = r017//r021 and r0n = r016//r020.

RZP+ =
r039r040

r039 + r040
(12)

RZN+ =
r025r026

r025 + r026
(13)

RWC+ =
r08r013

r08 + r013
(14)

The ZP+, ZN+ and WC+ node impedances are found to be high given by the parallel
output resistance of the MOS transistors.

3. Proposed Electronically Tunable Mixed-Mode Universal Filter

The proposed MISO mixed mode filter is presented in Figure 3. It provides all five
filter responses in VM, TAM, TIM and CM modes of operation. The minimum component
filter employs a single VD-EXCCII, three resistors and two capacitors. The main attributes
of the filter are: (i) use of a single active element, (ii) employment of only five passive
components, (iii) no need for capacitive matching condition, (iv) availability of VM output
from low impedance terminal, (v) availability of TAM and CM output from high impedance
terminals, (vi) no requirement for negative/double input signals for response realization,
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(vii) inbuilt tunability of Q independent of frequency and (viii) in TIM mode, the filter gain
can be adjusted without affecting ω0 and Q.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 26 
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3.1. Operation in VM and TAM

In this mode of operation, all input currents (I1–I3) are set to zero. The input voltages
(V1–V3) are applied as per the sequence given in Table 3. The filter transfer functions and
expression for pole frequency and quality factor are given in Equations (15)–(18):

Vout =
V1gm1R2 − gm1R2R1sC1V3 + s2C1C2R1R2V2

s2C1C2R1R2 + sC1R1 + gm1R2
(15)

Iout(TAM) =
1

R2

V1gm1R2 − gm1R2R1sC1V3 + s2C1C2R1R2V2

s2C1C2R1R2 + sC1R1 + gm1R2
(16)

ω0 =

√
gm1

C1C2R1
(17)

Q = R2

√
C2gm1

C1R1
(18)

Table 3. Input excitation sequence of operation in VM and TAM.

Response
Inputs Passive Matching

ConditionV1 V2 V3

LP 1 0 0 No
HP 0 1 0 No
BP 0 0 1 No
BR 1 1 0 No
AP 1 1 1 1 = gm1R2

The Equations (17) and (18) imply that when the frequency is varied, the quality
factor of the filter will be slightly affected. The frequency can be tuned without affecting
the quality factor if gm1 and R1 are varied simultaneously such that the product (R1·gm1)
remains constant. The resistor can be realized using a MOS [44] transistor, making it
easily tunable.
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3.2. Operation in CM and TIM

In CM mode, the input voltages are set to zero. The input currents (I1–I3) are applied
according to Table 4 to obtain CM and TIM responses.

Table 4. Input excitation sequence of operation in CM and TIM.

Response
Inputs Passive Matching

ConditionI1 I2 I3

LP 1 0 0 No
HP 1 1 0 R1 = R2
BP 0 0 1 No
BR 0 1 0 No
AP 0 1 1 No

The filter transfer functions are given in Equations (19) and (20):

Iout =
−(s2C1C2R1R2 + gm1R2)I2 + sC1R1 I3 + gm1R1 I1

s2C1C2R1R2 + sC1R1 + gm1R2
(19)

In TIM mode, the gain of the filter can be varied without disturbing the Q and ω0
of the filter by varying the value of R3, as in the transfer function, R3 is common to all
the responses:

Vout(TIM) = R3

[
−(s2C1C2R1R2 + gm1R2)I2 + sC1R1 I3 + gm1R1 I1

s2C1C2R1R2 + sC1R1 + gm1R2

]
(20)

Additionally, the CM SIMO filter shown in Figure 4 is derived from the proposed
mixed mode filter by adding additional current output terminals without changing the
core topology. All passive components are grounded in CM SIMO configuration. The filter
requires a single VD-EXCCII, two resistors and two capacitors, all grounded. The resistor
R3 is not required. since it is needed only to obtain the TIM response. The attractive features
of the derived SIMO CM filter include (i) use of single active element, (ii) employment of
only three grounded passive components, (iii) no need for passive components matching
condition, (iv) low input impedance, (v) high output impedance and (vi) inbuilt tunability.
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The filter transfer functions are given in Equations (21)–(25). Expression for pole
frequency and quality factor will be same as that of mixed mode MISO filter given by
Equations (17) and (18).

ILP
IIN

=
−gm1R2

s2C1C2R1R2 + sC1R1 + gm1R2
(21)

IHP
IIN

=
−s2C1C2R1R2

s2C1C2R1R2 + sC1R1 + gm1R2
(22)

IBP
IIN

=
sC1R2

s2C1C2R1R2 + sC1R1 + gm1R2
(23)

The BR and AP response can be obtained by simply summing the LP, HP and BP
currents: IBR = IHP + ILP and IAP = IHP + ILP + IBP.

INP
IIN

=
−gm1R2 − s2C1C2R1R2

s2C1C2R1R2 + sC1R1 + gm1R2
(24)

IAP
IIN

=
−gm1R2 − s2C1C2R1R2 + sC1R2

s2C1C2R1R2 + sC1R1 + gm1R2
(25)

4. Non-Ideality and Sensitivity Analysis
4.1. Non-Ideal Gain and Sensitivity Analysis

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (αP/N , α′P/N), voltage (βP/N) and transconductance transfer
(γ, γ′) gains. These non-ideal gains result in a change in the current and voltage signals
during transfer leading to undesired response. Taking into account the non-ideal gains, the
V–I characteristics of the VD-EXCCII in (1–4) will be modified as follows: IW = 0, VXP =
βPVW , VXN = βNVW , IZP+ = αP IXP, IZP− = α′P IXP, IZN+ = αN IXN , IZN− = α′N IXN , IW =
IWC+ = γgm1(VP − VN), IWC− = −γ′gm1(VP − VN), where β(P, N) = 1− εv(P,N), αP =

1− εiP, αN = 1− εiN , γ = 1− εgm1 and γ′ = 1− ε′gm1 . Here, εv(P,N)

(∣∣∣εv(P,N)

∣∣∣ << 1
)

denote voltage tracking errors, εiP, εiN (|εiP|, |εiN | << 1) denote current tracking errors
and εgm1 , ε′gm1

(∣∣εgm1

∣∣, |ε′gm1| << 1
)

denote transconductance errors of the VD-EXCCII.
The non-ideal analysis considering the effect of non-ideal current, voltage and transcon-

ductance transfer gains is carried out for VM, CM, TAM and TIM configurations to see its
effect on the transfer function, f 0 and Q of the proposed filters. The modified expressions
of the filter transfer functions, f ′0 and Q′ for the MISO/ SIMO configurations are presented
in Equations (26)–(31):

V′out(VM-Mode) =

[
s2C1C2R1R2V2 −
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𝐼 ( )
= ⎣⎢⎢
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⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢
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(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1sC1R1R2V3 + α′N
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The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 𝐼 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅 𝐼𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1R1R2V1
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𝐼𝐼 = −𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (22) 

𝐼𝐼 = 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (23) 

The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 𝐼 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅 𝐼𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1R2

]
(26)

I′out(TAM-Mode) =
αPβP
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𝐼𝐼 = −𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (22) 

𝐼𝐼 = 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (23) 

The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 𝐼 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅 𝐼𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1sC1R1R2V3 + α′N
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𝐼𝐼 = −𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (22) 

𝐼𝐼 = 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (23) 

The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 𝐼 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅 𝐼𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1R1R2V1
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𝐼𝐼 = −𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (22) 

𝐼𝐼 = 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (23) 

The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 𝐼 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅 𝐼𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1R2
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𝐼𝐼 = −𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (22) 

𝐼𝐼 = 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (23) 

The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 𝐼 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅 𝐼𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1R2
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𝐼𝐼 = −𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (22) 

𝐼𝐼 = 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (23) 

The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 𝐼 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅 𝐼𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1R1 I1
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𝐼𝐼 = −𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (22) 

𝐼𝐼 = 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (23) 

The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 𝐼 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅 𝐼𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1R2

]
(28)

V′out(TIM-Mode) = R3

[
−αP
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𝐼𝐼 = −𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (22) 

𝐼𝐼 = 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (23) 

The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 𝐼 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅 𝐼𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1R2
]
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𝐼𝐼 = −𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (22) 

𝐼𝐼 = 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (23) 

The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 𝐼 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅 𝐼𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1R1 I1
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𝐼𝐼 = −𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (22) 

𝐼𝐼 = 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (23) 

The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 𝐼 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅 𝐼𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(28) 

𝑉 ( )
= 𝑅 ⎣⎢⎢

⎡−𝛼 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛽 𝛼 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 + 𝛼 𝛽 𝛼 𝑠𝐶 𝑅 𝐼 + 𝛼 𝛽 𝑠𝐶 𝑅 𝐼 +𝛼 𝛽 𝛼 𝛶𝑔 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅 ⎦⎥⎥
⎤
 

(29) 

𝑓 = 12𝜋 𝛽 𝛼 𝛶𝑔𝐶 𝐶 𝑅  (30) 

gm1R2

]
(29)
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𝐼𝐼 = −𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (22) 

𝐼𝐼 = 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (23) 

The BR and AP response can be obtained by simply summing the LP, HP and BP currents: I =I + I  and I = I + I + I . 𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (24) 

𝐼𝐼 = −𝑔 𝑅 − 𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅𝑠 𝐶 𝐶 𝑅 𝑅 + 𝑠𝐶 𝑅 + 𝑔 𝑅  (25) 

4. Non-Ideality and Sensitivity Analysis 

4.1. Non-Ideal Gain and Sensitivity Analysis 

The non-ideal effects that influences the response of the VD-EXCCII are the frequency-
dependent non-ideal current (𝛼 / , 𝛼 / ), voltage (𝛽 / ) and transconductance transfer (γ, 𝛾 ) gains. 
These non-ideal gains result in a change in the current and voltage signals during transfer leading to 
undesired response. Taking into account the non-ideal gains, the V-I characteristics of the VD-EXCCII 
in (1-4) will be modified as follows: 𝐼 = 0, 𝑉 = 𝛽 𝑉 , 𝑉 = 𝛽 𝑉 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝛼 𝐼 , 𝐼 = 𝐼 = 𝛾𝑔 (𝑉 − 𝑉 ) , 𝐼 = −𝛾 𝑔 (𝑉 − 𝑉 ) , where 𝛽( , ) =1 −  ( , ) , 𝛼 = 1 −  , 𝛼 = 1 −  , 𝛾 = 1 −   and 𝛾 = 1 −  . Here,  ( , )  ( , ) « 1  
denote voltage tracking errors,  ,   (| |, | |« 1) denote current tracking errors and  , 
′ | |, ′  « 1  denote transconductance errors of the VD-EXCCII. 

The non-ideal analysis considering the effect of non-ideal current, voltage and transconductance 
transfer gains is carried out for VM, CM, TAM and TIM configurations to see its effect on the transfer 
function, f0 and Q of the proposed filters. The modified expressions of the filter transfer functions, 𝑓  
and 𝑄  for the MISO/ SIMO configurations are presented in Equations (26)–(31): 𝑉 ( ) = 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (26) 

𝐼 ( ) = 𝛼 𝛽𝑅 𝑠 𝐶 𝐶 𝑅 𝑅 𝑉 − 𝛶𝑔 𝑠𝐶 𝑅 𝑅 𝑉 + 𝛼 𝛶𝑔 𝑅 𝑅 𝑉𝑠 𝐶 𝐶 𝑅 𝑅 + 𝛼 𝛽 𝑠𝐶 𝑅 + 𝛽 𝛼 𝛶𝑔 𝑅  (27) 

𝐼 ( )
= ⎣⎢⎢
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gm1C2

C1R1
(31)

The sensitivities of ω′0 and Q′ with respect to the non-ideal gains and passive compo-
nents are given below:

Sω′0
gm1 = Sω′0

α′N
= Sω′0

βN
= Sω′0

γ = −Sω′0
C1

= −Sω′0
C2

= −Sω′0
R1

=
1
2

(32)

SQ′
gm1 = SQ′

α′N
= SQ′

βN
= SQ′

γ = −SQ′
C1

= SQ′
C2

= −SQ′
R1

=
1
2

(33)

SQ′
R2

= −SQ′

α′P
= −SQ′

βP
= 1 (34)

The sensitivities are low and have absolute values not higher than unity.

4.2. Non-Ideal Parasitic Analysis

The non-ideal model of the VD-EXCCII is presented in Figure 5. As can be deduced,
the various parasitic resistance and capacitance appear in parallel with the input and
output nodes of the device. The low impedance XP and XN nodes have a parasitic re-
sistance and inductance in series with them. The associated parasitics at the X nodes
can be quantified as ZXP = ZXN = RX(N,P) + sLX(N,P). However, for the frequency of
interest, the inductive effect can be ignored. The parasitic resistance and capacitance
associated with the P, N, RZP+, RZP−, RZN+, RZN−, W, WC+, WC− and Z nodes are
RN//CN , RP//CP, RZP+//CZP+, RZP−//CZP−, RZN+//CZN+, RZN−//CZN−, RWC+//
CWC+, RWC−//CWC− and RW//CW , their ideal values being equal to zero.
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Including the VD-EXCCII parasitics, the denominator of the filter transfer function
will be modified as presented in Equation (35):

D(s) = s2 + s
[

C′1RZAR′2 + C′1RZAR′W + C′2R′W R′2
C′1C′2R′W RZAR′2

]
+

R′1R′2 + R′1R′W + gm1RZAR′2R′W
C′1C′2R′W RZAR′2R′1

(35)

where C′1 = (C1 + CZN− + CP), C′2 = (C2 + CZP− + CW), R′2 = (R2 + RXP) and RZA =
RZN−//RP, R′W = RZP−//RW . The modified expressions of the frequency and quality
factor including the various parasitic effects are presented in Equations (36) and (37):

f ′0 =
1

2π

√
R′1R′2 + R′1R′W + gm1RZAR′2R′W

C′1C′2R′W RZAR′2R′1
(36)

Q′ =
1

R′2C′1RZA + C′1R′W RZA + C′2R′W R′2

√
C′1C′2R′W RZAR′2(R′1R′2 + R′1R′W + gm1RZAR′2R′W)

R′1
(37)

To minimize the parasite effects the values of the passive components should be
selected such that C1 � (CZN− and CP), C2 � (CZP− and CW). In addition, note that the
resistors R1 and R2 are connected to the low impedance X terminals, so they will absorb
the parasitic resistance present at XP and XN terminals since (R2 � RXP and R1 � RXN).

5. Simulation and Validation

To validate the proposed mixed-mode filter, it was designed and simulated in Cadence
Virtuoso design software. The VD-EXCCII was designed in 0.18 µm Silterra Malaysia
technology at a supply voltage of ±1.25 V. The width and length of the transistors used
are given in Table 5. The layout of the VD-EXCCII as presented in Figure 6 was drawn
using the nhp and php high-performance MOS transistors from the Silterra library, and
the layout verification was done using the Calibre tool. The layout occupied a total
area of 54.28 × 22.80 µm2. The bias current of the OTA was fixed at 120 µA resulting in
transconductance of 1.0321 mS. The important design parameters were extracted from
post-layout simulations and are summarized in Table 6.

The proposed filter was tested by designing for a center frequency of 8.0844 MHz
and quality factor of 1.015 by selecting the passive component as R1 = R2 = R3 = 1 kΩ,
C1 = C2 = 20 pF and gm1 = 1.0321 mS. The power dissipation of the filter was found to
be 5.76 mW. The five filter responses in VM, CM, TAM and TIM modes are presented in
Figures 7–10.

Table 5. Width and length of the MOS transistors.

Transistors Width (µm) Length (µm)

M1–M2, M5–M6 1.8 0.36
M3–M4, M7–M9 5.8 0.36

M10–M14 1.8 0.72
M15–M18 3.06 0.36
M19–M22 4 0.36

M23, M25, M27, M33, M42, M44 2.16 0.36
M24, M26, M28, M32, M34, M30, M38, M36,

M41, M43 0.72 0.72

M21, M31, M35, M37 1.08 0.72
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Table 6. Performance metrics of VD-EXCCII.

Parameters Silterra Technology
(VDD=−VSS=1.25 V)

Voltage gain (βP, βN) 0.96
Current gain (αP, αN) 0.9732
Current gain (α′P, α′N) 0.9687

Voltage transfer bandwidth (VXP/VW , VXN/VW) 2.28 GHz
Current transfer bandwidth (IZP+/IXP, IZN+/IXN) 1.344 GHz
Current transfer bandwidth (IZP−/IXP, IZN−/IXN) 1.29 GHz

DC voltage range (VXP, VXN) ±720 mV
DC current range (IZP+, IZN+) ±240 µA
DC current range (IZP−, IZN−) ±80 µA

XP and XN node resistance (RXP, RXN) 70 Ω
ZP+ and ZN+ node resistance (RZP+, RZN+) 102.91 kΩ
ZP− and ZN− node resistance (RZP−, RZN−) 102.71 kΩ

WC+ and WC− node resistance (RWC+, RWC−) 81.5 kΩ
Static power dissipation 3.18 mW @ (IBias = 50 µA)
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To examine the signal processing capability of the proposed universal filter, the
transient analysis was carried out in VM mode for HP, LP and BP responses. A VM
sinusoidal signal of 100 mVp-p and a frequency of 8.0844 MHz was applied at the input,
and the output was analyzed as presented in Figure 11. It can be inferred from the figure
that the phase relation between the input and LP, BP and HP outputs of the filter are correct.
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In the presented filter, the quality factor can be set independent of the pole frequency of
the filter, as is clear from Equations (17) and (18). The quality factor tunability was verified
by analyzing the BP response in CM for different values of R2, as shown in Figure 12. It
can be deduced from Figure 12b that the quality factor of the filter can be tuned linearly.
The fitting equation using a linear regression with coefficient of determination R2 = 0.9832,
which indicates the fraction of the fitting values that are closest to the line of reference data,
is given in Figure 12. The pole frequency of the proposed filter can be tuned by varying
the bias current of the OTA, as can be inferred from Equation (17). The tuning property is
validated by plotting the VM-AP response for the different values of the OTA bias current,
as shown in Figure 13. The fitting equation using a power regression with R2 = 0.9962 is
given in Figure 13b.
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To study the effect of process spread and the non-idealities of the capacitors employed
on the performance of the designed filter, a Monte Carlo analysis is carried out for 200 runs.
The Monte Carlo analysis results for the VM BP response are given in Figure 14. The results
for CM AP configuration are given Figure 15. Corresponding histograms demonstrate the
variations of the pole frequency at −180◦. The results indicate that the frequency deviation
of the filter is within acceptable limits. This further validates the robustness of the design.

The total harmonic distortion (THD) of the filter for LP and BP responses is plotted
for different input signal amplitudes for VM as shown in Figure 16. The THD plot for
CM-BP/LP is presented in Figure 17. The THD remains within acceptable limits (≤7.5%)
for appreciable input range.
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The decrease in pole frequency of the filter due to rise in temperature can be attributed
to the decrease in OTA transconductance. The main factors that influence the transconduc-
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tance are the threshold voltage (Vt) and carrier mobility. Vt can be approximated as a linear
function of temperature [45,46] given by Equation (38):

Vt(T) = Vt(TO) + αVt(T − TO) (38)

here, αVt denotes the threshold voltage temperature coefficient which, varies from−1 mV/◦C
to −4 mV/◦C and TO is the reference temperature (300 K).

The dependence of carrier mobility on temperature is modelled by [46]:

µN(T) = µN(TO)

(
T

TO

)αµ

(39)

where αµ is the mobility temperature exponent considered as a constant approximately
equal to 1.5. The Equations (38) and (39), show that the threshold voltage (Vt) and mobility
(µN) exhibit a negative temperature dependence which explains the decrease in frequency
with temperature, as shown in Figure 18 for CM AP response.
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To validate the proposed CM-SIMO filter, it is designed for a center frequency of
6.4 MHz and quality factor of 1.015 by selecting passive component as R1 = R2 = 2 kΩ,
C1 = C2 = 20 pF and gm1 = 1.0321 mS. The five filter responses in CM mode are presented
in Figure 19.
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The time domain and Monte Carlo analysis results of the filter are presented in
Figures 20 and 21, which verify the correct filter operation. The histogram depicted in
Figure 21 demonstrates the variations of the pole frequency at −180◦.
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The Q factor tunability is tested for different values of resistor R2, as presented in
Figure 22. The fitting equation using a linear regression with R2 = 0.9986 is given in
Figure 22b. Furthermore, the total harmonic distortion for different input current ampli-
tudes is shown in Figure 23. It can be inferred that the THD remains approximately 2.5%
for a considerable signal range.
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It can be concluded from the results that the characteristics of the AP filters have a
slight imperfection, as all magnitude responses have a hump at the resonant frequency. This
is caused by the frequency-dependent non-ideal current and voltage transfer gains and the
parasitic resistances associated with the different nodes. All the mentioned non-idealities
are discussed in detail in Section 4. It is also found that the linear range (dynamic range) of
the circuit is mostly affected by small supply variations; however, the filter performance is
not adversely affected.

To further bring out the merits of the proposed filter, a comparative analysis of the
single ABBs-based mixed mode filters is carried out. It can be inferred from Table 7 that
except [40], no other filter can provide all five filter responses in all four modes of operation.
The latest presented filter in [47] is not a truly mixed mode and also suffers from use of
negative and double input signals for filter response realization. The designs in [14,27,40,48]
suffer from passive component matching requirements. The design in [48] requires a change
in circuit configuration for realizing different responses, which is impractical. Although
the proposed filter consumes more power compared with a few other designs, the power
consumption of the filter can be reduced by redesigning the VD-EXCCII at low supply
voltage and reduced bias currents.
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Table 7. Comparative study of the mixed mode filters employing only a single ABB.

Reference ABBs Passive
Components

Can
Work in
All Five
Modes

Inbuilt
Tunability

% THD in
CM BP Con-

figuration
Till 50 µA

Technology Frequency of
Operation

Power Con-
sumption

Supply
Voltage

Need of
Negative and
Double Input

Signals

Independent
Tunability of

Q Without
Affecting fO

Passive
Compo-

nents
Matching
Condition

[14] FDCCII 5 No No NA 0.25 µm 3.316 MHz NA ±1.25 V No Yes Yes
[25] FDCCII 4 No No NA 0.18 µm 10 MHz NA ±0.9 V No No No
[27] CFOA 5 No No NA 0.25 µm 12.7 MHz NA ±1.25 V Yes Yes Yes
[40] MCCTA 2 Yes Yes less than 3 0.25 µm 12.02 MHz NA ±1.25 V No Yes Yes
[47] EX-CCCII 3 No Yes less than 2.5 0.18 µm 22.9 MHz 1.35 mW ±0.5 V Yes Yes No
[48] CDBA 5 No No NA AD844 model 3 MHz NA ±5 V - No Yes

Proposed VD-EXCCII 5 Yes Yes less than 1.5 0.18 µm 8.084 MHz 5.76 mW ±1.25 V No Yes No
Note: ‘NA’ Not available; ‘-’ Not applicable.
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6. Filter Realization Using Macro Models of Commercially Available Integrated
Circuits AD844 and LM13700

The proposed VD-EXCCII can be easily realized by commercially available ICs, the
current feedback amplifier (AD844) and OTA (LM13700). The VD-EXCCII and the proposed
filter circuit are realized using the PSpice macro model of the ICs to further test the
feasibility of the proposed filter circuit. The setup for realizing the VD-EXCCII and the VM
filter circuit depicted in Figure 3 is presented in Figure 24.
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Figure 24. Scheme for the implementation of the VM filter depicted in Figure 3 using commercially available ICs.

The OTA transconductance is fixed at 2 mS by selecting +VC = 10 V and RBias = 178.6 kΩ.
The capacitors are selected equal to 1 nF and the resistors values are fixed as R1 = 1 kΩ
and R2 = 500 Ω, resulting in f0 = 225 kHz and Q = 0.707. The AC analysis results of
the filter are presented in Figure 25. The measured frequency is found to be 220.4 kHz,
which translates into 2% error. A time domain analysis is also carried out for the VM-
BP configuration. A sinusoidal signal of 40 mVp-p at the 225 kHz frequency is applied
at the input of the filter and the corresponding BP output is analyzed as shown in
Figure 26, which establishes the correct functioning of the filter.
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Figure 26. Time domain analysis result for the VM-BP response of the filter.

7. Conclusions

This paper presents a new single VD-EXCCII-based electronically tunable mixed-mode
filter structure. The filter employs only one VD-EXCCII, three resistors and two capacitors.
The mixed mode filter enjoys inbuilt tunability and can realize all five filter responses
in all four modes of operation (VM, CM, TAM and TIM). A CM SIMO filter can also be
derived from the presented minimum component mixed mode MISO filter topology. The
detailed theoretical analysis, non-ideal gain analysis and parasitic study are given. The VD-
EXCCII is designed in Cadence Virtuoso software and extensive post-layout simulations
are carried out to examine and validate the proposed filter in all four modes of operation.
The proposed filter has all the advantages mentioned in Section 3. The filter is designed for
a frequency of 8.0844 MHz with a ±1.25 V supply. The Monte Carlo analysis shows that
the frequency deviation is within acceptable limits. Furthermore, the THD is within 5% for
a considerable voltage/current input signal range. The power dissipation of the filter is
found to be 5.76 mW. The VD-EXCCII and the mixed mode filter are also designed and
tested using the models of commercially available ICs the AD844 and LM13700 in PSpice.
The simulation results are found consistent with the theoretical predictions.

Author Contributions: Conceptualization, M.F., M.A.A. and J.S.; methodology, M.F., N.H., M.A.A.
and J.S.; software, M.F.; validation, M.F. and M.A.A.; formal analysis, M.F., N.H. and J.S.; investigation,
M.F., N.H. and J.S.; resources, M.A.A. and J.S.; data curation, M.F., N.H. and M.A.A.; writing—
original draft preparation, M.F., N.H, M.A.A. and J.S.; writing—review and editing, M.F., N.H.
and J.S.; visualization, N.H.; supervision, J.S.; project administration, M.F. and M.A.A.; funding
acquisition, N.H., M.A.A. and J.S. All authors have read and agreed to the published version of
the manuscript.

Funding: Part of this work was carried out at the Institute of Microengineering and Nanoelectronics
(IMEN), University Kebangsaan Malaysia (UKM). This work is funded by the Ministry of Education
Malaysia under grant (FRGS/1/2018/TK04/UKM/02/1) and AKU254:HICoE (Fasa II) ‘MEMS for
Biomedical Devices (artificial kidney)’.

Acknowledgments: We would like to thank the anonymous reviewers for their insightful comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Appl. Sci. 2021, 11, 55 24 of 26

Abbreviations
The following abbreviations are used in this manuscript:
αP/N , α′P/N Frequency dependent non-ideal current gains
αVt Threshold voltage temperature coefficient
βP/N Frequency dependent non-ideal voltage gains
εgm , ε′gm

Transconductance errors
εiP, εiN Current tracking errors
εv(P,N) Voltage tracking errors
γ, γ′ Frequency dependent non-ideal transconductance transfer gains
µ Carrier mobility
ABB Active building blocks
AP All pass
BP Band pass
BR Band reject
Cox Gate oxide capacitance per unit area
CCII Second-generation current conveyor
CFOA Current feedback operational amplifier
CM Current-mode
DDCC Differential difference current conveyor
DPCCII Digitally programmable second-generation current conveyor
DVCC Differential voltage current conveyor
HP High pass
ICCII Inverting second-generation current conveyor
L Effective length of the channel
LP Low pass
MISO Multi input single output
MOCCCII Multi output current controlled current conveyor
MOCCII Multi output second-generation current conveyor
OTA Operational transconductance amplifier
OTA Operational transconductance amplifier
Q Quality factor
SIMO Single input multi output
TIM Trans-impedance-mode
Vt Threshold voltage
VDBA Voltage differencing buffered amplifier
VDCC Voltage differencing current conveyor
VD-EXCCII Voltage Differencing Extra X Current Conveyor
VDTA Voltage differencing transconductance amplifier
VDTA Voltage differencing transconductance amplifier
VM Voltage-mode
W Effective channel width
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