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Abstract: In this paper, we present two pipelines in order to reduce the feature space for anomaly
detection using the One Class SVM. As a first stage of both pipelines, we compare the performance
of three convolutional autoencoders. We use the PCA method together with t-SNE as the first pipeline
and the reconstruction errors based method as the second. Both methods have potential for the
anomaly detection, but the reconstruction error metrics prove to be more robust for this task. We
show that the convolutional autoencoder architecture doesn’t have a significant effect for this task and
we prove the potential of our approach on the real world dataset.
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INTRODUCTION

Anomaly detection is a state-of-the-art task focused on the outlying samples recognition. This task
is challenging especially because of the large possible variety of the anomalous samples, which are
usually not present in the required amount or even not at all in the training data. The other problem,
especially with the image data, is the high dimensionality of those samples, where the most of those
features are not crucial for the anomaly detection itself. All of this makes the anomaly detectors
difficult to use in a proper manner.

For this reason, we investigate several methods, such as convolutional autoencoders (CAE), principal
component analysis (PCA) with the t-distributed stochastic neighbor embedding (t-SNE) and the
reconstruction metrics in order to reduce the input data dimensionality. To the best of our knowledge,
we are the first to examine the feature space created from the error metrics. We suggest the use of the
One Class Support Vector Machine (OC-SVM) to automatically process the feature space.

RELATED RESEARCH

The papers [1] and [2] define the backgrounds of the One Class SVM. It defines this problem as the
SVM model applied on the unlabeled data and it describes the algorithm and its optimization in detail.
The implementation of this method can be found besides others in the Novelty and Outlier detection
scikit-learn Python package. This method is quite efficient, but it often fails on the high dimensional
data, as it is described in [3]. Despite this factor, it is usually used only as a classification layer for a
reduced feature space, rather than for straight use with image data.

The article [4] describes the CAE architecture principles. The authors describe general applications of
the autoencoders, as image denoising, or feature space reduction. They also compare CAEs with fully
connected autoencoders and describe the advantages of CAEs. In this article, authors also provide
a mathematical background of the CAE and show the importance of the max-pooling layer for the
learning consistency. A possibility of initializing the classification CNN with the same topology CAE
is explained including its benefits.
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The following paper [5] compares performance of the fully connected AEs, denoising AEs and the
Gaussian kernel PCA on the artificial multidimensional data and satellite’s telemetry data. The au-
thors prove that the AEs architectures can learn to represent normal data and that the reconstruction
error could be used as an anomaly score even in the multidimensional data. The AEs based methods
clearly outperform the PCA in this research.

The work [6] from the company MVTec presents a CAE based defect segmentation method. The
authors compare several reconstruction loss metrics and structure similarity (SSIM) as L2 metric
together with variational AE and feature matching AE architectures. The SSIM metric is concerned
to bring the best results. The main advantage of this method is that not only the single pixel values
are compared, but also the luminance, contrast and other parameters are reflected. The authors also
provide an overview of the state-of-the-art CAE based anomaly detection methods and a description
of the metrics mentioned above.

The article [7] shows a new training principle in order to extract robust features with the denoising
AEs. The main idea of the presented approach is that a noise-damaged sample is processed by the AE
as an input and the original sample is considered as a label. For the input corruption, the authors set a
fixed number of randomly selected input elements to zero, but they suggest a use of other corrupting
noise. This approach should help the AE to select stronger features and to better generalize the inputs.

MATERIALS AND METHODS
3.1 DATASET DESCRIPTION
For this experiment, we used the Cookie Dataset. It is our internal dataset designed for the anomaly
detection task, which captures Tarallini biscuits. It contains 1225 samples in four classes with the
following structure:

* No defect (474 captions)

* Defect: not complete (465 captions)

* Defect: strange object (158 captions)

* Defect: color defect (128 captions)
All classes can be seen in fig. 1. In order to augmentate the dataset we rotated each sample by 90°
for three times, so the augmented dataset contains 4900 captures in total. Augmented images were

cropped to the size of their bounding boxes, the source samples remained uncropped in the original
dataset.

Figure 1: Cookie Dataset class samples

From this data set we created a subset for the anomaly detection, where we consider only the samples
within specification (OK class) and randomly selected faulty samples from all faulty classes (NOK
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class). Our training dataset contains 1000 OK samples and no NOK samples as the training set, 2000
OK samples and no NOK samples as the validation set and with 200 OK samples and 200 NOK
samples as the test set. All images were cropped to their bounding boxes. The sample ratio of the
NOK classes in the test set was set as 0,4 : 0,3 : 0,3 (not complete : strange object : color defect).

3.2 EXPERIMENT DESCRIPTION

We use CAE as a first stage of our pipeline. For this purpose, we compare the feature extraction qual-
ity of a basic CAE implementation (BAE1) with six convolutional layers', our own simplified version
of the implementation mentioned above with four convolutional layers (BAE2) and the architecture
suggested by MVTec [6] with sixteen convolutional layers.?

As the dimensionality of the input samples is still too high for the anomaly detection task, we compare
two methods for the feature space dimensionality reduction. As the first method, we reduce the
number of input features to 50 with the PCA algorithm and then to 2 with the t-SNE method as
suggested in [9]. The second method we used was the reconstruction error metrics based feature
space. For this purpose, we chose to use the L2 metric together with the SSIM suggested in [6] in
order to create a two dimensional feature space.

For the PCA, t-SNE and OC-SVM methods, we used the implementations available from the scikiz-
learn Python library [8]. All computations were performed on the Nvidia GTX2080 graphic card.
The size of the input images was 256x256 px and the batch size of the CAEs was set to five for
training. Scripts used for the experiments were written in Python 3.6 and the Tensorflow 2.4.1 library
was used to train the CAEs.

3.3 EXPERIMENT RESULTS

The examined CAE architectures showed similar performances in the image reconstruction and a
slightly different results in the image encoding, as can be seen in fig. 2. The best input dimensionality
reduction was achieved with the MVTec autoencoder. We tried to use both encoded and decoded
samples as a direct input to the OC-SVM classifier, but the similarity of the samples was still too high
and this method did not bring us any good results.
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Figure 2: Visualisation of the CAE encoded inputs
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Results from the PCA and t-SNE based dimensionality reduction can be seen in the left part of fig.
3. We can see, that this method is able to separate one class of the NOK samples (probably the
color defects), but the other NOK classes blend with the OK class due to their structural and shape
similarity. The best results were obtained with the MVTec CAE, which has the lowest overlap of the
OK and NOK class, although the OK class doesn’t create a closed cluster. The disadvantage of this
approach is that the t-SNE method has a stochastic behaviour and the feature space slightly differs
after each run. We can imagine that this method could be used in case of more different OK and NOK
classes.
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Figure 3: Comparison of the resulting feature spaces

The feature space based on the L2 and SSIM reconstruction error metrics performed better in the OK
and NOK classes separation, although the OK class cluster still overlaps with a part of the NOK data.
The results can be seen on the right part of figure 3. The overlapping NOK data are probably from the
Not complete class which is expected to show a lower reconstruction error than the other NOK class
samples. Surprisingly and unlike in the paper [6], the SSIM metric shows a low variance between the
OK and NOK class, while the L2 metric seems to better distinguish those classes. It is probable, that
the class separation might be increased by adding another reconstruction error metrics.

DISCUSSION

Based on high dimensionality of the encoded samples, we assume that the convolutional autoencoders
are not suitable for the stand-alone use, but they can be used as a part of the anomaly detection
pipeline.

Feature space reduction using the encoded samples with PCA and t-SNE methods didn’t perform as
expected on the given dataset, when only one NOK class created a separated cluster. On the other
hand, the results show that this method can be used in the cases where the NOK class differs more
significantly from the OK class (eg. color defects rather then the shape, or small strange objects). The
improvement of this approach will be an object of the following research.

The best results in the anomalous samples separation in the feature space were achieved using the L2
and SSIM reconstruction error metric, although the metric selection should be further studied and the
classes separation is still far from ideal. We believe that better results might be obtained by increasing
the feature space dimensionality with other error metrics, or by comparison of the reconstructed
sample with the suitably selected and representative samples from the OK class. This approach might
also lead to better results of the SSIM metric.

In all three examined cases we tried to use the OC-SVM classifier to determine the boundaries be-
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tween the OK and NOK class. This method did not perform as well as expected - we plan to focus on
tuning and comparison with other unsupervised classifiers in our future experiments. We also suggest
the normalization of the feature space and experimentation with another error metrics because SSIM
in particular did not fulfil our expectations.

5 CONCLUSION

In this paper, we compare several approaches how to reduce the feature space for anomaly detection.
Because the performance of all studied CAE architectures is similar - based on the lowest encoded
space dimensionality, we would recommend the MVTec for the further use. We prove that the error
metrics can be used to create feature space for the anomaly detection task and that this space is more
suitable for this task than the feature space based on PCA and t-SNE. To the best of our knowledge,
we are the first to use the error metric in this manner and not only as an anomaly score.

We also plan to test this approach on another dataset for anomaly detection, because the Cookie
Dataset shows low variance between the classes and especially the structural defects are a difficult
task to distinguish.
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