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Abstract: In this paper, the Variational Method based on the Hückel Theory is applied to NPs chain
and aggregate systems in order to estimate the energy of the plasmon and, in turn, the resonance
wavelength shift, which is caused by the interaction of adjacent NPs. This method is based on the
analogies of NPs dipole interactions and the π-system in molecules. Differently from the Hartree-Fock
method that is a self-consistent model, in this approach, the input data that this method requires is the
dimer energy shift with respect to single NPs. This enables us to acquire a simultaneous estimation
of the wavefunctions of the NPs system as well as the expectation energy value of every kind of
NPs system. The main advantage of this approach is the rapid response and ease of application
to every kind of geometries and spacing from the linear chain to clusters, without the necessity of
a time-consuming calculation. The results obtained with this model are closely aligned to related
literature and open the way to further development of this methodology for investigating other
properties of NPs systems.
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1. Introduction

The understanding of light-matter interaction at a nanoscale has been developed rapidly in recent
years. Various models [1–3] have been proposed to understand and optimize several applications such
as Surface Enhanced Raman Scattering (SERS) [4], photo-emission [5], fluorescence [6], Nanoparticle
Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) [7], and more. It is well known that,
when an incident radiation illuminates a metal nanoparticle (NP), it induces polarization of the NPs
conduction electrons and, if the radiation frequency is in resonance with the plasmonic frequency
of the particle itself, a strong electromagnetic field is induced on the border of the NPs [8]. If the
radiation with adequate frequency interacts with a set of NPs placed at a distance, which is smaller
than the diameter of the NP, a strong field enhancement is generated in the gap between the NPs, i.e.,
the so-called “hot spot” [9,10]. In this case, an effective variation of the Coulomb restoring force that
exists between the positive metallic lattice of the NPs and the oscillating electrons occurs because of the
interaction of adjacent NPs dipoles. This results in a notable change of the system’s resonance energy.
Several experiments and models have been performed in order to quantify this phenomenon and,
thus, determine the resonance wavelength of the NPs system [11,12]. Although various compositions
of multi-NPs have been investigated [13,14], due to the mathematical approach complexity and the
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difficult experimental realization of the controlled structure at the nanoscale level, most studies have
focused on the dimeric system of NPs. In this frame, the nature and the dependence on the particle size,
as well as on interparticle distances, in the dimeric system, has been largely investigated and numerous
articles have been published [11,15] outlining a full description of NPs dimer both from theoretical
and experimental point of views. The classical approach for studying plasmon effects is based on the
determination of the permittivity function. This is done by modeling the optical properties of the
metals using different multi-parameter methods. Even though this classical approach is very useful,
it becomes less sufficiently accurate and extremely time consuming when applied in investigating a
complex system of NPs. On the other hand, NP interactions can be studied in analogy with atom
interactions during the formation of molecules [16,17]. In this frame, an individual NP can be described
with a wavefunction and their interaction can be studied in the same way as the interaction of atomic
orbitals in the Hückel theory. Good examples are the case of π-bonding in the dienic system and
the molecular orbital interactions between ligands and metal in coordination chemistry. This second
approach enables us to apply the methodologies used to determine molecular bonding and the energy
changes during the atomic orbitals interaction.

In this paper, we propose a quantum mechanics approach, called the Hückel’s Variational Method
(VM) [18], inspired by the analogy between NP systems and the molecular orbital theory, which
was initially proposed by Nordlander at al. in the hybridization model [16,19], for a rapid and
simple estimation of energy and the resonance wavelength in the NPs chain and cluster systems.
This approach requires input data that has been already reported in literature i.e., the energy shift
of simple systems such as dimers or single NPs on the surface [15,20]. They enable us to obtain
information on more complex NPs systems without having to resort to time consuming calculations.
Apart from self-consistent methodologies [11] for multiple metal NPs where the random phase
approximation in the secular determinants is also used to estimate the surface plasmon resonant
energies that, in turn, depend on the nanoparticle spacing, this approach requires the energy shift of
simple systems as initial input data, such as dimers and single NPs on the surface that has already
been reported in literature [15,20]. These input data of the energy, which contains the dependence on
the nanoparticle distance and surrounding medium, enable us to obtain information on more complex
NPs systems without having to resort to time-consuming calculations. Beyond the practical result, i.e.,
the determination of the resonance energy shift, the investigation of NPs system with the VM provides
an insight of the analogies and differences between NPs plasmon and the π-molecular orbital.

2. The Variational Method Applied to NPs Systems

The Variational Method is the most widely used approach for the calculation of energy and
π-orbitals in molecular chemistry, such as Hückel theory. The best wavefunction Ψ representing
the system of elements and consisting in a linear combination of the wavefunction representing
each single element is the one that minimizes the expectation value of the energy. In this frame, a
function of the energy depending on the weight coefficients of the linear combination is obtained. The
minimum value of this function E = f(c1, c2, c3, . . . cn) is greater than or equal to the exact value of
the energy. In this light, finding the minimum of this function with respect to the weight coefficients
allows the determination of the closest value to the exact energy of the system [18]. In this case, as
suggested in Reference [17], the collective character of the plasmon is described in terms of the linear
combination of single-particle excitations and, therefore, a time-dependent model can be bypassed, in
the approximation with the use of empirical input data. Although the same method can be applied to
other physical quantities, in this instance, we will apply it for the energy of the system, considering
that we are focused on the determination of the resonance wavelength, that is linked to the energy by
the relation E = hc/λ, where E =ω is the energy of the plasmonic system.
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Let us consider a general wavefunction of a linear system of n equally sized and spaced NPs
given by the following linear combination.

ψk = c1ϕ1 + c2ϕ2 + c3ϕ3 + . . .+ cnϕn (1)

where ϕ is the wavefunction associated with the dipole oscillation of an excited individual NP.
If we use n different basis for the linear combination, n different wavefunctions will be obtained,

with each one describing a different mode. In this case, we will consider only longitudinal modes,
restricting our attention to those modes which are susceptible when the incident radiation is
perpendicular to the NPs cluster.

The expectation value of the energy is given from the following equation, where ω̂ is the
Hamiltonian operator.

ω =

∫
τ
ψω̂ψdτ∫
τ
ψψdτ

=

∫
τ
(c1ϕ1 + c2ϕ2 + c3ϕ3 + . . .+ cnϕn)ω̂(c1ϕ1 + c2ϕ2 + c3ϕ3 + . . .+ cnϕn)dτ∫
τ
(c1ϕ1 + c2ϕ2 + c3ϕ3 + . . .+ cnϕn)(c1ϕ1 + c2ϕ2 + c3ϕ3 + . . .+ cnϕn)dτ

(2)

Developing the integral of Equation (2) and setting for each value of j with 1 ≤ j ≤ n, the following
derivative equals zero. (

∂ω
∂c j

)
c1,c2,c3...cn

= 0 (3)

We obtain the following system of secular equations.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Ω11 −ω) (Ω12 − S12ω) (Ω13 − S13ω) (Ω14 − S14ω) . . .
(Ω21 − S21ω) (Ω22 −ω) (Ω23 − S23ω) (Ω24 − S24ω) . . .
(Ω31 − S31ω) (Ω32 − S32ω) (Ω33 −ω) (Ω34 − S34ω) . . .

. . . . . . . . . . . . . . .
(Ωn1 − Sn1ω) (Ωn2 − Sn2ω) (Ωn3 − Sn3ω) . . . (Ωnn−1 − Snn−1ω)

(Ω1n − S1nω)
(Ω2n − S2nω)
(Ω3n − S3nω)

. . .
(Ωnn −ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
•

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1

c2

c3

. . .
cn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4)

where
(a) the Coulomb’s integral
Ωii =

∫
τ
ϕiω̂ϕidτ = ω0 that is the energy of the single particle,

(b) the interaction integrals
Ωi j = Ω ji =

∫
τ
ϕiω̂ϕ jdτ =

∫
τ
ϕ jω̂ϕidτ = β ≈ −∆ωdim is equal to the shift of energy of the dimer

compared to the single NP when i and j represent adjacent NPs and is null for non-adjacent particles
because we assume that non-adjacent dipoles do not interact between them. In the case of a linear
chain of NPs, Ωij = β when

∣∣∣i− j
∣∣∣ = 1 and is equal to 0 when

∣∣∣i− j
∣∣∣ > 1;

(c) the overlapping integral
Si j = S ji =

∫
τ
ϕiϕ jdτ =

∫
τ
ϕ jϕidτ ≈ 0 because the NPs are far enough to neglect the contribution

of the efficient wavefunctions overlapping.
Under these conditions, for the system of equation to be null, the secular determinant must be

numerically equal to 0. As an example, in the case of a linear chain of n NPs, the following condition
must be assumed. ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ω0 −ω) (β) 0 0 . . .
(β) (ω0 −ω) (β) 0 . . .
0 (β) (ω0 −ω) (β) . . .
. . . . . . . . . . . . . . .
0 0 0 . . . (β)

0
0
0
. . .

(ω0 −ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (5)

Some other examples are reported in the supplementary materials Figure S1. The solution of this
determinant for n particles, i.e., n wavefunctions, gives n energy modes, including some that are bright
modes (ω <ω0) while the rest are dark modes (ω >ω0).
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A representative sketch in the case of a chain of four equal NPs is shown in Figure 1.
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Figure 1. Interaction between 4 NPs in the chain resulting in four different modes.

As a result of this calculation, we obtain several wavefunctions describing several dipole
configurations, as shown in the example reported in Figure 1.

It is worth underlining that, with the present approach, whenever the plasmon energy of the single
NP and the shift of energy of the dimer with respect to the single NP is known, the calculation of the
secular determinant of Equation (5) is a minor and immediate operation. Thus, this method shows a
general trend of the NPs system where the effect of NPs distances is included in the interaction integral
whose value can be obtained by using an independent theoretical or experimental approach. The exact
wavefunction of the single NPs is not required for the computation of the energy in agreement with the
Hückel theory and so the method can be applied virtually to all the geometries of the single element as
the effect of the properties of the single NPs in the complex system, which is contained in the input
dataω0 and ∆ωdim. As is well known, dielectric polarization plays an important role in the plasmon
resonant energy. For this reason, the input data should be selected properly, taking into account the
dielectric medium where the NPs system is embedded.

Dimeric systems have been intensively studied in the last decade because the optical properties
of this kind of system can be determined accurately using different experimental and theoretical
approaches [21–30]. For instance, we reported in Table 1 some data retrieved from published works on
Au and Ag NPs dimers.
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Table 1. Dimer resonance energy from different published works for Ag and Au NPs, to be used in
VM for the investigation of more complex system. In the table ω0, wdimer, ∆ωdim correspond to single
nanoparticle resonant energy, dimer resonant energy, and the energy shift, respectively.

NPs Size (nm) Id (nm) Medium ω0 ωdimer_longitudinal mode |∆ω| Reference
AuNPs 20 0.5 Water 2.36 1.99 0.37 [21]
AuNPs 40 1 Air 2.37 2.09 0.28 [22]
AuNPs 18 3.8 water 2.36 2.32 0.04 [23]
AuNPs 18 0.2 Water 2.36 1.97 0.39 [23]
AuNPs 40 10 Water 2.34 2.34 0 [23]
AuNPs 10 0.8 Water 2.34 1.97 0.37 [23]
AuNPs 64 1 air 2.21 1.77 0.44 [24]
AuNPs 60 1 n = 1 2.05 1.88 0.17 [25]
AuNPs 60 1.5 n = 1.5 2.21 1.65 0.56 [25]
AuNPs 40 1.5 water 2.36 2.03 0.33 [26]
AuNPs 80 1 water 2.17 1.59 0.58 [27]

AuNPs 35 0.34 Vacuum
(STEM) 2.34 2.09 0.25 [28]

AgNPs 60 3 Air 3.31 2.67 0.64 [29]

AgNPs 50 1 Air 3.10 2.58 0.52 [22]

AgNPs 36 2 Air 2.95 2.38 0.57 [30]

AgNPs 30 0.3 Vacuum
(STEM) 2.91 2.45 0.46 [28]

3. NPs Chain Systems

Let us consider the case of a chain of AuNPs and one of AgNPs, where the plasmon energyω0 and
the dimer shift ∆ωdim areω0 = 2.375 eV, β = −0.28 eV andω0 = 3.10 eV and β = −0.52 eV, respectively,
for AuNPs of 40 nm and AgNPs of 50 nm [22]. Results of the VM are reported in Figure 2, which shows
an increase of the wavelength as a function of the number of NPs in the chain, which, in turn, results in
the red-shift of the resonance wavelength of the lowest energy mode, obtained with the solution of the
secular determinant of Equation (5).Nanomaterials 2018, 8, x FOR PEER REVIEW  6 of 15 
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Figure 2. Lowest energy mode of the chain as a function of the number of NPs, for gold and silver
NPs. Input data for AuNPs and AgNPs is, respectively,ω0 = 2.375 eV, β = −0.28 eV, ω0 = 3.10 eV,
and β = −0.52 eV.

As expected, the wavelength of the longitudinal modes shifts to higher values as the number of
NPs in the system increases. This moves toward a plateau for n→∞. Although, with the present
model, we are not investigating the behavior of the Hot Spot [31,32] generated in the NPs system.
However, it is possible to estimate just the number of Hot Spots assuming they are equal to the number
of coherent interactions between adjacent NPs.

For each mode, the number of available coherent dipole interactions, i.e., potential hot spots,
is m = n–k, where n is the number of NPs constituting the system and k is the mode number,
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assuming k = 1 for the lowest energy mode. This observation makes it clear that the maximum number
of available coherent dipole interactions is obtained for the mode with the lowest energy. This mode
represents the dipole configuration, which allows the maximum electromagnetic field enhancement.
On the contrary, the number of sites where the dipole assumes the opposite orientation corresponds to
the number N of nodes of the wavefunction representing the specific mode, so that N = n − 1 −m = k
− 1. Consequently, in order to polarize a given mode, it is necessary that the number of constructive
interactions between the dipoles is greater than the number of dipoles with a destructive interaction.
This means that the number of coherent dipole interactions has to be greater than the number of nodes,
m > N (see Figure 1). This observation suggests that, in a bright mode m > N, consequently,ω <ω0,

and the corresponding wavefunction represents a system with a net total dipole. On the contrary, when
m < N, thenω >ω0, and the wavefunction describes a system where no effective dipole exists, which
is a dark mode [33]. In the case of the dark mode, the total wavefunction presents more nodes than
coherent interactions and, therefore, in agreement with the general knowledge, they cannot be excited.

Considering the broadening of each state due to the quantum limit of the investigated system [34], it
should be expected that all these states merge together in a wide band. Consequently, the system of NPs
can be suitably polarized along a broad range of incident electromagnetic field frequencies generating
a band of resonance including all the bright modes within the limits of possible configurations, which
the dipoles in the chain can assume. Since the VM does not allow taking into account the broadening
of the energy levels resulting from the quantum limits and a detailed investigation on the broadening
would be required [35,36], with the only aim to show how the broadening of the states may form a
band of resonance, in Figure 3, we also report the convolution of the modes, assuming a Gaussian
shape with a broadening (FWHM, Full Width at Half Maximum) of 80 nm in agreement with the
broadening of the SPR (Surface Plasmon Resonance) of the single AuNPs of 40 nm [34]. Even though,
this is an arbitrary condition for a chain system and it underestimates the real broadening, it gives an
idea of the correlation between the states of the system and the peculiarities of the band of resonance
generally observed in the experimental applications.

Nanomaterials 2018, 8, x FOR PEER REVIEW  6 of 15 

 

 

Figure 2. Lowest energy mode of the chain as a function of the number of NPs, for gold and silver 

NPs. Input data for AuNPs and AgNPs is, respectively,0 = 2.375 eV,  = −0.28 eV, 0 = 3.10 eV, and  

= −0.52 eV. 

Considering the broadening of each state due to the quantum limit of the investigated system 

[34], it should be expected that all these states merge together in a wide band. Consequently, the 

system of NPs can be suitably polarized along a broad range of incident electromagnetic field 

frequencies generating a band of resonance including all the bright modes within the limits of 

possible configurations, which the dipoles in the chain can assume. Since the VM does not allow 

taking into account the broadening of the energy levels resulting from the quantum limits and a 

detailed investigation on the broadening would be required [35,36], with the only aim to show how 

the broadening of the states may form a band of resonance, in Figure 3, we also report the 

convolution of the modes, assuming a Gaussian shape with a broadening (FWHM, Full Width at 

Half Maximum) of 80 nm in agreement with the broadening of the SPR (Surface Plasmon Resonance) 

of the single AuNPs of 40 nm [34]. Even though, this is an arbitrary condition for a chain system and 

it underestimates the real broadening, it gives an idea of the correlation between the states of the 

system and the peculiarities of the band of resonance generally observed in the experimental 

applications. 

 

Figure 3. The image of the normalized number density of modes for chains with five different 

lengths. Black vertical lines represent single modes as obtained with the Variational Method, blue 

curves represent the density of states, calculated as a convolution of gauss curves modeled for each 

mode using a broadening of 80 nm for each state. 

Figure 3. The image of the normalized number density of modes for chains with five different lengths.
Black vertical lines represent single modes as obtained with the Variational Method, blue curves
represent the density of states, calculated as a convolution of gauss curves modeled for each mode
using a broadening of 80 nm for each state.

This phenomenon underlines the most important feature of the NPs systems: the possibility to
adapt the configuration of their dipoles to the incident electromagnetic radiation, which allows a sort of
cooperation in reaching resonance with the incoming perturbation. Clearly, this effect is not achievable
with more rigid systems, e.g., the atomic ones, where resonance occurs only at a specific frequency.



Nanomaterials 2019, 9, 929 7 of 16

This flexibility of the NPs systems in reaching resonance with the perturbation occurs as an effect of a
system that borders strongly quantized systems such as atoms and macroscopic (i.e., not quantized)
systems such as particles.

It is interesting to compare the results of the VM with other results based on different approaches
reported in literature, as shown in Figure 4. In this case, we compare the lowest energy mode obtained
with VM with different properties reported in literature and related to the resonance energy of the
plasmonic system. Observation of Figure 4 indicates an impressively high level of agreement of
the results of VM with those obtained with Electrodynamic Simulation, S, [22] and Finit Integration
Technique, FIT, [26], as well as with experimental results, E, [24]. The values of ω0 and β used
for comparisons of Figure 4 are ω0 = 2.34 eV, β = −0.57 eV for the comparison with experimental
results (EM), ω0 = 2.36 eV, β = −0.33 eV for the comparison with Electrodynamics simulation (MS)
and ω0 = 2.37 eV, β = −0.27 eV for the comparison with the Finit Integration Technique (MFIT).
The agreement of the proposed method with literature data shows the similarity of the plasmonic
characteristics of NPs system with a conjugated dienic system, where this theoretical approach is
considered one of the most accurate ways to determine the energy of π-bonding.
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Figure 4. Comparison of results obtained by the variational method with data presented in literature.
E (Experimental), S (electrodynamic Simulation), and FIT (Finit Integration Technique) have been
taken from References [22,24,26], respectively. ME (ω0 = 2.34 eV, β = −0.57 eV), MS (ω0 = 2.36 eV,
β = −0.33 eV), and MFIT (ω0 = 2.37 eV, β = −0.27 eV) are the results calculated by the Variational
Method for the appropriate systems.

4. NPs Cluster Systems

One of the most attracting results that can be obtained with the VM is the determination of
resonance energy of a more complex system than a dimmer and, as mentioned in the introduction, the
VM allows us to study the interaction between NPs in a different geometrical configuration. As an
example, let us consider the heptamer in three geometries: linear chain, ring chain, and cluster. The
energy diagram obtained for these systems is reported in Figure 5. Same as in the previous section,
we considered a system of Au-NPs withω0 = 2.375 eV and β = −0.28 eV. We can note that the linear
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chain and ring chain had a similar energy shift, 1.86 eV and 1.88 eV, respectively. However, while in
the linear chain, there was no degeneracy of the modes, the ring chain presented a degeneracy equal
to 2 of all the modes except the one with the higher energy with k = 7. This effect was due to the
geometrical symmetry of the ring system. When comparing the chain systems with the heptamer
cluster, a further redshift was observed as a result of the strong coupling with the NP placed in the
center in the heptamer cluster. It interacts with all the surrounding NPs, which increases the number
of coherent interactions. The latter observation introduces a general feature of 2D systems, which is an
increase of the number of bright modes with respect to the dark modes. In this frame, the heptamer
shows a general condition where the NPs packing (i.e., the ratio between NP diameter and interparticle
mean distances) is optimized, which allows the central NP to have a full interaction with several other
units, since it will be discussed below in the section about the 2D lattice of NPs.
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As a second case, we investigated the effect of ordered 2D NPs clusters. It was necessary to take
into account that there were different types of interaction between adjacent NPs and particles placed on
the diagonal direction. Therefore, for the latter ones, we used a different value of the interaction integral,
which is β′ = β/

√
2, according to geometric considerations (see supporting information). As a result of

the dipole’s interaction, a new energy diagram was obtained and is reported in Figure 6A. The figure
shows that the energy of bright modes decreases with the increasing of NPs in the reticular cluster and
that the number of bright modes is always greater than the one of dark modes. As mentioned above,
this is due to the increasing number of coherent dipole interactions. For this reason, and because the
total energy of the levels must be conserved, the dark modes notably increase their energy. Once
again, for ω <ω0, the energy stabilization and, in turn, the wavelength increasing is dependent on the
number of interactions that every NP is able to perform.

The ordered reticular system of NPs does not represent the best situation since the packing factor
can be improved by decreasing the average distances between the NPs. This effect is demonstrated in
Figure 6B where the energy diagram of the 2D lattice is reported. The figure clearly shows a further
decrease of the energy of about 0.1 eV corresponding in a wavelength red-shift of about 40 nm when
the chain composing the 2D-lattice is shifted with respect to the adjacent chains in order to optimize
the packing of the NPs.

In Table 2, for a fast comparison of resonance energy of different cluster geometries, the energy
and the corresponding wavelength of the lowest energy mode (k = 1), that, as mentioned above,
corresponds to the main peak of the resonance band, is reported atω0 = 2.375 eV, β = −0.28 eV.
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Table 2. Energy and wavelength of the peak of the resonance band for different cluster geometries
consideringω0 = 2.375 eV (522 nm) for single AuNP and β = −0.28 eV.
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Lastly, in Figure 7, we compared the case of triangular, square, and heptamer cluster with
some results published in Reference [37]. For all the examined structures, there is good agreement
of the resonance wavelength obtained with Generalized Mie Theory (GMT) and the wavelength
corresponding to the lowest energy mode, as calculated applying the VM.
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Figure 7. Comparison of results of the present work and Reference [37] in the case of triangle, square,
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β = −0.28 eV.

5. Effect of the Surface

The effect of the metallic surface on the chain plasmon resonance is of great interest and has been
investigated by several authors (see [20,38–41]). Two approaches may be feasible in the context of the
VM. Applying the first approach, we can directly couple the surface plasmon energy independently
with all the single NPs constituting the chain. From the mathematical point of view, it means adding a
further equation in the system as well as adding a second term, α, that takes into account the energy
shift due to the interaction of an individual NP with the metallic surface. In any case, this approach
would take into account only the main energy shift due to a strong coupling of the metal surface and
the NPs. On the contrary, the surface can interact with the NPs chain, which induces two main groups
of modes, with one representing the most effective coupling and the other one’s surface interacting
destructively with the modes of the chain [20]. In order to better represent this phenomenon, we
propose coupling directly each chain wavefunction with the metallic surface. Consequently, each
single mode determined, as discussed in the previous paragraph, is coupled with the metal plasma
energy of the surface where the chain or cluster is placed. This obtains a 2 × 2 matrix for each mode.
Thus, the determinant becomes: ∣∣∣∣∣∣ (ωk −ω) α

α (ωS −ω)

∣∣∣∣∣∣ = 0 (6)

where ωk is the resonance energy of the mode k of the chain, ωS is the plasma energy of the metal,
and the interaction integral α is the shift in energy due to the interaction of the chain with the surface.
A sketch of the level formation is shown in Figure 8 for the chain system and for the chain on the
metallic surface.
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Figure 8. Sketch of the linear combination in the Variational Method for a 20 NPS chain on a gold
surface. Black lines symbolize modes of three different systems (from left to right): 20 NPs chain,
20 NPs chain on the surface, and the surface with the plasmon energyωp = 8.87 eV. The green region
illustrates the position of the bright modeω <ω0 withω0 = 2.38 eV.

For large numbers of NPs (N > 10) in the chain, the interaction with the surface generates three
groups of levels. The first one concerns the influence of NPs system on a surface where the energy is
beyond the plasma energy of the metal. It is clearly a set of dark modes. The other two groups represent
two sets of modes of the chain on the metallic surface, where the interaction of the surface with the
chain decreases the energy of both low and high energy modes of the insulated chain. Moreover, it
is worth underlining that the dark modes of the insulated chain become bright under the effect of
interaction with the surface. It clearly explains the nature of the second peak when a chain of NPs is
placed on the metallic surface [39,40]. This issue is very interesting as the introduction of the surface in
the investigated system allows n new coherent dipole interactions due to the interaction of every single
particle constituting the chain and the surface plasmon. In this view, the number of coherent dipole
interactions where hot spots can be formed becomes ms = 2n − k for the positive interaction with the
surface while the number of nodes remains the same as the insulated chain. On the contrary, for the
destructive interaction of the chain with the surface, the number of nodes becomes Ns = n + k − 1,
while the number of coherent dipole interactions remains the same as the insulated chain. This effect is
shown in Figure 9 in the case of a four NPs chain.
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Figure 9. Dipole orientation during four NPs chain on a metallic surface in the case of (left) bright
and (right) dark modes. Potential hot spots are indicated with red spots and nodes are indicated with
black spots.

In order to explore the potentiality of this method, we calculated the resonance energy of the
modes related to a chain of gold NPs on a gold surface, assuming the input data as follows: ωs = 8.9 eV,
α = −2.6 eV, withωk calculated using the VM, as described in the previous paragraph withω0 = 2.38
and β = −0.28 eV. By a formal point of view, it would be more correct to use the energy of the metal
surface plasmon (6.4 eV) and the corresponding interaction integral, but, as from the practical point of
view, the energy of the metal is only the baseline for the calculation. We decided to use the plasma
frequency (8.9 eV) and the corresponding interaction integral, which is more easy to estimate from
literature data.

Results are shown in Figure 10, which depicts the trend of Peak I and II, interpreted as the lowest
and highest energy mode of the bright band, as a function of the chain length. It is observable that,
while the group of modes of Peak II is slightly blue-shifted with respect to the free chain, Peak I is
strongly red-shifted, which allows resonance until the near IR. The two peaks represent two different
ways in which the metallic surface interacts with the chain: Peak I is obtained by a further stabilization
of the system due to the localization of the metal plasmon with opposite charges with respect to
the particle charge in contact with the surface. This stabilization of the charges of the entire system
decreases the plasmonic energy. On the contrary, Peak II is the result of the stabilization of high energy
modes of the chain due to the effect of the coupling of these modes with the surface plasmon of the
metallic substrate. As the interaction of the dipole in the chain for these high energy modes increases,
the energy of the system leads to an increasing number of elements in the chain. The resonance
wavelength is slightly blue-shifted.
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Reference [22] and the value of α = −2.6 eV.

The same approach can be applied to other geometries, as shown in Figure 11, for the case of the
heptamer cluster. As a general result, the coupling of the NPs cluster with the surface induces an
evident red-shift of the modes and, consequently, some of those levels that were dark modes become
bright modes. This is a further enlargement of the resonance band and a new peak in the left side of the
band. It is analogical to what has been discussed in case of the chain coupled to the metallic surface. If
the heptamer is tested with the VM at the experimental conditions used for the chain system discussed
previously, the maximum of the resonance peak is expected at 1380 nm. Moreover, a resonance mode
at the same energy of the single NPs is formed as well as a narrow band of levels at a high energy, as
already observed in the case of the chain.
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Figure 11. Sketch of the linear combination in the Variational Method for the heptamer on a gold
surface. The black lines symbolize modes of three different systems (from left to right): heptamer
cluster, heptamer cluster on the surface, and the surface with plasmon energyωp = 8.87 eV. The green
region illustrates the position of bright modeω <ω0 withω0 = 2.38 eV.
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6. Conclusions

In conclusion, the most important advantage of the proposed method is the rapid response and
ease of application to all kinds of chain and cluster NPs systems, if the basic interactions of the elements
of the system are known. This means that this approach is unable to determine the dependence of the
energy shift due to the interparticle distance and particle size. However, it enables us to estimate how
a given interaction changes as a result of an increasing number of conjugated NPs. This is possible
without having to resort to a time-consuming calculation routine. As a consequence of a higher number
of dipoles involved constructively in the state with lower energy, the corresponding wavelength
represents the wavelength of the peak of the system’s resonance band. On the contrary, the whole
band, with this quantum chemistry approach, is the result of the convolution of all the set of modes
that are obtained by solving the secular determinant. The latter observation suggests that the incident
electromagnetic radiation can polarize the NPs dipoles in a wide range of wavelengths.

Lastly, the aim of the application of this methodology is to support, by means of a rapid overview
of the resonance wavelength characteristics of the system, the realization of more complex models as
well as of experiments at nanoscale. Moreover, the present approach allows us to investigate the effect
of the geometrical distribution of the NPs system, as well as the effect of substrates in an immediate
way and this can be useful for selecting the laser source in laser-based analytical techniques as well as
for selecting optimal substrates for the analysis. Although, in the present study, we focused our efforts
on introducing a new model for interpreting the plasmon resonance in complex NPs system. In a
future work, the use of the obtained wavefunctions will be investigated for estimating other properties
of the plasmonic resonance from a more applicative point of view.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/7/929/s1;
Figure S1: Examples of secular determinant of various NPs system geometry.
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