
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

WEBAPPLICATIONFORGRAPHICALVISUALIZATION
OF GEOSPATIAL TIME SERIES
WEBOVÁ APLIKACE PRO GRAFICKOU VIZUALIZACI GEOGRAFICKÝCH ČASOVÝCH ŘAD

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. KRYŠTOF RYKALA
AUTOR PRÁCE

SUPERVISOR Ing. JIŘÍ HYNEK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2020/2021

 Master's Thesis Specification

Student: Rykala Kryštof, Bc.
Programme: Information Technology
Field of
study:

Information Systems

Title: Web Application for Graphical Visualization of Geospatial Time Series
Category: User Interfaces
Assignment:

1. Get acquainted with the principles and visualization of geospatial data developing in time.
Study available map diagrams presenting geospatial data and analyze possibilities of how to
map the data to the diagrams.

2. Analyze available technologies for visualization of geospatial data, including authoring
systems and existing libraries (such as Leaflet, D3.js). Compare them with other solutions
and each other. Propose a new/innovative solution.

3. Analyze the requirement on the visualization of geospatial data changing in time.
4. Design an application that allows the users to visualize geospatial data developing in time,

which respects outcomes of items (2) and (3), focusing on generic data, e.g. network
communication, epidemic spreading, aim at animation of the visualization

5. Implement the designed solution.
6. Test the result using selected geospatial time series. Propose future extensions.

Recommended literature:
Kachlík, J.: Grafická vizualizace geografických dat síťového provozu. Brno, 2020.
Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií.
Johnson, J.: Designing with the Mind in Mind: Simple Guide to Understanding User
Interface Design Guidelines. Morgan Kaufmann Publishers/Elsevier, 2010, ISBN:
978-0-12-375030-3.
Pea-Araya, V., et al.: A Comparison of Visualizations for Identifying Correlation over Space
and Time. IEEE Transactions on Visualization and Computer Graphics 26.1 (2019):
375-385.
Leaflet: Leaflet API reference [online]. 2019 [cit. 2020-09-16]. Dostupné z:
https://leafletjs.com/reference-1.7.1.html

Requirements for the semestral defence:
Items 1 to 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Hynek Jiří, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021
Approval date: February 4, 2021

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/23499/2020/xrykal00 Page 1/1

Abstract
Geospatial data has become an integral part of everyday life. The most common visua-
lization of geospatial data is a static thematic map. However, static maps visualize only
one time moment, or several of them aggregated together. Moreover, it is impossible to
visualize geographical phenomena such as the evolution of different geographical features
(e.g., the growth of carbon emissions or the spread of a virus) without time. This work aims
to create a tool for creating visualizations of geospatial time series that allow data to be
presented and studied. The solution is developed as a tool of the Geovisto application. The
developed tool allows users to create custom visualizations and animations of geospatial
time series while being configurable for use with general data. Users with programming
knowledge can create new Geovisto tools (e.g., thematic maps) and use the time tool to
implement animations themselves in the new thematic maps.

Abstrakt
Geografická data se stala nedílnou součástí každodenního života. Nejběžnější vizualizací
geografických dat je statická tematická mapa. Ta ovšem vizualizuje pouze jeden časový
okamžik, případně několik z nich, agregovaných dohromady. Bez času navíc není možné
vizualizovat geografické jevy, jako je vývoj různých geografických charakteristik (např. růst
emisí uhlíku nebo šíření viru). Cílem této práce je vytvoření nástroje pro vytváření vizua-
lizací geografických časových řad, které umožní data prezentovat a studovat. Řešení je
vyvinuto jako nástroj aplikace Geovisto. Vyvinutý nástroj umožňuje uživatelům vytvářet
vlastní vizualizace a animace geografických časových řad a zároveň je konfigurovatelný pro
použití s obecnými daty. Uživatelé se znalostí programování mohou vytvářet nové Geovisto
nástroje (např. tematické mapy) a pomocí nástroje pro práci s časem sami implementovat
animace do nových tematických map.

Keywords
geovisualizations, thematic maps, time series, animations, Geovisto, Leaflet

Klíčová slova
geovizualizace, tematické mapy, časové řady, animace, Geovisto, Leaflet

Reference
RYKALA, Kryštof. Web Application for Graphical Visualization of Geospatial Time Se-
ries. Brno, 2021. Master’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Jiří Hynek, Ph.D.

Rozšířený abstrakt
Geografická data se stala nedílnou součástí každodenního života. Nejběžnější vizualizací
geografických dat je statická tematická mapa. Ta ovšem vizualizuje pouze jeden časový
okamžik, případně několik z nich, agregovaných dohromady. Bez času navíc není možné
vizualizovat geografické jevy, jako je vývoj různých geografických charakteristik (např. růst
emisí uhlíku nebo šíření viru). Zavedení času do vizualizací je tedy důležité, aby bylo možno
studovat a prezentovat geografické jevy nebo geografické časové řady obecně. Prezentace
geografických časových řad je široce využívána zpravodajskými portály, které používají
animované tematické mapy k prezentaci příběhu čtenářům, zato studiem geografických
časových řad se většinou zabývají odborníci. Data lze studovat porovnáváním časových
okamžiků nebo pozorováním vývoje dat v čase.

Pro vytvoření efektivní vizualizace geografických dat v čase je potřeba zvolit správný
typ vizualizace. Existují tři hlavní přístupy: jedna statická mapa, série statických map a
animované mapy. Statická mapa poskytuje pouze omezené možnosti vizualizace času. Je
možno vizualizovat jeden časový okamžik, nebo několik agregovaných časových okamžiků.
Rovněž je možno použít sérii statických map pro různé časové okamžiky. Tento přístup je
efektivní pro porovnávání několika časových okamžiků, nicméně při větším počtu efektivita
klesá. To je způsobeno kognitivním přetížením, které je způsobeno zahlcením uživatele
příliš velkým množstvím informací. Nejefektivnějším způsobem vizualizace geografických
časových řad jsou animované mapy. Animované mapy prezentují jednotlivé časové okamžiky
vizualizací za sebou, takže je vždy vizualizován jen jeden časový okamžik. Ovšem kvůli
kognitivnímu přetížení musí být animace krátká, popřípadě musí být k dispozici ovládací
prvky pro ovládání toku animace.

Pro vytváření dynamických animovaných map je možné volit mezi několika přístupy.
Prvním přístupem je použití programovací knihovny k vytvoření konkrétní vizualizace ge-
ografických dat od základu. Tyto knihovny obvykle nabízejí nástroje pro generování prvků
SVG nebo použití plátna HTML, pomocí kterých je možno vytvořit tematické mapy. Ovšem
nenabízejí téměř žádnou podporu pro vizualizaci časových řad. Druhým přístupem je
použití knihoven pro tvorbu map, jako je například Leaflet, OpenLayers nebo Mapbox GL.
Tyto knihovny poskytují hotové mapy a ovládací prvky pro jejich ovládání (např. zoom,
změna pohledu kamery, atd.). Tyto knihovny je možno kombinovat s předešlými a vytvářet
vlastní tematické mapy, které jsou zobrazeny jako vrstvy nad mapou. Posledním přístu-
pem je použití autorského nástroje jako je například Grafana, Tableau nebo Mapbox Studio.
Tyto nástroje nabízejí množství hotových tematických map, které se pomocí nich vytvářejí
bez znalosti programování. Často také nabízejí podporu časové složky, ale tato řešení nejsou
flexibilní a mají také malé možnosti animace. Kompromisem mezi programovou knihovnou
a autorským nástrojem je knihovna Geovisto. Jedná se především o programovací kni-
hovnu s možností použití jako autorský nástroj pro přípravu konfigurací. Hlavní myšlenkou
Geovisto je prezentace stejných dat v různých perspektivách, ale v jedné vizualizaci s více
datovými vrstvami. Základní vrstva využívá knihovnu Leaflet, která poskytuje interaktivní
mapovou vrstvu.

Cílem této práce je vytvoření nástroje pro tvorbu vizualizací geografických časových
řad, který pokryje dva hlavní případy užití – prezentaci a studium geografických dat. Při
prezentování geografických časových řad jsou data prezentována pomocí animace, je tedy
důležité umožnit uživatelům nastavit animaci podle jejich konkrétních potřeb. Mohou
chtít změnit dobu trvání přechodu, délku časového kroku nebo přesunout pohled kamery
na jinou entitu geografických dat (např. přesunout pohled kamery z USA na Evropu).
Naopak při studiu dat není kladen takový důraz na animace. Hlavní důraz je kladen na to,

aby bylo možné data efektivně studovat a porovnávat. Proto je potřeba interaktivní časový
přehrávač, který umožňuje procházet časem a možnosti předběžného zpracování dat před
jejich vizualizací.

Řešení je vyvinuto jako nástroj aplikace Geovisto. Vyvinutý nástroj umožňuje uži-
vatelům vytvářet vlastní vizualizace a animace geografických časových řad a zároveň je kon-
figurovatelný pro použití s obecnými daty. Nástroj poskytuje potřebné ovládací prvky pro
manipulaci s časem a vytváření animovaných příběhů. Příběhy lze exportovat k uchování
nebo k použití jinými uživateli. Rovněž byly rozšířeny existující nástroje Geovisto o pod-
poru času. Zejména nástroje reprezentující tematické mapy implementující animace, které
jsou vyvolány při časovém přechodu. Uživatelé se znalostí programování mohou vytvářet
nové tematické mapy jako nástroje Geovisto a pomocí nástroje pro práci s časem sami
implementovat animace do nové tematické mapy. Aplikaci Geovito s vyvinutým časovým
nástrojem lze integrovat do stávajících aplikací nebo ji lze používat jako samostatnou we-
bovou aplikaci.

Použití nástroje je demonstrováno na dvou vytvořených datových sadách, které simulují
reálné použití nástroje. První datovou sadou jsou nové případy nakažení Covid-19 v Česku.
Tato datová sada byla použita k testování studijního případu užití. Vizualizoval jsem data
pomocí kartogramu a použil jsem nástroj čas k efektivnímu studiu dat a identifikaci trendů
v nich (například korelace mezi denními novými případy a denními úmrtími). Druhým
datovým souborem jsou světové emise uhlíku, který testoval prezentační případ užití.

Vytvořený nástroj pro vizualizaci geografických časových řad bude v budoucnu dis-
tribuován jako součást Geovisto. Uživatelé jej tedy budou moci využít pro tvorbu svých
unikátních vizualizací nebo si mohou vyvinout vlastní nástroje a použít časový nástroj jako
základ pro vizualizaci a animaci nových tematických map.

Web Application for Graphical Visualization of
Geospatial Time Series

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Jiří Hynek, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Kryštof Rykala

May 13, 2021

Acknowledgements
I would like to thank Mr. Jiří Hynek for a great deal of support I have received throughout
the writing of this Master’s thesis.

Contents

1 Introduction 3

2 Visualization of Geospatial Data 4
2.1 Geospatial Data . 4

2.1.1 Components of Geospatial Data . 5
2.1.2 Representation of Geospatial Data 6
2.1.3 Storing Geospatial Data . 7

2.2 Visualizing Geospatial Data . 9
2.2.1 Mapping Data . 10
2.2.2 Thematic Maps . 11
2.2.3 Thematic Layers . 13

2.3 Visualizing Time . 14
2.3.1 Mapping Change . 15
2.3.2 Animated Maps . 16

3 Existing Tools for Geospatial Visualizations 19
3.1 Programming Libraries . 19

3.1.1 Libraries for Creating and Manipulating SVG/HTML 19
3.1.2 Charting Libraries . 20
3.1.3 Geospatial Frameworks . 20

3.2 Authoring Tools . 20
3.2.1 Microsoft Excel . 21
3.2.2 Tableau . 22
3.2.3 Grafana . 22
3.2.4 Mapbox Studio . 23

3.3 Geovisto . 23
3.3.1 Architecture . 24
3.3.2 Thematic Maps . 24

4 Analysis 26
4.1 Usage Examples . 26

4.1.1 Studying Data . 26
4.1.2 Presenting Data . 27

4.2 Functional Requirements . 27
4.2.1 Time Component . 27
4.2.2 Processing Generic Data . 28
4.2.3 Visualizing Change . 28
4.2.4 Animation Configuration . 29

1

4.2.5 Tool Usage . 29
4.3 Existing Tools . 29
4.4 Conclusion . 30

5 Design 31
5.1 Clock . 31
5.2 UI Components . 31

5.2.1 Control Panel . 32
5.2.2 Interactive Time-player Tool . 33

5.3 Stories . 33
5.4 Animating Change . 34

5.4.1 Animating Change of Entity’s Attribute 34
5.4.2 Animating Change in Relationship 35
5.4.3 Animating Camera Viewpoint . 36

5.5 Data Model . 36

6 Implementation 38
6.1 Used Technologies . 38
6.2 Tool Architecture . 38
6.3 Tool UI . 39

6.3.1 Interactive Time-player . 39
6.3.2 Sidebar . 41

6.4 Tool Core . 43
6.4.1 Time Initialization . 43
6.4.2 Time Clock . 43
6.4.3 Map State . 44
6.4.4 Updating Data . 44

6.5 Animations . 45
6.5.1 Camera Viewpoint . 45
6.5.2 Connection Map . 45
6.5.3 Marker Map . 47
6.5.4 Choropleth . 48

7 Testing 49
7.1 Tool Integration in Geovisto . 49
7.2 Use Cases . 50

7.2.1 Carbon Emissions . 50
7.2.2 Covid-19 . 52
7.2.3 Cyber Attacks . 52

7.3 Limitations . 52

8 Conclusion 54

Bibliography 55

2

Chapter 1

Introduction

Geospatial data has become an integral part of everyday life. The most common visual-
ization of geospatial data is a static thematic map. However, static maps visualize only
one time moment, or several of them aggregated together. Moreover, it is impossible to
visualize geographical phenomena such as the evolution of different geographical features
(e.g., the growth of carbon emissions or the spread of a virus) without time. Thus, in-
troducing the time into the visualizations is essential to enable the possibility of studying
and presenting geographical phenomena, or geospatial time series in general. Presenting
geospatial time series is broadly used by news portals. They use animated thematic maps
to present a story to the readers. On the other hand, studying the geospatial time series is
mainly done by experts. Data can be studied by comparing time moments or by observing
the evolution of the data in time.

The goal of this thesis is to design and implement a web application for visualizing
geospatial time series. The application would allow users to work with generic geospatial
data. They would be able to configure the visualizations and persist them for later use.
Once the visualizations are configured, the application would provide controls to manipu-
late the time effectively. The controls would allow users to study the geospatial time series
by navigating in specific time moments and comparing them. Users would be able to define
stories, which would make it possible to configure transitions after specific times. Configur-
ing the transitions would allow creating custom animations to present the geospatial time
series, essentially telling a story.

Chapter 2 lays down a fundamental theory for visualizing geospatial data, including their
temporal component. The theory also focuses on visualizing the change and possibilities
of visualizing it using animated maps. Existing solutions to visualize geospatial time series
are described in Chapter 3. This chapter describes programming solutions and authoring
tools that can be used. The chapter also describes the Geovisto application, which is used
for the final solution. Chapter 4 analyses real-world use cases of visualizing geospatial time
series. Using the analyzed use cases, I design a tool to solve the problem. The design is
the subject of Chapter 5. The implementation of the design is described in Chapter 6.
The developed solution was tested using real-world datasets to test the use cases defined
in the analysis. The testing is described in Chapter 7. Last but not least, the conclusion is
reached in Chapter 8.

3

Chapter 2

Visualization of Geospatial Data

This chapter presents the theory needed to understand what geospatial data is, how to
digitalize it, store it, and finally, how to visualize it. This chapter also provides an overview
of commonly used thematic maps used to visualize the geospatial data. Last but not least,
the chapter describes techniques used when visualizing geospatial data in time and takes a
closer look at animated maps.

2.1 Geospatial Data
To understand what geospatial data is, it is better first to define what data is in general.
Oxford dictionary defines data as facts or information, especially when examined and used
to determine things or make decisions. In short, data is facts that describe some phe-
nomenon. Nigel Walford [22] describes geospatial data in the following way: “Geography is
concerned with the description and explanation of things occurring on or near the Earth’s
surface, therefore, geospatial data is facts related to features that are spatially referenced
to this surface”. In more simple words, they are facts about the world around us. One
example of geospatial data is a simple blind map, Figure 2.1 shows geospatial data that
describes Earth’s continents.

Figure 2.1: Earth’s blind map of continents. Each continent is one geospatial datum as it
describes location and dimensions of the continent.1

Menno-Jan Kraak and Ferjan Ormeling [14] point out the main difference between the
geospatial data and other data. The geospatial data has a specific location in space (spatial

1https://pixabay.com/vectors/world-map-earth-global-continents-306338/

4

address). Therefore, such objects (e.g., roads, fields, or mountains) and phenomena can
be visualized (the visualization is called a map). These visualizations are necessary for
studying geospatial data.

2.1.1 Components of Geospatial Data

Menno-Jan Kraak and Ferjan Ormeling [14] define three elementary questions that one
can ask about geospatial data: What?, Where?, and When? (see (a) in Figure 2.2). By
answering these questions, Kraak and Ormeling divide geospatial data into a locational
component, an attribute component, and a temporal component. The locational compo-
nent refers to the position and dimensions (geometrical aspects) of the phenomenon, while
the attribute component refers to other (non-geometrical) characteristics of the geospatial
data. The temporal component refers to the specific moment in time, for which both, the
locational and attribute components, are valid. The components (answers to the questions)
compose the nature of an object (see (b) in Figure 2.2). All three types of components of
the object can have multiple characteristics (see (c) in Figure 2.2), for example, different
coordinate systems, multiple variables, or different kinds of time.

Figure 2.2: The components of geospatial data: (a) locational, attribute and temporal
component, and the questions that they answer (where, what and when); (b) the nature of
the object (object view); (c) detailed (multiple) characteristics of the data components. [14]

Locational Component

The locational component answers the Where? question, by giving the data its location
in space (spatial address)—this is done by georeferencing them [14]. Linda L. Hill [11]
defines the georeferencing as relating information to a geographic location. The informal
way of referring to locations is done in ordinary discourse using placenames. The formal

5

representations use the longitude and the latitude coordinates, or other spatial referencing
systems (e.g., footprints). Footprints refer to a specific spot or an area where something
is located. The footprints are the basis for calculating distance and direction and for
definitions of geographical relationships (e.g., overlap and containment). In order to take
full advantage of placename referencing, it is needed to translate formal representations to
informal ones. By translating the placenames to their formal representations, it is possible
to map them and see the geographic patterns and associations. The translation is done
by using gazetteers. Linda L. Hill [11] defines gazetteers as dictionaries of placenames
that have geospatial footprints for the named location. Placenames within a gazetteer are
unique and serve as the unique identifiers for gazetteer entries. An example of commonly
used placenames is country names and codes, which are defined by standard ISO 3166 and
are subject to Subsection 2.1.3.

Attribute Component

Attributes answer the What? questions: What is at a specific location and what are its
characteristics? [14]. The attribute data can be composed of either qualitative data or quan-
titative data. Quantitative data can be measured and expressed by numerical value (e.g.,
air pressure, height above sea level, income or election results). Qualitative data, on the
other hand, approximates and characterizes (e.g, language, soil characteristics, geological
formations). The attributes can change in time, changing the objects they describe [14];
visualizations of these changes are described in Section 2.3. The attribute component is
visualized by using thematic maps [14], these maps are the focus of Section 2.2.

Temporal Component

Without the temporal component, the maps can show only a single snapshot of data in
time. To be able to successfully study geographical processes or events, the time has to
be considered as well. The definition of time is not as simple as one might think. The
Oxford Dictionary defines time as the indefinite continued progress of existence and events
in the past, present, and future regarded as a whole. Kraak and Ferjan Ormeling [14] say
that geosciences are all about events and change and they define two types of events. An
event can be either continuous (e.g., changing temperatures at a meteorological station)
or discrete (e.g., municipal boundary changes). They also say that time can be measured
objectively or subjectively and provide the following examples: a train trip will take 1:30; a
lecture is scheduled for one hour, but could be experienced as shorter or longer. Time can
be considered either linear or cyclic [14]. An example of the linearity of time is society’s
system of counting years. Meanwhile, examples of cyclic times are returning days and
nights, or seasons. The visualization of data with the temporal component is the focus of
Section 2.3.

2.1.2 Representation of Geospatial Data

It is necessary to digitalize the real world geospatial data, in order to be able to work with
it and to store it on a computer. Basic geometric shapes can be used to describe real world
objects [14]. Markus Schneider [20] introduces spatial data types, which are used to model
geometry and to represent geometric data in database systems. The literature [14, 19, 20]
defines three spatial data types: point, line and area.

6

• Point is a location of a geographical object in space. The location is defined by
a coordinate pair (x, y). Points are used to represent size-less geographical objects
(e.g., cities, buildings, points of interest).

• Line (Figure 2.3) is a sequence of points representing its two end nodes and zero or
more internal nodes (vertices). The line can be composed using multiple (smaller)
line segments instead of only one line. A closed line forms a polygon, which is essential
in defining an area. Lines are used to represent connections in space or a movement
through space (e.g., roads, rivers, flight paths).

Figure 2.3: A line represented by two end points and three vertices. [19]

• Area (Figure 2.4) is represented by its boundaries. Area’s boundaries are defined by
one or more non-overlapping polygons. Areas are used to represent the partition of
space (e.g., state borders, lakes, district, forest).

Figure 2.4: An area represented by three non-overlapping polygons, that form the area’s
boundaries. [19]

2.1.3 Storing Geospatial Data

When storing, the geospatial data is usually divided into locational data, attribute data
and temporal data [14]. The locational data refers to the geometrical aspects. These
geometrical aspects can be described by the geometric shapes defined in Subsection 2.1.2.
On the web, the most widely used format for storing locational data is GeoJSON. GeoJSON
is also widely used in JavaScript web-mapping libraries, JSON-based document databases,
and web APIs [6]. The attribute data can be saved as a part of locational data. Another
approach is to use gazetteers and store the attribute and locational data separately. The
attribute data records are then mapped to their location using placename unique identifiers,
e.g., country code (ISO 3166 [2]).

The temporal data defines the validity of both the geospatial data and the attribute data.
The temporal component is described more in-depth in Subsection 2.1.1. The literature [14]

7

describes one problem with temporal data: It is not always clear what type of time is stored.
Most prevalent is the world time (the moment an event took place), but there is also the
database time (the moment an event was stored) and the display time (the moment an
event was visualized, although this type relates more to visualizations, it is not usually
stored).

GeoJSON

The RFC-7946 [6] defines GeoJSON in the following way: “GeoJSON is a geographical
data interchange format based on JavaScript Object Notation (JSON)”. It defines several
types of JSON objects (GeoJSON types) and how they are combined to represent data
about geographic features, their properties, and their spatial extents. GeoJSON uses a
geographic coordinate reference system, World Geodetic System 1984, and units of decimal
degrees. A simple example of GeoJSON can be seen below.

{
"type": "Feature",
"geometry": {

"type": "Point",
"coordinates": [125.6, 10.1]

},
"properties": {

"name": "Dinagat Islands"
}

}

The term GeoJSON object types refers to nine case-sensitive strings: Feature, FeatureC-
ollection, and seven geometry object types. The geometry object type refers to seven case-
sensitive strings: Point, MultiPoint, LineString, MultiLineString, Polygon, MultiPolygon,
and GeometryCollection. The main difference between the geometry object types, besides
GeometryCollection, is the type of the coordinates member. The differences between the
GeoJSON object types are as follows:

• Point, the coordinates member is a single position.

• MultiPoint, the coordinates member is an array of positions.

• LineString, the coordinates member is an array of two or more positions.

• MultiLineString, the coordinates member is an array of LineString coordinate ar-
rays.

• Polygon, the coordinates member must be an array of linear ring (closed LineString
with four or more positions) coordinate arrays. If the array contains more than one
linear ring, the first one must be the exterior ring, which represents the boundaries
of the polygon. Any other linear ring in the array must be an interior ring, which
represents holes within the boundaries.

• MultiPolygon, the coordinates member is an array of Polygon coordinate arrays.

8

• GeometryCollection has a member geometries, which value is an array of other
GeoJSON geometry objects or the array can be empty. The GeometryCollection type
does not have the coordinates member. Instead, the coordinates of all its parts belong
to the collection.

• Feature object represents a spatially bounded thing. Every Feature object is a Geo-
JSON object. It has a geometry member, which contains a geometry object (e.g.,
Point, MultiPoint, etc.). A Feature object also has an optional properties member,
which value is a JSON object (if set).

• FeatureCollection has a member features, which value is either an array of Feature
objects defined above or an empty array.

Country Codes

ISO 3166 [2] is a standard that defines internationally recognized country codes and codes
for their subdivisions. The defined codes can consist of letters and/or numbers (used for
the country’s subdivisions). The standard itself does not define the names of countries.

ISO 3166 consist of three parts [2]:

• The country codes can be represented either as a two-letter code (alpha-2), three-
letter code (alpha-3) or three-digit numeric code (numeric-3). Alpha-2 is recom-
mended as the general-purpose code, while alpha-3 resembles country name. The
numeric-3 can be useful if one need to avoid using Latin script. Examples of codes
for country of Switzerland, alpha-2 is CH, alpha-3 is CHE and numeric-3 code is
756.

• The codes for subdivisions are represented as the alpha-2 code for the country,
followed by up to three characters. Example: code for Riau province of Indonesia is
ID-RI and for Rivers province in Nigeria is NG-RI.

• The formerly used codes are four-letter codes (alpha-4).

The advantage of using country codes is saving time and reducing errors as it is unnec-
essary to use a country’s name, which needs to be localized. The examples of usages of
country codes are top-level domain names (e.g., “.fr” for France), identifying the country of
origin of the bank in money transfers [2].

2.2 Visualizing Geospatial Data
Maps are the most efficient and effective way to transfer spatial information [19]. “Where
do I find?” or “Where did it come from?” are both examples of questions one can ask about
geospatial data. The geospatial data can also be visualized in a non-map form. However,
the map provides the full picture by revealing spatial relations and patterns and offers the
user an overview of the distribution of particular phenomena [19]. Board [5] defines a map
as “a representation or abstraction of geographic reality. A tool for presenting geographic
information in a way that is visual, digital or tactile”.

Rolf A. de By [19] states that maps can also answer the question “what?” by informing
about thematic attributes (attribute component) of the geographic objects. However, maps
can answer these questions only in relation to the location. The last type of question that
can be answered is “when?” which is a subject of Section 2.3.

9

Rolf A. de By [19] divides maps in topographic and thematic maps. A topographic map
visualizes the Earth’s surface as accurately as possible. The visualization can include infras-
tructure (e.g., railroads and roads), land use (e.g., vegetation and built-up area), and other
geographical objects. Tennekes [21] says that thematic maps show spatial distributions
and that the theme refers to the phenomena shown, which is often demographical, social,
cultural, or economic. The thematic map types are listed and described in Subsection 2.2.2.

2.2.1 Mapping Data

When displaying data, it is necessary to map its dimensions onto the graphical visualization.
The chosen graphical visualization usually has a limited number of dimensions that they
can display, while data can have an unlimited number of dimensions. For example, data
records in a database are only limited by memory, and the same goes for JSON format,
which can have as many key-value pairs as necessary. Therefore, it is needed to map such
records with unlimited dimensions onto diagrams that have only a limited number of them.

As an example, let us take data from Table 2.1. When changing the mapping of the
dimensions and axis onto the diagrams, the communicated information of the diagram can
change (Figure 2.5). Hence, it is necessary to choose the most appropriate mapping, which
often requires domain knowledge and understanding of how the user will use the diagrams.

city product count
Prague shirts 5
Warsaw shirts 6
London shirts 7
Prague pants 3
Warsaw pants 8
London pants 4

Table 2.1: An example of mapping data dimensions onto diagram.

Figure 2.5: Two examples of mapping dimensions on axis of the chart.

Rolf A. de By [19] classifies the contents of a map in different basic categories: point
symbols, line symbols, area symbols, and text symbols. The appearance of these symbols
is characterized by their nature, meaning they change their visual appearance based on
the mapped data. Although the combinations of visual appearances of the symbols are

10

limitless, Rolf A. de By [19] uses categorization defined by Bertin [4]. He distinguished six
categories of visual variables: size, value (lightness), texture, color, orientation, and shape.
By using these variables, it is possible to make one symbol different from another. De
By [19] claims that visual variables stimulate the user’s perception of the map and says:
“What is perceived depends on the human capacity to see what belongs together (e.g., all
red symbols represent danger), to see the order (e.g., the population density varies from
low to high—represented by light and dark color tints, respectively), to perceive quantities
(e.g., symbols changing in size with small symbols for small amounts), or to get an instant
overview of the mapped theme”. Figure 2.6 shows an example of mapping data onto a
thematic map, where the attribute dimension is mapped to the size of the symbols. The
mapping of temporal dimension is described in Subsection 2.3.1.

Figure 2.6: A thematic map with symbols. [19]

2.2.2 Thematic Maps

Thematic maps represent the distribution of particular themes (attributes), and they pro-
vide a geographic reference to the theme represented [19]. Simply put, they visualize the
attributes in a location that they occur in.

This section describes mainly thematic maps that are used in the practical part of this
thesis. Besides diagrams described in this section, the literature [10, 14] mentions other
commonly used thematic maps such as isopleth maps, cartograms, isoline maps, dot maps,
heatmaps, and many more.

Choropleth Map

A choropleth map displays the area data. The difference in areas is visualized by using
different shading, colors, or patterns [10, 14]. Choropleths are generally suited for visualizing
ratios, percents, or rates (e.g., population density or per-capita income) as opposed to
absolute units (e.g., total dollars for an area) [10]. Data is often organized into class
intervals as shown in Figure 2.7. Chien [7] recommends to have 3 to 7 data classes.

11

Figure 2.7: An example of the classified choropleth map displaying results of presidential
elections.2

While grouping data into classes is still prevalent, unclassed choropleths offer a more
accurate representation of data [13]. In this type of choropleth, each unique value is dis-
played in a unique style (color, shade, pattern). The disadvantage of these maps is that
the user loses the sense of classification (since it is missing). It makes it harder to compare
the data and to classify them mentally [1]. The example of unclassed choropleth is shown
in Figure 2.8.

Figure 2.8: An example of the unclassed choropleth map displaying results of presidential
elections.3

Symbol Map

Symbol maps bind thematic variables to the visual properties of symbols overlaid on top
of the corresponding map features [16]. The symbols can be different in shape, orientation,
or color. Kraak [14] distinguishes between figurative and geometrical symbols. Moreover,
he explains that the figurative ones are used when associations might ease their recognition

2https://towardsdatascience.com/presidential-elections-forecast-19d366ea7945
3https://cartographicperspectives.org/index.php/journal/article/download/cp86-kelly/1576/

12

(domain-specific symbols like those used in meteorology). In contrast, geometrical ones are
used for more abstract phenomena. Sometimes, miniature graphs are used as symbols; they
can encode as many as 10 to 20 attributes [10].

Figure 2.9: An example of the map with proportional symbols, where the used symbols are
pie charts.4

The symbols can be scaled with respect to the value they display [1]. This variation
of symbol map is called proportional symbols map. An example of this thematic map
is shown in Figure 2.9. Few [9] points out that many proportionally scaled symbols do
not work well with maps (e.g., bars and lines), as it can be challenging for the user to
compare the symbols which are not beside one another. He also points out that many maps
do not have enough room to scale the symbols, which results in overlapping symbols and
unreadable maps.

Connection Map

A connection map shows relations between two locations in a map. The literature [10, 14, 23]
describes following characteristics of connection maps. Each connection consists of a source
node and a target node forming an edge. One or more source nodes can be linked to many
target nodes by edges. The edges can also depict direction by using arrow symbols. An
example of the connection map is showed in Figure 2.10.

Zhou [23] talks about a visual clutter problem in connections maps which is caused by
dense edges. The visual clutter can be reduced by techniques, such as filtering, sampling,
and clustering, but recently the most common clutter reduction technique has been edge
bundling.

2.2.3 Thematic Layers

Rinzivillo [18] provides an example and describes thematic layers in the following way.
Real-world data contains many different geographical objects. A region can be composed

4https://en.wikipedia.org/wiki/Proportional_symbol_map
5https://www.data-to-viz.com/story/MapConnection_files/figure-html/unnamed-chunk-2-1.png

13

Figure 2.10: An example of a basic connection map.5

of cities, road networks, buildings, hydrographic information, etc. GIS typically handles
this thematic division by organizing data in layers. Then, each layer contains information
about one thematic type. For example, one layer contains information about the road
network while another contains information about rivers and lakes. Although different
data is visualized using different thematic layers, they are integrated together using geo-
graphic locations. By using the geographic location, the layers can be overlayed or spatially
joined. Each layer comprises two types of data: locational data and attribute data (Sub-
section 2.1.1). The locational data describes the location of the objects, and the attribute
data specifies the characteristics of the data.

2.3 Visualizing Time
Most visualizations display only a single point in time, but to study geographical processes,
events, and phenomena, one should also consider time [14]. Examples of such phenomena
are tracing the diffusion of diseases or understanding the regionally varied impacts of global
climate change. By including the temporal component in the visualizations, the visualiza-
tions can help answer questions related to time. Kraak [14] uses MacEachren’s questions
concerning such geospatial data with a temporal component. MacEachren classified these
questions into seven query types.

• if? or whether?: addresses the existence of an entity

• when?: location of the entity in time

• how long?: duration of the entity

• how often?: the temporal texture of the entity

• how fast?: rate of change of the entity

• what order?: the sequence of entities

14

• do entities occur together?: synchronization

Figure 2.11: Map by Charles Joseph Minard in 1861, visualizing Napoléon’s invasion of
Russia in 1812–1813 in geographic and temporal dimensions. [14]

Good visualizations should be able to answer temporal questions defined. The litera-
ture [11, 14] gives Minard’s map, showing Napoléon’s invasion of Russia (Figure 2.11), as
an example of an innovative design that captures change. This map illustrates the power
of a space-time visualization to convey information and is praised by Edward R. Tufte [14].

2.3.1 Mapping Change

Mapping the time dimension means mapping the change. Both Rolf A. de By [19] and
Kraak [14] describe three types of changes in time: the change in geometry, the change
in an attribute, and combination of both. He also provides examples of these types of
changes. An example of changing geometry in time would be the evolving coastline of the
Netherlands (Figure 2.12), the location of Europe’s national boundaries, and the position of
fronts on weather maps. Examples of changes of attributes are changes of a parcel’s owner
or changes in road traffic intensity. Last but not least, the example for the combination of
both geometry and attribute changes would be urban growth, where the urban boundaries
expand and the land-use shifts from rural to urban. Besides these types of changes, Rolf
A. de By [19] defines one more type of change, the change in an existence of a feature, such
as an appearance or disappearance. A real-world example of this change is an iceberg that
disappears after it melts.

Given the defined types of change, the literature [8, 14, 19] distinguishes between three
temporal cartographic techniques: a single static map, series of static maps, and animated
maps:

• A single static map: Specific graphic variables and symbols are used to show the
change in order to represent an event. In Figure 2.13 (a) colors are used to represent
time. Darker colors visualize older and lighter colors parts of the city.

15

Figure 2.12: Series of static maps of evolving coastline of Netherlands. [19]

• Series of static maps: A single map in the series represents one snapshot in time.
Together, the maps visualize the process of change as shown in Figure 2.13 (b). The
change is perceived by the succession of individual maps depicting the situation in
successive snapshots. The number of snapshot images should be low as it is difficult
for a human to follow long series of maps.

• Animated map: The change is perceived to happen in a single image. One image
is a snapshot in time which represents one frame in an animation. The animation
displays several snapshots after each other, just like a movie with successive frames.
Figure 2.13 (c) shows a simulation of the animation where one image represents one
snapshot (a frame of the animation). The animated map can have either interactive
or non-interactive animations. One example of non-interactive animations would be
gifs (repeating sequence of images) often used on the web. The interactive animated
maps are the subject of Subsection 2.3.2.

2.3.2 Animated Maps

Animated maps have become increasingly popular in recent years and became widespread
through the Internet. Dodge [8] claims that, unlike static maps, animated maps seem suited
for visualization of the change between moments and that static maps are often insufficient
when it comes to representing time because they directly represent geographic behaviors
or processes. Animated maps can incorporate time explicitly. Therefore, they are better
suited for visualization of the change, and cartographers tend to exploit their potential.

The basic goal of the cartographic animation is the depiction of change. The liter-
ature [8, 14] divides cartographic animations into two subcategories: temporal and non-
temporal animations. Dodge [8] describes temporal animation as “animation that deals
with the depiction of dynamic events in chronological order and depicts the actual passage
of time in the world”. Examples of temporal animations are: changes in the coastline of
Netherlands (Figure 2.12), the spread of diseases and population growth [14]. The non-
temporal animation uses animation time to show the change in spatial relationships or to
clarify geometrical or attribute characteristics of spatial phenomena [14]. Examples of non-
temporal animations are: change in perspective of the map (e.g., from 2D map into 3D
map) or animation of camera motion (e.g., fly-bys or fly-throughs in 3D maps) [8].

16

Figure 2.13: Mapping change; example of the urban growth of the city of Maastricht: (a)
single static map, in which colors represent age of the city areas; (b) series static of maps;
(c) animation (each simulates represents one frame). [19]

Characteristics of Animations

Animated maps present information over time. Thus they have an additional representa-
tional dimension that can be used to display information [8]. Temporal animated maps
have a temporal scale. Dodge [8] defines the temporal scale as the ratio between real-world
time and animation time. He gives an example that five years of data shown in a 10-second
animation would have a temporal scale of 1:157 million. Most animated maps keep the
same temporal scale for the whole animation time. However, it is possible to build ani-
mations that vary their temporal scale as they are played (this brings focus on important
moments) [8].

Dodge [8] uses the claim of Andrienko and Gatalsky [3] that the best understanding
may be achieved when the animation is under user control, and the geospatial data can
be explored in a variety of ways. Dodge’s proposed solution is achieved by visualizing the
passage of time alongside the map through an interactive temporal lengend. The advantage
of interactive graphical temporal legend is that it can communicate at a glance both the
currently displayed moment (e.g., 3/5/1995 11:30) and the relation of that moment to the

17

entire dataset (e.g., beginning and end of the animation). Kraak [14] defines interactive
controls of the temporal legend, which are required as a minimum to use the animated
temporal maps effectively: forward, backward, slow, fast, and pause. Nowadays the ge-
ographical applications usually use media-player-like controls as the interactive temporal
legend [19].

Animation Variables

When designing an animated map, one needs to make sure that the viewer understands the
development or trend of the phenomena [14]. The literature [15, 17] defines the following
animation variables that can be changed in order to design the change in time. The anima-
tion variables are size, shape, position, speed, viewpoint, distance, scene, texture, pattern,
shading, and color.

• Size: When an area of a map (e.g., country or region) or a symbol (e.g., circle)
changes its size it represents a change in value. The smaller the size is, the smaller
the value is, and vice-versa.

• Shape: Parts of a map can change their shape. Animation can show the change of
country’s border in time or display a difference between different map projections (by
blending between their shapes).

• Position: By changing the position of a symbol in a map, it is possible to show the
change of location. An animation can depict a movement from point A to point B.

• Speed: The speed of a transition or movement can depict the rate of change.

• Viewpoint: A change in the viewer’s angle of view can highlight a particular part of
a map as part of an animation and bring the observer’s attention to parts of a map
with more significance.

• Distance: The change in the distance in which the viewer sees the scene may be
interpreted as a change in scale.

• Scene: Visual effects are used to indicate a transition in an animation from one state
to another.

• Texture, Pattern, Shading, Color: These variables are most commonly used to
depict a change in value. These may also be used to highlight a part of a map.

Pitfalls of Animated Maps

The literature [8, 14, 16] often mentions perceptual and cognitive limitations of the animated
maps. Menno-Jan Kraak [14] mentions the problem called cognitive overload. This problem
is caused when the viewer of the animations is overwhelmed by the number of frames they
need to process, and because of this, it makes it hard for the viewer to remember what he
saw. He also mentions the problem where the viewer may fail to notice important changes
during the animation. Dodge [8] points out the split attention problem. This problem
occurs when the viewer switches attention between the legend and the map, causing him
to miss important cues or information.

18

Chapter 3

Existing Tools for Geospatial
Visualizations

When it comes to visualizing geospatial data, including their temporal component, many
tools and solutions already exist. The creation of visualizations can be generally divided into
two categories based on their approaches. The first one uses a programming library and
the second one uses an existing authoring tool. While the programming libraries provide
the most flexibility, they require programming knowledge and more effort to construct
geospatial visualizations. On the other hand, the authoring tools usually do not require
programming knowledge. However, they provide less flexibility as the users can create only
geospatial visualizations that the specific authoring tool provides.

3.1 Programming Libraries
Programming libraries offer a highly customizable way to visualize geospatial data but come
with the requirement of having programming skills. There are many libraries for creating
thematic maps, the majority being developed in JavaScript for web development, and those
are the ones that this section focuses on. The programming libraries can be further dis-
tinguished into three subcategories: libraries that provide tools for creating SVG/HTML
elements, charting libraries, and geospatial frameworks.

3.1.1 Libraries for Creating and Manipulating SVG/HTML

Libraries for creating and manipulating SVG/HTML provide tools for creating the visual-
izations from scratch. Such libraries provide API for rendering SVG elements or drawing
on canvas. They are the most flexible but require the most programming skills and also
math knowledge. One popular option of such a library is D3.js1 (D3).

D3 provides functions for Data Object Model (DOM) manipulation and data transfor-
mation. Data is bound to the DOM and then visualized by generating SVG elements. D3
does not provide any thematic maps out of the box. Thematic maps are created by gener-
ating SVG for all the map elements. To work with geospatial data effectively, D3 provides
functions for handling GeoJSON or map projections tools (g3-geo, d3-geo-projection).

1https://d3js.org/

19

3.1.2 Charting Libraries

Charting libraries provide ready-made thematic maps. However, programming knowledge
is still required. A big disadvantage of these libraries is limited flexibility and map inter-
activity. There are generally two types of charting libraries based on the approach they
take. The first approach is imperative (e.g., HighCharts2) and the other one declarative
(e.g., Vega3, Nivo4). These libraries are easy to use, but they usually come with only basic
thematic maps (e.g., choropleths), and none of the mentioned libraries come with support
for time series.

3.1.3 Geospatial Frameworks

Geospatial frameworks often provide basic map tools (e.g., zoom and camera position).
When using such tools, one can focus on creating only the geospatial visualizations and
not the map itself. Examples of such geospatial frameworks are Leaflet5, Google Maps
API6 or OpenLayers7. All of them are based on the same principle of thematic layers
(Subsection 2.2.3). When one wants to create a thematic map, such as a choropleth, he
needs to implement a new layer that is displayed on top of a rendered base map. The
thematic layer can be created in other libraries such as the mentioned D3. These libraries
provide the most flexibility and functionality when working with geographical data, as they
allow creating pretty much any thematic map imaginable. Figure 3.1 shows a choropleth
made on top of Leaflet map.

An alternative to previously mentioned geospatial frameworks is Mapbox GL8. The dif-
ference in Mapbox GL is that the library uses WebGL. WebGL is used to render interactive
maps at a high frame rate. Although using WebGL can lead to performance issues as the
rendering is done on the client side. Mapbox GL does not come with support for time series,
but the users are able to implement the solution themselves. This is done using filters and
creating a custom control for the timeline. An example of a map with a trivial time-player
component is shown in Figure 3.2.

3.2 Authoring Tools
Authoring tools are already developed solutions. One of the advantages is that they usually
require no programming and math knowledge. However, there is a learning curve when using
these tools. The difference between authoring tools is how the users map the data onto
diagrams and in the configuration possibilities that the given tool provides. The authoring
tools usually come as a standalone application, so they offer minimal options for customizing
or extending them (e.g., the users can use only predefined thematic maps).

2https://www.highcharts.com/
3https://vega.github.io/
4https://nivo.rocks/
5https://leafletjs.com/
6https://developers.google.com/maps
7https://openlayers.org/
8https://mapbox.com/

20

Figure 3.1: The choropleth made on top of Leaflet map.9

Figure 3.2: The example of a thematic map created in Mapbox GL. The example has also
basic time-player control.10

3.2.1 Microsoft Excel

The simplest example of an authoring tool can be Microsoft Excel. It supports mapping
tabular data onto simple thematic maps, such as choropleth. Even though the creation of
simple static maps is easy, a significant disadvantage is their limited customizability. They

9https://leafletjs.com/examples/choropleth/
10https://docs.mapbox.com/mapbox-gl-js/example/timeline-animation/

21

usually offer only limited options, such as color change and a few thematic maps. Microsoft
Excel offers no support for visualizing the temporal component besides simple static maps.

3.2.2 Tableau

Tableau is a commercial authoring tool that allows generating visualizations such as dash-
boards or stylesheets. Tableau requires no programming knowledge to create data visual-
izations as it provides a wide scale of predefined thematic maps. Mapping data onto the
thematic maps is done in a drag and drop manner. Tableau also offers support for tempo-
ral animated maps (Figure 3.3), but the options are limited. However, the animated maps
allow to configure the mapping of a time dimension and choosing a time length of one step.

Figure 3.3: The example of Tableau animated map.11

3.2.3 Grafana

Grafana is an open-source web application for visualizing data using charts, graphs, and
alerts. While Grafana is mainly a tool for creating interactive dashboards, it also supports
creating thematic maps. However, thematic maps are not available out of the box but are
available via Grafana plug-in system. A disadvantage of Grafana is that the users cannot
upload their custom data, but the data is fed into Grafana via configured data source
(e.g., InfluxDB12). The data mapping is done via creating a query that can be configured
using Grafana’s graphical query creator. As mentioned, Grafana comes with no support for
thematic maps out of the box, and the same holds for creating animated maps. Although,
this functionality can be added using the plug-in system. One example of such a plug-in is
GeoLoop13, an example of Grafana’s panel using this plug-in is shown in Figure 3.4.

11https://youtu.be/7-sVGqwJyQ8?t=329
12https://www.influxdata.com/
13https://grafana.com/grafana/plugins/citilogics-geoloop-panel

22

Figure 3.4: The example of GeoLoop plugin.13

3.2.4 Mapbox Studio

Mapbox Studio is an application for creating custom map styles and managing geospatial
data. Users can create new layers on top of the map. It is possible to create custom
thematic maps, such as choropleth. Mapbox Studio supports various formats: Shapefiles,
GeoJSON, CSV, and more. Uploaded data is converted into vector tiles, which is the Map-
box format for handling data. Mapbox Studio includes a dataset editor, which allows the
users to manage and edit datasets. It is possible to reuse existing component styles. The
disadvantage of creating the thematic maps is that the users need to configure everything
by themselves. For example, when creating the choropleth, users need to specify the ranges
of all the classes. Unfortunately, Mapbox Studio can only be used for creating the compo-
nent styles. The component styles can be exported for use in Mapbox’s SDKs and APIs,
embedded into source code, or exported as images. Mapbox Studio does not support visu-
alizing geospatial time series, but the users can create the thematic maps and implement
the support for a temporal component using Mapbox GL.

3.3 Geovisto
Geovisto is a toolkit for generic geospatial data visualization. It is a compromise between
the two previously described approaches. It is primarily a programming library with the
possibility of being used as an authoring tool for preparing configurations. The main idea of
Geovisto is presenting the same data in different perspectives, but in one visualization with
multiple data layers [12]. The base layer uses the Leaflet library to provide an interactive
map layer. All of the other visual layers that are used for rendering thematic maps are
rendered on top of this base layer as SVG elements.

The application specifies polygons and their centroids of geographic regions. Each of
these polygons is associated with a unique identifier. The identifier of the polygon is used

23

in map layers’ configurations to map the data to specific geographic objects. By default,
the application uses the specification of world countries. The programmer can replace this
configuration with a custom GeoJSON file to specify custom regions and centroids of the
map.

The advantage of Geovisto is that it allows regular users to create geospatial visual-
izations with no programming knowledge and configure them using the web application.
Moreover, Geovisto itself can be extended by developing a custom extension, such as an
additional thematic map layer.

Geovisto offers limited support for visualizing geospatial time series. The possibility to
visualize geospatial time series can be done by filtering specific time moments using the
filter tool, which is then visualized.

3.3.1 Architecture

Geovisto has a modular structure. It consists of a core module and several tool modules.
The modular structure is achieved using events. The core dispatches events to which the
tools can subscribe. This way, each module is independent and has no dependencies on
other modules. The core is also responsible for handling the life-cycle of Geovisto, e.g., it
creates and initializes specified tools. It processes input data, initializes, and creates the
Leaflet map and its state. The tools represent controls, toolbars, map layers, but they can
also do additional data manipulations. The tools implement a standardized interface and
subscribe to events. They can be enabled or disabled and configured in a control panel in
the Geovisto application. Geovisto takes four types of inputs:

• Input data: The input data is mapped to dimensions of the visualizations. The
supported format is GeoJSON.

• Polygons and centroids description: Descriptions of map regions. The polygons are
used by choropleth to map the input data to its regions, the connection map uses the
centroids to map the nodes, and the marker map uses them to map the markers.

• Properties: Properties allow to programmatically change the behavior of Geovisto,
such as map state, provide own tools or redefine the behavior of map or tools.

• Configuration: The configuration allows regular users to override the default state of
the map or the tools. The configuration can be exported during the run time of the
application.

3.3.2 Thematic Maps

Currently, Geovisto provides three thematic maps (users can implement new ones as an
additional tool): choropleth, connection map, and marker map. All three of them enabled
at the same time are shown in Figure 3.5.

The thematic maps are customizable within the side panel in the Geovisto application
and can be enabled or disabled. This allows creating a unique view of the data according
to specific needs. The thematic maps use the polygons and centroids provided by the user.
This allows users to create visualizations of the whole world or only of regions of a specific
country. Since the thematic maps are implemented as Geovisto tools, the users can create
new thematic maps and use them in Geovisto.

24

Figure 3.5: The thematic map layers of the Geovisto application. At the moment Geovisto
has three integrated thematic maps: marker map, choropleth and connection map.

25

Chapter 4

Analysis

This chapter analyses the problem of visualizing geospatial time series from the user’s
perspective. The first section of this chapter introduces general use cases that potential
users might face. The second section analyses the problem from the technical standpoint,
defining the technical requirements to solve the use cases. Then, the last section of this
chapter looks at existing tools, whether and how they solve the requirements defined in this
chapter.

4.1 Usage Examples
This tool is aimed to be used by the general public and is not aimed at one specific group
of users. Therefore, it is not possible to identify specific personas. However, it is possible to
define two general use cases in which this tool will be used: presenting data and studying
data. Both of these use cases solve different problems and are used by different types of
user groups.

4.1.1 Studying Data

Studying of geographical phenomena is mainly done by experts in their particular fields.
For example, data representing import and export trends of the world countries would be
generally studied by economists. The evolution of carbon emissions would be a point of
study for meteorologists.

When studying the data, there is not such an emphasis on the animations. The main
focus is to be able to study and to compare the data effectively. Therefore, there is the
need for an interactive time-player that allows navigating through time and pre-processing
options of the data before they are visualized. Sometimes, the whole time range of the
data might not be relevant, and the users might want to select only a specific time range.
Other times, the users might want to aggregate the data to view the data in different time
granularities, such as days, weeks, months, and others.

The studying use case requirements can be summed up into having high configurability,
customizability, and practical tools for manipulating time. This allows creating a wide
variety of different visualizations of one dataset.

26

Real World Example

A real-world example is the evolution of global carbon emissions. Carbon emissions started
around the year 1750 in the UK. That is approximately 250 years of data. In this case, the
users need an easy way to navigate such a large amount of data to study the phenomenon
effectively. It is also vital for the users to limit the data to study only the interval that is
relevant for their studies.

4.1.2 Presenting Data

Another general use case is presenting the geospatial time series. One example of a user
group included in this use case is journalists. They will be used as an example to describe
this use case.

Journalists present facts. Presenting facts in the context of geospatial time series means
describing the state of some geographical phenomenon in time. In order to do this, jour-
nalists want to prepare a view of the data for each time moment and define transitions
between them. Defining view of the geospatial time series is essentially creating animation
that tells a story. Then, the generic use case for journalists is having some geographical
phenomenon that they want to present. Therefore, they set up and configure the thematic
maps and create an animation that tells a story. Since the main focus of this use case is
presenting the data in animations, it is essential to let the users configure the animation to
their specific needs. They might want to change the transition duration, time step length,
or shift the focus of the view to a different entity of the geospatial data (e.g., shift focus
from the USA to Europe).

Real world example

One example of visualizing geospatial time series is visualizing disease spread. Figure 4.1
shows a visualization of daily new cases of Covid-19 in Czechia. The time-player, located
in the top-left corner, manipulates and navigates through time. When the time-player is in
play mode, the time automatically flows, and the choropleth map changes its values of the
attributes of its entities based on the data in the particular time moment.

4.2 Functional Requirements
Having analyzed the use case examples described, I identified functional requirements that
are necessary to create an efficient tool. The requirements can be categorized in the follow-
ing way: time component, processing generic data, visualizing change, animation configu-
ration, and platform requirements.

4.2.1 Time Component

When working with the geospatial time series, the most important part is the temporal
component. It is needed to create the timeline from the data that the users want to
visualize. For example, when presenting data, the time should be in an ordered sequence,
and the animation played from time 0 till the end time. On the other hand, when studying
the data, it is convenient to choose the time moments manually, meaning the users can
switch through the time in an ad hoc manner.

27

Figure 4.1: The choropleth map with a time player of daily Covid-19 new cases in Czechia.
Picture taken from visualization published on the news portal—www.novinky.cz.1

Another common issue is that the users are not interested in the whole time period of
the data. Sometimes the users need or want to select a specific time range within the whole
time interval of the data. This provides more flexibility as they can filter out unnecessary
information.

4.2.2 Processing Generic Data

One of the assumptions when studying data is that the users already have the data. Let us
assume the data are in JSON format. The users usually want to do as little pre-processing
of the data as possible. Therefore, the tool should provide a way to map the dimensions of
the time and the thematic maps. An example of this can be additional parsing of the time,
such as choosing a specific time window of the data or just mapping the time dimension of
the data.

It is convenient to export and store the configuration of the set up visualizations and
animations. Once the configuration is exported, it can be used for setting up the visualiza-
tions and animations from the exported one. Thus, it is possible to share the configured
visualizations and animations between users of the application or store them and reuse
them.

4.2.3 Visualizing Change

One important aspect when animating the change is the transition itself. While the tran-
sition animation can be visually appealing, the main focus should be on the ability of the
transition to communicate what type of change happened.

In the context of geospatial data, the change is happening either within or between
geospatial entities. Two types of changes that can be identified are as follows:

• Attribute of an entity changes, for example, the population of a country changes
each year.

1https://flo.uri.sh/visualisation/4034499/embed

28

• Relationship between entities changes, the example of this is an import of a
product from country A to country B. Such a relationship can be named as A imports
to B. When country A stops importing to country B, the relationship stops existing,
and vice-versa.

4.2.4 Animation Configuration

In order to make the animation more interactive and descriptive, the users should be able
to configure it. For example, sometimes, there should be a focus on a particular part of
the map. A real-world example can be the spread of a disease that starts in some countries
and then spreads to the surrounding countries. In this case, the data are only in a specific
region of the map. Hence, it might be helpful to be able to specify camera viewpoints for
different time moments.

Furthermore, the users should be able to specify parameters of the transitions, such as
transition length or transition delay. That allows them to emphasize essential changes or
lower cognitive overhead if too many changes happen at once.

4.2.5 Tool Usage

The idea is to create a programming library that would allow users to create custom user
interfaces for geospatial visualizations. Furthermore, the library should be abstract and ex-
tensible to allow users to implement new thematic maps. This programming library should
also have support for working with time, implemented as a tool of the programming library.
The tool should provide UI components that would be used to configure it. Although, the
configuration could also be done programmatically by creating a configuration file.

4.3 Existing Tools
Programming libraries and geospatial frameworks introduced in Chapter 3 do not provide
the support for visualizing geospatial time series out of the box. However, it is possible
to use them and to create a custom-made solution that would satisfy all the specified
requirements in this chapter.

The authoring tools described in 3.2 offer little support for visualizing geospatial time
series. Tableu allows mapping of the time dimension and provides a time-player so that
the users can play the time series in a sequence. This time-player also allows selecting
a specific time instance. Grafana does not provide support for time series. However,
its functionality can be extended using plugins. Granafa’s plugin GeoLoop offers support
for visualizing time series. Overall, these two authoring tools offer very basic support
for the visualization of geospatial time series. The time-player functionality is limited, the
configuration of animations is also very basic, and offers minimal options. Mapbox Studio
comes with no time-player tool, and the users have to use Mapbox GL (which is a geospatial
framework) to develop a custom solution. Although all of the mentioned authoring tools
offer very limited support for visualizing geospatial time series, they allow creating static
maps to visualize specific time moments of the time series.

Geovisto also does not provide any support for visualizing geospatial time series. More-
over, as with other authoring tools, it provides only the possibility to create a static map for
a specific time moment. The Geovisto functionality can be extended using tools (plugins).
Users with programming knowledge are able to create custom tools by themselves.

29

4.4 Conclusion
This chapter introduced general use cases in which the tool for visualizing geospatial time
series can be used. The chapter also lists technical requirements, which were defined using
the general use case scenarios.

From the analysis of the existing tools, none would satisfy all the specified requirements.
Therefore, it is needed to develop a custom solution. Tableau is not open for extension, so
it is not possible to use it. Grafana can be extended using plugins. However, Grafana is
not suitable for creating custom visualizations for custom input data. Another possibility
is to use Geovisto. Geovisto provides UI for users to create custom visualizations. It is also
open for extension using custom tools, which work as plugins. Thus, making it possible
to create a tool for time support. And although it is possible to use programming library
(e.g., Leaflet or MapboxGL) by using Geovisto and developing custom tool for it, it is not
necessary to develop the solution from scratch.

30

Chapter 5

Design

In this chapter, I will design a solution to address the defined technical requirements from
Chapter 4. The core of the designed solution is a clock. The clock ticks in an interval and can
be controlled through the interactive time-player. Another UI component of the designed
solution is the control panel to configure parameters of the time and the animations. The
design also describes how the change should be animated, user-created stories, and the data
model of the solution.

5.1 Clock
The application needs an analogy to a clock. The clock ticks in a specified time interval,
updating its current time. The sequence of time instances, over which the clock ticks, can
be created as follows:

• A sequence of time instances: The time is created from timestamps of the data
records by putting them into an ordered sequence. The order is from the lowest
timestamp to the highest one. The step between the time instances does not have to
be of the same value.

• Real time: It takes the lowest and highest timestamp from the records and generates
all time instances in this interval. The users are able to select the granularity of the
instances (e.g., minute, hour, day, week) and an aggregation function to aggregate
the values in these generated time intervals. Using real-time in combination with the
aggregation function allows creating different views of the data, such as visualizing
the change daily or monthly.

The clock is also responsible for propagating the current time into other components,
such as the map that visualizes the data and the time-player component.

5.2 UI Components
The UI components provide users with controls to manipulate the clock and configure the
clock’s parameters, visualizations, and animations.

31

5.2.1 Control Panel

Some parameters of the application need to be configurable by the users. This should be
done from the central place in the application, such as a control panel. The configurable
parameters allow users to create custom animations or views that would suit their specific
use cases. Figure 5.1 shows a mockup of the whole application, with a control panel that
allows the users to configure the parameters defined in this section.

Figure 5.1: The mockup of the application. The mockup includes a control panel (for
configuring the thematic maps and the time clock), an interactive time-player and a map
layer.

Time Dimension

It is needed to map a time dimension from the input data. This can be done using a select
component that will list all dimensions of the data. The users should be able to choose
only the dimensions that can be converted to date type. Therefore, the input data needs
to be parsed and valid time dimensions identified, so that they can be listed.

Time Step Length

The time step specifies the time interval between each tick of the clock. This can be
overridden for a specific time moment when using stories, which is described in Section 5.3.

Animation Transition Duration

The animation transition duration defines how long the change from one state to another
state takes. The value can be overridden for a specific time moment when using stories.

32

Data Aggregation Strategy

This corresponds to the characteristics described in Section 5.1. The users can choose
between two values. If the real-time value is enabled, it generates the time instances between
the start and end times. The frequency of the generated time instances can be selected in
granularity select (minute, hour, day, week, month, year). Also, the aggregation function
can be selected. The data with the same time is aggregated based on the specified function.

Chart

It represents a logical value indicating whether a chart should be rendered or not. Users
can map the value dimension that is to be visualized in the chart. They can also choose
the aggregation function (sum or average) that is used to aggregate the values of the same
time. The chart provides another channel of communicating information about the data,
such as overall trends. As shown in Figure 5.2 the chart is rendered inside the time-player
tool.

5.2.2 Interactive Time-player Tool

The time-player tool is used to control the time and to work with the timeline so that the
users have more flexibility in examining specific time instances.

The time-player should have the following controls:

• play, pause: used to control the automatic flow of time

• slider representing the time sequence: used to select specific time instance and also
to reflect the selected time instance; the slider is interactive, and when playing, it is
changing with each tick of the clock

• slider to select the time range: used to select start and end times of the time series

Figure 5.2: The mockup of the time-player tool. The time-player consist of the main
interactive timeline which also displays chart. In the upper half is a time range selector.

5.3 Stories
The stories allow the users to configure the transitions of the animations for specific time
steps. This makes it possible for the users to tell a story with the created animations.

33

The stories are snapshots of customized views in specific time moments with configured
transitions into the following views.

When creating the story, the users should be able to save the current camera position.
The camera position consists of longitude, latitude, and zoom. If the transition is made
between the views with a different camera position, the camera transition of the view should
be animated. The users should be able to configure how long the animation takes and the
value of the time step. Last but not least, the users need a way to define how long the
transition animation of the thematic maps will take, including the transition delay.

Figure 5.3: The mockup of the time-player tool with the configuration panel managing a
story. The green triangles above the timeline indicate the times of the story snapshots.

Once the users specify all the parameters for the current view, they should be able to
capture the state of the view in the current time step. When the animation plays and the
time switches to a time step that contains a story snapshot, the transition animation will
fire off with the defined parameters.

5.4 Animating Change
The most important part is to animate the change between each time moment. As analyzed
in Subsection 4.2.3, two types of changes can occur: change in entity’s attribute or change
in the relationship between two entities. By designing the stories, another change needs to
be animated and that is the change of camera position in the map.

5.4.1 Animating Change of Entity’s Attribute

An attribute of an entity can be represented in numerous ways. To name a few, the value
can be represented by texture, pattern, shading, and color. All these are also defined as
animation variables in Figure 2.3.2. Therefore, animating the change of attribute means
animating the change of these attributes.

As an example, choropleth uses color to visualize attribute values. When the value of
an attribute changes, it is needed to animate the change of the color as shown in Figure 5.4.

34

Figure 5.4: The visualization of the change in a country attribute value. The figure on the
left presents the state before the change—all countries (Czechia, Germany, and Poland)
have an attribute with a value. The figure on the right shows the state after the change.
Germany has the same value, Poland has a lower value, and Czechia has no value. The
different value of color opacity represents the change.

5.4.2 Animating Change in Relationship

The relationship between two geospatial entities is generally visualized using a connection
map. The connection consists of source and target points. The connection between source
and target represent the relationship. The relationship can be: country A imports to
country B, cyberattack was done from country A to country B, the virus spread from
country A to country B, etc.

Figure 5.5: The visualization of the change in the relationship between countries. The figure
on the left presents the state before the change—the relationship between Germany and
Poland. The figure on the right (after the change) shows the change in the relationship—the
relationship between Germany and Poland stops existing, and Czechia has new relationships
with Germany and Poland.

There are two types of changes that can occur: the relationship starts existing or stops
existing. A simple example of these two types of changes is visualized in Figure 5.5. To
animate the change, it is needed to animate the creation and removal of the relationship.
That can be done by removing and adding the relationship to the visualization. One thing
that can help the users notice what changes occurred is to use the opacity property of the
connection. By fading out the connection on removal and vice-versa, the users see what
change is happening, thus lowering the cognitive overload.

35

5.4.3 Animating Camera Viewpoint

Since it is possible to define different camera viewpoints in the stories, it is important
to animate the change. Such animation is non-temporal (as defined in Chapter 2). By
animating the change, it lowers the cognitive overload, as the users have a better overview
of the camera’s current position. If the change was not animated, the users would have to
realize the new camera’s position themselves.

The camera position in a map consists of three parameters: latitude, longitude, and
zoom. The three parameters reflect the animation variables distance and viewpoint (defined
in Chapter 2). The most fitting animation to depict the change of viewpoint and distance
is fly to. The fly to animation directly communicates the change of the camera’s position.
At the same time, the users do not lose the context of where the camera currently points
to, which lowers the cognitive overload.

5.5 Data Model
When the users create a configuration of the application, they should be able to export and
persist it. The exported configuration is stored in a JSON file. The configuration should in-
clude all the configurable parameters set from the control panel specified in Subsection 5.2.1.
It should also include the configured stories.

The configurable parameters are stored as an object in the property named config-
urableParameters, each property of the object directly represents one configurable parame-
ter from Subsection 5.2.1. The example of the JSON object of the configurable parameters
is as follows:

"configurableParameters": {
"timePath": string,
"stepTimeLength": string,
"transitionDuration": string,
"storyEnabled": boolean,
"storyName": string,
"realTimeEnabled": boolean,
"granularity": "HOUR" | "DAY" | "WEEK" | "MONTH" | "YEAR",
"chartEnabled": boolean,
"chartValuePath": string,
"chartAggregationFn": string

}

The stories property is an array of objects where each object is one configured story.
Each story must have the name property (identifies the stories) and the states property
(holds the story’s states in an array). The story state consist of unique timestamp (time
property specifies for which time the state is used), camera viewpoint (the camera viewpoint
is defined by: zoom, latitude and longtitude) and last but not least, the transition param-
eters (stepTimeLength, flyToDuration, transitionDelay and transitionDuration).
The example of the JSON object of the stories is as follows:

"stories": [{
"name": string,
"states": [{

36

"time": string,
"zoom": number,
"latitude": number,
"longitude": number,
"stepTimeLength": number,
"flyToDuration": number,
"transitionDelay": number,
"transitionDuration": number

}]
}]

The exported configuration can be reused by importing it into the application. This
allows users to create the view and stories and export their configuration. The configuration
can be either persisted for later use or can be shared with other users.

37

Chapter 6

Implementation

The solution for visualizing geospatial time series is developed as a tool for the Geovisto
application. This chapter focuses mainly on the parts related to the tool and not the
whole Geovisto application. This chapter describes how the solution was implemented
from the description of the used technologies, the tool’s UI components, and the tool’s core
functionality. Last but not least, the animating of the thematic maps is described.

6.1 Used Technologies
JavaScript is the language used for the implementation. Although parts of the implemen-
tation are in TypesScript because at the moment of the development, the whole Geovisto
application was being refactored from JavaScript to TypeScript.

Geovisto uses the geospatial framework Leaflet to create the map and its controls.
Therefore, this technology is transitively used by this tool. In this case, the Leaflet is used
to create the UI control elements of the map and also, to some extent, in the Geovisto tools
representing thematic maps.

The interactive time-player component is implemented in React. The component is
added to the map as a Leaflet control. Library react-compound-slider1 is used to create the
time sliders, which work as time-player controls.

For the work with the time, date-fns2 library is used. This library provides date utility
functions for manipulating time.

D3.js (D3) is used for the creation of the thematic maps and their transitions. D3 is
a programming library that allows the creation of visualizations of data. More about how
D3 is used is described in Section 6.5.

6.2 Tool Architecture
The tool consist of three logical parts, the next sections describe each of them:

• Tool UI (Section 6.3): The tool consists of two UI components: the sidebar and
the time-player. The sidebar component allows users to configure the time tool and
initialize the time. The users are able to control the time through the time-player
component. The time-player component allows configuring the time range and the
stories.

1https://www.npmjs.com/package/react-compound-slider
2https://date-fns.org/

38

• Tool Core (Section 6.4): The core of the tool provides all the functionality that is
needed to visualize geospatial time series. The main part of the core is the time clock.
The clock ticks in an interval updating the Geovisto application data. When the data
changes other tools are notified and handle the change.

• Animations (Section 6.5): The visualization of the change of time is not encapsulated
in this tool. Each Geovisto tool is responsible for reflecting the change of the time
itself. The animations are implemented as parts of existing tools representing thematic
maps.

The overall architecture of the tool is shown in Figure 6.1. The class diagram visualizes
dependencies between classes of the tool. The class TimelineService serves as the internal
clock.

TimelineTool

+ initializeTimeline()
- calculateTimes()
- createData()

TimelineService

- timeState: TimeState
- tick()
+ toggleClock() TimelineComponent

TimelineControl Leaftlet.Control

AbstractLayerTool

TimelineSidebar

AbstractLayerToolTabControl

Figure 6.1: The overall architecture of the TimelineTool. The TimelineService serves as an
internal clock. The diagram visualizes dependencies between classes of the tool.

6.3 Tool UI
The main UI components of the implemented tool are the interactive time-player and the
sidebar. The interactive time-player component is used to control the time flow of the
animations and the sidebar is used to configure the time.

6.3.1 Interactive Time-player

The interactive time-player is the main component for controlling the time in the applica-
tion. It consists of four parts: time-player, range selector, chart, and story configurator.
The expanded time-player component with all of its functionality enabled is shown in Fig-
ure 6.2.

The interactive time-player is implemented as a React component. Both the time-player
and the range selector are created using react-compound-slider library, which provides un-
styled slider component. The sliders represent time axis, allowing users to select particular
times.

The React component is created and rendered in the TimelineComponent class. By
wrapping the React component, it is possible to use it in an object-oriented way. The

39

Figure 6.2: The interactive time-player with all its features enabled. It consists of four
parts: time-player, range selector, chart and story configurator.

TimelineComponent exposes property setters, which mirror the properties of the React
component. When a setter is called the React component is re-rendered. Moreover, by
encapsulating the rendering of the component into the class, it is possible to replace the
underlying component with custom solution. The TimelineComponent is used as a Leaflet
control, which makes it possible to add it into the Leaflet map.

Time-player

The time-player displays all the time instances in a time-player-like fashion. The time-
player allows for the manual selection of a specific time moment. On the manual selection,
the time is propagated to other parts of the application. The automatic time flow can be
controlled with the play and pause buttons. In the Figure 6.2 the play button is displayed
and the time flow is stopped. When the play is clicked, the button changes to the pause
button, and the automatic time flow is started.

The time-player also displays time labels for the time instances. The format of the time
labels is dependent on the real-time aggregation function specified in the sidebar.

Figure 6.3: The time-player for only one existing time instance. The time-player is disabled
and only shows the one time instance.

If only one time instance exists for the whole time, the interactive timeline is disabled
and only shows the one time instance. This edge-case is shown in Figure 6.3.

Range Selector

The time range selector allows users to select a specific time range. The UI component
displays the whole time range and the users can select two specific times. The two selected
times form the time range.

40

If users select a new interval, and the current time of the clock is outside of this interval,
the current time changes to either the lowest or the highest time from the range (depending
on which one is closer).

Chart

The users have the possibility to display additional information using a chart. The chart is
rendered in the background of the interactive time-player. D3 library is used to render the
chart as an SVG. The x axis of the chart is the time and y axis is the value. The value of
each of the time moments is displayed in a tooltip on hover (shown in Figure 6.4).

Figure 6.4: The time-player with enabled chart. The tooltip displays a value for the hovered
time instance.

Story Configurator

The story configurator is displayed when a story is enabled and selected. The configu-
rator consists of four number inputs: time step length, fly to duration, transition delay,
and transition duration. Users can create a new story state by selecting the specific time
instance, for which they want to create the story state. After selecting the time instance
and configuring the inputs the story state can be saved by clicking on the save button. On
save, the new state is saved (or updated) in the story configuration. Which time instances
have story state configured is indicated by green triangles above the time-player (can be
seen in Figure 7.4). Users can delete any of the existing story states by selecting the time
instance of the story state and clicking on the delete button.

6.3.2 Sidebar

The sidebar provides controls to enable and disable the timeline tool and also to configure
it. The configuration is done using a form in the sidebar. The final implementation of the
sidebar is shown in Figure 6.5.

The sidebar has a button Apply. This button is enabled if the form inputs are valid.
On click, the time in the application is initialized and the time-player component is created
and displayed.

Geovisto allows tools to implement custom sidebar tabs, which are added into the Geo-
visto sidebar (shown in Figure 6.5). The custom sidebar tab is implemented in Timeline-
ToolTabControl. This class extends an abstract class provided by Geovisto (AbstractLay-
erToolTabControl). The content of the sidebar is created in the getTabContent method.
By extending the class and implementing its methods, the sidebar tab is created and added
into the Geovisto sidebar.

41

Figure 6.5: The screenshot of the Geovisto application with the opened timeline tool sidebar
tab. The form in the sidebar is valid and the Apply button is enabled.

Configurable Values

The sidebar allows to configure the following values:
• time path: specifies dimension used to create the time, can be nested

• time step length: the value of time step length in milliseconds

• transition duration: the value of transition animation duration in milliseconds

• enable story: if enabled, users can select the story

• story: users can select an existing story or add a new one

• enable real-time: enables the real-time mode; if enabled, users can select the real-time
granularity

• real-time granularity: select that specifies the granularity; items of the select are hour,
day, week, month, and year

• enable chart: specifies if the chart is rendered in the timeline component

• chart value path: specifies dimension that is visualized in the chart

• chart values aggregation function: user can select the aggregation function that is
used to aggregate values with the same time; function can be sum or average

Mapping Time Dimension

The time path select is populated with dimensions of which all records can be converted
into valid JavaScript Date type. The valid time dimensions are identified by taking all
values of a dimension. The values are iterated and being converted to Date one by one. If
any of the conversions fail, the dimension is flagged as invalid and is not used.

42

Adding New Story

The story select is populated with the existing stories from the input configuration. Users
can also create a new story by inputting the name in the select input and clicking on “+”
button. This creates and selects a new story.

6.4 Tool Core
The time tool core implements the required functionality for handling time. The main
important part is the clock. First, it is needed to create the times from the input data.
This data is then used to initialize the clock. The clock, when started, ticks in an interval
and periodically updates the data, that is to be visualized.

6.4.1 Time Initialization

The time initialization is started when users click on the Apply button in the tool’s sidebar.
The initialization phase is responsible for creating the timeline and preparing the data, but
also for creating the clock and the tool’s control component.

Creating the Timeline

In order to create the timeline, first, it is necessary to get all the unique times from the
input data for the specified dimension. These unique times are ordered in an ascending
order to create the timeline. At this point, if the real-time is disabled the ordered sequence
of unique times is used. Otherwise, a time interval is created by taking the lowest and
the highest time. After that, the times within the interval are generated. The time step
between the times in the interval depends on the configuration of the real-time granularity
in the sidebar.

In both cases, the times in the sequence are represented by the number of milliseconds
since the Unix Epoch, this is done using Date.prototype.getTime(). The reason behind
that is that when working with the timestamps (e.g., comparing them, using them as keys
in objects, etc.) it is easier to work with a number than with a Date object.

Preparing Time Data

To effectively work with the input data records, the data records are preprocessed. The
main reason behind this is the performance, as it would be necessary with each tick of the
clock to filter the data records for the specific time moment.

The input data records are grouped by their unique time stamps and stored in a Map ob-
ject. The keys of the Map object are timestamps in milliseconds, the Map is more convenient
than array when accessing the data randomly (e.g., when manually switching time).

If the real-time is enabled, it is not possible to group the data records because the times
in the timeline can be different from the timestamps of the data records. In this case, let
us assume we have an ordered sequence of unique time stamps 𝐼 = (𝑖0, 𝑖1, .., 𝑖𝑛). The data
record is assigned to the timestamp 𝑖𝑛 if 𝑑𝑎𝑡𝑎 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∈ [𝑖𝑛, 𝑖(𝑛+1)).

6.4.2 Time Clock

The responsibility of the time clock is to keep the state of the time and to provide the
functionality to manipulate the clock. The state consists of the current time index, but the

43

state also has the start and end time index. The reason for storing the times as indexes is
that it is easier to manipulate the time state. The actual time is then found by extracting
the time from the specified index from the ordered sequence of times (this sequence is
described in Subsection 6.4.1).

The start and end times represent the time range that can be set from the time-player
component.

Time Tick

When the clock is started the time starts ticking. In the context of this tool, the tick of a
clock means incrementing the current time index by one. That essentially changes the time
to the next one in the time sequence. The clock ticks until it reaches the end time or until
the clock is manually stopped.

The periodicity of the clock time tick is determined based on the parameter time step
length, which is set in the sidebar. However, if the users set specific time step length for
the current time in the story, then, the time step length of the story is used as the timeout
before the next clock time tick.

6.4.3 Map State

The map state consists of the data that is currently used by the map and the tools. The
state is stored in the class GeovistoMapState. The state has two properties (that are
relevant to the time tool): filtered data and current data.

• Filtered data: Filtered data are processed input data. They are a superset of the
current data and are set on initialization of GeovistoMap and by calling updateData
method with options.redraw set to true.

• Current data: Subset of filtered data, is used for example by time tool when setting
current data for a specific time moment. The current data are used by some tools to
create transition animations.

6.4.4 Updating Data

When the current time of the clock changes, it is necessary to update the Geovisto data
and notify other tools. The update of data happens on each time tick and manual change
through the time-player.

Geovisto uses DataChangeEvent to indicate that its data in the GeovistoMapState
has changed. This event is used also in this solution, but the event includes additional
information, which is needed for creating the animations in other tools. The additional
information is:

• redraw: Specifies the nature of the data change. When redraw is set to true, the tools
rerender their visualizations from scratch. But when redraw is set to false it indicates
update mode.

• transitionDelay: Specifies the delay before the transition animation is triggered. It
can be overridden by defining different value in a story.

• transitionDuration: Specifies how long the transition takes, by default is 0. Users
can specify this value either in the sidebar or in a story.

44

By extending the DataChangeEvent it is possible to encapsulate the animations within
each specific tool. Section 6.5 describes how each thematic map layer handles this event.

6.5 Animations
All the thematic map layers subscribe to DataChangeEvent. Depending on whether the
event specifies redraw or not, the layers either redraw the whole layer or just update the
existing one. The difference between these two modes is subtle, but it is necessary to
distinguish between them to create fluent transition animations.

6.5.1 Camera Viewpoint

The change of the camera viewpoint can be set when using the stories. Each state of the
story can have a different camera viewpoint. When the next time instance has defined
a different camera viewpoint it is necessary to animate the change. If not animated, the
camera viewpoint would change instantly, which could lead to confusion what is the new
viewpoint.

The Leaflet map API has a function flyTo. This function allows animatedly changing
the camera viewpoint. The animation flies from the existing viewpoint to the new one. The
fly to animation is triggered when the time changes. The duration of the fly to animation
can be configured in the story configurator.

6.5.2 Connection Map

The connection map is implemented in the class ConnectionLayerTool. The connections
are represented by SVG paths rendered between the source and the target nodes.

The connection layer uses the edge-bundling algorithm to bundle the connections. The
bundling reduces visual clutter and is the responsibility of the class D3PathForceSimulator.
It takes the nodes and connections and prepares the list paths which can be bent by the
D3 force simulation.

The connection layer stores all currently rendered connection SVG paths in the property
connectionsPaths. This property is an object, the keys are IDs of the country nodes with
an existing connection. The currently rendered connections are used when updating the
connections.

Redraw

When redrawing, the connections and the nodes are created from the current data. After
that, the D3PathForceSimulator creates the SVG path definitions. Then, the paths are
iterated over, rendering each path using D3 and storing each path in the connectionsPaths
under the path ID.

After the paths are rendered, method run of class D3PathForceSimulator is called.
This method runs the simulator, bundling the connections (rendered paths).

Update

When the DataChangeEvent is triggered the new connections and nodes are created from
the current data. The transition duration and the transition delay (value is zero by default)
from the DataChangeEvent are used to configure the transition animations.

45

When updating the connections, the newly created paths are merged with the currently
rendered ones (stored in connectionsPaths). Although, if the paths that are currently
rendered do not exist in the newly created ones, their value is set to an empty array. The
reason behind this is to update the currently rendered connections correctly. If they do not
exist in the newly created ones, they are updated with an empty array, which essentially
removes them. This is a behavior of D3 which is used for rendering and updating the
connections.

D3.enter() returns elements that need to be added. This way it is possible to target
newly created connections and animate the addition. The animation is done in the following
way. The new element is added but it has set stroke-opacity to 0. This way the element
already exists and is rendered but is not visible. Then, the opacity is transitioned to value
0.4, creating a fade-in animation.

this.connectionsPaths[id].enter()
.append("path")
.attr("d", projectionPathFunction)
.attr("class", ‘leaflet-layer-connection ${id}‘)
.style("stroke-opacity", 0)
.transition()
.delay(transitionDelay)
.duration(transitionDuration)
.style("stroke-opacity", 0.4)

The removal of the connections is handled in a similar way. Calling D3.exit() specifies
the behavior for the connections that are to be removed. If the connection is to be removed,
the connection fades out and is removed only after the transition is finished. The fade out
transition is created by changing the opacity to 0.

this.connectionsPaths[id].exit()
.transition()
.delay(transitionDelay)
.duration(transitionDuration)
.style("stroke-opacity", 0)
.remove()

After the update of the connections, the D3ForceSimulator.run method is called to
bundle the rendered connections. The bundling is done while the connections are still in
transition (fading in or fading out). This way the user does not see the animation of the
bundling, but only a smooth transition between two states as the connections appear in the
correct position.

If there is a transition delay set, the D3ForceSimulator.run is set as callback in set-
Timeout. The setTimeout has the timeout set to the transition delay.

Animated Direction

The user can turn on (in the sidebar) animation of the direction of the connections. This
functionality is implemented using CSS styles. When the connection SVG is created, and the
animate direction option is enabled, a CSS property stroke-dasharray is set to “10 ,4”.
The stroke-dasharray is set on each SVG element representing the connections. This
style makes the connections appear as dashed lines. Then, the offset is incremented in

46

an interval. The interval timeout is set from the sidebar. By incrementing the offset, the
dashes in the dashed lines appear as moving. This depicts the direction of the connection
from the source node to the target node.

6.5.3 Marker Map

The marker map visualizes markers on the map using a donut chart. Each region of the
map has a marker (if the region has a value). The created markers are stored in the tool
state. The reason for this is that when updating the markers, it is also needed to update
the markers which may not exist in the current data. There are two types of markers:

• Base markers: The base markers are displayed on top of each map region. Their
values consist only from the values of the region they represent.

• Cluster markers: These markers are displayed instead of other markers they cluster.
The value of the cluster marker consists of the aggregated values of its child markers
(the markers of the cluster).

It is not necessary to create any new markers when updating, because all of the markers
are already created. However, it is needed to update the markers’ values and the displayed
donut chart. The update of the markers is done in the following order:

1. The values and donut charts of the base markers are updated. The base markers are
updated even if they are not currently visible because the cluster markers use their
current values.

2. All the cluster markers are flagged for an update. They are updated the next time
they are displayed. E.g., no cluster marker is displayed when the map is zoomed in
(no region is clustered), then, if the map is zoomed out the cluster markers are created
and displayed. If they would not be flagged for an update, they would not recalculate
their data and would not update their donut chart for the updated values.

3. All the currently visible cluster markers are updated immediately. It is necessary to
explicitly update the visible cluster markers even if they are flagged for an update.
If the cluster marker is flagged for an update, it is only updated the next time its
creation is triggered.

The update of the marker is done in two phases. First, its values and tooltip are updated,
then the donut chart is updated. The update of the donut chart is animated and is done
using D3 functions. The following code snippet shows the D3 functions that animate the
change of the donut chart:

this._svgGroup
.datum(Object.entries(this.options.values.subvalues))
.selectAll("path")
.data(pie)
.transition()
.delay(transitionDelay)
.duration(transitionDuration)
.attrTween("d", function(newData) {

47

const i = d3.interpolate(this._currentData, newData);
this._currentData = i(0);
return (t) => arc(i(t));

});

The transition function specifies that the change should be animated. The delay and
duration functions configure the transition parameters. The animation itself is defined
in the attrTween function. The attrTween function returns a tween for the attribute
transition, in this case the d attribute. The attribute d defines the SVG lines of the donut
chart arcs. The returned tween function gets called for each time step of the transition,
returning a new definition of the donut chart arcs. Each time step, the d attribute is
updated with the new arc values of the given time step.

6.5.4 Choropleth

The choropleth layer is created using L.geoJSON from the configured polygons. The choro-
pleth is classified and the difference in classes is visualized using different opacities for each
class. The choropleth classes are recalculated on each redraw. There are two possible modes
when creating the classes that users can choose in the choropleth sidebar:

• Scaling style: Supports four functions (median, absolute, relative, irrelative). In this
mode, the choropleth classes are created from the current time. That means that the
min/max is calculated on each time step only from the current data and not from the
whole time range.

• Custom min/max: Users can specify the min and max values used for calculating the
classes. This way it is possible to create classes that will reflect data within the whole
time range and not just the current time.

After creating the classes, each SVG item of the geoJSON layer is assigned fill and
opacity styles. On DataChangeEvent the choropleth items are updated. The difference
between redraw and update is in the delay and the transition. When redrawing the tran-
sition is done instantly, while when updating the transition parameters are specified in the
DataChangeEvent. The animation is done using CSS transitions. Each SVG item has set
CSS style property transition-property to “fill, fill-opacity”, this specifies which CSS
properties will use transitions. The transition itself is done in two steps. In the first step,
for each SVG item the transition-duration and transition-delay are set to the values
passed in the event’s options object. These two properties configure the transition. After
that, the fill-opacity is changed to reflect the current value.

48

Chapter 7

Testing

The testing of the developed tool has been divided into two phases. At first, I tested if
the tool works in the Geovisto application since the tool was developed as a Geovisto tool.
After that, I created three datasets with real-world examples and tested the tool itself.

7.1 Tool Integration in Geovisto
The Geovisto application is not a stand-alone app. It is developed as a NPM package
and will be distributed via the NPM repository in the future. Storybook1 was used to
test the Geovisto. Storybook allows the development of UI components and pages in an
isolation without the need to deploy the application. The Geovisto package exports React
component to use the Geovisto application. This React component allows configuring the
Geovisto through React properties. The configuration allows to specify tools that are used
by the Geovisto. An example of a configured React Geovisto component is as follows:

<ReactGeovistoMap
polygons={this.state.polygons}
centroids={this.state.centroids}
data={new FlattenedMapData(this.state.data)}
config={new BasicMapConfig(this.state.config)}
tools={new ToolsManager([

new TimelineTool({ id: "timeline" }),
new SidebarTool({ id: "sidebar" }),
new ChoroplethLayerTool({ id: "choropleth" }),
new MarkerLayerTool({ id: "marker-map" }),

])}
/>

In this examples, the polygons, centroids, data and config properties specify the
data users can input. All of those properties are connected with input fields that were
added into Storybook. Thus, making it possible to test the application with different
inputs. Geovisto can be configured to use different tools. The tools are specified in the
tools property. In this particular example, the timeline tool is used together with the
sidebar tool and two thematic maps—the choropleth and the marker map.

1https://storybook.js.org/

49

For testing purposes, I have successfully created the new Geovisto application in the
Storybook. The Geovisto application uses the time tool, which was configured through
the React properties. The configured Storybook was used to emulate the usage of the
solution as a standalone web application. A screenshot of the configured Storybook is
shown in Figure 7.1.

Figure 7.1: A screenshot of the Geovisto visualisation of world carbon emissions. The
visualization uses choropleth and marker layer. The time is active and set to the last time
instance.

7.2 Use Cases
The time tool was tested by using the use cases described in Chapter 4. For testing purposes,
I created three datasets. The carbon emissions and Covid-19 datasets are based on real
data, while the cyber attacks dataset was manually created.

7.2.1 Carbon Emissions

For the presentational use case, the carbon emissions dataset is applied. This dataset
includes carbon emissions since the year 1750. This dataset uses the choropleth layer to
show the value of carbon emissions and the marker layer to visualize the type of emissions
(e.g., solid fuel, gas fuel, etc.). The configured visualization, including the time-player
with the configured story, is shown in Figure 7.2. For this dataset, I created an animation
story. The story shifts the camera view to different parts of the world, depending on
which countries start to produce carbon emissions. For example, in 1750, only the UK was
producing emissions. However, at the end of the century, the USA also started to produce
emissions, so the camera shifts the focus to the USA. The created story was exported in
a configuration file, and it was evaluated that it is possible to share it and import it back
into the Geovisto application. Since there are different viewpoints for different times, the
camera performs the fly to animation. It was necessary to configure the transition delay

50

Figure 7.2: A screenshot of the Geovisto visualisation of world carbon emissions. The
visualization uses choropleth and marker layer. The time is active and set to the last time
instance.

and duration of the animations, as when the fly to animation was too fast, it was hard
to keep track of the camera position. I used the range selector to visualize only the 20th
century because, before the 20th century, there are not many countries producing emissions,
so there is a long period without “interesting” data.

Figure 7.3: A screenshot of the Geovisto visualisation of daily new Covid-19 cases in
Czechia. The visualization uses choropleth and has time enabled. The time-player dis-
plays a chart of daily deaths.

51

Change of Country Borders

The limitation I have encountered when testing the dataset was the change of country
borders or country existence. An example of this is the split of Czechoslovakia into Czechia
and Slovakia. This is the limitation of bigger datasets since, as of now, neither Geovisto nor
the time tool supports this dynamics. It is possible to provide the polygons and centroids
in the configuration, but it is impossible to swap them during the animations.

7.2.2 Covid-19

The Covid-19 dataset is used to demonstrate the studying use case. The dataset includes
daily Covid-19 data in the Czech regions from the beginning of the pandemic until the end
of April 2021. Since this dataset does not display world data, it was necessary to create
custom geographical polygons and centroids for the regions. The dataset includes data for
the territory of Czechia. Hence the custom polygons and centroids had to be created for
these regions.

The configured visualization is shown in Figure 7.3. The choropleth was configured to
display the number of new cases. No other tool is used but the choropleth and the time tool.
The goal of this dataset was to study the evolution of the pandemic in Czechia, identify
trends or correlations, and compare different periods of the pandemic. When testing, I tried
different aggregation functions. They allowed me to study daily, weekly, monthly and yearly
cases. By studying the data, I was able to identify a direct correlation between the total
number of daily cases and daily deaths. I was also able to identify the most affected regions.
As shown in the time-player chart (Figure 7.3), there were three peaks of the daily new
cases.

7.2.3 Cyber Attacks

This dataset was used during the implementation phase as this dataset has all the data
necessary to display all three thematic maps. Sources and targets of cyber-attacks are
visualized in the connection map. The state of the attacks is visualized using the marker
layer, and the number of attacks is visualized using the choropleth. When testing, all the
thematic maps were enabled, as shown in Figure 7.4. I also enabled the filter tool, which
allows focusing only on the specific state of the attacks. The visualizations worked as
expected, and there were no issues while working with the time tool.

7.3 Limitations
During the testing, I encountered a few limitations. Solving these limitations would im-
prove the time tool and the Geovisto application in general. The limitations and ideas for
improvements are as follows:

• When the users create some story (e.g., animations), the only way to share them is
to export the configuration. Other users can use this configuration, but they need to
import it into the Geovisto application. In some cases, the users might want to share
the animations with others who do not use the Geovisto application. This can be
solved by exporting the configured animations into one of the video formats or GIF
format.

52

Figure 7.4: A screenshot of the Geovisto visualisation of daily cyber attacks between world
countries. The visualization uses all Geovisto thematic maps—choropleth, marker map and
connection map. The time is enabled and the data are filtered using the Geovisto filter tool,
to display only mitigated attacks.

• When datasets span over a long time period, there is a problem with regions that
change their boundaries (e.g., Czechoslovakia split into Czechia and Slovakia). In
order to solve this, the users need to import more than one definition of polygons
and centroids. Then, these polygons and centroids could be swapped in specific time
moments.

• I noticed that when importing large datasets, there is a need to pre-process the data,
which could take a long time. The idea would be to move these computations from
the client-side to improve the performance and the user experience.

• Visualizing geospatial time series in animations, while effective, may not be the best
solution for all use cases. The multiple static maps might be a better solution when
comparing a few time instances. As of now, the users can open the Geovisto applica-
tion several times and configure each instance of the application as one static map.
It would be more convenient if the users could configure several map views in one
instance of the application.

53

Chapter 8

Conclusion

The goal of this thesis was to create a tool for visualizing geospatial time series. There
are many existing solutions to visualize geospatial data. Users can use existing authoring
tools. However, those have limited support for working with the geospatial time series. It is
possible to develop a custom solution for the visualizations, but programming knowledge is
needed. Therefore, the goal was to develop a tool that would allow users to create custom
visualizations of geospatial time series without programming knowledge.

I developed the solution as a Geovisto application tool. The developed Geovisto tool
allows users to create custom visualizations and animations of geospatial time series while
also being configurable for use with generic data. The tool provides necessary controls to
manipulate the time and to create animated stories. The stories can be exported to be
persisted or to be used by other users. Users with programming knowledge can develop
new thematic maps as Geovisto tools and use them with the time tool to implement the
animations in the new thematic map themselves. The Geovisto application, with the devel-
oped time tool, can be integrated into existing applications or can be used as a standalone
web application.

I have created two datasets to demonstrate the usage of the tool in real-world use cases.
The first dataset is daily new cases of Covid-19 in Czechia. This dataset was used to test
the studying use case. I visualized the data using choropleth and used the time tool to
effectively study the data and identify trends (such as the correlation between daily new
cases and daily deaths). The second dataset is world carbon emissions which tested the
presentational use case. During testing, I have encountered a few limitations such as slow
pre-processing of large datasets and not being able to change polygons’ GeoJSON definitions
when playing stories. However, they do not affect the solution negatively. I have also come
up with few improvements that would improve the user experience, such as an easier way
for the users to persist and share the configurations or provide different visualizations of
the time series (such as static maps).

I have successfully created a solution for visualizing geospatial time series. This tool
will be distributed as part of the Geovisto NPM package in the future. Thus, users will be
able to use it to create their unique visualizations or develop their own tools and use the
time tool as a base for visualizing and animating new thematic maps.

54

Bibliography

[1] Cartography guide: a short, friendly guide to basic principles of map design [online].
[cit. 2020-22-12]. Available at: https://www.axismaps.com/guide.

[2] The International Standard for country codes and codes for their subdivisions [online].
[cit. 2020-25-12]. Available at: https://www.iso.org/iso-3166-country-codes.html.

[3] Andrienko, N., Andrienko, G. and Gatalsky, P. Supporting visual exploration
of object movement. In: Proceedings of the working conference on Advanced visual
interfaces. 2000, p. 217–220.

[4] Bertin, J. Semiology graphique. Mouton, Den Haag. 1967.

[5] Board, C. Report of the working group on cartographic definitions. Cartographic
Journal. 1992, vol. 29, p. 65–69.

[6] Butler, H., Daly, M., Doyle, A. et al. The GeoJSON Format [RFC 7946]. RFC
Editor, august 2016. DOI: 10.17487/RFC7946. Available at:
https://rfc-editor.org/rfc/rfc7946.txt.

[7] Chien, T.-W., Wang, H.-Y., Hsu, C.-F. et al. Choropleth map legend design for
visualizing the most influential areas in article citation disparities: a bibliometric
study. Medicine. Wolters Kluwer Health. 2019, vol. 98, no. 41.

[8] Dodge, M., McDerby, M. and Turner, M. Geographic visualization: concepts,
tools and applications. John Wiley & Sons, 2011.

[9] Few, S. and Edge, P. Introduction to geographical data visualization. Visual
Business Intelligence Newsletter. 2009, p. 1–11.

[10] Harris, R. L. Information graphics: A comprehensive illustrated reference. Oxford
University Press, USA, 1999.

[11] Hill, L. L. Georeferencing: The geographic associations of information. Mit Press,
2009.

[12] Hynek., J., Kachlík., J. and Rusňák., V. Geovisto: A Toolkit for Generic
Geospatial Data Visualization. In: INSTICC. Proceedings of the 16th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications - Volume 3: IVAPP,. SciTePress, 2021, p. 101–111. DOI:
10.5220/0010260401010111. ISBN 978-989-758-488-6.

55

https://www.axismaps.com/guide
https://www.iso.org/iso-3166-country-codes.html
https://rfc-editor.org/rfc/rfc7946.txt

[13] Kelly, B. Review of Unclassed Choropleth Mapping. Cartographic Perspectives.
Nov. 2017, no. 86, p. 30–35. DOI: 10.14714/CP86.1424. Available at:
https://cartographicperspectives.org/index.php/journal/article/view/cp86-kelly.

[14] Kraak, M.-J. and Ormeling, F. Cartography: visualization of geospatial data.
Routledge, 2009.

[15] Ogao, P. J. and Kraak, M.-J. Defining visualization operations for temporal
cartographic animation design. International journal of applied earth observation and
geoinformation. Elsevier. 2002, vol. 4, no. 1, p. 23–31.

[16] Peña Araya, V., Pietriga, E. and Bezerianos, A. A Comparison of
Visualizations for Identifying Correlation over Space and Time. IEEE Transactions
on Visualization and Computer Graphics. IEEE. 2019, vol. 26, no. 1, p. 375–385.

[17] Peterson, M. P. Spatial visualization through cartographic animation: Theory and
practice. In: GIS/LIS. 1994, p. 619–628.

[18] Rinzivillo, S., Turini, F., Bogorny, V. et al. Knowledge discovery from
geographical data. In: Mobility, Data Mining and Privacy. Springer, 2008,
p. 243–265.

[19] Rolf, A., By, R. de et al. Principles of geographic information systems. The
International Institute for Aerospace Survey and Earth Sciences (ITC),
Hengelosestraat. 2001, vol. 99.

[20] Schneider, M. Spatial data types: Conceptual foundation for the design and
implementation of spatial Database systems and GIS. In: Proceedings of 6th
International Symposium on Spatial Databases. 1999.

[21] Tennekes, M. Tmap: Thematic Maps in R. Journal of Statistical Software. 2018,
vol. 84, no. 6, p. 1–39.

[22] Walford, N. Geographical data: characteristics and sources. John Wiley & Sons,
2002.

[23] Zhou, H., Panpan Xu et al. Edge bundling in information visualization. Tsinghua
Science and Technology. 2013, vol. 18, no. 2, p. 145–156. DOI:
10.1109/TST.2013.6509098.

56

https://cartographicperspectives.org/index.php/journal/article/view/cp86-kelly

	Introduction
	Visualization of Geospatial Data
	Geospatial Data
	Components of Geospatial Data
	Representation of Geospatial Data
	Storing Geospatial Data

	Visualizing Geospatial Data
	Mapping Data
	Thematic Maps
	Thematic Layers

	Visualizing Time
	Mapping Change
	Animated Maps

	Existing Tools for Geospatial Visualizations
	Programming Libraries
	Libraries for Creating and Manipulating SVG/HTML
	Charting Libraries
	Geospatial Frameworks

	Authoring Tools
	Microsoft Excel
	Tableau
	Grafana
	Mapbox Studio

	Geovisto
	Architecture
	Thematic Maps

	Analysis
	Usage Examples
	Studying Data
	Presenting Data

	Functional Requirements
	Time Component
	Processing Generic Data
	Visualizing Change
	Animation Configuration
	Tool Usage

	Existing Tools
	Conclusion

	Design
	Clock
	UI Components
	Control Panel
	Interactive Time-player Tool

	Stories
	Animating Change
	Animating Change of Entity's Attribute
	Animating Change in Relationship
	Animating Camera Viewpoint

	Data Model

	Implementation
	Used Technologies
	Tool Architecture
	Tool UI
	Interactive Time-player
	Sidebar

	Tool Core
	Time Initialization
	Time Clock
	Map State
	Updating Data

	Animations
	Camera Viewpoint
	Connection Map
	Marker Map
	Choropleth

	Testing
	Tool Integration in Geovisto
	Use Cases
	Carbon Emissions
	Covid-19
	Cyber Attacks

	Limitations

	Conclusion
	Bibliography

