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ABSTRACT
Technical textiles play a highly important role in today’s material engineering. In fibrous
composites, which are being applied in a number of industrial branches ranging from
aviation to civil engineering, technical textiles are used as the reinforcing or toughening
constituent. With growing number of production facilities for fibrous materials, the need
for standardized and reproducible quality control procedures becomes urgent.
The present thesis addresses the issue of tensile strength of high-modulus multifilament
yarns both from the theoretical and experimental point of view. In both these aspects,
novel approaches are introduced. Regarding the theoretical strength of fibrous yarns, a
model for the length dependent tensile strength is formulated, which distinguishes three
asymptotes of the mean strength size effect curve. The transition between the model of
independent parallel fibers applicable for smaller gauge lengths and the chain-of-bundles
model applicable for longer gauge lengths is emphasized in particular. It is found that
the transition depends on the stress transfer or anchorage length of filaments and can be
identified experimentally by means of standard tensile tests at different gauge lengths.
In the experimental part of the thesis, the issue of stress concentration in the clamping
has been addressed. High-modulus yarns with brittle filaments are very sensitive to
stress concentrations when loaded in tension making the use of traditional tensile test
methods difficult. A novel clamp adapter for the Statimat 4U yarn tensile test machine
(producer: Textechno GmbH) has been developed and a prototype has been built. A
test series comparing yarns strengths tested with the clamp adapter and with commonly
used test methods has been performed and the results are discussed. Furthermore, they
are compared with theoretical values using the Daniels’ statistical fiber-bundle model.
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1 INTRODUCTION

1.1 Motivation

The 20th century has witnessed an uprise of fibrous composites. Fibrous reinforce-

ment has been used both for reinforcing polymer and metal matrices and toughen-

ing ceramic matrices. As the production of high modulus and high strength fibers

– made of both ceramic and polymer materials – has grown in efficiency and thus

has become more economic, the supreme properties of fibrous composites have been

exploited by an ever wider range of industry branches. Having been discovered for

aviation and sport, the domain of fibrous composites expanded over energy and au-

tomotive and, finally has reached civil engineering, where the strength and stiffness

to weight and price ratio became interesting only at the end of the 1990s. There are

in general three fundamental parts determining the mechanical behavior of fibrous

composites:

1) fibers (reinforcing or toughening)

2) matrix (polymer, ceramic, metal)

3) interface between fibers and matrix

Even though there have been endless discussions on the hierarchy of priorities of

these three components, it is probably most apt to conclude that each one plays a

significant role with none of them being less important than the others.

For the most part, this thesis thoroughly examines the fibrous constituent sepa-

rately. The understanding of the complex behavior of the fibrous constituent alone

– fibers, bundles and yarns – provides much inside into the composite behavior and

is of great significance for simulating the composite mechanics. However, in the last

chapter, the interaction of short fiber bundles with cement-based matrix and the

resulting composite called glass fiber reinforced concrete (GFRC) are analyzed.

Being a brittle material whose strength is governed by the weakest link, high-

modulus fibers and fiber bundles exhibit various size-effects, which are in their ele-

mentary tendencies depicted in Fig. 1.1. On one hand, the tensile strength decreases

with the gauge length of the fibrous material. On the other hand, the strength de-
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Fig. 1.1: Demonstration of size-effect in the tensile strength of high-modulus fibrous

material: log-log plot of carbon filament and carbon yarn tensile strengths at various

gauge lengths.

creases with the number of fibers in the bundle. In particular, the strength of a

single fiber is on average about 20% higher than the strength of a multi-filament

yarn. As shall be revealed in the body of the thesis, this tendency only applies for

a range on gauge lengths and is violated above a transition threshold. Clearly, the

tensile strength of fibrous materials is not a trivial quantity to identify and a number

of mechanisms have to be understood in order to predict the tensile strength in a

range extrapolated beyond experimentally measured data.

1.2 Goal setting

The main goals of this work can be summarized as follows:

(1) Provide a probabilistic model of the strength of high-modulus fibrous material

for the complete range of gauge lengths.

(2) Address the clamping issue in tensile testing of fibrous yarns and propose an

enhanced clamp device that reduces stress concentrations in the clamp region.

(2) Analyze and assess the behavior of short glass fiber reinforced cement-based

matrix subjected to tensile loading from the probabilistic point of view.
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2 STRESS TRANSFER LENGTH IN YARNS

The stress transfer length is a property of fibrous yarns, which governs their size

effect behavior at longer gauge lengths, see Fig. 2.1. Therefore, it is highly important

to identify this property in order to describe the tensile strength for an arbitrary

length.

The key idea of the identification of the stress transfer length introduced in

this thesis is to exploit the fact that the in-situ filament-filament interaction affects

the length-dependent strength of the yarn (size effect curve). The effect of friction

between filaments becomes significant when the specimen length is greater than the

stress transfer length, i.e. the length at which a broken filament recovers its stress

within the gauge length. Such a yarn structure becomes fragmented into a chain-of-

bundles and behaves like a pseudo-composite and the slope of the size effect curve

is decreased, see Fig. 2.1.

2.1 Model assumptions

The only source of randomness considered in the present model is the variability in

local filament strength. Filaments respond elastically to tensile loading with brittle

failure upon reaching their strength. The local random breaking strain 𝜉 at a certain

Fig. 2.1: Tensile strengths of Toho Tenax 1600 tex carbon yarns as measured at

various gauge length.
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point over the filament length is considered to follow the Weibull distribution:

𝐹𝜉 (𝜀) = Pr {𝜉 ≤ 𝜀} = 1 − exp
[︂
−
⟨

𝜀

𝑠

⟩𝑚]︂
(2.1)

where 𝑠 and 𝑚 are the scale and shape parameter of the local distribution and 𝜀 is

the imposed axial strain. The spatial distribution of the random strength along a

filament has a length scale 𝑙𝜌 at which the strength variability diminishes [28].

With these assumptions for a single filament a qualitative profile of the mean

size effect curve of a fibrous yarn can be expected as shown in Fig. 2.2. Two types

of mechanisms of load transfer can be distinguished depending on the yarn length.

The two regions are separated by the effective bundle length (related to the stress

transfer length) 𝑙⋆
b at which the fiber fragmentation can occur. In the range of gauge

lengths 𝑙 < 𝑙⋆
b, the yarn behaves like a bundle of independent fibers [9, 8, 20, 24, 10]

and in the range 𝑙 > 𝑙⋆
b, it behaves like a chain-of-bundles [14, 12, 13].

The transition zone from a bundle range to chain-of-bundles range is of special

interest. The change in the slope of the size effect curve reveals the length 𝑙⋆
b at

which the fragmentation starts. The idea of the present thesis is to exploit this

fact in order to identify the effective bundle length 𝑙⋆
b within the tested yarn. The

identification procedure searches for the intersection between the two branches of

the mean size effect curve. The mathematical formulation of the two branches is

summarized in the following two sections.

2.2 Bundle of parallel independent fibers

The mean strength of a single Weibullian filament is prescribed as

𝜇𝜎f = 𝑠0 ·
(︃

𝑙0
𝑙

)︃−1/𝑚

· Γ
(︂

1 + 1
𝑚

)︂
(2.2)

with 𝑠0 and 𝑚 denoting the scale and shape parameters of the Weibull distribution,

respectively, and Γ(·) is the Gamma function [8]. The scale parameter 𝑠0 is related

to a reference length 𝑙0. As pointed out in [28] the above power-law scaling predicts

unlimited mean strength for 𝑙 → 0 and is therefore unrealistic. To impose an upper

bound on the strength, a statistical length scale in the form of an autocorrelation
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length of a random strength process along the filament has been introduced in [28].

With this in mind, the length-dependent mean filament strength given by Eq. (2.2)

can be formulated with the variable 𝑙𝜌. The resulting form then includes the function

𝑓𝜌(𝑙𝜌, 𝑙) as:

𝜇𝜎f = 𝑠0 · 𝑓𝜌 (𝑙𝜌, 𝑙) · Γ
(︂

1 + 1
𝑚

)︂
(2.3)

The refined scaling function 𝑓𝜌(𝑙𝜌, 𝑙) accounting for the correlation length 𝑙𝜌 has been

suggested as either

𝑓𝜌 (𝑙𝜌, 𝑙) =
(︃

𝑙

𝑙𝜌
+ 𝑙𝜌

𝑙𝜌 + 𝑙

)︃−1/𝑚

(2.4)

or

𝑓𝜌 (𝑙𝜌, 𝑙) =
(︃

𝑙𝜌
𝑙𝜌 + 𝑙

)︃1/𝑚

. (2.5)

Note that this length-scaling remains qualitatively unchanged for any arbitrary num-

ber of parallel filaments. Thus, in the sequel the length dependency of the scaling

parameter within the range 𝑙𝜌 < 𝑙b < 𝑙⋆
b (see Fig. 2.2) shall be represented by the

scaling function

𝑠b = 𝑠0 · 𝑓𝜌 (𝑙𝜌, 𝑙b) . (2.6)

In the limit of 𝑙 ≫ 𝑙𝜌, the scaling in Eqs. (2.4) and (2.5) recovers the classical

Weibull length-dependency 𝑓W (𝑙) = (𝑙𝜌/𝑙)1/𝑚. Such a decomposition of the length

Fig. 2.2: Mean size-effect curve in log-log scale with three distinguished asymptotes
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effect allows for a simple scaling of the mean value

𝜇𝜎1 = 𝜇𝜎0 · 𝑓𝜌 (𝑙1)
𝑓𝜌 (𝑙0)

(2.7)

that shall be used later in the identification procedure.

The cumulative distribution function of a random per fiber bundle strength of a

parallel set of filaments with independent identically distributed strength has been

Derived by Daniels [9]. The resulting bundle strength approaches the Gaussian

normal distribution as the number of filaments grows large (𝑛f → ∞). Based on

Daniels’ analysis, the expected asymptotic mean bundle strength 𝜇𝜎b with Weibull

fibers is related to the filament properties as

𝜇𝜎b = 𝑠b · 𝑚−1/𝑚 · 𝑐𝑚 with 𝑐𝑚 = exp
(︂

− 1
𝑚

)︂
(2.8)

with 𝑠b obtained using Equation (2.6). The standard deviation 𝛾𝜎b is given as

𝛾𝜎b = 𝑠b · 𝑚−1/𝑚
√︁

𝑐𝑚 · (1 − 𝑐𝑚). (2.9)

The decrease of the normalized mean bundle strength 𝜇𝜎b with respect to the fila-

ment strength 𝜇𝜎f is obvious from the comparison of Eqs. (2.8) and (2.2). In reality,

bundles have a finite number of filaments 𝑛f and the mean strength is thus only

approaching the Daniels’ asymptotic prediction. Both Smith and Daniels proposed

ways to decrease the gap between the strength distribution of finite sized bundles

and the asymptotic Daniels’ normal approximation by adjusting 𝜇𝜎b to 𝜇𝜎b,nf
[24, 10].

Both adjustments have a similar form so that only Smith’s formula is written below

for demonstration purposes:

𝜇𝜎b,nf
= 𝜇𝜎b + 𝑛

−2/3
f 𝑏 · 𝜆. (2.10)

In the case of Weibull filament distribution the parameter

𝑏 = 𝑠b · 𝑚−1/𝑚−1/3 exp [−1/ (3𝑚)]

and the coefficient 𝜆 = 0.996. This correction shifts the mean value of the bundle

strength. The standard deviation corresponding to 𝜇𝜎b given by Eq. (2.9) is a fair

approximation and does not need any further adjustment for a finite number of

filaments 𝑛f .
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2.3 Chain of fiber bundles

The strength of a yarn (chain of fiber bundles) is governed by the weakest bundle

and thus it is distributed as follows

𝐻𝑛b,𝑛f (𝜀) = 1 − [1 − 𝐺𝑛f (𝜀)]𝑛b , 𝜀 ≥ 0 (2.11)

with 𝑛b being the number of serially coupled bundles.

The distribution of the chain-of-bundles strength can have different shapes de-

pending on the ratio between the number of filaments 𝑛f and number of bundles

𝑛b [25, 27]. As known from the extreme value theory, the minimum of IID Gaus-

sian variables, here representing the strength of a chain-of-bundles with dominating

Gaussian distribution, approaches the Gumbel distribution [11] as 𝑛b → ∞

𝐻𝑛b,𝑛f (𝜀) = 1 − exp
[︃
− exp

(︃
𝜀 − 𝑏𝑛b,𝑛f

𝑎𝑛b,𝑛f

)︃]︃
(2.12)

where

𝑎𝑛b,𝑛f = 𝛾𝜎b√
2𝜔

,

𝑏𝑛b,𝑛f = 𝜇𝜎b,𝑛f + 𝛾𝜎b

[︃
ln (𝜔) + ln (4𝜋)√

8𝜔
−

√
2𝜔

]︃
and 𝜔 = ln (𝑛b). The mean value of yarn strength is then 𝜇𝜎y = 𝑏𝑛b,𝑛f − 𝜂 · 𝑎𝑛b,𝑛f

and the median equals 𝑏𝑛b,𝑛f +ln (ln (2)) ·𝑎𝑛b,𝑛f . Here, 𝜂 ≈ 0.5772 denotes the Euler-

Mascheroni constant. The strength distribution given in Equation (2.12) is very

accurate for a high number of filaments, 𝑛f , and a number of bundles greater than

approximately 300. For lower numbers of bundles 𝑛b ∈ (1; 300), a cubic regression,

which was proposed in [27], will be assumed for the mean chain-of-bundles strength.

Using the constants introduced in Eq. (2.11), the cubic regression can be written as

𝜇𝜎y = 𝜇𝜎b − 𝛾𝜎b

(︁
−0.007𝜔3 + 0.1025𝜔2 − 0.8684𝜔

)︁
, (2.13)

where 𝜇𝜎b and 𝛾𝜎b are the bundle mean strength and standard deviation, respec-

tively. This approximation describes the transition from the mean value of the

Gaussian distribution of a single bundle to the mean value of the Gumbel distribu-

tion of a chain-of-bundles.
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For the considered types of multifilament yarns consisting of several hundreds of

filaments and a low number of bundles per meter (approximately 5 for AR-Glass,

2400 tex) it is sufficient to use the approximating Eq. (2.13) or the median value

obtained from:

𝜎50
𝑦 = 𝜇𝜎b,nf

+ 𝛾𝜎bΦ−1
(︁
1 − 0.51/nb

)︁
. (2.14)

Here, Φ−1 (·) stands for the inverse standard Gaussian cumulative distribution func-

tion (percent point function) and 𝑛b = 𝑙y/𝑙b stands for the number of bundles the

yarn consists of.

2.4 Evaluation of the effective bundle length

Let us assume that two sets of strength data 𝜇test
𝜎b

and 𝜇test
𝜎y are available for two

respective gauge lengths falling into the different length ranges defined in Sec. 2.1,

i.e. 𝑙test
b < 𝑙⋆

b and 𝑙test
y > 𝑙⋆

b. Apart from the known gauge lengths and the measured

mean strengths, the knowledge of the Weibull modulus 𝑚 and correlation length

𝑙𝜌 are required. The estimation of the effective bundle length 𝑙⋆
b is then performed

using the following procedure.

1. The mean strength 𝜇test
𝜎b

estimated as the average strength for the length 𝑙test
b is

substituted into Eqs. (2.8) and (2.10) in order to obtain the scaling parameter

𝑠b of the Weibull distribution for the tested length

𝑠b = 𝜇test
𝜎b

·
[︁
𝑚−1/𝑚 · c + 𝑛

−2/3
f · 𝑚−(1/𝑚+1/3) exp

(︂
− 1

3𝑚

)︂
𝜆
]︂−1

. (2.15)

2. With the scaling parameter 𝑠b at hand, the corresponding standard deviation

𝛾𝜎b is evaluated using Equation (2.9).

3. The obtained bundle characteristics are scaled to the unknown length 𝑙⋆
b using

Eq. (2.7) and exploiting the fact that the standard deviation (as well as every

quantile) scales identically with the mean value:

𝜇⋆
𝜎b

= 𝜇test
𝜎b

· 𝑓 (𝑙⋆
b)

𝑓 (𝑙test
b ) and 𝛾⋆

𝜎b
= 𝛾test

𝜎b
· 𝑓 (𝑙⋆

b)
𝑓 (𝑙test

b ) .

4. The chaining effect involved in the experimental data is now expressed using

Equation (2.13) for the unknown bundle length 𝑙⋆
b as

𝜇test
𝜎y = 𝜇⋆

𝜎b
(𝑙⋆

b) − 𝛾⋆
𝜎b

(︁
−0.007𝜔3

⋆(𝑙⋆
b) + 0.1025𝜔2

⋆(𝑙⋆
b) − 0.8684𝜔⋆(𝑙⋆

b)
)︁

(2.16)
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where 𝜔⋆ represents the logarithm of the number of bundles in series 𝜔⋆ =

ln
(︁
𝑙test
y /𝑙⋆

b

)︁
. The non-linear implicit Eq. (2.16) is then solved for 𝑙⋆

b using

standard root finding algorithms.

In order to demonstrate the identification procedure on real data, two test series

with different yarn types (carbon and AR-glass) have been conducted. The results

of the evaluation of the effective stress transfer length are described in the full length

version of this thesis.

2.5 Conclusions

The known aspect of length dependency of the tensile strength of fibrous yarns has

been investigated and a model has been developed with two distinguished modes of

mechanical behavior. These two modes represent the asymptotic behavior for short

and long yarns.

Based on this idea, a method has been proposed to identify the transition length

marking the ‘effective bundle length’. With the use of a set of standard yarn tensile

tests at different gauge lengths and an analytical model of the mean size effect curve,

the inter-filament frictional interaction can be indirectly identified with a moderate

effort.



14

3 TENSILE TESTING OF YARNS

3.1 Introduction

In order to validate any model of tensile strength of high-modulus multifilament

yarns, an appropriate tensile test device has to be used for the experiments. The

steadily growing application of technical yarns has evoked intensive efforts to im-

prove the quality and reproducibility of strength characterization for this type of

material [2, 22]. In contrast to traditional yarn materials like cotton and polyester,

high-modulus yarns made of glass, carbon, aramid or UHMPE are very sensitive to

stress concentrations due to their brittleness when loaded in tension. At the same

time, they exhibit a pronounced strength size effect due to the presence of randomly

distributed flaws along the yarn. Both these properties make the use of traditional

setups for yarn tensile testing difficult.

Two categories of methods that are currently being used for introducing the

tensile load into a high-modulus multifilament yarn in order to measure its ten-

sile strength are outlined below. The main advantages and disadvantages of these

commonly used methods are briefly summarized in Tab. 3.1.

3.1.1 Load transfer via deflection and friction

The first category uses mechanical fixing clamps and an additional deflection of the

yarn which introduces the load to the yarn through friction. The deflection reduces

the force which has to be taken up by the fixing clamps. An example of this method

is the test with capstan grips [2, 1, 3] where the yarn is deflected or twisted around

a spool, see Fig. 3.1a.

In some cases, the tests are semi or even fully automatic (Statimat 4U with

‘big bollards’, Textechno GmbH) which is a great advantage of this test method.

However, the method also has some disadvantages. Due to the radii of the deflection

elements, the minimum test length of the specimen is limited. Furthermore, the test

length of the yarn is not precisely defined since the force is introduced over a certain

length at the deflection elements. Since the yarn strength is length-dependent, the
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(a) (b)

Fig. 3.1: Yarn tensile test with capstan grips – Zwick Roell AG (a); embedding the

porters in resin (b) – specimens can be tested with any tensile test machine (ITA,

RWTH university, Aachen, Germany

test length needs to be known for the interpretation of the yarn tensile properties.

The main disadvantage, however, is the non-uniformly distributed stress among

filaments. This issue arises because filaments directly contacting the spool carry

more of the introduced load.

3.1.2 Load transfer via resin porters

The second category of testing methods uses resin blocks to embed the yarn end

and introduce the load (Fig. 3.1b) [22, 7]. The main advantage of these methods

is the relatively well-defined test length and the uniform load introduction at large

test lengths and the disadvantage is the very time consuming sample preparation

Tab. 3.1: State of the art for tensile test methods.

method gauge length load introduction specimen preparation

capstan grips not accurately defined non-uniform automatic

resin porters defined gauge length uniform time consuming



3.2. NEW TENSILE TEST DEVICE 16

which is also biased by the human factor.

3.2 New tensile test device

The newly developed tensile test device – a clamp adapter for the tensile test machine

Statimat 4U (referred to as ‘Statimat 4U adapter’ further in the text) – significantly

reduces the problem of stress concentration in the clamps. On the other hand,

compared to the current tensile test methods, it enables the testing of yarns with

precisely defined lengths so that the device can be used to measure the effect of yarn

length on its strength, see Chapter 2.

The basic concept of the test set up is the separation of the clamping function

from the stress homogenization function at the ends of the test length into two

pairs of separate clamps controlled by separate pressure air circuits. Thanks to

the introduction of the homogenizing clamp into the semi-automated Statimat 4U

machine, several test series with a large number of samples for varied test lengths

and yarn materials can be performed.

Tensile tests performed with the Statimat 4U adapter proceed in the following

steps:

1.) The outer ‘fixation clamps’ (FCs) clamp the yarn with the pressure 𝑝FC and

introduce a fraction of the axial prestress force 𝐹0 (see Fig. 3.2a).

2.) The yarn is laterally compressed by the inner ‘homogenization clamps’ (HCs)

with soft polyurethane contact layers with the pressure 𝑝HC which increases

the inter-filament interaction within the yarn cross-section.

3.) An additional axial force 𝐹HC is introduced by the homogenization clamp.

In general 𝐹HC is much smaller (e.g. 1/10) than the corresponding 𝐹FC (see

Fig. 3.2b).

3.) The axial load 𝐹FC is increased while keeping the difference between 𝐹FC and

𝐹HC constant, i.e. the additional axial force 𝐹HC is constant (see Fig. 3.2c).

This way the yarn is not damaged by the HCs defining the gauge length since the

majority of the tensile force is introduced by the outer FCs. The HCs combine

lateral pressure via a soft contact layer with a moderate axial force. The lateral
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Fig. 3.2: Statimat 4U adapter with the newly developed clamp (detail): (a)-(c)

phases of the tensile test with stress plotted along the tested yarn.

pressure 𝑝HC homogenizes the stress in filaments by intensifying the inter-filament

friction. At the same time, the additional axial force 𝐹HC increases the probability

of filament breaks within the gauge length and thus defines the gauge length. Note

that the gauge length is, contrary to the deflection-friction tests, defined as the

distance between the HCs. The deflection of the yarn around the bollards of the

standard Statimat 4U machine (placed between the HCs and FCs in the adapter

clamp version) has a similar function as the HCs — it takes up a part of the load

due to friction and can be used in addition to the HC to diminish damage in the

FCs.

In contrast to the standard clamping with bollards, the control parameters (e.g.

the additional axial force 𝐹HC introduced by the HCs, lateral pressure 𝑝FC and 𝑝HC

of the respective FCs and HCs) of the adapter clamps can be freely adjusted to

achieve optimal test setup for a given material. If, for example, a yarn consists of

brittle filaments with rather large cross-sections, they will be more prone to rupture

due to the lateral pressure of the homogenizing clamp which, in this case, should be

kept low in order to best balance the trade-off between homogenization of stresses

within the yarn cross-section and the initial filament damage.
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3.3 Conclusions

The newly developed tensile test device Statimat 4U adapter largely diminishes

stress concentrations in high-modulus yarns with brittle filaments and thus mea-

sures higher strengths than other tensile test methods. The full text version of

the present thesis provides a validation of the new clamp device by comparing its

performance and the performance of various reference methods. Furthermore, the

measured yarn strengths are compared with the theoretical yarn strength derived

in Chapter 2. Both the comparative experiment and the theoretical model confirm

the better performance of the new device with a high statistical significance.
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4 GLASS FIBER REINFORCED CONCRETE

4.1 Introduction

Glass fibers as reinforcement in cement-based matrix were first utilized in the 1960s

in Russia [5]. A further major step towards glass fiber reinforced concrete (GFRC

or GRC) is due to the company Owens Corning which developed alkali-resistant

(AR) glass by increasing the content (>16%) of zirconia [29] in the material. This

enhancement allowed for the production of a durable high-performance cement-based

composite, which has been used in various modifications in structural and military

engineering since [4, 21].

Each of the AR-glass fibers is a bundle of (typically 50 to 400) monofilaments

which are bonded together by a sizing material. When bridging a crack, these

filaments debond and rupture or are being pulled out and thus increase the toughness

of the cement-based composite [18]. Moreover, the short dispersed fibers increase

the first cracking stress and, above a critical volume fraction threshold, the ultimate

tensile strength. These features together with the enhanced durability make the

use of GFRC an alternative to traditional steel fiber reinforced concrete (FRC).

However, the bridging mechanism is far more complex than in FRC.

Once a crack forms in the matrix, the glass fibers bridging the crack act against

further crack opening by stretching and pullout. During this process, some filaments

are completely pulled out while others rupture. The mechanism exhibits random

features that can be divided into three scales:

1) At the micro scale, individual filaments within a bundle experience random

interface shear flow depending on their position within the bundle and thus

on the penetration of the matrix into the bundle core. A second source of

randomness at the micro scale is the fiber strength that is determined by the

weakest flaw in the material structure.

2) At the meso scale, individual bridging fibers are randomly oriented and po-

sitioned within the composite domain. This randomness causes variability in

the bridging force due to snubbing and non-uniform pullout lengths [17]
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Fig. 4.1: Multiscale approach to the modeling of GFRC: (a) composite crack bridge

with multiple filament bundles; (b) filament bundle; (c) single filament considered

independently from the bundle.

3) At the macro scale, the overall number of fibers bridging a crack is a random

variable that depends on the specimen geometry, fiber geometry and fiber

volume fraction.

A model that considers these sources of random effects and reflects the complexity

and unique bridging mechanism of the short glass fiber bundles does not exist to

date.

4.2 Probabilistic model

The semi-analytical probabilistic model is limited to uniaxial tensile loading of a

composite with discrete, planar matrix cracks and mechanically independent fibers.

The mechanical independence of fibers is provided if matrix deformations are much

lower than the fiber deformations i.e. the matrix stiffness 𝐸m(1 − 𝑉f) ≫ 𝐸f𝑉f is

much higher than that of the fibers. Here, 𝐸m and 𝐸f are the matrix and fiber

elastic moduli, respectively, and 𝑉f is the fiber volume fraction.
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4.2.1 Single filament

Let us assume that the bridging action of a single filament with embedded length

ℓe and inclination angle 𝜙c (with respect to the crack plane normal) is provided in

the form

𝑃f = 𝑓(𝑤, ℓe, 𝜙c, 𝜃𝜃𝜃r, 𝜃𝜃𝜃d), (4.1)

where 𝑃f is the bridging force, 𝑤 is the crack opening, 𝜃𝜃𝜃d is a vector of deterministic

parameters and 𝜃𝜃𝜃r a vector of random variables defined over the sampling space Ωr

with the corresponding joint distribution function 𝐺Ωr . The mean force transmitted

by a filament within a bundle bridging a matrix crack is

𝜇𝑃f (𝑤, ℓe, 𝜙c) = EΩr [𝑃f ] (4.2)

with EΩ[X] being the expectation operator applied to the random variable X defined

over the sampling space Ω with the joint probability distribution function 𝐺Ω(X),

i.e.

EΩ[X] =
∫︁

Ω
X d𝐺Ω(X). (4.3)

The variance of the filament bridging force is given by

𝜎2
𝑃f

(𝑤, ℓe, 𝜙c) = DΩr [𝑃f ], (4.4)

with DΩ[X] being the variance operator applied to the random variable X defined

over the sampling space Ω with the joint probability distribution function 𝐺Ω(X),

i.e.

DΩ[X] = EΩ[X2] − EΩ[X]2 =
∫︁

Ω
X2 d𝐺Ω(X) − EΩ[X]2. (4.5)

4.2.2 Filament bundle

Given the number of filaments in a bundle, 𝑛f , the force transmitted by the whole

bundle reads

𝑃b =
𝑛f∑︁

𝑖=1
𝑃f(𝑤, ℓe, 𝜙c, 𝜃𝜃𝜃r,𝑖, 𝜃𝜃𝜃d), (4.6)

where 𝜃𝜃𝜃r,𝑖 is the vector of parameters obtained as the 𝑖th sample from the sampling

space Ωr of the random variables 𝜃𝜃𝜃r. Since the inclinations and embedded lengths

of the bridging bundles will be random, the 𝜙c and ℓe parameters are to be treated
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as random variables. Their sampling space will be referred to as Ω𝜙. The mean

bridging force transmitted by a bundle has the form

𝜇𝑃b(𝑤) = EΩ𝜙Ωr [𝑃b] = 𝑛fEΩ𝜙Ωr [𝑃f ]. (4.7)

For the variance of the bundle bridging force, we have to use the law of total variance,

which states

D[𝑌 ] = E[D(𝑌 |𝑋)] + D[E(𝑌 |𝑋)]. (4.8)

When this law is applied to the present case, (𝑌 |𝑋) is substituted by 𝑃b(𝑤, ℓe, 𝜙c, 𝜃𝜃𝜃d|𝜃𝜃𝜃r).

We can alternatively express the conditional probability by explicitly writing the in-

tegration domain for individual statistical operators in the equation. With this

notation, the variability of the randomly oriented filament bundle with random em-

bedded length reads:

𝜎2
𝑃b

(𝑤) = EΩ𝜑
[DΩr(𝑃b)] + DΩ𝜑

[EΩr(𝑃b)]

= 𝑛2
f

(︁
EΩ𝜑

[DΩr(𝑃f)] + DΩ𝜑
[EΩr(𝑃f)]

)︁
.

(4.9)

where we do not explicitly write out the dependencies of 𝑃f on its parameters.

4.2.3 Multiple bundles

Let us now introduce the variable 𝑛b, which stands for the number of bundles

(chopped strands) bridging a matrix crack. In a composite with randomly dis-

persed fiber bundles, 𝑛b will be a random variable with sampling space Ωb. The

total force transmitted by all 𝑛b bundles can be written as

𝑃c =
𝑛b∑︁

𝑗=1

𝑛f∑︁
𝑖=1

𝑃f(𝑤, ℓe,𝑗, 𝜙c,𝑗, 𝜃𝜃𝜃r,𝑖𝑗, 𝜃𝜃𝜃d) =
𝑛b∑︁

𝑗=1
𝑃b,𝑗, (4.10)

where ℓe,𝑗 and 𝜙c,𝑗 are the 𝑗th samples from the Ω𝜙 sampling space, the vector 𝜃𝜃𝜃r,𝑖𝑗

is the 𝑖𝑗th sample from the sampling space Ωr and 𝑃b,𝑗 can be expressed as

𝑃b,𝑗 =
𝑛f∑︁

𝑖=1
𝑃f(𝑤, ℓe,𝑗, 𝜙c,𝑗, 𝜃𝜃𝜃r,𝑖𝑗, 𝜃𝜃𝜃d). (4.11)

The mean force resulting from the bridging action of randomly dispersed short fiber

bundles has the form

𝜇𝑃c(𝑤) = EΩbΩ𝜙,Ωr [𝑃c] = EΩb [𝑛b] 𝜇𝑃b(𝑤)

= EΩb [𝑛b] 𝑛f EΩ𝜙Ωr [𝑃f ].
(4.12)
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Applying the law of total variance according to Eq. (4.8) with 𝑃c(𝑤, ℓe, 𝜙c, 𝜃𝜃𝜃r, 𝜃𝜃𝜃d|𝑛b)

substituted for (𝑌 |𝑋), the variance of the crack bridging force 𝑃c is obtained as

𝜎2
𝑃c(𝑤) = DΩbΩ𝜙Ωr [𝑃c] = DΩbΩ𝜙Ωr

⎡⎣ 𝑛b∑︁
𝑗=1

𝑃b,𝑗

⎤⎦
= EΩb

⎡⎣DΩ𝜙Ωr

⎛⎝ 𝑛b∑︁
𝑗=1

𝑃b,𝑗

⃒⃒⃒⃒
⃒⃒𝑛b

⎞⎠⎤⎦+ DΩb

⎡⎣EΩ𝜙Ωr

⎛⎝ 𝑛b∑︁
𝑗=1

𝑃b,𝑗

⃒⃒⃒⃒
⃒⃒𝑛b

⎞⎠⎤⎦ (4.13)

Exploiting the independence of 𝑃b and 𝑛b, Eq. (4.13) can be simplified to

𝜎2
𝑃c(𝑤) = EΩb

[︁
𝑛b · DΩ𝜙Ωr (𝑃b)

]︁
+ DΩb

[︁
𝑛b · EΩ𝜙Ωr (𝑃b)

]︁
= EΩb [𝑛b] · DΩ𝜙Ωr [𝑃b] + DΩb [𝑛b] ·

(︁
EΩ𝜙Ωr [𝑃b]

)︁2
.

(4.14)

In order to evaluate the statistical moments of the bridging response, the distribution

functions of the random variables need to be known. The derivation of distribution

functions for individual random variables is out of the scope of the present publica-

tion so that we refer to [23] for the distribution of the strength of a brittle fiber in

composite and the bond strength distribution. The distribution of the number of

dispersed short fibers bridging a planar matrix crack is in detail dealt with in [26].

4.3 Discrete model

The discrete model developed by John E. Bolander at UC Davis [6] is introduced and

used as reference for the probabilistic model described above. In the discrete model,

fiber and matrix phase models are both based on a lattice model. The matrix phase

is represented by a set of randomly distributed nodes which are interconnected

by springs and kinematic constraints. This nodal set for the matrix phase has

lattice topology and material properties by the Delaunay/Voronoi tessellations which

enable the discretized matrix phase to behave in an elastically homogeneous fashion

(Fig. 4.2a). As shown Fig. 4.2b, the matrix element is defined according to the

rigid-body-spring concept [6]. The linear and rotational zero-size springs are formed

at the centroid 𝐶 of the area 𝐴𝑖𝑗 of the Voronoi facet common to nodes 𝑖 and 𝑗.

The spring set is constrained to nodes 𝑖 and 𝑗 via rigid arm constraints.

The fiber phase can be discretized within the computational domain irrespective

of the background lattice representing the matrix [15]. A fiber element is defined
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wherever a fiber passes through the Voronoi facet 𝐴𝑖𝑗 associated with a matrix

element (Fig. 4.2c). In the semi-discrete fiber model, a linear zero-size spring for

the fiber reinforcement is positioned at the intersection point I and aligned with

the fiber path. The spring is linked to the associated two nodes 𝑖 and 𝑗 through

rigid-arm constraints similar to the rigid-body-spring construction of the matrix

elements. The semi-discrete modeling of fibers is computationally efficient, contrary

to the fully-discrete fiber modeling in which a fiber is discretized as a series of the

frame elements with additional nodal degrees of freedom and its elements are linked

to the associated nodes via an ordinary bond link. This feature of the semi-discrete

fiber model enables simulations with large numbers of fibers.

Fig. 4.2: Lattice discretization of fiber reinforced concrete: (a) Delaunay/Voronoi

tessellations of material domain; (b) matrix element 𝑖𝑗 defined by facet centroid 𝐶;

and (c) fiber element associated with intersection point 𝐼.

4.4 Computational example

Having formulated the modeling framework for GFRC in two alternatives, we can

proceed to a computational example, which compares the two approaches. Both

models require an independent micromechanical model of a fiber bridging action.

For this purpose, we apply the analytical form due to [19] with snubbing and spalling

effects according to [16]. For reasons of brevity and readability, we simplify the
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Fig. 4.3: Analytical model of a single fiber bridging action due to Naaman et al.

[19].

general expressions by assuming a perfectly plastic (frictional) bond with infinite

initial stiffness and constant bond strength. With these assumptions, the resulting

form for a filament bridging action in the debonding phase reads

𝐹f,deb(𝑤, 𝜎u = ∞) = 𝐴f

√︃
2𝐸f𝜏𝑤

𝑟
· exp (𝑓𝜙c) · (cos 𝜙c)𝑠 (4.15)

with 𝐸f , 𝐴f and 𝑟 being the filament modulus of elasticity, cross-sectional area and

radius, respectively, 𝜏 denoting the bond strength, 𝑓 the snubbing coefficient and 𝑠

the spalling coefficient. When the fiber is fully debonded along the embedded length

ℓe, the pullout stage starts. Again, for reasons of brevity, we ignore any hardening

or softening during the pullout stage and write the bridging force during the pullout

stage simply as

𝐹f,pull(𝑤, 𝜎u = ∞) = 2𝜋𝑟𝜏(ℓe + 𝑤0 − 𝑤) · exp (𝑓𝜙c) · (cos 𝜙c)𝑠 (4.16)

with 𝑤0 being the crack opening at the transition between the debonding and pullout

stage. It can be obtained by formulating the continuity condition

𝐹f,deb(𝑤0) = 𝐹f,pull(𝑤0) → 𝑤0 = 2ℓ2
e𝜏

𝑟𝐸f
. (4.17)

In both Eq. (4.15) and Eq. (4.16), the assumption was that fibers have an infinite

strength 𝜎u = ∞. If we now include the possibility of fiber rupture, we have to
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Fig. 4.4: Computational example performed with the present modeling framework:

(a) single filament bridging responses (gray curves) sampled from the sampling space

of random variables (𝜏 ∼ uniform distribution between 0.01 and 0.4 MPa and 𝜎u ∼

Weibull distribution with shape 𝑚 = 5 and scale 𝑠 = 1.75 GPa) and mean filament

response (black curve); (b) filament bundle responses sampled from the sampling

space of random variables (𝜙c ∼ sin(2𝑥) distribution and ℓe ∼ uniform distribution

between 0 and 9 mm) and mean bundle response (black curve).

multiply the fiber force in the debonding phase by 𝐻(𝜎u − 𝜎f), where 𝜎f denotes the

fiber stress and 𝐻(·) the Heaviside step function defined as

𝐻(𝑥) =

⎧⎪⎨⎪⎩ 0 : 𝑥 < 0

1 : 𝑥 ≥ 0.
(4.18)

The filament force in the debonding stage then becomes

𝐹f,deb(𝑤) = 𝐴f

√︃
2𝐸f𝜏𝑤

𝑟
· exp (𝑓𝜙c) · (cos 𝜙c)𝑠 · 𝐻(𝜎u − 𝜎f) (4.19)

with

𝜎f = 𝐹f,deb(𝑤, 𝜎u = ∞)
𝐴f

. (4.20)

In a similar manner, the pullout force has to be multiplied by a Heaviside function

which ensures that fibers have not ruptured at their peak stress during the debonding

so that

𝐹f,pull(𝑤) = 2𝜋𝑟𝜏(ℓe + 𝑤0 − 𝑤) · exp (𝑓𝜙c) · (cos 𝜙c)𝑠 · 𝐻(𝜎u − 𝜎f,max), (4.21)
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where

𝜎f,max = 2𝜋𝑟𝜏ℓe

𝐴f
. (4.22)

The complete filament bridging action (see Fig. 4.3) can be written as

𝑃f(𝑤) = 𝐹f,deb(𝑤) · 𝐻(𝑤0 − 𝑤) + 𝐹f,pull · 𝐻(𝑤 − 𝑤0). (4.23)

An example of the filament bridging action is depicted in Fig. 4.4a for material

parameters that correspond to AR-glass fibers with random 𝜏 distributed uniformly

between 0.01 and 0.4 MPa and random fiber strength 𝜎u with Weibull distribution

with shape parameter 𝑘 = 5 and scale parameter 𝜆 = 1.75 GPa. The filaments

are embedded perpendicular to the crack plane in this example. The figure shows

samples from the distributions given by Eq. (4.23) and the mean filament response

given by Eq. (4.2), which, multiplied by the number of filaments in a bundle, is the

prediction of the response of a perpendicularly embedded filament bundle. The red

curve is a single simulation of a bundle consisting of 100 filaments performed by the

discrete model.

Fig.4.4b depicts the bridging force of a bundle consisting of 𝑛f = 100 filaments

with random bond strength and fiber strength as in Fig. 4.4a but, additionally, the

orientation angle and embedded length are considered as random variables. Random

samples of such filament bundles and the mean bundle bridging force predicted by

the probabilistic model with Eq. (4.7) are depicted. The red curve is the bridging

force of 𝑛b = 100 bundles that are randomly oriented and positioned within the

crack predicted by the discrete model.

4.5 Conclusions

Both the probabilistic and the discrete model are capable of simulating the crack

bridging action of chopped AR-glass strands in a cement-based matrix. The prob-

abilistic model is computationally very efficient and able to evaluate statistical mo-

ments of the response. However, the model formulation includes a number of as-

sumption that make the model of use only for uniaxial tension in its current form.
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The discrete model evaluates the response of the composite as a single sample.

Therefore, repeated calculations would have to be performed when the variability

was of interest. The discrete model, even though more computationally demand-

ing, is much more robust than the probabilistic model. It is not limited to uniaxial

tension and is therefore suitable for general purposes. Its comparison with the

probabilistic model serves as a verification of the semi-discrete fiber bundle imple-

mentation.
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