
Math. Appl. 7 (2018), 31–40
DOI: 10.13164/ma.2018.03

KERNELIZED COST-SENSITIVE LISTWISE RANKING

GABRIELA OLINTO and ERNEST FOKOUÉ

Abstract. Learning to Rank is an area of application in machine learning, typically
supervised, to build ranking models for Information Retrieval systems. The training

data consists of lists of items with some partial order specified induced by an ordinal
or binary score. The model purpose is to produce a permutation of the items in this

list in a way which is close to the rankings in the training data. This technique has

been successfully applied to ranking, and several approaches have been proposed
since then, including the Listwise approach.

A cost-sensitive version of that is an adaptation of this framework which treats

the documents within a list with different probabilities, i.e., attempt to impose
weights for the documents with higher cost. We then take this algorithm to the

next level by kernelizing the loss and exploring the optimization in different spaces.

Among the different existing likelihood algorithms, we choose ListMLE as pri-
mary focus of experimentation, since it has been shown to be the approach with

the best empirical performance. The theoretical framework is given along with its

mathematical properties.

1. Introduction

Ranking is a crucial problem in several different areas, especially in Information
Retrieval (IR) and Machine Learning. Information Retrieval has its foundations
on searching automated ways of reducing information overload. Web search en-
gines are one of the most straightforward applications, but universities, govern-
ment entities, and libraries use these systems to provide easier access to journals,
documents, and books.

In a general scenario, the ranking problem can be defined as described by Lan
et al. (2009): “Given a group of objects, a ranking model sorts the objects with
respect to each other in the group, according to their degrees of relevance, impor-
tance, or preferences. Where in IR, a group corresponds to a query, and objects
corresponds to documents associated with the query”.

In other words, one could imagine a collection of queries with each query con-
taining the n documents to be ranked. These documents could be ranked by
a relevance score y where highly relevant documents are more useful and have
higher ranks. Thus, one could formulate that the desire in ranking, is to con-
struct a score function f(x) such that the discrepancy between its ranking and the
ordering of the relevance is as small as possible.

MSC (2010): primary 62J99, 62P30, 90C52.

Keywords: ranking, information retrieval, machine learning, statistics, loss function.
The author Gabriela Olinto acknowledges the financial and academic support given from

CAPES and CNPq during this research.

31

32 G. OLINTO and E. FOKOUÉ

Of course, “as small as possible” means the crucial need to define a suitable loss
function, hopefully, one that is convex for the obvious optimization reasons. This
indicates that this problem looks much like the tradition regression analysis, but
for the traditional regression, the loss function is usually much more manageable
and symmetric, whereas with ranking extra care is immediately required.

The form of f(x) then becomes of great interest, just like with traditional
regression, and various scenarios may be considered from linear to nonlinear to
non parametric to kernelized. Because of that, the nature of the input space can
quickly become a problem because the data is usually initially unstructured and is
then processed in ways that could lead to mathematical challenges. We will later
consider a common practice [7] of further preprocessing |f(x)| < BM where BM
are normalization constants.

These models can be categorized into three main groups: pointwise, pairwise
and listwise. Pointwise and pairwise directly transform ranking into ordinal re-
gression, and classification on a single object or object pairs respectively [2]; and
listwise that minimizes the loss function based on the ranked list and the ground
truth list [16].

This paper focuses on the cost-sensitive listwise approach [10] that relies on
changing the weighting scheme of the document pairs which are measured by their
ranking effectiveness with the Normalized Discounted Cumulative Gain (NDCG)
[3]. Based on that we propose a theoretical improvement by including a Gramian
matrix inside the loss function. The kernel trick allows the implicit computation
of feature space calculations with functions (kernels) defined in the input space
which will enable high-dimensional operations and consequently greater flexibility.

The early methods of optimization (minimization) of nonlinear functions were
developed from the basic idea of making the algorithm evolve by finding new points
located in the direction to which the function decreases compared to the current
point. These optimization methods are compared to each other according to the
number of evaluations of the objective function which are required for determining
the solution and according to how close the solution provided by this method
approaches to the exact solution of the problem. The best method is found by the
fewer necessary assessments and close it gets. Each new point is obtained from
one-dimensional optimization process having as a start the previous one.

The first reasonable choice for a search direction in the k-th step, dk, is the
opposite direction to the gradient function in the current point xk. This choice
is justified by the fact that, locally, this is the direction in which the function
decreases faster. The only implicit assumption in the application of this algorithm
is that the function f(x) is twice differentiable. Notice that the Hessian indicates
the step size to achieve a reduction in f while still making sufficiently fast progress
towards the optimal solution. Thus, if the Hessian is a well-behaved matrix, i.e.,
is positive definite, it can give optimal step sizes towards the right direction and
make the convergence even faster. On the other hand if it is an ill-conditioned
matrix it can do a zig-zag trajectory and take longer to converge to the minimum.
In some cases, when the Hessian cannot be calculated, its value is substituted by
the learning rate – a parameter that determines how fast the optimal solution is
approached; this makes such cases treatable, albeit challenging. With all that said,

KERNELIZED COST-SENSITIVE LISTWISE RANKING 33

Gradient Descent is a perfect tool for optimization Empirical Risk Functions and
will be chosen for optimizing our losses for ranking problems.

Some experiments are conducted to validate this new framework using the
dataset MSLR-WEB10K in Microsoft Learning to Rank Datasets inside Letor [9].
This new framework is called Kernel Cost-Sensitive Listwise MLE (Kernel CS-
ListMLE) and we validate it by comparing to its simpler version Cost-Sensitive
Listwise MLE (CS-ListMLE) [10] and to other two well known techniques in the
literature ListNet [16] and RankSVM [5]. We also explore different aspects of
the kernels inside the Kernel CS-ListMLE. All the variants of the CS-ListMLE
(plain/kernel) were implemented using the R project [15], the ListNET can be
found on RankLib [1] on the Lemur project, and RankSVM can be found on
SVMrank [4]. RankLib and RankSVM are free standalone libraries implemented
in Java and Oracle respectively.

This paper is organized as follows. Section 2 illustrates Kernelized Listwise
Ranking framework, an evaluation metric and details on the implementation. Sec-
tion 3 shows data details, experiments, and comparison results. Section 4 outlines
future points that could be extended from this paper and draws conclusions.

2. Kernelized Listwise Ranking

The process in Information Retrieval [11] starts when a user enters a query into
the system. This query matches several documents in a collection, maybe with
different degrees of relevancy, and these results are ranked. The query can be for
example a search string in web search engine and the documents, for example,
text documents, images, audio or videos. Most of this systems compute a numeric
score on how well each object in the database matches an individual query and
rank the objects according to this value. The top ranking objects are then shown
to the user.

There are many of standard metrics to judge how well the learn to rank models
are doing on training the data and also to compare how they perform between
algorithms [3]. These metrics take into account the relative order of the documents
retrieved by the system, and give more weight to documents returned at higher
ranks. Often these models are reformulated as an optimization problem on one
of these metrics. The most used metric is the Normalized Discounted Cumulative
Gain (NDCG) [3].

Considering reli as the relevance of the result at position i, DCG or Discounted
Cumulative Gain measures the gain of a document based on its position in the
result list of documents retrieved from a query

DCG =

p∑
i=1

2reli − 1

log2(i+ 1)
.

Because the length of the query results usually differs from one query to the
other, we normalize them by dividing it by the maximum possible DCG on that
query so the measure can be comparable between lists. What this means is that
we actually need to recalculate the above metric but this time with best ranked

34 G. OLINTO and E. FOKOUÉ

ordered on that list and get:

NDCG =
DCG

max(DCG)
.

We will also fix the number of returned results since this version does not
penalize for missing results, thus DCG will become DCG@k. There are different
classes of ranking algorithms in the literature but we will focus on Listwise and
here is how we can define this approach. Consider the query-level framework
proposed by [8]:

Let Q, D and X be respectively the query space, the document space and the d-
dimensional feature space. Let q be a random variable defined in the query space
with unknown probability distribution PQ. Let f denote the real value ranking
function, which assigns each document a score f(x). The scores of the documents
associated with the same query are used to rank the documents. We measure the
loss of ranking documents for query q using f with a loss function L(f ; q). The
goal of ranking is to minimize the expected risk of f .

Represent query q by (z, y), where z = (x1, . . . , xm) and y stands for the ground-
truth permutation of m documents. Let Z = Xm be the input space, whose
elements are m feature vectors corresponding to the m documents, where y(i)
stands for the index of the document whose rank is i in the permutation y. We
call m the list length and assume that m ≥ 3. Let Y be the output space, whose
elements are permutations of the m documents. Then we regard (z, y) as a random
variable on the space Z × Y according to an unknown probability distribution
P (·, ·).

The goal of ranking is to minimize the expected risk of f . Thus, rewriting
L(f ; q) = l(f ; z, y) and PQ = P (·, ·), it can be defined as:

Rt(f) =

∫
Z×Y

l(f ; z, y)P (dz, dy).

Since P (·, ·) is unknown, the empirical risk is used to approximate the expected
risk, and is defined as:

R̂t(f ;S) =
1

n

n∑
i=1

l(f ; z, y)

where i denote the i.i.d sampled training data from the space Z × Y , S =

{(z1, y1), . . . , (zn, yn)} and zi = (x
(i)
1 , . . . , x

(i)
m).

One of the most critical analyses is the generalization ability is to find a tight
upper bound of supf∈F (Rl(f) − R̂l(f ;S)) which for this case can be obtained
by applying the theory of Rademacher Average [12] that measures how much
a function class F can fit random noise and it is showed by the following theorem
proved in [6].

Theorem 2.1. Let Λ denote a listwise ranking algorithm, and let lΛ(f ; z, y) ∈
[0, 1] be its listwise loss, given the training data S = {(zi, yi), i = 1, . . . , n}, with
probability at least 1− δ, the following inequality holds:

sup
f∈F

(Rl(f)− R̂l(f ;S)) ≤
√

2 ln(2/δ)

n
+ 2R̂(lΛ ◦ F)

KERNELIZED COST-SENSITIVE LISTWISE RANKING 35

where R̂(lΛ ◦ F) = Eσ sup(f∈F)
1
n

∑n
i=1 σilΛ(f ; zi, yi).

There are many Listwise loss functions widely studied but we will focus on
ListMLE because it holds theoretical properties given by its surrogate loss, includ-
ing consistency, soundness, continuity, differentiability, convexity and efficiency
which we will not prove in this paper for lack of space.

ListMLE : l(f ; z, y) = − logP (y | z; f)

P (y | z; f) =

m∏
i=1

φ(f(xy(i)))∑m
j=1 φ(f(xy(j)))

.

Two assumptions are further made on the feature vector and the ranking model
for implementation purposes. Let x be the feature vector of a query document-
pair, we assume that ∀x ∈ X, ||x|| ≤ M and the ranking model f to be learned
is from the linear function class F = {x → w · x : ||w|| ≤ B}. Therefore, we
have ∀x ∈ X, ∀f ∈ F , |f(x)| ≤ BM . With this normalization, the algorithms
can minimize the empirical risk in learning. Note that this normalization does not
affect their optimal solution.

Although Listwise MLE appears to work very well, its use of a linear represen-
tation for the score function could be a limitation. Kernels can help capture an
arbitrarily nonlinear function by mapping into a higher dimension space. One way
to do it so is by a feature mapping.

The kernel trick allows us to do that in a more efficient way; instead of a trans-
formation for each predictor, we apply a single similarity function over the data
and enable them to operate in a higher dimensional space without ever computing
a transformation for each of the coordinates. Instead we can simply compute the
inner product between the images of all pairs of data in the feature space.

Mathematically, let the vector x ∈ Rp implicitly be projected (mapped) onto
a feature space F (of potentially infinite dimension) via a transforming function

or mapping η such that x → η(x), and K(xi, xj) = η(xi)
T
η(xj). Many common

choices of kernels work very well in practice, some frequently used ones are:

• Polynomial: K(xi, xj) = (bxTi xj + a)
d
;

• Gaussian: K(xi, xj) = exp
(
−‖xi−xj‖2

2σ2

)
;

• Laplace: K(xi, xj) = exp
(
−γ‖xi − xj‖2

)
;

• Hyperbolic Tangent: K(xi, xj) = tanh(bxTi xj + a).

With all that said it is easy to extend the Cost-Sensitive Ranking [10] for a Kernel
Cost-Sensitive Ranking by kernelizing the ranking function f(x), i.e., let{

η : X → F
x→ η(x)

so f(x) = θT η(x) in F . Then f(x) =
∑n
j=1 θjK(x, xj) where K(·, ·) is the kernel

trick which make it inherit all its good characteristics. The loss function on a query

36 G. OLINTO and E. FOKOUÉ

can be defined as:

L =
1

DCGĝ@k

n∑
j=1

βj×

× log2

1 +

n∑
t=j+1,yj>yt

αj,t exp(

n∑
l=1

θlK(xt, xl)−
n∑
l=1

θlK(xj , xl))

 .

The Gradient Descent method can be used to optimize the loss function which is
a method that works optimally when is based on the gradient and the Hessian. It is
vital to assess the properties of the Hessian matrix because its positive definiteness
helps estimating the vector θ.

Thus, let G(θ) be the gradient; then, with our loss function L, we can write
G(θ) = (G(θ1), . . . , G(θp)) as:

G(θl) =
∂L

∂θl
=

1

DCGĝ@k

n∑
j=1

βj
log(2)

×

×

n∑
t=j+1,yj>yt

αj,t exp[f(xt)− f(xj)]

n∑
l=1

[K(xt, xl)−K(xj , xl)]1 +

n∑
t=j+1,yj>yt

αj,t exp[f(xt)− f(xj)]


and let H(θ) be the hessian then with the loss function L, we can write H(θ) =
(H(θ1), . . . ,H(θp)) as:

H(θl) =
∂2L

∂θ2
l

=
1

DCGĝ@k

n∑
j=1

βj
log(2)

×

×

n∑
t=j+1,yj>yt

αj,t exp[f(xt)− f(xj)]

(
n∑
l=1

[K(xt, xl)−K(xj , xl)]

)2

1 +

n∑
t=j+1,yj>yt

αj,t exp[f(xt)− f(xj)]

2

considering

f(·) =

n∑
l=1

θlη(·)ηT (xl) =

n∑
l=1

θlK(·, xl).

The algorithm for Gradient Descent in Kernelized CS-ListMLE is shown in Algo-
rithm 1.

For the kernels used in this case in which the results are shown in Section 3, the
Hessian appears to behave very well, making the convergence faster, especially in
concert with the normalization of the input space. Since this version is based on
the same surrogate loss the theoretical properties of the listwise carry over to the
kernelized version.

KERNELIZED COST-SENSITIVE LISTWISE RANKING 37

Algorithm 1 GD for Kernelized CS-ListMLE

1: Input normalized training set, tolerance rate ε, NDCG@k
2: Initialize θ and compute weights with respect to each query, normalizing θ

each step
3: Do Gradient Descent until the change of the loss function is less than ε
4: Return θ

It is important to point out that this nonlinear approach benefits from higher
dimensional projections which makes an easy task to fit a broad range of functions
since it can search the space better. Although many scientific processes can be
described well using linear models, others are inherently nonlinear. Another benefit
is efficient use of data. Nonlinear regression like models can produce good estimates
of the unknown parameters in the model with relatively small data sets.

The major cost of moving to nonlinear from simpler modeling techniques is the
need to use iterative optimization procedures to compute the parameter estimates.
The use of iterative procedures requires the user to provide starting values for the
unknown parameters before the software can begin the optimization and it is
directly tied up to its convergence. Bad starting values can also cause the software
to converge to a local minimum rather than the global minimum that defines the
least squares estimates.

In our case, there is no analytic solution for the Listwise approaches and the
convexity of the loss working in tandem with normalization of the space make this
approach very appealing.

3. Data, experiments and results

To prove our results we use one of the datasets in the LETOR project. The LETOR
dataset is a benchmark collection for research on learning to rank for information
retrieval, released by Microsoft Research Asia [14]. By doing this, the group facil-
itates the research on learning to rank since no selected queries for training and
test, no standard feature vectors, no baseline algorithms and no standard evalu-
ation tools were defined before, making the comparison among different methods
not possible. Their most recent release was the MSLR −WEB10K with 10000
queries and 136 features for each query-url pair which are available to download
[13]. Taking a closer look in the data files, each row corresponds to a query-url
pair. The first column is relevance label of the pair which goes from 0 (irrelevant)
to 4 (perfectly relevant), the second column is query id, and the following columns
are features.

In this section we analyze the performance of ListNet, RankSVM, Plain Cost-
Sensitive MLE and Cost-Sensitive MLE Kernel polynomial, gaussian, laplace and
hyperbolical tangent on the LETOR dataset MSLR−WEB10K.

We also explore some different parametrizarion for the kernels, one of them we
call special in which the offset is considered 0, the polynomial degree is 3 and the
bandwidth is 1/p = 1/136 = 0.0074, p being the number of features in the data.
In the other cases we use the vanilla parametrization with offset is considered 0,
the polynomial degree is 1 and the bandwidth is 1.

38 G. OLINTO and E. FOKOUÉ

It is important to notice when generating test results that ListNet and Plain
Cost-Sensitive MLE optimize distances while RankSVM and Cost-Sensitive MLE
Kernel optimize similarities which means different interpretations for the coeffi-
cients. In the experiments, the truncation level k takes 3, 5 and 10 as in [10].

Table 1. Test results for (a)nDCG@3, nDCG@5 and nDCG@10 on ListNet

and RankSVM (b) nDCG@3 on Kernel and Plain Cost Sensitive ListMLE
(c) nDCG@5 on Kernel and Plain Cost Sensitive ListMLE (d) nDCG@10 on

Kernel and Plain Cost Sensitive ListMLE.

(a)

nDCG ListNet RankSVM
@3 0.6028 0.4662
@5 0.6243 0.5120
@10 0.6116 0.5325

(b)

Methods at.3 at.5 at.10 special
Gaussian 0.5763 0.5736 0.5693 0.5548
Laplace 0.5765 0.5673 0.5705 0.5637
Polynomial 0.6011 0.6040 0.6178 0.5126
Tanh 0.5824 0.5904 0.5666 0.5743
Plain 0.5817 0.5984 0.6316

(c)

Methods at.3 at.5 at.10 special
Gaussian 0.5948 0.5933 0.5755
Laplace 0.5882 0.5984 0.5850
Polynomial 0.6177 0.6293 0.5455
Tanh 0.6058 0.5947 0.5986
Plain 0.6122 0.6425

(d)

Methods at.3 at.5 at.10 special
Gaussian 0.5860 0.5757
Laplace 0.5876 0.5813
Polynomial 0.6175 0.5579
Tanh 0.5941 0.5917
Plain 0.6276

Note that the empty values on the tables are because the evaluation metric
can just evaluate cases where its truncation value is equal or bigger than training
truncation level. At the special column, no parameter tuning can be done for the
Plain version, so it is always empty.

Since ListNet and RankSVM do not truncate during training we should compare
our results with highest truncation at training (at 10) and same nDCG metric
to have somewhat fair comparisons. With that said one could notice that CS-
ListMLE plain and CS-ListMLE polynomial always perform better than them
which reinforce the point of our study.

Looking at the test results for nDCG@3, we can see for a truncation level
during training also at 3, that the cost-sensitive listwise Polynomial outperforms
the others. Considering higher truncation levels but same metric, Polynomial,
Plain and tanh outperforms the others at 5, 10 and 10 special respectively.

For test results for nDCG@5 with the same truncation level 5, the Polynomial
kernel again outperform the others. Considering higher truncation at training as
10 and special, Plain and Tanh outperforms the others respectively.

Finally, the test results for nDCG@10 shows that the Plain version outperforms
with truncation level at 10 although Polynomial kernel also does a very good job
and for the special case, Tanh as usual does the best job.

Taking a look at how many iteration it takes to converge, we can say that it
is an algorithm that converges relatively fast which is probably due to the fact
that the loss function is convex and the Gradient Descent include the second
derivative. Considering the truncation level 3, Laplace and Plain are the fastest,

KERNELIZED COST-SENSITIVE LISTWISE RANKING 39

at level 5 Gaussian and Plain, at 10 Laplace and Tanh and at 10 special we have
got Polynomial.

These results lead us to conclude that CS-MLE Plain is more robust when
evaluating larger truncation levels than it was trained on but the CS-MLE Kernel
outperforms cases in which the truncation and the evaluation are the same, that
means, it learns better its own space.

More parameters could have been tuned, but our main goal was to show the
potential behind the Kernelized options, which can be seen from the standard
version. Specially for the Tanh kernel, its tests results seem to gain the most.

4. Conclusion and future work

This paper studied new approaches for cost-sensitive listwise to learning to rank
which is an area of application in machine learning that built ranking models for
Information Retrieval systems. The model purpose is to produce a permutation
of items that have some partial order induced by an ordinal score. The listwise
approach learns a ranking function by taking lists and minimizing a loss func-
tion based on the ranked list and the ground truth list (supervised annotated
judgment). These losses are classified in different groups with different inherent
properties: we verify that the surrogate likelihood loss is the best one and study
the particular ListMLE case.

A cost-sensitive version is the next straightforward step, using the traditional
nDCG@k metric, which we generalize by introducing the Gram matrix to the loss
or kernelizing it. The theoretical framework was given along with their mathe-
matical properties. Four families of kernels were considered: Gaussian, Laplace,
Polynomial and Hyperbolic Tangent. We use their standard versions to compare
with the baseline plain method as well as some different parameterizations com-
monly utilized for the kernel. The carry parameters were set as offset 0, polynomial
degree 3 and bandwidth 1/p = 0.0074.

The experimentation is done on the benchmark LETOR MSLR −WEB10K
dataset. It is the most recent available dataset released by the Microsoft group.
They contain queries and some characteristics of the retrieved documents and its
human judgments on the relevance of the documents with respect to the queries
and its natural five fold set allowed cross validation.

Gathering all those ideas we have shown some higher performance Kernel Cost-
Sensitive ListMLE compared to the baseline ListMLE and compared different as-
pects of the proposed loss function within different families of kernels. The results
show that CS-MLE Plain is more robust when evaluating larger truncation levels
than it was trained on, but the CS-MLE Kernel outperforms cases in which the
truncation and the evaluation the same, i.e., it better learns its space.

More grid values for parameters could have been studied; however, our goal
was to show the potential behind the Kernelized options, and the gain from this
method could be seen in its standard version. Especially for the Tanh kernel, its
tests results seem to gain the most.

There is clear many future directions to enrich this area of research. One direct
extension of this research is to change the way the ensemble of the losses is done
in the Gradient Descent training. Another area of the investigation is to modify

40 G. OLINTO and E. FOKOUÉ

the loss itself to make the kernels learn the whole space of the queries instead of
looking it query by query. Finally, one could analyze how the theoretical bounds
change with CS-MLE Kernel.

References

[1] V. Dang, The Lemur Project /Wiki /RankLib, Lemur Project,
http://sourceforge.net/p/lemur/wiki/RankLib.

[2] R. Herbrich, T. Graepel and K. Obermayer, Large margin rank boundaries for ordinal

regression, in: Advances in Neural Information Processing Systems, MIT, 2000, 115–132.
[3] K. Järvelin and J. Kekäläinen, Cumulated gain-based evaluation of IR techniques, ACM

Transactions on Information Systems 20 (2002), 422–446.

[4] T. Joachims, SVMrank Support Vector Machine for Ranking, SVMrank,
https://www.cs.cornell.edu/people/tj/svm light/svm rank.html.

[5] T. Joachims, Training linear SVMs in linear time, in: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, ACM,

217–226.

[6] Y. Lan, T.-Y. Liu, Z. Ma and H. Li, Generalization analysis of listwise learning-to-rank
algorithms using Rademacher average, CiteSeerx, 2008.

[7] Y. Lan, T.-Y. Liu, Z. Ma and H. Li, Generalization analysis of listwise learning-to-rank algo-

rithms, in: Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, ACM, 2009, 577–584.

[8] Y. Lan, T.-Y. Liu, T. Qin, Z. Ma and H. Li, Query-level stability and generalization in

learning to rank, in: Proceedings of the 25th International Conference on Machine Learning,
ACM, 2008, 512–519.

[9] T.-Y. Liu, J. Xu, T. Qin, W. Xiong and H. Li, Letor: Benchmark dataset for research

on learning to rank for information retrieval, in: Proceedings of SIGIR 2007 workshop on
learning to rank for information retrieval, 2007, 3–10.

[10] M. Lu, M. Xie, Y. Wang, J. Liu and Y. Huang, Cost-sensitive listwise ranking approach, in:
M. J. Zaki, J. X. Yu, B. Ravindran and V. Pudi (eds.), Advances in Knowledge Discovery and

Data Mining, Part I, 14th Pacific–Asia Conference, PAKDD 2010, Hyderabat, India, June

21–24, 2010, Proceedings, Lecture Notes in Artificial Intelligence 6118, Springer-Verlag,
Berlin Heidelberg, 2010, 358–366.

[11] C. D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge

University Press, Cambridge, 2008.
[12] S. Mendelson, Rademacher averages and phase transitions in Glivenko–Cantelli classes,

Information Theory, IEEE Transactions on Information Theory 48 (2002), 251–263.
[13] T. Qin, T.-Y. Liu, W. Ding, J. Xu and H. Li, Microsoft Learning to Rank Datasets,

http://research.microsoft.com/en-us/projects/mslr/.

[14] T. Qin, T.-Y. Liu, J. Xu and H. Li, LETOR: A benchmark collection for research on learning
to rank for information retrieval, Information Retrieval 13 (2010), 346–374.

[15] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation

for Statistical Computing, Vienna, Austria, 2015.
[16] F. Xia, T.-Y. Liu, J. Wang, W. Zhang and H. Li, Listwise approach to learning to rank:

Theory and algorithm, in: Proceedings of the 25th International Conference on Machine

Learning, ICML ’08, ACM, 2008, 1192–1199.

Gabriela Olinto, School of Mathematical Sciences, College of Science, Rochester Institute of
Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, United States

e-mail : ggo5219@rit.edu

Ernest Fokoué, School of Mathematical Sciences, College of Science, Rochester Institute of
Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, United States
e-mail : epfeqa@rit.edu

