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Abstract
The focus of this thesis is the comparison of languages and the reduction of automata used
in network traffic monitoring. In this work, several approaches for approximate (language
non-preserving) reduction of automata and comparison of their languages are proposed. The
reductions are based on either under-approximating the languages of automata by pruning
their states, or over-approximating the language by introducing new self-loops (and pruning
redundant states later). The proposed approximate reduction methods and the proposed
probabilistic distance utilize information from a network traffic. Formal guarantees with
respect to a model of network traffic, represented using a probabilistic automaton are
provided. The methods were implemented and evaluated on automata used in network
traffic filtering.

Abstrakt
Tato práce se zabývá porovnáváním jazyků automatů a redukcí automatů používaných
při monitorování síťového provozu. Je navrženo několik přístupů pro přibližnou redukci
automatů (nezachovávající jazyk) a přístup pro porovnávání jejich jazyků. Redukce jsou
založeny na podaproximaci jazyka automatu, kdy dochází k odstraňování stavů nebo na
nadaproximaci jazyka, kdy dochází k přidávání nových smyček (a odstranění zbytečných
stavů později). Navržené metody pro přibližnou redukci a navržená pravděpodobnostní
vzdálenost využívají informaci ze síťového provozu. Jsou poskytnuty formální záruky vzhle-
dem k modelu síťového provozu, který je reprezentován pravděpodobnostním automatem.
Metody byly implementovány a jejich vlastnosti byly ověřeny na automatech používaných
pro filtrování síťového provozu.
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Chapter 1

Introduction

The recent growth of cyber-crime, in particular intrusion into computer networks, has
greatly increased the demand for systems detecting malicious network traffic. In such
systems, regular expressions are often used to describe packets to be selected for further
inspection since they are, e.g., suspicious of containing an attack, tunneled protocol, etc.
Due to the increasing speed of networks, network traffic filtering cannot be implemented in
software, and some hardware pre-filtering is needed. These hardware solutions implement
finite automata that correspond to regular expressions. However, computing resources
available in the HW accelerators are restricted, and so methods for reducing the size of the
automata must be used.

The reduction may be based on the classical approach of determinizing and minimizing
the automata. This, however, incurs a possibly exponential explosion in the size of the
determinized automata. Alternatively, the HW accelerator can be based on nondetermin-
istic finite automata. Such automata can be reduced using, e.g., various approaches based
on quotienting with respect to a simulation equivalence [15, 3] and further techniques like
those proposed in [25] and implemented in the RABIT and Reduce tool [1]. Still, even such
reductions need not be sufficient. For example, within our collaboration with the group
of accelerated network technologies at FIT BUT (ANT@FIT), which is world-renowned in
the area of hardware accelerated processing of high-speed network traffic, we were given
regular expressions that translate to NFAs having from units to tens of thousands of states.
Classical determinization and minimization simply explodes on these automata. Techniques
of [25] may reduce the automata, according to our experience, to about half of the number
of states. However, for HW accelerated network cards, sizes of around a few thousand of
states are desirable. For hardware network probes, it is even less.

To improve on the above situation, we propose a novel approach based on an approx-
imate reduction of the automata. Note that, the approximate reduction may change the
language of the automata which can, in theory, lead to both false positives and false nega-
tives when classifying the network traffic. However, this may still be better than not being
able to run any classification at all or than having to completely ignore some traffic patterns.
Moreover, one can also aim at the approximate reductions that will solely over-approximate
the language. This can then increase the amount of packets sent from a hardware filtering
device to the subsequent final software classification, but no critical traffic needs to be lost
this way. In addition, we hope that the reduction techniques—whose development we have
started in this thesis—can be fine-tuned such that a significant reduction of the automata
can be achieved without a significant increase of the traffic sent for the final classification
in software. Our first experimental results confirm this hypothesis.
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In more concrete terms, since this thesis deals with approximate reduction methods,
we first study suitable techniques for comparing a similarity of languages. Such techniques
are needed so that we can control the reduction in a systematic way. For this reason,
we propose a distance that is expressed as the probability that a randomly chosen string
belongs to the symmetric difference of the input languages. The random string is chosen
with respect to a distribution, which is represented by a probabilistic automaton (PA).
This PA is obtained by an analysis of a representative sample of packets that occur in
the network flow. Hence, the learned PA gives us a compact and abstract model of the
network traffic, i.e., a representation of the frequency of occurrence of various packets in
the network. Moreover, we propose a way how to evaluate the distance using matrix power
series and some other related techniques.

Subsequently, we propose several automata reductions that are specifically tailored for
use in network traffic monitoring. These reductions are based on either under-approximating
the languages of automata by pruning their states, or over-approximating the languages by
introducing new self-loops (and pruning redundant states later). The reductions can be
parameterized by the maximal error that is allowed, which is given with respect to the
desired distance between the language of the input automaton and the language of the
reduced automaton. This parameterization allows the user to fine-tune the ratio between
the achieved reduction and the error according to the concrete needs.

The proposed techniques were implemented and evaluated on a dataset provided by the
ANT@FIT group. We have obtained highly promising results showing the potential of the
proposed approach which can, moreover, be further improved in many ways as discussed
at the end of the thesis.

The thesis is organized as follows. Chapter 2 serves as an introduction to the mathema-
tical background of the studied techniques, finite automata theory, and weighted automata
theory. In Chapter 3, we describe the use of finite automata in network traffic filtering.
In Chapter 4, we introduce algorithms for computing the proposed distance between the
languages of automata. Further, in Chapter 5, we describe the proposed techniques for the
approximate reduction of automata. Chapter 6 then provides a description of a prototype
tool for the approximate reduction that has been implemented. In Chapter 7, we focus on
an experimental evaluation of the proposed techniques. Finally, in Chapter 8, we summarize
the obtained results and propose possible future steps in the given area.

4



Chapter 2

Preliminaries

This opening chapter contains fundamentals used in the rest of this thesis. First, we
introduce linear algebra background that we will later use for a computing of the proposed
distance for comparing languages and for a computing of state labels for the approximate
reduction of automata. Further, we recall distance functions and formal languages, and the
last part is devoted to finite and weighted automata.

2.1 Linear Algebra Background
This section is based on [14, Chapter 9] and [26, Chapter 8]. We denote vectors as 𝛼 and
matrices as A. For a vector 𝛼 of 𝑙 elements and an 𝑚 × 𝑛 matrix A (of 𝑚 rows and 𝑛
columns), we use the following functions: len(𝛼) = 𝑙, rows(A) = 𝑚, and cols(A) = 𝑛.
We define 𝛼[𝑖] for 1 ≤ 𝑖 ≤ len(𝛼) to be the 𝑖-th element of vector 𝛼, and A [𝑖, 𝑗] for
1 ≤ 𝑖 ≤ rows(A) and 1 ≤ 𝑗 ≤ cols(A) to be the element of A in row 𝑖 and column 𝑗.

We use [𝑥, 𝑦] to denote the closed interval of real numbers from 𝑥 to 𝑦, that is, [𝑥, 𝑦] =
{𝑧 ∈ R | 𝑥 ≤ 𝑧 ≤ 𝑦}. Further, we use R≥0 to denote the set of all nonnegative real numbers
(including zero), and C to denote the set of all complex numbers.

We use I to denote the identity matrix, 0 to denote the zero matrix, A⊤ to denote the
transpose of A, and A−1 to denote the inverse of A. An element 𝜆 ∈ C is an eigenvalue of
a matrix A ∈ R𝑛×𝑛 if there exists a nonzero vector (i.e., a vector with at least one nonzero
element) v ∈ C𝑛 such that Av = 𝜆v. The spectral radius of a square matrix A ∈ R𝑛×𝑛,
denoted as 𝜌(A), is the maximum of absolute values of its eigenvalues (this value always
exists).

A matrix A ∈ R𝑛×𝑛 is called a nonnegative matrix if all elements of A are greater
or equal to zero. A nonnegative matrix A ∈ R𝑛×𝑛 having row sums equal to 1 is called
a stochastic matrix. A nonnegative matrix A ∈ R𝑛×𝑛 having row sums less than or equal
to 1 with at least one row sum less than 1 is called a substochastic matrix.

The graph 𝒢(A) of A ∈ R𝑛×𝑛 is defined to be the directed graph on 𝑛 nodes {𝑣1, . . . , 𝑣𝑛}
such that there is a directed edge leading from 𝑣𝑖 to 𝑣𝑗 iff A[𝑖, 𝑗] ̸= 0. We define a relation
∼ on the indices of 𝒢(A) such that 𝑣𝑖 ∼ 𝑣𝑗 iff there exists a path from 𝑣𝑖 to 𝑣𝑗 and from
𝑣𝑗 to 𝑣𝑖. The ∼ relation is an equivalence relation, which partitions the nodes of 𝒢(A)
into equivalence classes called the access-equivalent classes of A. For a matrix A and an
access-equivalent class 𝐵 of A, we use A[𝐵] to denote a submatrix of A with row indices
and column indices in 𝐵. For a nonnegative matrix A ∈ R𝑛×𝑛 with a spectral radius 𝜌,
we define a basic class of A as an access-equivalent class 𝐵 of A with 𝜌(A[𝐵]) = 𝜌.
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Theorem 1 ([14]). The set of basic classes of a nonnegative matrix is always nonempty.

The last notion that we introduce are reducible and irreducible matrices. However, first,
we introduce a notion of a permutation matrix. A permutation matrix is a matrix created
by a rearrangement of the rows of the identity matrix. A nonnegative matrix A ∈ R𝑛×𝑛 is
then said to be a reducible matrix if there exists a permutation matrix P such that

P⊤AP =

(︂
X Y
0 Z

)︂
(2.1)

where X and Z are both square matrices and Y is an arbitrary matrix. An expression
P⊤AP is called a symmetric permutation of A. The effect of a symmetric permutation is
interchanging of rows and the corresponding columns of A. The intuition behind reducible
matrices is that the graph of a reducible matrix contains a node that cannot reach some
other node. If a matrix is not reducible, it is said to be an irreducible matrix.

Example 2. Consider a matrix

A =

(︂
2 0
3 4

)︂
. (2.2)

Then, this matrix is reducible because there exists a permutation matrix P = ( 0 1
1 0 ) such

that
P⊤AP =

(︂
4 3
0 2

)︂
. (2.3)

Furthermore, the graph 𝒢(A) looks as follows:

𝑣2 𝑣1

In this graph, node 𝑣1 cannot reach node 𝑣2.

The following theorems describe relations between irreducibility and the matrix graph,
and restrict the spectral radius of an irreducible substochastic matrix.

Theorem 3 ([14]). A nonnegative matrix A ∈ R𝑛×𝑛 is irreducible if and only if 𝒢(A) is
strongly connected.

Theorem 4 ([16, 26]). Let A ∈ R𝑛×𝑛 be an irreducible substochastic matrix. Then
𝜌(A) < 1.

The last theorem we introduce describes convergence conditions of matrix powers, which
we will later need for a computing the sum of weights of all strings from a language.

Theorem 5 ([14]). Let A ∈ R𝑛×𝑛 be a nonnegative matrix. Then, the following are
equivalent:

1. A is convergent (i.e., lim𝑛→∞A𝑛 = 0),

2. 𝜌(A) < 1, and

3. I−A is invertible and (I−A)−1 ≥ 0.

Further, when the above conditions hold,
∑︀∞

𝑡=0A
𝑡 = (I−A)−1.
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2.2 Distance Functions, Distributions, Languages
In this section, we briefly look at distance functions, distributions, formal languages, and
also introduce a concept of a probabilistic language distance. This notion will later be used
to steer the approximate reduction methods that we propose. The definitions related to
formal languages are based on [17].

Distance Functions and Distributions. Given a domain 𝐷, let 𝜇 be a function 𝜇 :
𝐷 → [0, 1]. We lift 𝜇 to subsets 𝐸 ⊆ 𝐷 as follows: 𝜇(𝐸) =

∑︀
𝑒∈𝐸 𝜇(𝑒). We call 𝜇 a semi-

distribution if 𝜇(𝐷) ≤ 1, and a probability distribution function or (distribution for short)
if 𝜇(𝐷) = 1 [12].

Definition 6. A metric or a distance function on a set 𝑋 is a function 𝑑 : 𝑋 ×𝑋 → R≥0

such that, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following conditions are satisfied:

1. 𝑑(𝑥, 𝑦) ≥ 0,
2. 𝑑(𝑥, 𝑦) = 0⇐⇒ 𝑥 = 𝑦,
3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), and
4. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

Further, a pseudometric on 𝑋 is a function 𝑑 : 𝑋 × 𝑋 → R≥0 satisfying the axioms for
a metric where the second axiom is replaced by the condition 𝑑(𝑥, 𝑥) = 0.

Formal Languages. An alphabet Σ is a finite non-empty set of symbols. A finite sequence
of symbols 𝑤 = 𝑎1 . . . 𝑎𝑛 ∈ Σ𝑛, for 𝑛 ≥ 0, is called a word (or a string) over Σ. By |𝑤| = 𝑛,
we denote the length of 𝑤, and by 𝜀, we denote the empty word of length |𝜀| = 0. Further,
we define Σ0 = {𝜀} and Σ* =

⋃︀
𝑖≥0Σ

𝑖. Any set 𝐿 ⊆ Σ* is called a language over Σ. Let
𝐿1, 𝐿2 be languages. Then the concatenation of 𝐿1 and 𝐿2 is the language 𝐿1.𝐿2 defined
as 𝐿1.𝐿2 = {𝑥.𝑦 | 𝑥 ∈ 𝐿1 ∧ 𝑦 ∈ 𝐿2}.

Now, we define the probabilistic language distance, which describes the distance be-
tween two languages according to some distribution on words. This distance expresses the
probability that languages 𝐿1 and 𝐿2 over the same alphabet Σ differ on a word from Σ*

chosen randomly according to the given distribution on words.

Definition 7. Let 𝜇 be a distribution over Σ*. Further, let 𝐿1 and 𝐿2 be languages over Σ.
Then, the probabilistic language distance 𝑑𝜇 : 2Σ

* × 2Σ
* → R≥0 is defined as

𝑑𝜇(𝐿1, 𝐿2) = 𝜇(𝐿1 △ 𝐿2) (2.4)

where 𝐴△𝐵 denotes the symmetric difference of the sets 𝐴 and 𝐵.

For a distribution 𝜇 over Σ*, it can be shown that the function 𝑑𝜇 is a pseudometric [6].

2.3 Finite Automata
In this section, we present a brief introduction into the automata theory, methods of au-
tomata reductions, and approaches for comparing their languages. The definitions related
to finite automata are taken from [17].

7



Definition 8. A nondeterministic finite automaton (NFA) over an alphabet Σ is a tuple
𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) where

– 𝑄 is a finite non-empty set of states,
– 𝛿 : 𝑄× Σ→ 2𝑄 is a transition function,
– 𝑞0 ∈ 𝑄 is an initial state, and
– 𝐹 ⊆ 𝑄 is a set of accepting (final) states.

A finite automaton 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) is called deterministic (DFA) if ∀𝑞 ∈ 𝑄 and ∀𝑎 ∈ Σ :
|𝛿(𝑞, 𝑎)| ≤ 1.

In some cases, it is more suitable to use an NFA with multiple initial states 𝐼 ⊆ 𝑄.
Therefore, we assume an operation singleInit that converts the input NFA with multiple
initial states into an equivalent NFA with just one initial state.

We proceed by defining some notions related to finite automata. A configuration of an
automaton 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) is an element from 𝑄×Σ*. The configuration (𝑞0, 𝑥) is called
the initial configuration of 𝐴 on 𝑥. A step of 𝐴 is a relation ⊢𝐴 ⊆ (𝑄 × Σ*) × (𝑄 × Σ*),
defined as (𝑞, 𝑎𝑥) ⊢𝐴 (𝑝, 𝑥) iff 𝑝 ∈ 𝛿(𝑞, 𝑎). A computation is then a finite sequence 𝐶1, . . . , 𝐶𝑘

of configurations such that 𝐶𝑖 ⊢𝐴 𝐶𝑖+1 for all 𝑖 = 1, . . . , 𝑘 − 1. An accepting computation
of 𝐴 on 𝑥 is a computation 𝐶0, . . . , 𝐶𝑚 of 𝐴 where 𝐶0 is the initial configuration of 𝐴 on
𝑥 and 𝐶𝑚 = (𝑝, 𝜀) for a state 𝑝 ∈ 𝐹 . Further, for 𝑞1, 𝑞2 ∈ 𝑄 and 𝑤 ∈ Σ*, we define an
extended transition function 𝛿 : 𝑄 × Σ* → 2𝑄 by 𝑞2 ∈ 𝛿(𝑞1, 𝑤) ⇔ (𝑞1, 𝑤) ⊢*𝐴 (𝑞2, 𝜀) where
⊢*𝐴 is the reflexive and transitive closure of ⊢𝐴.

The language 𝐿(𝐴) accepted by 𝐴 is defined as

𝐿(𝐴) = {𝑤 ∈ Σ* | (𝑞0, 𝑤) ⊢*𝐴 (𝑝, 𝜀), 𝑝 ∈ 𝐹}, (2.5)

and the class of regular languages is the class of all languages that are accepted by finite
automata. Let 𝑞 ∈ 𝑄 be a state, then the language accepted at 𝑞 (or the backward language)
is defined as

𝐿−1
𝐴 (𝑞) = {𝑤 ∈ Σ* | (𝑞0, 𝑤) ⊢*𝐴 (𝑞, 𝜀)}. (2.6)

Definition 9. An NFA is called unambiguous (UFA) if it has at most one accepting com-
putation on every input string.

For a given NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) and 𝑆 ⊆ 𝑄, we define the restriction of 𝐴 to the
states in 𝑆 as 𝐴|𝑆 = (𝑆 ∪ {𝑞0},Σ, 𝛿|𝑆 , 𝑞0, 𝐹 ∩ 𝑆). For NFAs 𝐴1, 𝐴2, we denote by 𝐴1 ∩ 𝐴2

the NFA accepting the language 𝐿(𝐴1) ∩ 𝐿(𝐴2), which is constructed using the standard
product algorithm [17].

2.3.1 Automata Reductions

The problem of a reduction of finite automata is important in many applications where the
maximum automaton size (given by the number of its states) is limited, for example, by
technical equipment, or where we care about the efficiency of operations with the automata.
The complexity of these operations is often a function of the number of states.

If we consider DFAs, there exists an efficient algorithm for their minimization based
on the Myhill-Nerode theorem. Unfortunately, the use of this algorithm for general NFAs
requires a prior determinization of the input automaton, which may cause an exponential
increase in the number of states (compared to the input NFA). Moreover, the size after
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minimization can still be exponentially larger than the size of the input NFA. Therefore,
this approach is not practically feasible for NFAs with the large number of states.

An alternative approach is to reduce NFAs directly without determinization. The gen-
eral NFA state minimization is a PSPACE-hard problem [20], but there still exist some
practically feasible algorithms to reduce NFAs. One of those algorithms is based on merg-
ing states according to the (maximal) simulation equivalence on states. The definition of
the simulation equivalence is based on the notion of the simulation relation [15].

Definition 10 ([15]). A (forward) simulation on an NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) is a binary
relation 𝑅 ⊆ 𝑄×𝑄 such that, for any states 𝑞, 𝑟 ∈ 𝑄 and 𝑎 ∈ Σ, (𝑞, 𝑟) ∈ 𝑅 holds, only if

1. 𝑞 ∈ 𝐹 =⇒ 𝑟 ∈ 𝐹 , and

2. for every 𝑞′ ∈ 𝛿(𝑞, 𝑎) there exists 𝑟′ ∈ 𝛿(𝑟, 𝑎) such that (𝑞′, 𝑟′) ∈ 𝑅.

It can be shown that for each NFA, there exists a unique largest simulation, called
the simulation preorder. The simulation equivalence for a simulation preorder 4 is then
given as 4 ∩ 4−1. Moreover, there exists a polynomial-time algorithm for computing the
largest simulation equivalence [19]. Note that, the dual notion to the forward simulation
is the backward simulation on an NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ), which is defined as the forward
simulation on the NFA singleInit(𝐴−1) where 𝐴−1 = (𝑄,Σ, 𝛿−1, 𝐹, {𝑞0}) and ∀𝑎 ∈ Σ, ∀𝑞, 𝑝 ∈
𝑄 : 𝑞 ∈ 𝛿−1(𝑝, 𝑎) ⇔ 𝑝 ∈ 𝛿(𝑞, 𝑎). Then, the backward simulation preorder and the backward
simulation equivalence are defined in the same way as for the forward simulation.

For the given simulation equivalence, the state merging algorithm merges all states in
the same equivalence class. A generalization of the above mentioned simulation reduction is
a reduction based on preorders [18]. The main idea behind this approach is computing the
simulation preorders 4𝐿 and 4𝑅 for the forward and the backward simulation, respectively.
Then, two states 𝑝 and 𝑞 can be merged when any of the following conditions is met:
a) 𝑝 4𝑅 𝑞 and 𝑞 4𝑅 𝑝 b) 𝑝 4𝐿 𝑞 and 𝑞 4𝐿 𝑝 c) 𝑝 4𝑅 𝑞 and 𝑝 4𝐿 𝑞. However, in contrast
with the basic simulation reduction, the preorders 4𝑅 and 4𝐿 must be updated after some
two states are merged.

The basic simulation reduction uses the only simulation equivalence (forward or back-
ward) for a reduction. Another approach is to use a composition of the forward and the
backward equivalences [3]1. An automaton is then reduced according to the combined
equivalence ≡𝑊 obtained from the combined preorder 𝑊 =4𝑅 ⊕ 4−1

𝐿 where 4𝑅 and 4𝐿

are the backward and the forward simulation preorders, respectively. The weakening combi-
nation operator ⊕ is defined as follows: Given two preorders 𝐻 and 𝑆 over 𝑄, for 𝑥, 𝑦 ∈ 𝑄,
(𝑥, 𝑦) ∈ 𝐻 ⊕ 𝑆 iff a) (𝑥, 𝑦) ∈ 𝐻 ∘ 𝑆 b) ∀𝑧 ∈ 𝑄 : (𝑦, 𝑧) ∈ 𝐻 =⇒ (𝑥, 𝑧) ∈ 𝐻 ∘ 𝑆.

The above mentioned methods use the merging of states for a reduction only. This is
not, however, the only possible approach. The state merging methods can be combined
with, e.g., a removing of transitions [25]2 (the RABIT and Reduce tools).

So far, we dealt with language-preserving reductions only where for an NFA 𝐴 and
the reduced NFA 𝐴′ it holds that 𝐿(𝐴) = 𝐿(𝐴′). There also exists a way of reducing
automata, called hyperminimization, which modifies the language of an input automaton.
A hyperminimizing algorithm converts the input automaton 𝐴 into a smaller automaton
𝐴′ such that the symmetric difference between languages 𝐿(𝐴) and 𝐿(𝐴′) is a finite set [4].

1The results in this paper are presented in the context of tree automata. However, the results in [3] can
be carried over to the classical finite automata.

2The methods in this paper are described in the context of Büchi automata, but they carry over to the
case of the classical finite automata.
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Hyperminimization, however, is not suitable for our purposes because reduction up to
a finite difference need not yield a sufficiently small automaton. Moreover, by this reduction,
we might remove important strings from the input language.

2.3.2 Automata Language Comparison

In this section, we discuss methods for measuring the difference of languages of finite au-
tomata. One of the ways is based on comparing the similarity of strings from the languages
as follows. The similarity of two strings can be expressed as a cost of operations trans-
forming a string of a source language to some string of a target language. Such operations
considered in the literature are symbol insertion, deletion, or substitution by a different
symbol. Then, the minimal cost of a sequence of these operations transforming a string 𝑥
into a string 𝑦 is called the edit-distance of strings 𝑥 and 𝑦 (denoted as 𝑑(𝑥, 𝑦)) [27]. The
notion of edit-distance between strings can be generalized to languages. The edit-distance
of two languages 𝐿1 and 𝐿2 over Σ is then defined by

𝑑(𝐿1, 𝐿2) = inf{𝑑(𝑥, 𝑦) | 𝑥 ∈ 𝐿1, 𝑦 ∈ 𝐿2}. (2.7)
The reason why this definition is not suitable for many applications, including ours, is the
fact that if languages 𝐿1 and 𝐿2 have at least one common string, then their edit-distance
is zero.

If we limit ourselves to the class of regular languages, there exists a polynomial-time
algorithm for computing their edit-distance. On the other hand, if we consider context-free
languages, then the problem of determining their edit-distance is undecidable [27].

Another approach to comparing regular languages is using the Jaccard distance and the
Cesaro-Jaccard distance [30]. For two regular languages 𝐿1 and 𝐿2 over Σ, the 𝑛≤ Jaccard
distance is defined as

𝐽𝑛(𝐿1, 𝐿2) =
|𝑊≤𝑛(𝐿1 △ 𝐿2)|
|𝑊≤𝑛(𝐿1 ∪ 𝐿2)|

(2.8)

where 𝑊≤𝑛(𝐿) denotes the set of words in 𝐿 of length at most 𝑛. For the case |𝑊≤𝑛(𝐿1 ∪
𝐿2)| = 0, it is defined 𝐽𝑛(𝐿1, 𝐿2) = 0. Because of the existence of infinite regular languages,
the length of their strings cannot be bounded by some fixed 𝑛, and therefore, a natural step
to quantify the distance of those languages is to take the limit of the Jaccard distance. It
can, however, be shown that this limit does not always exist. For this reason, there exists
a generalization of the previous Jaccard distance, called the Cesaro-Jaccard distance. For
two regular languages 𝐿1 and 𝐿2, the Cesaro-Jaccard distance is defined as

𝐽𝐶(𝐿1, 𝐿2) = lim
𝑛→∞

1

𝑛

𝑛∑︁
𝑖=1

𝐽𝑖(𝐿1, 𝐿2). (2.9)

In the paper [30], it is shown that the Cesaro-Jaccard distance is well-defined (i.e., the
above limit always exists). The actual computation is, however, quite complicated because
of a need to determine the matrix polynomials of the automaton adjacency matrix when
computing the Cesaro-Jaccard distance. Moreover, for our purposes, it seems more practical
to reflect in the distance the fact that not all the strings are of the same importance for
us, e.g., some of them appear rarely or do not appear at all. Hence, an approximate
reduction that makes a mistake by classifying such strings should be better than on that
makes a mistake on more important strings. Therefore, for a comparison of the languages of
automata used in network traffic monitoring we will use the proposed probabilistic distance.
That is why, we now aim at weighted automata, which allows us to assign a weight to
a string. This weight can be interpreted as the importance of that string.
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2.4 Weighted and Probabilistic Finite Automata
This section is devoted to weighted finite automata and their special case—probabilistic
finite automata. Many different kinds of probabilistic automata can be defined using dif-
ferent forms of their transition function, e.g., bundle probabilistic automata, Pneuli-Zuck
automata, and others [32]. Here, we consider simple probabilistic automata only. We start
with the definition of a general weighted automaton over R≥0. In this section, we use the
formalism based on [5] and basic definitions based on [5, 28].

Definition 11 ([5, 28]). We define a weighted finite automaton (WFA) over Σ with 𝑛 states
as a triple of the form 𝐴 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) where 𝛼0 ∈ R𝑛

≥0 is a vector of initial weights,
𝛼𝑓 ∈ R𝑛

≥0 is a vector of final weights, and, for all 𝑎 ∈ Σ, A𝑎 ∈ R𝑛×𝑛
≥0 is the transition

matrix for symbol 𝑎. We call the set 𝑄𝐴 = {𝑞1, . . . , 𝑞𝑛} the states of 𝐴3. Further, the set
𝐼𝐴 = {𝑞𝑖 ∈ 𝑄𝐴 | 𝛼0[𝑞𝑖] ̸= 0} is called the set of initial states and 𝐹𝐴 = {𝑞𝑖 ∈ 𝑄𝐴 | 𝛼𝑓 [𝑞𝑖] ̸=
0} the set of final states.

Now, we get to the definition of a (semi-)probabilistic automaton, which is a special
case of a general weighted finite automaton.

Definition 12. We define a semi-probabilistic automaton (SPA) over Σ as a WFA 𝑃 =
(𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) where 𝛼0 ∈ [0, 1]𝑛 is called the vector of initial probability values, 𝛼𝑓 ∈
[0, 1]𝑛 is called the vector of final probability values, and for all 𝑎 ∈ Σ, A𝑎 ∈ [0, 1]𝑛×𝑛.
Moreover, the following two conditions are required to hold for 𝑃 :

1. The initial probability values of all states sum up to 1, i.e.,
𝑛∑︁

𝑖=1

𝛼0[𝑖] = 1. (2.10)

2. For every state 𝑞𝑖 such that 1 ≤ 𝑖 ≤ 𝑛, the probabilities of all outgoing transitions
plus the probability of acceptance sum up to at most 1, i.e.,⎛⎝ 𝑛∑︁

𝑗=1

∑︁
𝑎∈Σ

A𝑎[𝑖, 𝑗]

⎞⎠+𝛼𝑓 [𝑖] ≤ 1. (2.11)

Further, we define a probabilistic automaton (PA) as an SPA where the inequality “≤ 1”
in 2.11 is substituted with equality “= 1” [11].

For 𝑃 being an SPA over Σ, a support of 𝑃 is an NFA obtained by omitting the
weights from 𝑃 . The support of an SPA 𝑃 is denoted by supp(𝑃 ). For an SPA 𝑃 =
(𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ), the operation supp(𝑃 ) is defined as supp(𝑃 ) = singleInit(𝐴) where 𝐴 =
(𝑄𝑃 ,Σ, 𝛿

′, 𝐼𝑃 , 𝐹𝑃 ), and, for each 𝑝, 𝑞 ∈ 𝑄𝑃 : 𝑞 ∈ 𝛿′(𝑝, 𝑎) iff A𝑎[𝑝, 𝑞] > 0.
An SPA (PA) 𝑃 is called a deterministic SPA (PA), denoted as DSPA (DPA), if 𝑃 has

a single initial state and supp(𝑃 ) is a deterministic finite automaton.
Given a word 𝑤 = 𝑎1 . . . 𝑎𝑚 ∈ Σ* of length 𝑚 ≥ 0 and a WFA 𝑃 , we define the

weight of 𝑤 in 𝑃 (or probability of 𝑤 in 𝑃 in the case of an SPA), denoted 𝑓𝑃 (𝑤), as
3Without loss of generality, we assume that the transition matrix and the vectors of initial and final

weights can be indexed by the states from 𝑄𝐴, i.e., that there exists some fixed bijection 𝜙 : 𝑄𝐴 →
{1, . . . , |𝑄𝐴|}.
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𝑞11.0 𝑞2 (0.5)

𝑞3 (1.0)

𝑏, 0.2

𝑐, 0.5

𝑐, 0.3

𝑎, 0.5

Figure 2.1: Example of PA over alphabet {𝑎, 𝑏, 𝑐}. The accepting weight is denoted by
a bold number in brackets inside of the accepting state. The initial weight is denoted by
a number before the initial states.

𝑓𝑃 (𝑤) = 𝛼⊤
0 ·A𝑎1 · · ·A𝑎𝑚 ·𝛼𝑓 . Further, we denote A𝑎1 · · ·A𝑎𝑚 as A𝑤, and we let A𝜀 = I

and AΣ =
∑︀

𝑎∈ΣA𝑎. The pointwise extension of 𝑓𝑃 to a language 𝐿 is defined as 𝑓𝑃 (𝐿) =∑︀
𝑤∈𝐿 𝑓𝑃 (𝑤). For a WFA 𝑃 and 𝑞 ∈ 𝑄𝑃 , the language accepted at 𝑞 is defined as 𝐿−1

𝑃 (𝑞) =
𝐿−1
supp(𝑃 )(𝑞).

Example 13. Consider a PA 𝑃 over alphabet {𝑎, 𝑏, 𝑐} given in Figure 2.1. Then, the values
of the function 𝑓𝑃 for strings 𝑏𝑐𝑎𝑎, 𝑐, and 𝑏𝑐𝑐, respectively, are given as

𝑓𝑃 (𝑏𝑐𝑎𝑎) = 1.0 · 0.2 · 0.5 · 0.5 · 0.5 · 0.5 = 0.0125, (2.12)
𝑓𝑃 (𝑐) = 1.0 · 0.5 · 0.5 + 1.0 · 0.3 · 1.0 = 0.55, (2.13)

𝑓𝑃 (𝑏𝑐𝑐) = 0. (2.14)

Further, 𝑓𝑃 ({𝑏𝑐𝑎𝑎, 𝑐, 𝑏𝑐𝑐}) = 0.5625. The language accepted at 𝑞2 can be expressed by the
regular expression 𝐿−1

𝑃 (𝑞2) = 𝑏*𝑐𝑎*.
We say that two WFAs 𝐴1 and 𝐴2 over an alphabet Σ are equivalent iff 𝑓𝐴1(𝑤) = 𝑓𝐴2(𝑤)

for all 𝑤 ∈ Σ*.
A state 𝑞 of a WFA 𝐴 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) is said to be non-accessible if there is no

path in 𝒢(AΣ) from any state in 𝐼𝐴 to 𝑞 and non-coaccessible if there is no path in 𝒢(AΣ)
from 𝑞 to any state in 𝐹𝐴. A WFA 𝐴 is well-formed if it has no non-coaccessible states. If
𝐴 has no non-accessible and no non-coaccessible states, it is called trimmed.

The following lemma, which characterizes the function represented by a WFA, was in
a slightly different form presented in [5] but without a proof of Equality 2.15, so we state it
here in a complete form. An intuition behind this lemma is that we can express the value
𝑓𝑃 (Σ

𝑡) as a matrix power and using the results from linear algebra we are able to sum these
matrices for each 𝑡.
Lemma 14. Let 𝐴 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) be a WFA such that 𝜌(AΣ) < 1. Then 𝑓𝐴(Σ

*) =
𝛼⊤

0 (I−AΣ)
−1𝛼𝑓 .

Proof. First, we prove an auxiliary equality∑︁
𝑤∈Σ𝑡

A𝑤 = A𝑡
Σ for all 𝑡 ∈ N. (2.15)

By induction on 𝑡. For 𝑡 = 0, the equality is valid since A𝜀 = A0
Σ = I. Further, we assume

that the equality holds for 𝑡 = 𝑠. We prove that it also holds for 𝑡 = 𝑠+ 1:∑︁
𝑤∈Σ𝑡+1

A𝑤 =
∑︁
𝑤∈Σ𝑡

∑︁
𝑎∈Σ

A𝑤A𝑎 =

(︃∑︁
𝑤∈Σ𝑡

A𝑤

)︃
·

(︃∑︁
𝑎∈Σ

A𝑎

)︃
= A𝑡

ΣAΣ = A𝑡+1
Σ . (2.16)
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Finally, according to Theorem 5 and Equality 2.15, we get

𝑓𝐴(Σ
*) =

∑︁
𝑡∈N

∑︁
𝑤∈Σ𝑡

𝛼⊤
0 A𝑤𝛼𝑓 =

∑︁
𝑡∈N

𝛼⊤
0 A

𝑡
Σ𝛼𝑓 = 𝛼⊤

0 (I−AΣ)
−1𝛼𝑓 . (2.17)

2.4.1 Weighted Automata Operations

In this section, we look at weighted automata operations used in the rest of this thesis.

Definition 15 ([28]). Let 𝐴1 and 𝐴2 be WFAs over Σ and 𝑓𝐴1 , 𝑓𝐴2 : Σ* → R≥0 be functions
generated by these automata. Then the intersection (or Hadamard product) of 𝐴1 and 𝐴2

is the WFA 𝐴1 ∩𝐴2 over Σ generating the function 𝑓𝐴1∩𝐴2 that is defined as

∀𝑥 ∈ Σ* : 𝑓𝐴1∩𝐴2(𝑥) = 𝑓𝐴1(𝑥) · 𝑓𝐴2(𝑥). (2.18)

There exists an efficient algorithm for computing the intersection of two arbitrary WFAs.
Algorithm 1 was taken from [28], and we state it here in the form that reflects our notions
and our definition of WFAs.

Algorithm 1: Intersection of two WFAs
Input: WFA 𝐴1 = (𝛼1

0,𝛼
1
𝑓 , {A1

𝑎}𝑎∈Σ), 𝐴2 = (𝛼2
0,𝛼

2
𝑓 , {A2

𝑎}𝑎∈Σ)
Output: WFA 𝐴 = 𝐴1 ∩𝐴2

1: foreach 𝑞 = (𝑞1, 𝑞2) ∈ 𝑄𝐴1 ×𝑄𝐴2 do
2: 𝛼0[𝑞]← 𝛼1

0[𝑞1] ·𝛼2
0[𝑞2]

3: 𝛼𝑓 [𝑞]← 𝛼1
𝑓 [𝑞1] ·𝛼2

𝑓 [𝑞2]

4: foreach 𝑞′ = (𝑞′1, 𝑞
′
2) ∈ 𝑄𝐴1 ×𝑄𝐴2 do

5: foreach 𝑎 ∈ Σ do
6: A𝑎[𝑞, 𝑞

′]← A1
𝑎[𝑞1, 𝑞

′
1] ·A2

𝑎[𝑞2, 𝑞
′
2]

7: end
8: end
9: end

10: return (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ)

The states of the WFA 𝐴1 ∩ 𝐴2 are pairs of the form (𝑞1, 𝑞2) where 𝑞1 ∈ 𝑄𝐴1 and
𝑞2 ∈ 𝑄𝐴2 . The presented algorithm does not remove non-accessible and non-coaccessible
states. In the rest of this thesis, if we talk about a WFA 𝐴1 ∩ 𝐴2, we implicitly mean the
WFA constructed using Algorithm 1.

In the following text, we consider the operation weighted(𝐴) that transforms an NFA
𝐴 into a WFA by adding a unit weight to each edge of 𝐴. More precisely, let 𝐴 =
(𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) be an NFA over Σ and 𝜙 : 𝑄 → {1, . . . , |𝑄|} be an arbitrary bijective
function. Then, weighted(𝐴) = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) where

∀𝑞 ∈ 𝑄 : 𝛼0[𝜙(𝑞)] =

{︃
1 if 𝑞 = 𝑞0,

0 otherwise,
𝛼𝑓 [𝜙(𝑞)] =

{︃
1 if 𝑞 ∈ 𝐹,

0 otherwise,

∀𝑞1, 𝑞2 ∈ 𝑄,∀𝑎 ∈ Σ : A𝑎[𝜙(𝑞1), 𝜙(𝑞2)] =

{︃
1 if 𝑞2 ∈ 𝛿(𝑞1, 𝑎),

0 otherwise.
(2.19)
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Definition 16. Let 𝑃 be an SPA and 𝐴 be an NFA. Then, the intersection ⊙ of 𝑃 and 𝐴
is the WFA defined as 𝑃 ⊙𝐴 = 𝑃 ∩ weighted(𝐴).

Other considered operations over WFAs are trim and wellFormed. The trim(𝐴) operation
converts a WFA 𝐴 to an equivalent trimmed WFA. Similarly, the wellFormed(𝐴) operation
converts a WFA to an equivalent well-formed WFA. There exists an algorithm for the trim
operation (Algorithm 2, modified from [35], based on an algorithm for graph reachability).
An algorithm for the operation wellFormed can be obtained from Algorithm 2 (by simply
replacing the line 10 by 𝑄← 𝐹𝑗).

Algorithm 2: The Trim operation
Input: WFA 𝐴 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ)
Output: WFA trim(𝐴)

1: 𝑖← 0, 𝐼0 ← 𝐼𝐴, 𝑗 ← 0, 𝐹0 ← 𝐹𝐴

2: repeat
3: 𝐼𝑖+1 ← 𝐼𝑖 ∪ {𝑞 ∈ 𝑄𝐴 | ∃𝑝 ∈ 𝐼𝑖 ∃𝑎 ∈ Σ : A𝑎[𝑝, 𝑞] > 0}
4: 𝑖← 𝑖+ 1

5: until 𝐼𝑖 = 𝐼𝑖−1;
6: repeat
7: 𝐹𝑗+1 ← 𝐹𝑗 ∪ {𝑝 ∈ 𝑄𝐴 | ∃𝑞 ∈ 𝐹𝑗 ∃𝑎 ∈ Σ : A𝑎[𝑝, 𝑞] > 0}
8: 𝑗 ← 𝑗 + 1

9: until 𝐹𝑗 = 𝐹𝑗−1;
10: 𝑄← 𝐼𝑖 ∩ 𝐹𝑗

11: return (𝛼0[𝑄],𝛼𝑓 [𝑄], {A𝑎[𝑄]}𝑎∈Σ), where 𝛼[𝑄] is subvector of 𝛼 with elements
indices in 𝑄.

2.4.2 Learning Probabilistic Automata

Although, learning of probabilistic automata is not the topic of this thesis, we use learning to
obtain a PA from the captured network traffic. For this reason, we very briefly describe basic
methods used for learning of probabilistic automata from a finite multiset of strings 𝑆. This
section is based on [12, 13, Chapter 16]. One of the well known is the Alergia algorithm,
which is based on a merging of states. The Alergia algorithm constructs a probabilistic
automaton from an initial frequency prefix tree acceptor.

The frequency prefix tree acceptor of 𝑆 (denoted as FPTA(𝑆)) is a tree-shaped DFA
(prefix tree) accepting 𝑆 [13]. Moreover, each transition is associated with the number of
strings from 𝑆 that traverse this transition and each state is associated with the number
of strings that are accepted in this state. The general frequency finite automaton (FFA) is
then a weighted automaton with the positive integer weights (i.e., the transition matrix is
a matrix over N and the vector of initial and final weights are vectors over N) [13]. Hence,
the frequency prefix tree acceptor is a special case of the frequency finite automaton. For
a state 𝑞 of FFA 𝐴, a frequency of 𝑞, denoted as Freq(𝑞), is the sum of the final weight of
𝑞 and the weights of all outgoing transitions leading from 𝑞.

Example 17. Let us consider a multiset of strings4 𝑆 = {𝜀(3), 𝑎𝑎(5), 𝑎𝑏(2), 𝑎(4), 𝑏𝑎(8)}.
The frequency prefix tree acceptor FPTA(𝑆) corresponding to 𝑆 is then shown in Figure 2.2.

4The numbers in brackets denote the number of occurrences in 𝑆.
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Figure 2.2: A FPTA built from 22 strings.

For merging states, Alergia uses two sets of states of the constructed FFA—the red
states and the blue states. Initially, the only red state is the root (the initial state) of the
FPTA and the blue states are states reachable from the root state in one step. Alergia then
repeatedly selects a blue state 𝑞𝑏 such that Freq(𝑞𝑏) ≥ 𝑡0. The parameter 𝑡0 is a threshold
on the number of strings in 𝑆 needed for 𝑞𝑏 to be considered for merging. If there is
a compatible red state 𝑞𝑟, then 𝑞𝑏 is merged with 𝑞𝑟. If there is no compatible red state,
then 𝑞𝑏 is promoted to the red set. Finally, the blue set is updated in order to contain
the states reachable from the red states in one step. Two states are compatible, if their
frequencies are sufficiently close (uses the Hoeffding bounds). The compatibility depends
also on an input parameter 𝛼. Hence, this parameter determines when the two states are
merged. Since the algorithm works with a deterministic frequency finite automaton 𝐴, in
the last step, 𝐴 is converted to a deterministic probabilistic automaton. The conversion
is performed by a normalization of integer weights. Alergia in pseudocode is shown in
Algorithm 3 [13, Chapter 16].

Algorithm 3: Alergia
Input: A sample 𝑆, 𝛼 > 0, 𝑡0 ∈ N
Output: PA 𝑃

1: 𝐴← FPTA(𝑆)
2: Initialize 𝑅𝑒𝑑 and 𝐵𝑙𝑢𝑒 sets from 𝐴
3: while Choose 𝑞𝑏 from Blue set s.t. Freq(𝑞𝑏) ≥ 𝑡0 do
4: if ∃𝑞𝑟 ∈ 𝑅𝑒𝑑: Compatible(𝐴, 𝑞𝑟, 𝑞𝑏, 𝛼) then
5: 𝐴← Merge(𝐴, 𝑞𝑟, 𝑞𝑏)
6: end
7: else
8: 𝑅𝑒𝑑← 𝑅𝑒𝑑 ∪ {𝑞𝑏}
9: end

10: Update 𝐵𝑙𝑢𝑒 set
11: end
12: return 𝑃 = PA(𝐴)

However, Alergia is not the only algorithm based on merging states for learning of
probabilistic automata. There are variations of this mentioned algorithm that differ on the
compatibility test of two states (DSAI algorithm, MDI algorithm, etc.) [12, 13].

Alergia (and its variations) learns both structure and probabilities of a PA. This ap-
proach is definitely not the only way of learning probabilistic automata. There are also
algorithms, which learn probabilities to a given structure (e.g., Baum-Welch algorithm) [13,
Chapter 17].

15



Chapter 3

Finite Automata in Network
Traffic Filtering

In this chapter, we describe an application of finite automata in a framework for HW accel-
erated network traffic filtering. This chapter is based on [23, 24, 21, 7]. Due to a massive
expansion of computer networks, and especially of the Internet, the communication with
other computers all over the world became a quite common thing nowadays. Moreover, this
expansion is still accelerating, e.g., due to concepts such as the Internet of Things (IoT).
However, this possibility of connection and communication brings also new possibilities for
malicious users. For this reason, a great effort to improve the security of networks is being
made. The used methods include among others detection of malicious activities such as
attacks. One of the technologies that try to detect these malicious activities are network in-
trusion detection systems (NIDS). The task of an NIDS is among others to analyze packets
in order to detect hostile traffic. Examples of such systems are Snort1 or Bro2.

The majority of network intrusion detection systems are based on rules that identify
malicious traffic. These rules are then applied to each incoming packet. If the input packet is
matched against some rule, it can be removed from the traffic (or sent for further analysis).
Many used rules are based on regular expressions (REs). This means that malicious traffic
is described by REs, and an NIDS tries to match the packet payload with at least one RE
out of the given set. Regular expressions need not be used only for detection of malicious
packets, but also, for instance, for an identification of application protocols of incoming
packets (a so-called L7 filter3).

3.1 Hardware Acceleration
The main objective of a network traffic filtering system is real-time matching of the traffic
against a large set of regular expressions while maintaining a maximum throughput. Com-
mon computers do, however, not provide satisfactory computational power for processing
large sets of REs against the traffic on multigigabit networks. For this reason, various
hardware architectures for RE matching acceleration were constructed. The hardware ar-
chitectures can then be used for a traffic pre-filtration according to a set of rules (i.e., REs).

1http://www.short.org
2http://www.bro.org
3http://l7-filter.sourceforge.net
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Most of these architectures are based on the FPGA4 technology. The pre-filtration labels
suspicious packets, and these packets are further analyzed by the NIDS software. The use
of hardware pre-filtration reduces the amount of data processed in software, and therefore,
increases the throughput of the whole system. The example of such a system is shown in
Figure 3.1.

Internet

Private
Network

Incoming
Traffic

Hardware
Acceleration
Card

SnortMalicious
Packets

Figure 3.1: The architecture of a network traffic pre-filtration system that uses a hardware
acceleration card. The aim of the card is to separate suspicious packets from the input traffic
and sent them to a software NIDS (such as Snort or Bro) [23].

The hardware circuit that performs pattern matching is not usually constructed directly
from REs. Instead, the REs are first transformed into a finite automaton, and the resulting
automaton is then mapped into an FPGA. The main design approaches for network traffic
pattern matching in hardware are therefore based on DFAs and NFAs.

An advantage of the DFA approach is that only one state of a deterministic automaton
can be active at once, which allows to store the whole transition function into a RAM mem-
ory. Hence, it is not necessary to implement the transition function directly as a hardware
circuit. This can be appropriate especially in the cases when we need to quickly replace
the current automaton with an automaton implementing different REs. However, the use
of the DFA approach is limited by the size of the memory available in the HW device. This
limitation is made worse by the fact that a DFA representing a given set of rules may be
exponentially bigger then an NFA representing the same language.

On the other hand, using NFAs can lead to much smaller automata. The transition
function of an NFA, obtained by a conversion from REs, is synthesized directly as a hardware
circuit, which is capable of efficiently handling the fact that the NFA can be in multiple
states after reading some word. The NFA-based approach is of course limited by the
size and the capacity of the FPGA chip. That is the reason why many methods and
techniques for minimization of the consumed FPGA resources were introduced [7]. One of
these methods is, for example, a use of multi-character decoders, which are able to process
more characters per clock cycle. An example of a circuit representing an NFA is shown in
Figure 3.2. A disadvantage of the NFA approach can be the long time it takes to change
the NFA synthesized in hardware.

4Field Programmable Gate Array
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𝑐
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𝑚𝑎 𝑚𝑏

𝑚𝑐

Figure 3.2: An example of the NFA-based circuit realization of the language 𝐿 = {𝑎𝑎𝑏} [7].
The circuit consists of a character decoder, flip-flops, and AND gates. In this example, each
flip-flop represents a state of the NFA accepting the language 𝐿 (if a flip-flop is set, then
this corresponding state of the NFA is active). By the signal 𝑚𝑖𝑛, the first flip-flop is set
(it represents an initial state of the NFA). In each cycle, next 8-bit character 𝜎 from the
input is decoded, and according to the result, the signal 𝑚𝜎 is set. The AND gates, based
on the character signals, steer the setting of flip-flops (i.e., changing of the active states of
the NFA). The output signal 𝑚𝑜𝑢𝑡 then signalizes whether the input string is accepted.

3.2 Network Automata Reductions
Since the REs are translated first into NFAs, possible determinized, and then mapped to
FPGAs, it is desirable to reduce the size of the involved automata (either DFAs or NFAs)
as much as possible. The reduction can save resources of the target hardware architecture
such as the size of the circuit. The used techniques for the automata size reduction depend
on the type of the automaton. If we require a use of deterministic automata, we can convert
these NFAs into minimal DFAs. If we are able to operate with nondeterministic automata,
we can use the various NFA reductions discussed in Section 2.3.1, and/or the reductions
that we propose in this work in Chapter 5. The workflow of this process with the reduction
is shown in Figure 3.3.

RE RE to NFA
Transformation

NFA NFA
Reduction

NFA FPGA
Mapping

FPGA
Architecture

Figure 3.3: The NFA reduction in a network traffic filtering [24].

In some cases, we need the information about which RE is matched. For example,
some applications can identify the application protocol of incoming packets according to
the matched REs. For these applications, the standard simulation reduction is not usable
because standard nondeterministic finite automata do not distinguish final states and the
simulation reduction can merge final states. For this reason, the concept of the multi-
language nondeterministic finite automaton (MNFA) was introduced [24]. The only differ-
ence between NFA and MNFA is that MNFA defines a set of labels and every final state
is marked by some label. The simulation equivalence on MNFAs can be defined in a very
similar way as for NFAs, one just has to ensure that the final states with different labels
are not in the equivalence relation [24].
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Chapter 4

Computing Probabilistic Distance
for Regular Languages

In this chapter, we propose our algorithm for a computation of the probabilistic distance
of regular languages. We show that if the languages are given by UFAs, their probabilistic
distance can be computed in polynomial time. In this case, no prior determinization is
necessary. For the case when the languages are given by general NFAs, one can use disam-
biguation to obtain unambiguous automata. This approach can be more efficient compared
to an a priori NFA determinization.

As we will show later in more detail, the probabilistic distance can be quite useful in
the context of HW accelerated network filtering. In particular, a PA can be used to model
network traffic (more concretely, occurrences of packets in the network traffic). Then,
the probabilistic distance can be used for comparing automata obtained by language non-
preserving reductions and for steering such reductions (e.g., by a constraint on the maximal
probabilistic distance between an original and the reduced automaton). The workflow of
our approach for the automata languages comparison and obtaining a PA in network traffic
monitoring is shown in Figure 4.1.

4.1 Probabilistic Distance and SPAs
In this section, we give a lemma useful for the computation of the probabilistic distance.
Recall that, for a distribution 𝜇 over Σ* and languages 𝐿1, 𝐿2 ⊆ Σ*, the probabilistic
distance is defined as 𝜇(𝐿1△𝐿2). Hence, a crucial role is played by the symmetric difference.
Moreover, a straightforward computation of the symmetric difference can be very expensive.
That is the case when the languages are given by general NFAs whose symmetric difference
is usually computed as 𝐿1 △ 𝐿2 = (𝐿1 ∩ 𝐿2) ∪ (𝐿1 ∩ 𝐿2). However, then, determinization
is needed to compute complements of the languages 𝐿1 and 𝐿2. Fortunately, the below
lemma shows that for computing the probabilistic distance it is not necessary to compute
the symmetric difference of the input languages directly (and therefore, we avoid of explicit
determinization).
Lemma 18. Let 𝐿1, 𝐿2 ⊆ Σ* and 𝜇 be a semi-distribution over Σ*. Then

𝜇(𝐿1 △ 𝐿2) = 𝜇(𝐿1) + 𝜇(𝐿2)− 2 · 𝜇(𝐿1 ∩ 𝐿2). (4.1)

Proof. We start with the definition of the symmetric difference

𝐿1 △ 𝐿2 = (𝐿1 ∖ 𝐿2) ∪ (𝐿2 ∖ 𝐿1). (4.2)
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Network traffic

The difference of languages (automata)
with regard to the traffic model

Automata 𝐴1, 𝐴2

Probabilistic
automaton

𝜇
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· · ·· · ·
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𝜇(𝐿(𝐴1)△𝐿(𝐴2))

Figure 4.1: The workflow of the language comparison approach that we propose for
the context of HW accelerated network traffic filtering. In the first step, a probabilistic
automaton is obtained from the input traffic by learning. In the second step, this PA and
two NFAs encoding the REs of interest are input for the comparison.

Since 𝐿1 ∖ 𝐿2 and 𝐿2 ∖ 𝐿1 are disjoint and from the fact that 𝐴 ∖𝐵 = 𝐴 ∖ (𝐴 ∩𝐵), we get

𝜇((𝐿1 ∖ 𝐿2) ∪ (𝐿2 ∖ 𝐿1)) =
∑︁

𝑤∈𝐿1∖𝐿2

𝜇(𝑤) +
∑︁

𝑤∈𝐿2∖𝐿1

𝜇(𝑤) =

=
∑︁

𝑤∈𝐿1∖(𝐿1∩𝐿2)

𝜇(𝑤) +
∑︁

𝑤∈𝐿2∖(𝐿1∩𝐿2)

𝜇(𝑤). (4.3)

Further, from the definition of 𝜇 and the fact that 𝐿1 ∩ 𝐿2 ⊆ 𝐿1, we obtain∑︁
𝑤∈𝐿1∖(𝐿1∩𝐿2)

𝜇(𝑤) =
∑︁
𝑤∈𝐿1

𝜇(𝑤)−
∑︁

𝑤∈𝐿1∩𝐿2

𝜇(𝑤) = 𝜇(𝐿1)− 𝜇(𝐿1 ∩ 𝐿2). (4.4)

Finally, from Equations 4.3 and 4.4, we have

𝜇(𝐿1 △ 𝐿2) = 𝜇(𝐿1) + 𝜇(𝐿2)− 2 · 𝜇(𝐿1 ∩ 𝐿2). (4.5)

Due to Lemma 18, we can compute the probabilistic distance by taking 𝜇(𝐿1 △ 𝐿2) =
𝜇(𝐿1) + 𝜇(𝐿2) − 2 · 𝜇(𝐿1 ∩ 𝐿2). For computing the distance we thus need to compute
𝜇(𝐿) for a distribution 𝜇 given by a PA, which is the aim of the following text. The first
preliminary step for computing 𝜇(𝐿) is a computation of 𝑓𝑃 (Σ*) for an SPA 𝑃 . For this,
we can apply Lemma 14 but first, we have to show that the condition concerning spectral
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radius is satisfied, which is the focus of the below theorem. The proof of this theorem is
given in Appendix A.

Theorem 19. If an SPA 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) is well-formed, then 𝜌(AΣ) < 1.

Given a well-formed SPA 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ), Theorem 19 allows us to compute
𝑓𝑃 (Σ

*) as 𝛼⊤
0 · (I−AΣ)

−1 ·𝛼𝑓 (see Lemma 14). Another similar way of computing 𝑓𝑃 (Σ
*)

can be found in [11]. The method in [11] uses a difficult linear algebraic approach (including,
e.g., decomposition or projection on subspaces). Our way, on the other hand, uses easier
to grasp notions of well-formedness (which has an easy graph representation) together with
automata matrix convergence. Therefore, we will further consider only the first mentioned
way.

4.2 Computing Probabilistic Distance for UFAs
In this section, we build on the results from the previous section, and we present a polyno-
mial-time algorithm for computing the probabilistic distance 𝜇(𝐿1△𝐿2) of languages 𝐿1, 𝐿2

given by UFAs. Recall that, the basic idea how to compute the distance was presented
in Lemma 18 that expressed the distance as 𝜇(𝐿1 △ 𝐿2) = 𝜇(𝐿1) + 𝜇(𝐿2) − 2 · 𝜇(𝐿1 ∩
𝐿2). Moreover, we made a first preliminary step for the computation of 𝜇(𝐿) by the
introduction of the way of computing 𝑓𝑃 (Σ

*) for an SPA 𝑃 . Now, we will continue with
these considerations and we show how to compute 𝜇(𝐿) when the semi-distribution 𝜇 is
given by a PA and the regular language 𝐿 is given by a UFA.

The following two lemmas give us a possible way how to compute 𝜇(𝐿) using intersection
of automata.

Lemma 20. Let 𝐴 be a UFA and 𝑓 : Σ* → R be a function generated by the WFA
weighted(𝐴). Then

∀𝑤 ∈ Σ* : 𝑓(𝑤) =

{︃
1 if 𝑤 ∈ 𝐿(𝐴),

0 otherwise.
(4.6)

Proof. Since 𝐴 is a UFA, there exists at most one accepting run on any word 𝑤 ∈ Σ*. From
the definition of the weighted operation, we get 𝑓(𝑤) = 1 for 𝑤 ∈ 𝐿(𝐴) and 𝑓(𝑤) = 0 for
𝑤 /∈ 𝐿(𝐴).

Lemma 21. Let 𝑃 be an SPA over Σ, 𝐴 be a UFA over Σ, and 𝑃 ′ be a WFA such that
𝑃 ′ = 𝑃 ⊙𝐴. Then 𝑓𝑃 (𝐿(𝐴)) = 𝑓𝑃 ′(Σ*).

Proof. We start from the definition of automata intersection, thus 𝑃 ′ = 𝑃 ∩ weighted(𝐴).
Further, from Lemma 20, we get 𝑓𝑃 (𝑤) = 𝑓𝑃 ′(𝑤) for 𝑤 ∈ 𝐿(𝐴), and 𝑓𝑃 ′(𝑤) = 0 for
𝑤 /∈ 𝐿(𝐴). And therefore, 𝑓𝑃 (𝐿(𝐴)) = 𝑓𝑃 ′(Σ*).

Before we show how to compute 𝜇(𝐿(𝐴)) for a UFA 𝐴 where 𝜇 is a distribution given
by a PA 𝑃 , we turn our attention to a simpler case, i.e., the computation of 𝜇(𝐿(𝐴)) (or
equivalently written 𝑓𝑃 (𝐿(𝐴))) for a DFA 𝐴. In the first step, we obtain the automaton
𝑃 ′ = wellForm(𝑃⊙𝐴). Since 𝑃 ′ is an SPA, in the second step, we compute the value 𝑓𝑃 ′(Σ*)
(see the previous section) and according to Lemma 21 we have that 𝑓𝑃 ′(Σ*) = 𝑓𝑃 (𝐿(𝐴)).

If we want to compute 𝜇(𝐿(𝐴)) for a UFA 𝐴, we cannot use exactly this procedure
because 𝑃 ⊙ 𝐴 need not be an SPA (for some state the sum of the final weight and the
weights of outgoing transitions from this state can be greater than 1). Therefore, we
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cannot use Theorem 19 for computing 𝑓𝑃 ′(Σ*), however, we would like to use the same
procedure as for DFAs. For this reason, we give the following theorem, which is an analogy
of Theorem 19.

Theorem 22. Let 𝑃 be a PA, 𝐴 be a UFA, and 𝑃 ′ be a WFA 𝑃 ′ = trim(𝑃 ⊙ 𝐴) =
(𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ). Then 𝜌(AΣ) < 1.

The proof of this theorem can be found in Appendix A. Next, in Algorithm 4, we finally
introduce the way of computing the probabilistic distance for UFAs. The algorithm is based
on Lemma 18 and Theorem 22. For a better insight, see the proof of the following theorem.
In addition, below the theorem, we present an example illustrating the construction. In
the following text, when we talk about PAs over Σ, we mean trimmed PAs generating
distributions over Σ*. Moreover, we use 𝑑𝑃 as an abbreviation for 𝑑𝑓𝑃 where 𝑃 is a PA.

Algorithm 4: Computing probabilistic distance for UFAs
Input: A PA 𝑃 over Σ generating the distribution 𝜇𝑃 , UFAs 𝐴1 and 𝐴2 over Σ.
Output: 𝑑𝜇𝑃 (𝐿(𝐴1), 𝐿(𝐴2))

1: 𝑃1 ← trim(𝑃 ⊙𝐴1) = (𝛼1
0,𝛼

1
𝑓 , {A1

𝑎}𝑎∈Σ)
2: 𝑃2 ← trim(𝑃 ⊙𝐴2) = (𝛼2

0,𝛼
2
𝑓 , {A2

𝑎}𝑎∈Σ)
3: 𝑃3 ← trim(𝑃 ⊙ (𝐴1 ∩𝐴2)) = (𝛼3

0,𝛼
3
𝑓 , {A3

𝑎}𝑎∈Σ)
4: return 𝛼1⊤

0 (I−A1
Σ)

−1𝛼1
𝑓 +

5: 𝛼2⊤
0 (I−A2

Σ)
−1𝛼2

𝑓 −
6: 2𝛼3⊤

0 (I−A3
Σ)

−1𝛼3
𝑓 .

Theorem 23. Algorithm 4 is correct.

Proof. First, from Lemma 18, we obtain

𝑑𝜇𝑃 (𝐿(𝐴1), 𝐿(𝐴2)) = 𝜇𝑃 (𝐿(𝐴1)△ 𝐿(𝐴2)) =

= 𝜇𝑃 (𝐿(𝐴1)) + 𝜇𝑃 (𝐿(𝐴2))− 2 · 𝜇𝑃 (𝐿(𝐴1) ∩ 𝐿(𝐴2)) =

= 𝜇𝑃 (𝐿(𝐴1)) + 𝜇𝑃 (𝐿(𝐴2))− 2 · 𝜇𝑃 (𝐿(𝐴1 ∩𝐴2)). (4.7)

Further, according to Lemma 21 and the fact that the trim operation does not change the
function generated by a WFA, we have

𝜇𝑃 (𝐿(𝐴𝑖)) = 𝑓𝑃𝑖(Σ
*) for 𝑖 ∈ {1, 2}. (4.8)

Since the language 𝐿(𝐴1) ∩ 𝐿(𝐴2) for UFAs 𝐴1 and 𝐴2 can be easily represented by the
UFA 𝐴1 ∩𝐴2, we get

𝜇𝑃 (𝐿(𝐴1 ∩𝐴2)) = 𝑓𝑃3(Σ
*). (4.9)

Moreover, directly from Theorem 22, we get 𝜌(A𝑖
Σ) < 1 for 𝑖 ∈ {1, 2, 3}. Finally, us-

ing Lemma 14 and Equations 4.7, 4.8, and 4.9, we get the expression on the 4th line of
Algorithm 4.

Before we move to computing the probabilistic distance for general NFAs, we give
a short example illustrating the computation of the probabilistic distance of UFAs using
the described algorithm. It is shown as Example 24.
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1 (0.3)1.0

𝑎, 0.3

𝑏, 0.4

(a) A probabilistic automaton 𝑃 .

1

3

2
𝑎

𝑎, 𝑏

𝑏

(b) UFA 𝐴1.

1 2
𝑎

𝑏

(c) UFA 𝐴2.

Figure 4.2: Examples of input automata over the alphabet {𝑎, 𝑏} illustrating the compu-
tation of probabilistic distance.

Example 24. Consider the simple PA and the NFAs over an alphabet {𝑎, 𝑏} given in
Figure 4.2. The transition matrices and the vectors of initial and final weights for product
WFAs 𝑃𝑖 where 𝑖 ∈ {1, 2, 3} used in Algorithm 4 are the following:

𝛼1
0 =

⎛⎝1
0
0

⎞⎠ , 𝛼1
𝑓 =

⎛⎝ 0
0.3
0.3

⎞⎠ , A1
Σ =

⎛⎝0 0.3 0.4
0 0.7 0
0 0 0

⎞⎠ ,

𝛼2
0 = 𝛼3

0 =

(︂
1
0

)︂
, 𝛼2

𝑓 = 𝛼3
𝑓 =

(︂
0
0.3

)︂
, A2

Σ = A3
Σ =

(︂
0 0.3
0 0.4

)︂
.

(4.10)

The inverse matrices of I−A𝑖
Σ are then

(I−A1
Σ)

−1 =

⎛⎝1 1 2
5

0 10
3 0

0 0 1

⎞⎠ , (I−A2
Σ)

−1 =

(︃
1 1

2

0 5
3

)︃
, (I−A3

Σ)
−1 =

(︃
0 1

2

0 5
3

)︃
. (4.11)

Next, the partial sums for computing the probabilistic distance 𝑑𝑃 (𝐿(𝐴1), 𝐿(𝐴2)) are given
by the following expressions

𝑠1 = 𝛼1⊤
0 (I−A1

Σ)
−1𝛼1

𝑓 =

⎛⎝1
0
0

⎞⎠⊤

·

⎛⎝1 1 2
5

0 10
3 0

0 0 1

⎞⎠ ·
⎛⎝ 0
0.3
0.3

⎞⎠ = 0.42, (4.12)

𝑠2 = 𝑠3 = 𝛼2⊤
0 (I−A2

Σ)
−1𝛼2

𝑓 =

(︂
1
0

)︂⊤
·

(︃
1 1

2

0 5
3

)︃
·
(︂

0
0.3

)︂
= 0.15. (4.13)

The probabilistic distance of languages 𝐿(𝐴1) and 𝐿(𝐴2) is finally given as

𝑑𝑃 (𝐿(𝐴1), 𝐿(𝐴2)) = 𝑠1 + 𝑠2 − 2𝑠3 = 0.27. (4.14)

4.3 Computing Probabilistic Distance for General NFAs
In this section, we investigate the case when the input languages are given by general NFAs.
First, however, we show why we cannot use the results from the previous section. Consider
the NFA, PA, and their product from Figure 4.3. Then, the value we wish to obtain is
𝑓𝑃 (𝐿(𝐴)) = 1 · 0.4 · 0.4 · 0.2 = 0.032, but 𝑓𝑃 ′(Σ*) = 1 · 0.4 · 0.4 · 0.2+1 · 0.4 · 0.4 · 0.2 = 0.064,
and therefore 𝑓𝑃 (𝐿(𝐴)) ̸= 𝑓𝑃 ′(Σ*). The ⊙-intersection with an ambiguous finite automaton
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1 (0.2)1.0

𝑎, 0.4

𝑏, 0.4

(a) A probabilistic automaton 𝑃 over {𝑎, 𝑏}.

1

4 5

2 3

𝑎

𝑎

𝑏

𝑏

(b) A general NFA 𝐴 over {𝑎, 𝑏} that is not
a UFA.

11.0

4 5 (0.2)

2 3 (0.2)

𝑎, 0.4

𝑎, 0.4

𝑏, 0.4

𝑏, 0.4

(c) WFA 𝑃 ′ = 𝑃 ⊙𝐴.

Figure 4.3: An example of ⊙-intersection of a PA 𝑃 and an ambiguous NFA 𝐴.

can cause a problem because the probability of a string 𝑤 in 𝑃 is multiplied by the number
of accepting computations of 𝐴 on 𝑤.

One way how to deal with the mentioned problem is transforming the general NFAs on
the input into the equivalent UFAs. The process of transforming an NFA into the equivalent
UFA is called disambiguation.

4.3.1 Disambiguation

In this section, we give a modification of an algorithm from [29] for NFA disambiguation.
The modification consists of the transformation of the algorithm into our formalism and the
correction of typos. Although, determinization is a special case of disambiguation, we use
these notions separately. In general, UFAs can be exponentially smaller than deterministic
automata. On the other hand, NFAs can be exponentially smaller than UFAs [8]. The
presented algorithm from [29] does not require full determinization. There are cases when
determinization yields an automaton with exponentially larger number of states (compared
to an input automaton), but the disambiguation algorithm creates an automaton with only
𝒪(𝑛) states (where 𝑛 is the number of states of the input automaton).

Before we move to the algorithm, there remains a question how to decide whether an
input NFA is a UFA. The following theorem gives us an answer to this question. Recall
that, 𝐴 ∩ 𝐴 denotes the NFA constructed using the standard product algorithm with the
set of states 𝑄×𝑄 where 𝑄 is the set of states of the NFA 𝐴.

Theorem 25 ([29]). Let 𝐴 be a trimmed finite automaton. 𝐴 is unambiguous iff no state
in the automaton trim(𝐴 ∩𝐴) is of the form (𝑝, 𝑞) with 𝑝 ̸= 𝑞.

The algorithm assumes NFAs with a set of initial states. Therefore, we admit a set of
initial states for a while. Every NFA with a set of initial states can be converted to an NFA
with a single initial state (the singleInit operation). For simplicity, we also use denotation
(𝑝, 𝑎, 𝑞) ∈ 𝛿 instead of 𝑞 ∈ 𝛿(𝑝, 𝑎). Here, we thus assume that 𝛿 is a relation on 𝑄×Σ×𝑄.
The algorithm in pseudocode is shown in Algorithm 5.
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0 1

𝑎

𝑎

𝑎

(a) NFA

(0, {0})

(1, {0, 1})

(0, {0, 1})
𝑎
𝑎

𝑎 𝑎

(b) The result of disambiguation
algorithm.

{0} {0, 1}
𝑎

𝑎

(c) Deterministic automaton

Figure 4.4: An example of a result of the disambiguation algorithm. Consider the NFA,
which is not a UFA, from sub-figure (a). Then the result of the disambiguation algorithm
is shown in sub-figure (b). The minimum deterministic variant of the input NFA is shown
in sub-figure (c). Note that, in this case, the unambiguous automaton is larger than the
deterministic one. In general, however, UFAs can be exponentially smaller than the corre-
sponding minimum DFAs.

The algorithm converts an input NFA 𝐴 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) to an equivalent UFA 𝐴′ =
(𝑄′,Σ, 𝛿′, 𝐼 ′, 𝐹 ′), which is further transformed into a UFA with a single initial state. The
set of states 𝑄′ contains pairs (𝑝, 𝑆) where 𝑝 ∈ 𝑄 and 𝑆 ⊆ 𝑄. A semantics of a generated
state (𝑝, 𝑆) ∈ 𝑄′ is the following: If this state (𝑝, 𝑆) is reachable by a string 𝑤, then for
each 𝑠 ∈ 𝑆, 𝑤 reaches 𝑝, 𝑠 and moreover, there is a string 𝑤′ such that 𝑤′ is accepted from
both 𝑝, 𝑠. The algorithm uses a relation 𝑅 ⊆ 𝑄′ × 𝑄′ such that two states of 𝑄′ are in 𝑅
iff both of them can be reached with the same string (from the initial states). All initial
states 𝐼 ′ are reachable by 𝜀, therefore, they are in 𝑅. In the algorithm, the set of states of
the original automaton 𝐴 that can be reached from the states in 𝑆 by a computation on 𝑥
is denoted by reach(𝑆, 𝑥).

The queue 𝒬 contains states of 𝐴′ for future examination. The condition on line 13
ensures that no two final states are reached by the same string. On line 17, we compute
the set 𝑇 of successors of 𝑆 for a state (𝑝, 𝑆) ∈ 𝑄′ and for each transition (𝑝, 𝑎, 𝑞) ∈ 𝛿. The
set 𝑇 contains all states 𝑟 reached from 𝑠 ∈ 𝑆 by reading symbol 𝑎 such that it also holds
that (𝑟, 𝑞) ∈ 𝑄𝐵, which means that 𝑟 and 𝑞 can reach a final state with the same string.
A new transition ((𝑝, 𝑆), 𝑎, (𝑞, 𝑇 )) is added only if 𝛿′ contains no transition from (𝑝′, 𝑆′) to
(𝑞, 𝑇 ) labeled by the symbol 𝑎 where (𝑝′, 𝑆′) is reached by the same string as (𝑝, 𝑆) (i.e.,
states (𝑝′, 𝑆′) and (𝑝, 𝑆) are in the relation 𝑅). Due to this condition, only one computation
from 𝐼 ′ to (𝑞, 𝑇 ) on an arbitrary string exists. An example of disambiguation using this
algorithm is shown in Figure 4.4.

4.4 Complexity
The overall worst-case complexity of the probabilistic distance computation depends on
a type of the input automata. For further considerations, we assume that the alphabet Σ
has some fixed size. We start with the case when the input automata are unambiguous.

Unambiguous automata. If the input automata are unambiguous, we can straightfor-
wardly perform Algorithm 4. The product and the following trimming of a PA 𝑃 and UFA
𝐴1 can be, in the worst case, computed in time 𝒪(|𝑄𝑃 |2 · |𝑄𝐴1 |2) (the product automaton
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has at most |𝑄𝑃 | · |𝑄𝐴1 | states and |Σ| · |𝑄𝑃 |2 · |𝑄𝐴1 |2 transitions, which gives the mentioned
complexity). The transition matrix corresponding to the WFA 𝑃1 has a dimension at most
|𝑄𝑃 | · |𝑄𝐴1 |. Therefore, the inverse matrix can be computed in time 𝒪((|𝑄𝑃 | · |𝑄𝐴1 |)𝑐)
where the concrete value 𝑐 depends on the selected algorithm for matrix inversion. In the
case of the Gauss-Jordan elimination, we get 𝑐 = 3 [10]. The algorithms for matrix multi-
plication and matrix inversion are closely related, and the complexity of matrix inversion
depends on the selected algorithm for matrix multiplication1. For example, in the case of
the Coppersmith-Winograd algorithm, we get 𝑐 = 2.376 [22]. However, we consider only
the simplest algorithm, hence the complexity of this step is 𝒪((|𝑄𝑃 | · |𝑄𝐴1 |)3).

Similarly, a dimension of the transition matrix that corresponds to the WFA 𝑃3 is at
most |𝑄𝑃 | · |𝑄𝐴1 | · |𝑄𝐴2 |. The inverse matrix (I − A3

Σ)
−1 can thus be computed in time

𝒪((|𝑄𝑃 | · |𝑄𝐴1 | · |𝑄𝐴2 |)3). The overall time complexity of Algorithm 4 is thus given as

𝒪((|𝑄𝑃 |·|𝑄𝐴1 |)3+(|𝑄𝑃 |·|𝑄𝐴2 |)3+(|𝑄𝑃 |·|𝑄𝐴1 |·|𝑄𝐴2 |)3) = 𝒪((|𝑄𝑃 |·|𝑄𝐴1 |·|𝑄𝐴2 |)3). (4.15)

Hence, if the input automata are given as UFAs, the probabilistic distance of their languages
can be computed in polynomial time.

General NFAs. If the input automata are ambiguous, we must perform disambiguation
(or, alternatively, determinization), which may yield automata with an exponential number
of states compared to the input NFA. Hence, if the input automata are given as general
NFAs, the probabilistic distance of their languages can be computed in exponential time.

1It can be shown that if 𝑀(𝑛) denotes the time to multiply two 𝑛×𝑛 matrices, then a nonsingular 𝑛×𝑛
can be inverted in time 𝒪(𝑀(𝑛)) [10].
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Algorithm 5: Disambiguation algorithm
Input: NFA 𝐴 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) with a set of initial states
Output: UFA 𝐴′ such that 𝐿(𝐴′) = 𝐿(𝐴)

1: 𝒬 ← ∅, 𝑄′ ← ∅, 𝐼 ′ ← ∅, 𝛿′ ← ∅, 𝐹 ′ ← ∅
2: 𝐵 ← trim(𝐴 ∩𝐴) = (𝑄𝐵,Σ, 𝛿𝐵, 𝐼𝐵, 𝐹𝐵)
3: foreach 𝑖 ∈ 𝐼 do
4: 𝑆 ← {𝑖′ | 𝑖′ ∈ 𝐼 ∧ (𝑖, 𝑖′) ∈ 𝑄𝐵}
5: 𝑄′ ← 𝑄′ ∪ {(𝑖, 𝑆)}
6: 𝐼 ′ ← 𝑄′

7: Enqueue(𝒬, (𝑖, 𝑆))
8: end
9: 𝑅← 𝐼 ′ × 𝐼 ′

10: while 𝒬 ≠ ∅ do
11: (𝑝, 𝑆)← Head(𝒬)
12: Dequeue(𝒬)
13: if 𝑝 ∈ 𝐹 and @(𝑝′, 𝑆′) ∈ 𝐹 ′ with (𝑝′, 𝑆′)𝑅(𝑝, 𝑆) then
14: 𝐹 ′ ← 𝐹 ′ ∪ {(𝑝, 𝑆)}
15: end
16: foreach (𝑝, 𝑎, 𝑞) ∈ 𝛿 do
17: 𝑇 ← {𝑟 ∈ reach(𝑆, 𝑎) | (𝑞, 𝑟) ∈ 𝑄𝐵}
18: if @((𝑝′, 𝑆′), 𝑎, (𝑞, 𝑇 )) ∈ 𝛿′ with (𝑝′, 𝑆′)𝑅(𝑝, 𝑆) then
19: if (𝑞, 𝑇 ) /∈ 𝑄′ then
20: 𝑄′ ← 𝑄′ ∪ {(𝑞, 𝑇 )}
21: Enqueue(𝒬, (𝑞, 𝑇 ))
22: end
23: 𝛿′ ← 𝛿′ ∪ {((𝑝, 𝑆), 𝑎, (𝑞, 𝑇 ))}
24: foreach (𝑝′, 𝑆′) such that (𝑝′, 𝑆′)𝑅(𝑝, 𝑆) and

((𝑝′, 𝑆′), 𝑎, (𝑞′, 𝑇 ′)) ∈ 𝛿′ do
25: 𝑅← 𝑅 ∪ {((𝑞, 𝑇 ), (𝑞′, 𝑇 ′)), ((𝑞′, 𝑇 ′), (𝑞, 𝑇 ))}
26: end
27: end
28: end
29: end
30: return singleInit(𝐴′) where 𝐴′ = (𝑄′,Σ, 𝛿′, 𝐼 ′, 𝐹 ′)
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Chapter 5

Approximate Reduction of
Automata

In this chapter, we focus on the approximate reduction of automata in the context of network
traffic filtering. We introduce two approaches for the approximate reduction of automata.
Since the approximate reduction need not preserve the language of an input NFA, we have
to measure the difference between the language of the input NFA and the language of
the reduced NFA. For the expression of the difference, we use the probabilistic distance
discussed in Chapter 4. Since we want to utilize information from the input network traffic,
we again use a probabilistic automaton representing the input traffic for the reduction.

The first proposed approach for the reduction of automata is based on removing branches
of the input NFA—we call it the pruning reduction. Based on the input probabilistic au-
tomaton, the pruning reduction selects branches to be removed from the NFA to be reduced.
The second approach is based on adding self-loops—we call it the self-loop reduction. The
self-loop reduction selects states where a self-loop over every symbol is to be added, followed
by removing the redundant states.

The reduction methods are proposed directly for reducing NFAs, however, if the input
automaton is unambiguous, more efficient methods for implementing the reduction can be
used. The workflow of the automata reductions, including a derivation of the probabilistic
automaton to be used, is shown in Figure 5.1. Note that, we implicitly assume that the
input automata are trimmed.

5.1 Pruning Reduction
We start with the pruning reduction. As we have already mentioned, the pruning reduction
selects branches of the input NFA that are later removed. The choice of branches depends
on the input probabilistic automaton. Because this reduction approach is language non-
preserving, it is necessary to restrict the reduction by a parameter. Since the reduction
removes states, it performs language under-approximation. According to the meaning of
the parameter that controls the reduction, we divide the pruning reduction to the 𝜀-pruning
reduction and the 𝑘-pruning reduction. In case of the 𝜀-pruning reduction, the parameter
sets the maximal error of the reduction. The error is expressed as the probabilistic distance
of the input NFA and the reduced NFA. In the case of the 𝑘-pruning reduction, the param-
eter restricts the ratio between the number of states of the reduced NFA and the number of
states of the original NFA. An illustration of the pruning reduction is shown in Figure 5.2.
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Figure 5.1: The workflow of reducing automata for network traffic filtering. In the first
step, a PA 𝑃 is synthesized from the input traffic. In the second step, 𝑃 and an NFA
describing attacks or protocols to be sought in the network traffic are the input of the
reduction. The reduction yields a reduced automaton satisfying the restriction conditions.

Namely, the pruning reduction finds a set 𝑅 of states and uses the restriction of the
NFA to the set 𝑄 ∖ 𝑅 to reduce the automaton. The following lemma estimates the error
(the distance between the original NFA and the reduced NFA with respect to the input PA
𝑃 ) when we remove all states in a set 𝑅 from the input NFA. If we remove all states from 𝑅,
then in the worst case, all final states reached by the states from 𝑅 become non-accessible
in the reduced automaton. Therefore, the total error is at most the sum of probabilities
of the languages accepted in the final states reached from 𝑅. For simplicity, for an NFA
𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ), a PA 𝑃 , and for each 𝑞 ∈ 𝐹 , we define the function 𝜃𝑃,𝐴 as

𝜃𝑃,𝐴(𝑞) =
∑︁

𝑥∈𝐿−1
𝐴 (𝑞)

𝑓𝑃 (𝑥). (5.1)

The value 𝜃𝑃,𝐴(𝑞) gives a probability that a randomly chosen string according to the dis-
tribution 𝑓𝑃 belongs to the language 𝐿−1

𝐴 (𝑞) (i.e., a probability of the backward language
of 𝑞). Note that, in the following lemma, 𝛼(𝑞) denotes the set of final states reached from
𝑞. More precisely, for an NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ), the function 𝛼 : 𝑄 → 2𝐹 is defined as
𝛼(𝑞) = {𝑞𝑓 ∈ 𝐹 | ∃𝑤 ∈ Σ* : 𝑞𝑓 ∈ 𝛿(𝑞, 𝑤)} and its pointwise extension 𝛼(𝑆) =

⋃︀
𝑞∈𝑆 𝛼(𝑞) to

a set of states 𝑆.
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Figure 5.2: An illustration of the pruning reduction.

Lemma 26. Let 𝑃 be a PA over Σ, 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) be an NFA, and 𝑅 ⊆ 𝑄. Further,
consider the restricted automaton 𝐴′ = 𝐴|𝑄∖𝑅. Then,

𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴′)) ≤
∑︁

𝑞∈𝛼(𝑅)

𝜃𝑃,𝐴(𝑞). (5.2)

Proof. We start with an estimation of the symmetric difference of languages 𝐿(𝐴) and
𝐿(𝐴′). Because we use automata pruning only, the language of the modified automaton 𝐴′

forms a subset of the language 𝐿(𝐴). In the worst case, we remove all the final states in
𝛼(𝑅), and therefore,

𝐿(𝐴)△ 𝐿(𝐴′) = 𝐿(𝐴) ∖ 𝐿(𝐴′) ⊆
⋃︁

𝑞∈𝛼(𝑅)

𝐿−1
𝐴 (𝑞). (5.3)

From the definition of the function 𝑓𝑃 , for any 𝐿1, 𝐿2 ⊆ Σ*, we get that

𝑓𝑃 (𝐿1 ∪ 𝐿2) ≤ 𝑓𝑃 (𝐿1) + 𝑓𝑃 (𝐿2). (5.4)

Further, from the definition of the distance 𝑑𝑃 , together with Equations 5.3 and 5.4, we
finally get the following:

𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴
′)) = 𝑓𝑃 (𝐿(𝐴)△ 𝐿(𝐴′))

≤ 𝑓𝑃

(︂ ⋃︁
𝑞∈𝛼(𝑅)

𝐿−1
𝐴 (𝑞)

)︂
≤

∑︁
𝑞∈𝛼(𝑅)

𝜃𝑃,𝐴(𝑞). (5.5)

Note that, the first inequality follows from Equation 5.3.

From the previous lemma, we have that the error depends on the removed final states.
Roughly, the pruning reduction works as follows. In the first step, we label each state 𝑞 of
the input automaton by 𝛼(𝑞), which can be done by a simple reachability analysis. Then,
the reduction finds a subset 𝐹 ′ of the final states of an input NFA and removes all states
labeled by 𝛼(𝑞) ⊆ 𝐹 ′ from the input NFA. The set 𝐹 ′ is chosen according to the type of the
performed reduction (the 𝑘-pruning reduction or the 𝜀-pruning reduction). Now, we focus
on the selection of 𝐹 ′ and provide a more detail description of the reduction algorithms for
each reduction type.
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5.1.1 𝑘-pruning Reduction

In this subsection, we deal with the 𝑘-pruning reduction. Here, the parameter 𝑘, which
restricts the reduction, is the ratio of the number of states of the reduced automaton and
the number of states of the input automaton. If 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) stands for an input
automaton, then for the reduced automaton 𝐴′ = (𝑄′,Σ, 𝛿′, 𝑞0, 𝐹

′), we have that

𝑘 ≤ |𝑄
′|
|𝑄|

. (5.6)

Moreover, we want the reduction to return the automaton with the set of states 𝑄′ such
that the values |𝑄′|/|𝑄| and 𝑘 are as close as possible. In order to express the corresponding
constraints on the set 𝐹 ′ ⊆ 𝐹 , we assume the following functions 𝑣, 𝑐 and relation ⪰.

∙ The function 𝑣 : 2𝐹 → N0 is defined as 𝑣(𝑅) = |{𝑞 ∈ 𝑄 | 𝛼(𝑞) ⊆ 𝑅}|. For any 𝑅 ⊆ 𝐹 ,
the value 𝑣(𝑅) thus represents the number of states of the input NFA 𝐴 labeled with
𝛼(𝑞) ⊆ 𝑅. If we decide to remove the final states in 𝑅, the value of 𝑣(𝑅) determines
a total number of removed states of the input NFA. Note that, the function 𝑣 considers
also a possibility of removing of an initial state. In this case, the automata restriction
operation adds a new initial state (our used automata formalism does not support
automata with no initial state). An automaton with a single state and no final states
is semantically equivalent to an empty automaton (automaton with no states).

∙ For a PA 𝑃 over Σ, the function 𝑐 : 2𝐹 → R is defined as 𝑐(𝑅) =
∑︀

𝑞∈𝛼(𝑅) 𝜃𝑃,𝐴(𝑞).
For any 𝑅 ⊆ 𝐹 , the value 𝑐(𝑅) thus represents the error we obtain, if we remove the
final states in 𝑅 from the input automaton.

∙ Two sets 𝑅,𝑆 ⊆ 𝐹 are in the relation 𝑅 ⪰ 𝑆 iff 𝑣(𝑅) > 𝑣(𝑆), or 𝑣(𝑅) = 𝑣(𝑆) and
𝑐(𝑅) ≤ 𝑐(𝑆). For two sets 𝑅,𝑆 ⊆ 𝐹 , we thus have 𝑅 ⪰ 𝑆 if the reduction according
to 𝑅 yields a smaller automaton or an automaton with the same size and the smaller
error.

The 𝑘-pruning reduction thus looks for a set 𝑅 ⊆ 𝐹 for which 𝑣(𝑅) is maximal such that
𝑣(𝑅) ≤ 𝑊 where 𝑊 = (1 − 𝑘)|𝑄|. If there are two sets 𝑆1 ̸= 𝑆2 such that 𝑣(𝑆1) = 𝑣(𝑆2),
we choose the set 𝑆𝑖 with a smaller value 𝑐(𝑆𝑖) (i.e., we make the smaller error).

Formally, we can formulate the problem as follows. We are looking for a set 𝑅 ⊆ 𝐹 such
that 𝑣(𝑅) ≤ 𝑊 , and for every 𝑅′ ⊆ 𝐹 such that 𝑣(𝑅′) ≤ 𝑊 , we have 𝑅 ⪰ 𝑅′. Since we
assume that the number of final states of the input automaton is substantially less than the
number of all states, we use an exhaustive search in the algorithm. After we find the set
𝑅, we remove all those states 𝑟 of the input automaton 𝐴 that are labeled with 𝛼(𝑟) ⊆ 𝑅.
The 𝑘-pruning reduction in pseudocode is shown in Algorithm 6.

On the 9th line of this algorithm, for the states of the reduced automaton, it holds
that |𝑄𝑟| = |𝑄| − 𝑣(𝑅). Moreover, from the condition on the 5th line, we have that
𝑣(𝑅) ≤𝑊 = |𝑄| − 𝑘|𝑄|. Together, we get 𝑘|𝑄| ≤ |𝑄𝑟| ≤ |𝑄′|. Moreover, the error that the
reduction will cause can be expressed according to Lemma 26 as

𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴′)) ≤
∑︁
𝑞∈𝑅

𝜃𝑃,𝐴(𝑞) (5.7)

where 𝑅 is the set obtained after the 8th line in the algorithm.

31



Algorithm 6: 𝑘-pruning reduction
Input: NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ), PA 𝑃 over Σ, and 𝑘 ∈ [0, 1]

Output: NFA 𝐴′ = (𝑄′,Σ, 𝛿′, 𝑞0, 𝐹
′) such that 𝑘 ≤ |𝑄′|

|𝑄|

1: Compute the values of 𝜃𝑃,𝐴(𝑞𝑓 ) for each 𝑞𝑓 ∈ 𝐹
2: 𝑅← ∅
3: 𝑊 ← (1− 𝑘)|𝑄|
4: foreach 𝑆 ∈ 2𝐹 do
5: if 𝑣(𝑆) ≤𝑊 and 𝑆 ⪰ 𝑅 then
6: 𝑅← 𝑆
7: end
8: end
9: 𝑄𝑟 ← 𝑄 ∖ {𝑞 ∈ 𝑄 | 𝛼(𝑞) ⊆ 𝑅}

10: return 𝐴′ = 𝐴|𝑄𝑟
= (𝑄′,Σ, 𝛿′, 𝑞0, 𝐹

′)

In the presented 𝑘-pruning algorithm, we use the function 𝑐 (within testing ⪰), and for
computing its value for some set, we need the value 𝜃𝑃,𝐴(𝑞𝑓 ) for every final state 𝑞𝑓 ∈ 𝐹 .
This value can be computed using methods described in the previous chapter. Moreover,
in Section 5.4, we re-visit this issue, and show some improvements for computing 𝜃𝑃,𝐴(𝑞𝑓 ).

Modifications. In some applications, it can be appropriate to specify the maximum
number of states of the reduced automaton (i.e., 𝑘 ≥ |𝑄′|/|𝑄|). For instance, if we know
that we are able to synthesize automata with at most 𝑛 states into HW. Then, we are
looking for a reduced automaton with at most 𝑛 states and with the least possible error.

To formalize this modified 𝑘-pruning reduction (to distinguish, we denote this modified
𝑘-pruning reduction as the 𝑘-pruning reduction), we introduce the following relation. Two
sets 𝑅,𝑆 ⊆ 𝐹 are in the relation 𝑅 ⪰𝑐 𝑆 iff 𝑐(𝑅) < 𝑐(𝑆), or 𝑐(𝑅) = 𝑐(𝑆) and 𝑣(𝑅) ≥ 𝑣(𝑆).
If we set 𝑊 = (1 − 𝑘)|𝑄|, then we are looking for a set 𝑅 ⊆ 𝐹 such that 𝑣(𝑅) ≥ 𝑊 , and
for every 𝑅′ ⊆ 𝐹 such that 𝑣(𝑅′) ≥𝑊 , we have 𝑅 ⪰𝑐 𝑅

′.
For computing the 𝑘-pruning reduction, we can easily modify Algorithm 6. First, we

need to modify the initial solution on the second line as 𝑅 ← 𝐹 . The second modification
is the condition on 5th line, which is replaced by the 𝑣(𝑆) ≥𝑊 ∧ 𝑆 ⪰𝑐 𝑅. Note that, since
our used automata formalism does not support automata with no states, if the selected set
of states 𝑄𝑟 in the algorithm is equal to ∅, the inequality 𝑘 ≥ |𝑄′|/|𝑄| need not be satisfied.

Below, we illustrate the 𝑘-pruning reduction on an example.

Example 27. Consider a simple NFA and a PA given in Figure 5.3. For each state of the
NFA there is a corresponding value of 𝛼. We show the 𝑘-pruning reduction according to the
described algorithm on these automata. In the first step, we compute the values of 𝜃𝑃,𝐴(𝑞𝑓 )
for each 𝑞𝑓 ∈ 𝐹 :

𝜃𝑃,𝐴(𝑓1) = 0.5 · 0.5 · 0.1 = 0.025, (5.8)
𝜃𝑃,𝐴(𝑓2) = 0.5 · 0.4 · 0.1 = 0.02, (5.9)
𝜃𝑃,𝐴(𝑓3) = 0.4 · 0.1 = 0.04. (5.10)

Then, we are able to compute the values of functions 𝑐 and 𝑣 for each 𝑅 ⊆ 𝐹 , which are
given in Table 5.1. If we chose the restriction parameter of the 𝑘-pruning reduction to be
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𝑏, 0.4

(b) Input PA 𝑃 over {𝑎, 𝑏}.

Figure 5.3: Example of an NFA and a PA for the 𝑘-pruning reduction.

𝑘 = 1
2 , then 𝑊 = 2.5. Since we have 𝑐({𝑓1, 𝑓3}) > 𝑐({𝑓2, 𝑓3}), Algorithm 6 after the 8th

line selects the set 𝑅 = {𝑓2, 𝑓3}. The reduced automaton 𝐴′
1 is then given in Figure 5.4a.

If we chose the restriction parameter 𝑘 = 1
3 , then 𝑊 = 31

3 , and the set 𝑅 = {𝑓1, 𝑓2} is
selected. The reduced automaton 𝐴′

2 for this case is given in Figure 5.4b.

Table 5.1: Values of the functions 𝑣 and 𝑐.

subset of 𝐹 𝑣 𝑐

∅ 0 0.0
{𝑓1} 1 0.025
{𝑓2} 1 0.02
{𝑓3} 1 0.04
{𝑓1, 𝑓2} 3 0.045
{𝑓1, 𝑓3} 2 0.065
{𝑓2, 𝑓3} 2 0.06
{𝑓1, 𝑓2, 𝑓3} 5 0.085

𝑞0 𝑞1 𝑓1
𝑎 𝑎

(a) Reduced automaton 𝐴′
1 for param-

eter 𝑘 = 1
2 .

𝑞0 𝑓3
𝑏

(b) Reduced automaton 𝐴′
2 for param-

eter 𝑘 = 1
3 .

Figure 5.4: The results of the 𝑘-pruning reduction.

5.1.2 𝜀-pruning Reduction

In this subsection, we briefly describe the 𝜀-pruning reduction. In this case, the parameter
𝜀 that restricts the reduction is the maximal probabilistic distance of the input and the
reduced automaton (i.e., for an input NFA 𝐴 and the reduced NFA 𝐴′, it holds that
𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴′)) ≤ 𝜀).

Again, the problem can be formulated as follows. We are looking for a set 𝑅 ⊆ 𝐹
such that 𝑐(𝑅) ≤ 𝜀, and for every 𝑅′ ⊆ 𝐹 such that 𝑐(𝑅′) ≤ 𝜀, we have 𝑅 ⪰ 𝑅′. For the
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𝜀-pruning reduction, we can use a very similar algorithm as in the case of the 𝑘-pruning
reduction. Our algorithm in pseudocode is shown in Algorithm 7.

Algorithm 7: 𝜀-pruning reduction
Input: NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ), PA 𝑃 over Σ, and 𝜀 ≥ 0
Output: NFA 𝐴′ = (𝑄′,Σ, 𝛿′, 𝑞0, 𝐹

′) such that 𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴′)) ≤ 𝜀

1: Compute the values of 𝜃𝑃,𝐴(𝑞𝑓 ) for each 𝑞𝑓 ∈ 𝐹
2: 𝑅← ∅
3: 𝑊 ← 𝜀
4: foreach 𝑆 ∈ 2𝐹 do
5: if 𝑐(𝑆) ≤𝑊 and 𝑆 ⪰ 𝑅 then
6: 𝑅← 𝑆
7: end
8: end
9: 𝑄𝑟 ← 𝑄 ∖ {𝑞 ∈ 𝑄 | 𝛼(𝑞) ⊆ 𝑅}

10: return 𝐴′ = 𝐴|𝑄𝑟
= (𝑄′,Σ, 𝛿′, 𝑞0, 𝐹

′)

The functions 𝑣, 𝑐, and the relation ⪰ are defined as in the case of the 𝑘-pruning reduc-
tion. The fact that 𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴′)) ≤ 𝜀 follows from Lemma 26.

5.2 Optimization
In this section, we look at some optimizations and heuristics that can be used for the
pruning reduction. We introduce two possible ways of optimization. The first one is based
on a reduction of the search space in Algorithms 6 and 7. The second one uses a structure
of the automata used in the network traffic filtering.

5.2.1 Search Space Reduction

The first reduction we consider aims at reduction of the search space 2𝐹 in Algorithms 6
and 7. The reduction of the search space is based on the observation that if we find some
𝑀 ∈ 2𝐹 such that 𝑣(𝑀) > 𝑊 or 𝑐(𝑀) > 𝑊 , respectively, then we do not need to check
𝑣(𝑀 ′) > 𝑊 or 𝑐(𝑀 ′) > 𝑊 for any 𝑀 ′ ⊃𝑀 . This optimization can be used in the main loop
of each algorithm to save a few evaluations of the function 𝑣. Another possible optimization
is to compute 𝑣({𝑞𝑓}) or 𝑐({𝑞𝑓}), respectively, for each 𝑞𝑓 ∈ 𝐹 before the main loop, find
the set 𝐹 ′ = {𝑞𝑓 ∈ 𝐹 | 𝑣({𝑞𝑓}) ≤ 𝑊} or 𝐹 ′ = {𝑞𝑓 ∈ 𝐹 | 𝑐({𝑞𝑓}) ≤ 𝑊}, respectively, and
iterate only through the set 2𝐹

′ (not 2𝐹 ).

5.2.2 Subautomata Pruning

So far, we have been looking for some 𝑅 ⊆ 𝐹 satisfying our constraints given by the type
of the pruning reduction. However, if the number of final states is, for instance, 100, the
total search space is about 1030, which is hardly practically solvable. Therefore, we give up
the requirement of optimality. For that, we use the structure of the automata. We identify
independent subautomata in the structure of the input automaton and we will remove the
entire selected subautomata. A common structure of the automata used in network traffic
filtering is shown in Figure 5.5. An automaton with such a structure can be divided into
several independent subautomata 𝐴1, . . . , 𝐴𝑛, with the corresponding sets of final states
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Figure 5.5: A common structure of NFAs used in the network traffic filtering. The whole
automaton can be divided into 𝑛 independent subautomata.

𝐹1, . . . , 𝐹𝑛. Clearly, these sets are subsets of 𝐹 . We can thus perform a relaxed pruning
reduction, which consists in removing the whole subautomata.

The subautomata are independent, therefore, if we are not removing all the final states
(i.e., 𝐹 ̸= 𝐹𝑖 ∪ 𝐹𝑗), it holds that 𝑣(𝐹𝑖) + 𝑣(𝐹𝑗) = 𝑣(𝐹𝑖 ∪ 𝐹𝑗), and 𝑐(𝐹𝑖) + 𝑐(𝐹𝑗) = 𝑐(𝐹𝑖 ∪ 𝐹𝑗)
for 𝑖 ̸= 𝑗. Further, we can define vectors 𝑣 ∈ R𝑛 and 𝑐 ∈ R𝑛 whose elements are given by
𝑣[𝑖] = 𝑣(𝐹𝑖), 𝑐[𝑖] = 𝑐(𝐹𝑖), respectively, for 𝑖 ∈ {1, . . . , 𝑛}. The relaxed 𝜀-pruning reduction
can thus be formulated as follows:

maximize 𝑣⊤ · 𝑥
subject to 𝑐⊤ · 𝑥 ≤ 𝜀

𝑥 ∈ {0, 1}𝑛
(5.11)

where 𝑥 = (𝑥1, . . . , 𝑥𝑛)
⊤ contains the variables to be optimized. If 𝑥𝑖 = 1, then the sub-

automaton 𝐴𝑖 is removed from the input NFA. Vector 𝑥 therefore encodes the information
about which subautomata are removed. The total error, when we remove the selected sub-
automata (encoded in vector 𝑥), must be less then 𝜀, i.e., a condition 𝑐⊤ · 𝑥 ≤ 𝜀 must be
satisfied. On the other hand we want to remove as many subautomata as possible. For this
reason, we maximize the value of 𝑣⊤ · 𝑥.

A problem of the form
maximize 𝑢⊤ · 𝑥
subject to A · 𝑥 ≤ 𝑏

𝑥 ∈ Z𝑛

(5.12)

where 𝑢 = (𝑢1, . . . , 𝑢𝑛)
⊤ is a vector, A is an 𝑚×𝑛 matrix, and 𝑏 = (𝑏1, . . . , 𝑏𝑚)⊤ is a vector,

and the vector 𝑥 = (𝑥1, . . . , 𝑥𝑛)
⊤ contains the variables to be optimized, is called a (pure)

integer linear program [9]. If each variable can only take the value of 0 or 1, the problem is
called a 0,1 integer linear program. Integer linear programming can be viewed as a special
case of general linear programming (a linear program is formulated as the integer linear
program with the only difference that the variables can take arbitrary nonnegative real
values). Although, a linear programming problem is solvable in polynomial time [34], it
was shown that the integer programming is NP-hard [9]. However, there are still algorithms
and heuristics that allow us to solve integer linear programming problems in practice (e.g.,
the branch-and-bound method, the cutting plane method, and others [9]).
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Figure 5.6: An illustration of the self-loop reduction.

In a similar way, we can formulate a relaxed 𝑘-pruning reduction as:

maximize 𝑣⊤ · 𝑥
subject to 𝑣⊤ · 𝑥 ≤𝑊

𝑥 ∈ {0, 1}𝑛.
(5.13)

Moreover, if such a modified problem has more feasible solutions 𝑋 = {𝑥1, . . . ,𝑥𝑛}, we
select the one with the least error, i.e., 𝑥 ∈ argmin𝑥∈𝑋{𝑐⊤ ·𝑥}. The meaning of the vector
𝑥 is the same as in the case of the relaxed 𝜀-pruning reduction.

In Section 5.1.1, we introduced the modified 𝑘-pruning reduction. For completeness, we
introduce here a relaxed 𝑘-pruning reduction as well. The relaxed 𝑘-pruning reduction can
be formulated in the sense of integer programming as

minimize 𝑐⊤ · 𝑥
subject to 𝑣⊤ · 𝑥 ≥𝑊

(5.14)

where 𝑥 ∈ {0, 1}𝑛 and the other vectors have the same meaning as in the previous cases.

5.3 Self-loop Reduction
In this section, we present our second approach for reducing finite automata. As in the case
of the pruning reduction, the self-loop reduction is a language non-preserving reduction.
The self-loop reduction consists of adding self-loops to certain states (and making these
states final), followed by removing all other transitions from these states and trimming the
modified automaton. The choice of states for adding self-loops depends again on the input
probabilistic automaton. The reduction is restricted by the parameter (𝑘 or 𝜀) with the
same meaning as in the case of the pruning reduction. Therefore, we again divide the self-
loop reduction into the 𝑘-self-loop reduction and the 𝜀-self-loop reduction. An illustration
of the self-loop reduction is shown in Figure 5.6.

Further, for a PA 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) and a string 𝑤 ∈ Σ*, we define the reachability
weight of 𝑤 in 𝑃 as

weight𝑃 (𝑤) = 𝛼⊤
0 ·A𝑤 · 1 (5.15)

where 1 is the vector of 1’s. Its pointwise extension to a language 𝐿 is defined as weight𝑃 (𝐿) =∑︀
𝑤∈𝐿 weight𝑃 (𝑤). Further, for a PA 𝑃 , an NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ), and a state 𝑞 ∈ 𝑄,
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we define the function 𝛽𝑃,𝐴 as

𝛽𝑃,𝐴(𝑞) =
∑︁

𝑤∈𝐿−1
𝐴 (𝑞)

weight𝑃 (𝑤). (5.16)

Note that, we use 𝑤.𝐿 as an abbreviation for {𝑤}.𝐿.
First, we formally describe the operation of adding self-loops. Assume an operation

sladd(𝐴,𝑄′) modifying an input NFA 𝐴 by adding self-loops for every state in 𝑄′. Self-loops
are added for every symbol from an alphabet Σ. Formally, for an NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 )
and a set of states 𝑄′ ⊆ 𝑄, the operation sladd is defined as sladd(𝐴,𝑄′) = trim(𝐴′) where
𝐴′ = (𝑄,Σ, 𝛿′, 𝑞0, 𝐹 ∪ 𝑄′) is an NFA whose transition function 𝛿′ is defined, for all 𝑝 ∈ 𝑄
and 𝑎 ∈ Σ, as

𝛿′(𝑝, 𝑎) =

{︃
{𝑝} if 𝑝 ∈ 𝑄′,

𝛿(𝑝, 𝑎) otherwise.
(5.17)

Now, we give a lemma, which is used in the following theorem. The proof of this lemma
is given in Appendix A.
Lemma 28. Let 𝑃 be a trim PA over Σ, and 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) be an NFA. Then, for all
𝑞 ∈ 𝑄 we have

𝑓𝑃 (𝐿
−1
𝐴 (𝑞).Σ*) ≤ 𝛽𝑃,𝐴(𝑞). (5.18)

The following theorem establishes the maximal error (i.e., the distance between the
input NFA and the reduced NFA) that we get if we add self-loops for the states in the
set 𝑄′. This theorem uses helpful lemmas, which are given in Appendix A.
Theorem 29. Let 𝑃 be a PA over Σ, 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) be an NFA, and 𝑄′ ⊆ 𝑄 be a set
of states of 𝐴. Then, the following inequality holds:

𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴′)) ≤
∑︁
𝑞∈𝑄′

𝛽𝑃,𝐴(𝑞) (5.19)

where 𝐴′ = sladd(𝐴,𝑄′).
Proof. First, we remark that a self-loop addition causes a language over-approximation: Af-
ter we reach some state from 𝑄′, we accept everything. Therefore, the symmetric difference
of languages 𝐿(𝐴) and 𝐿(𝐴′) can be bounded as

𝐿(𝐴)△ 𝐿(𝐴′) = 𝐿(𝐴′) ∖ 𝐿(𝐴) ⊆
⋃︁
𝑞∈𝑄′

𝐿−1
𝐴 (𝑞).Σ*. (5.20)

Hence, the following inequalities hold:

𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴
′)) ≤ 𝑓𝑃

⎛⎝ ⋃︁
𝑞∈𝑄′

𝐿−1
𝐴 (𝑞).Σ*

⎞⎠ ≤∑︁
𝑞∈𝑄′

𝑓𝑃 (𝐿
−1
𝐴 (𝑞).Σ*). (5.21)

Finally, using Lemma 28, we get Equality 5.19.

Now, we can introduce algorithms for each type of the self-loop reduction. However,
before that, we state an important observation. Consider a trim NFA 𝐴 and a set 𝑄′ ⊆ 𝑄𝐴.
Further, let NFA 𝐴′ = sladd(𝐴,𝑄′). If 𝑞 /∈ 𝑄𝐴′ , then sladd(𝐴,𝑄′) = sladd(𝐴,𝑄′∪{𝑞}). This
holds due to 1. Adding self-loops and changing the acceptance mode of an non-accessible
state does not alter the language 2. Removing outgoing transitions from 𝑞 cannot make
any new state non-accessible since if the only way to reach such a state had been through
𝑞, then such a state would have been non-accessible even before due to non-accessibility of
𝑞 itself. This observation will be used for a more precise estimation of the reduction error.
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5.3.1 𝜀-self-loop Reduction

The meaning of the restriction parameter 𝜀 is the same as in the case of the 𝜀-pruning reduc-
tion (i.e., it is the maximal probabilistic distance of the input and the reduced automaton).
The optimal selection of the states where self-loops will be added may be computationally
difficult. Therefore, we introduce a more efficient greedy algorithm. Our greedy algorithm
selects states where self-loops will be added according to increasing values of 𝛽𝑃,𝐴. In the
algorithm, the values 𝛽𝑃,𝐴(𝑞) are first computed for each state 𝑞 of the input NFA. The
exact methods for computing these values are described in Section 5.4. In the algorithm,
we use a set 𝑉 for storing states to which self-loops are added in the end. We also use a set
𝑅 for storing all processed states.

We iterate until we process all states from 𝑄. In every iteration, we choose a state 𝑞
from 𝑄 ∖𝑅 with the least value of 𝛽𝑃,𝐴, and if the error of adding self-loops to states from
the set 𝑉 ∪ {𝑞} is less than or equal to 𝜀, we add this state to 𝑉 .

Although, the maximal error for a set 𝑉 ⊆ 𝑄 is bounded by the inequality in The-
orem 29, we can obtain a more accurate estimation. The error estimation is performed
in the procedure computeError. In this procedure, we add self-loops to automaton 𝐴 and
obtain a reduced automaton 𝐴′ (i.e., we perform sladd(𝐴, 𝑉 )). The error then does not
depend on all states from 𝑉 but only on states from 𝑄𝐴′ ∩ 𝑉 (some states are removed
due to a self-loop is added to their predecessor). The error is then given as the sum of the
𝛽𝑃,𝐴 values of all states from this intersection. The algorithm in pseudocode is shown in
Algorithm 8.

Algorithm 8: 𝜀-self-loop reduction
Input: Trim NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ), PA 𝑃 over Σ, and 𝜀 ≥ 0
Output: NFA 𝐴′ = (𝑄′,Σ, 𝛿′, 𝑞0, 𝐹

′) such that 𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴′)) ≤ 𝜀

1: Compute the values of 𝛽𝑃,𝐴(𝑞) for each 𝑞 ∈ 𝑄
2: 𝑉 ← ∅
3: 𝑅← ∅
4: while 𝑅 ̸= 𝑄 do
5: 𝑞′ ← argmin𝑞∈𝑄∖𝑅{𝛽𝑃,𝐴(𝑞)}
6: 𝑅← 𝑅 ∪ {𝑞′}
7: 𝑒← computeError(𝐴, 𝑉 ∪ {𝑞′})
8: if 𝑒 ≤ 𝜀 then
9: 𝑉 ← 𝑉 ∪ {𝑞′}

10: end
11: end
12: return 𝐴′ = sladd(𝐴, 𝑉 )

Procedure: computeError(𝐴, 𝑉 )

1: 𝐴′ ← sladd(𝐴, 𝑉 )
2: 𝑊 ← 𝑄𝐴′ ∩ 𝑉
3: 𝑒𝑟𝑟 ←

∑︀
𝑞∈𝑊 𝛽𝑃,𝐴(𝑞)

4: return 𝑒𝑟𝑟
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From the observation below Theorem 29, we get that sladd(𝐴, 𝑉 ) = sladd(𝐴,𝑊 ) = 𝐴′ (in
the procedure computeError), and therefore, according to Theorem 29, we obtain inequality

𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴′)) ≤
∑︁
𝑞∈𝑊

𝛽𝑃,𝐴(𝑞) = 𝑒𝑟𝑟. (5.22)

Hence, 𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴′)) ≤ 𝜀. Although, our algorithm returns a reduced automaton with
the error less than or equal to a given 𝜀, the choice of the final set 𝑉 might not be optimal.

5.3.2 𝑘-self-loop Reduction

Now, we focus on the 𝑘-self-loop reduction. Recall that, the restriction parameter 𝑘 sets
the maximal ratio of the number of states of the reduced automaton and the number of
states of the input automaton. Moreover, we want the reduction to return the automaton
with the set of states 𝑄′ such that the values |𝑄′|/|𝑄| and 𝑘 are as close as possible. Our
𝑘-self-loop reduction algorithm is greedy as in the case of the 𝜀-self-loop reduction. We
again use a set 𝑅 for storing all processed states and a set 𝑉 to store states that are then
used for adding self-loops. States from the set 𝑄 ∖ 𝑅 are picked out in ascending order
of their 𝛽𝑃,𝐴 values. Picking states in ascending order of their 𝛽𝑃,𝐴 values is a heuristics,
which tries to minimize the reduction error. In every iteration, the reduced automaton 𝐴′

is created, and if the number of its states is less than or equal to 𝑙𝑖𝑚, we add the picked
state into 𝑉 . The algorithm in pseudocode is shown in Algorithm 9.

Algorithm 9: 𝑘-self-loop reduction
Input: Trim NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ), PA 𝑃 over Σ, and 𝑘 ∈ [0, 1]

Output: NFA 𝐴′ = (𝑄′,Σ, 𝛿′, 𝑞0, 𝐹
′) such that 𝑘 ≤ |𝑄′|

|𝑄|

1: Compute the values of 𝛽𝑃,𝐴(𝑞) for each 𝑞 ∈ 𝑄
2: 𝑉 ← ∅, 𝑅← ∅
3: 𝑒← 0
4: 𝑙𝑖𝑚← 𝑘 · |𝑄|
5: while 𝑅 ̸= 𝑄 do
6: 𝑞′ ← argmin𝑞∈𝑄∖𝑅{𝛽𝑃,𝐴(𝑞)}
7: 𝑅← 𝑅 ∪ {𝑞′}
8: 𝐴′ ← sladd(𝐴, 𝑉 ∪ {𝑞′})
9: 𝑒← |𝑄𝐴′ |

10: if 𝑒 ≥ 𝑙𝑖𝑚 then
11: 𝑉 ← 𝑉 ∪ {𝑞′}
12: end
13: end
14: return 𝐴′ = sladd(𝐴, 𝑉 )

Our algorithm returns a reduced NFA with at least 𝑘 · |𝑄| states. However, the set 𝑉
need not be chosen optimally to the error. There can be some other set 𝑉 ′ such that the
NFA reduced according to the set 𝑉 ′ has the same number of states as the NFA reduced
according to the set 𝑉 . Moreover, the error caused by the reduction according to 𝑉 ′ can
be less than the error caused by the reduction according to 𝑉 .
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Modifications. As in the case of the 𝑘-pruning reduction, we can formulate the 𝑘-self-
loop reduction, so that the number of states of the reduced automaton satisfy 𝑘 ≥ |𝑄′|/|𝑄|;
and, moreover, we try to find a reduced automaton with the least possible error.

For the 𝑘-self-loop reduction, we can use modified greedy Algorithm 9. We want to
find a reduced automaton with the least error, and so we need two new variables—𝑒𝑟𝑟 and
𝑏𝑒𝑠𝑡𝐸𝑟𝑟. The variable 𝑏𝑒𝑠𝑡𝐸𝑟𝑟 is initialized to ∞. In each iteration of the main loop, the
error obtained in that iteration is computed, i.e., 𝑒𝑟𝑟 ← computeError(𝐴, 𝑉 ∪ {𝑞′}). Then,
a new set 𝑉 is accepted if 𝑒 ≤ 𝑙𝑖𝑚 ∧ 𝑒𝑟𝑟 ≤ 𝑏𝑒𝑠𝑡𝐸𝑟𝑟. Altogether, we replace lines 10–12 in
the main loop by the following:

1: 𝑒𝑟𝑟 ← computeError(𝐴, 𝑉 ∪ {𝑞′})
2: if 𝑒 ≤ 𝑙𝑖𝑚 and 𝑒𝑟𝑟 ≤ 𝑏𝑒𝑠𝑡𝐸𝑟𝑟 then
3: 𝑏𝑒𝑠𝑡𝐸𝑟𝑟 ← 𝑒𝑟𝑟
4: 𝑉 ← 𝑉 ∪ {𝑞′}
5: end

Since we initialize the value of 𝑏𝑒𝑠𝑡𝐸𝑟𝑟 to ∞, when the condition 𝑒 ≤ 𝑙𝑖𝑚 is satisfied
for the first time, we accept the corresponding set 𝑉 ∪ {𝑞′} where 𝑞′ is the chosen state.
This way, we set our initial solution, which can be improved in the next iterations.

Example 30. Consider the same automata as in the case of the example of the pruning
reduction (given in Figure 5.3). We show the reduction on these automata using the de-
scribed algorithm for the 𝜀-self-loop reduction (Alg. 8). In the first step, we compute the
𝛽𝑃,𝐴 value for each state:

𝛽𝑃,𝐴(𝑞0) = 1 · 1 = 1, (5.23)
𝛽𝑃,𝐴(𝑞1) = 1 · 0.5 · 1 = 0.5, (5.24)
𝛽𝑃,𝐴(𝑓1) = 1 · 0.5 · 0.5 · 1 = 0.25, (5.25)
𝛽𝑃,𝐴(𝑓2) = 1 · 0.5 · 0.4 · 1 = 0.2, (5.26)
𝛽𝑃,𝐴(𝑓3) = 1 · 0.4 · 1 = 0.4. (5.27)

Then, we use Algorithm 8 for the reduction. We set the restriction parameter to 𝜀 = 0.5.
Each step of the algorithm and the corresponding values of variables are shown in Table 5.2.

Table 5.2: Values of variables for each step of the 𝜀-self-loop reduction algorithm. Note
that, by the variable 𝑒𝑟𝑟, we denote the value computeError(𝐴, 𝑉 ).

step 𝑞′ 𝑅 𝑒 𝑉 𝑒𝑟𝑟

0 – ∅ – ∅ 0
1 𝑓2 {𝑓2} 0.2 {𝑓2} 0.2
2 𝑓1 {𝑓1, 𝑓2} 0.45 {𝑓1, 𝑓2} 0.45
3 𝑓3 {𝑓1, 𝑓2, 𝑓3} 0.85 {𝑓1, 𝑓2} 0.45
4 𝑞1 {𝑓1, 𝑓2, 𝑓3, 𝑞1} 0.5 {𝑓1, 𝑓2, 𝑞1} 0.5
5 𝑞0 𝑄 1.0 {𝑓1, 𝑓2, 𝑞1} 0.5

The result of the reduction is then shown in Figure 5.7. The exact reduction error (the
probabilistic distance) is given as 𝑑𝑃 (𝐿(𝐴), 𝐿(𝐴′)) = 0.455.
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Figure 5.7: Automaton 𝐴′ reduced from the automaton in Figure 5.3 using Algorithm 8
with the parameter 𝜀 = 0.5.

5.4 State Labels Computation
In the previous sections, we described two ways of reducing automata. The pruning reduc-
tion labels each final state 𝑞𝑓 of the input NFA 𝐴 by the value 𝜃𝑃,𝐴(𝑞𝑓 ) where 𝑃 is the
input PA. The self-loop reduction then labels each state 𝑞 of the input NFA by the value
𝛽𝑃,𝐴(𝑞). In this section, we look in more details on the ways how efficiently compute these
values.

5.4.1 Computing the Values of 𝜃𝑃,𝐴

We start with the computation of the value of 𝜃𝑃,𝐴(𝑞), which is used for the pruning
reduction. We give two approaches: The first can be used for general NFAs, and the other,
more efficient, can be used for UFAs only. We start with an algorithm for computing 𝜃𝑃,𝐴(𝑞)
for general NFAs. The algorithm is given in Algorithm 10.

In the algorithm, we use the operation backSubautomaton(𝐴, 𝑞) that, for an NFA 𝐴 and
a state 𝑞, returns an NFA accepting the language 𝐿−1

𝐴 (𝑞). This operation sets 𝑞 as the
only final state in 𝐴 and performs trimming of this modified automaton. Other operations
that are used, are isUFA(𝐴) and disambiguation(𝐴) for an NFA 𝐴. The former one checks
whether an NFA 𝐴 is unambiguous. This operation is a straightforward implementation
of Theorem 25. The latter operation performs disambiguation on the NFA 𝐴 (based on
Algorithm 5).

Algorithm 10: Computation of values of 𝜃𝑃,𝐴

Input: PA 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) over Σ, NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 )
Output: Vector 𝛾 where 𝛾[𝑞𝑓 ] = 𝜃𝑃,𝐴(𝑞𝑓 ) for each 𝑞𝑓 ∈ 𝐹

1: foreach 𝑞 ∈ 𝐹 do
2: 𝐴𝑞 ← backSubautomaton(𝐴, 𝑞)
3: if not isUFA(𝐴𝑞) then
4: 𝐴𝑞 ← disambiguation(𝐴𝑞)
5: end
6: 𝑃 ′ ← trim(𝑃 ⊙𝐴𝑞) = (𝜈0,𝜈𝑓 , {N𝑎}𝑎∈Σ)
7: 𝛾[𝑞]← 𝜈⊤

0 (I−NΣ)
−1𝜈𝑓

8: end
9: return 𝛾

The below theorem proves correctness of the algorithm.

Theorem 31. Algorithm 10 is correct.
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(𝑝1, 𝑞)

(𝑝2, 𝑞)

(𝑝𝑘, 𝑞)

...
...
+

+

+

𝛼⊤
0 [𝑠] ·Π𝑃 ′ [(𝑠, 𝑞0), (𝑝1, 𝑞)] ·𝛼𝑓 [𝑝1]

𝛼⊤
0 [𝑠] ·Π𝑃 ′ [(𝑠, 𝑞0), (𝑝2, 𝑞)] ·𝛼𝑓 [𝑝2]

𝛼⊤
0 [𝑠] ·Π𝑃 ′ [(𝑠, 𝑞0), (𝑝𝑘, 𝑞)] ·𝛼𝑓 [𝑝𝑘]

Figure 5.8: The basic intuition behind Theorem 32.

Proof. Let us consider some 𝑞 ∈ 𝐹 . Then, the backward language of the NFA 𝐴𝑞 on
line 2 is given as 𝐿(𝐴𝑞) = 𝐿−1

𝐴 (𝑞). Further, after the 5th line, 𝐴𝑞 is an unambiguous
automaton. Therefore, from Lemma 21, we get 𝑓𝑃 (𝐿(𝐴𝑞)) = 𝑓𝑃 ′(Σ*). Moreover, according
to Theorems 22 and 14, we obtain

𝑓𝑃 (𝐿(𝐴𝑞)) = 𝑓𝑃 ′(Σ*) = 𝜈⊤
0 (I−NΣ)

−1𝜈𝑓 . (5.28)

Finally, because 𝐿(𝐴𝑞) = 𝐿−1
𝐴 (𝑞), we get

𝑓𝑃 (𝐿(𝐴𝑞)) = 𝜃𝑃,𝐴(𝑞) = 𝜈⊤
0 (I−NΣ)

−1𝜈𝑓 , (5.29)

which concludes the proof.

The advantage of the presented algorithm is that it can be used for computing the values
of 𝜃𝑃,𝐴(𝑞) for general NFAs. The disadvantage is the time complexity. This is caused by
the repeated computation of the ⊙-product and the inverse (I−NΣ)

−1. Therefore, we give
a theorem that allow us to compute 𝜃𝑃,𝐴(𝑞) values more efficiently. This improvement, how-
ever, works only if the input automaton is unambiguous. Fortunately, as our experimental
experience shows, many automata used in network traffic filtering are given as UFAs, and
so the technique is useful in many cases.

The improved approach for the computation of the value of 𝜃𝑃,𝐴(𝑞) is based on The-
orem 32. The below theorem uses the matrix Π𝑃 ′ computed from the automaton 𝑃 ′ for
a computation of 𝜃𝑃,𝐴(𝑞) for each 𝑞 ∈ 𝐹 . The basic intuition behind the theorem is the
following: The value of Π𝑃 ′ [𝑎, 𝑏] expresses the total weight (without the initial and the final
weight) of all strings that label some path from the state 𝑎 to the state 𝑏 in 𝑃 ′. The states
of 𝑃 ′ are pairs of the form (𝑝, 𝑞) where 𝑝 ∈ 𝑄𝑃 , 𝑞 ∈ 𝑄𝐴. Therefore, if we want to compute
𝜃𝑃,𝐴(𝑞), we find all states of the form (𝑝, 𝑞) in the automaton 𝑃 ′. Then, for each this state
(𝑝, 𝑞) and an initial state (𝑠, 𝑞0), we compute the value 𝛼⊤

0 [𝑠] · Π𝑃 ′ [(𝑠, 𝑞0), (𝑝, 𝑞)] · 𝛼𝑓 [𝑝],
which express the probability of accepting the strings that labels some path from the state
(𝑠, 𝑞0) to the state (𝑝, 𝑞). Finally, we sum all these values to obtain the value of 𝜃𝑃,𝐴(𝑞).

The basic intuition behind the theorem is shown in Figure 5.8 as well. The figure shows
an initial state (𝑠, 𝑞0) and states of the form (𝑝𝑖, 𝑞) of the automaton 𝑃 ′. The value of
𝜃𝑃,𝐴(𝑞) is given by the sum of values related to each state of the form (𝑝𝑖, 𝑞).

Theorem 32. Let 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) be a trimmed PA over Σ, let 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 )
be a trimmed UFA, and let {T𝑎}𝑎∈Σ be the transition matrices of weighted(𝐴). Further, let
𝑃 ′ be a WFA given as 𝑃 ′ = trim(𝑃 ⊙ 𝐴) = (𝛽0,𝛽𝑓 , {B𝑎}𝑎∈Σ). Then, for each 𝑞 ∈ 𝐹 , we
have

𝜃𝑃,𝐴(𝑞) = 𝛽⊤
0 ·Π𝑃 ′ · 𝛾𝛼𝑓

𝑞 (5.30)
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where Π𝑃 ′ = (I−BΣ)
−1 =

∑︀
𝑡≥0B

𝑡
Σ, and, for each (𝑝′, 𝑞′) ∈ 𝑄𝑃 ′,

𝛾
𝛼𝑓
𝑞 [(𝑝′, 𝑞′)] =

{︃
𝛼𝑓 [𝑝

′] if 𝑞′ = 𝑞,

0 otherwise.
(5.31)

A proof of this theorem is given in Appendix A. The theorem can be straightforwardly
used for computing the values of 𝜃𝑃,𝐴 for a UFA 𝐴. In the first step, we compute the
product WFA 𝑃 ′ = trim(𝑃 ⊙ 𝐴) = (𝛽0,𝛽𝑓 , {B𝑎}𝑎∈Σ). In the second step, we compute the
matrix Π𝑃 ′ = (I−BΣ)

−1. Finally, we compute the values of 𝜃𝑃,𝐴(𝑞) for all 𝑞 ∈ 𝐹 , according
to Equation 5.30. For the unambiguous input automaton, this approach is more efficient
than the previous algorithm because the ⊙-product and the matrix inverse are computed
only once.

5.4.2 Computing the Values of 𝛽𝑃,𝐴

Now, we look at computing the values of 𝛽𝑃,𝐴, which are used for the self-loop reduction.
We give, as in Section 5.4.1, two approaches for the computation. The first one can be used
for general NFAs, while the second, more efficient can be used for UFAs only. Note that,
in the first algorithm, we assume that all states of the given PA are final (i.e., every state
has nonzero probability of accepting).

We start with an algorithm for computing 𝛽𝑃,𝐴(𝑞) for each state 𝑞 of a general NFA 𝐴.
The algorithm is given in Algorithm 11. In the algorithm, we use the same operations as
in Subsection 5.4.1.

Algorithm 11: Computation of values of 𝛽𝑃,𝐴

Input: PA 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) over Σ having all states final, NFA
𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 )

Output: Vector 𝛽 where 𝛽[𝑞] = 𝛽𝑃,𝐴(𝑞) for each 𝑞 ∈ 𝑄

1: foreach 𝑞 ∈ 𝑄 do
2: 𝐴𝑞 ← backSubautomaton(𝐴, 𝑞)
3: if not isUFA(𝐴𝑞) then
4: 𝐴𝑞 ← disambiguation(𝐴𝑞)
5: end
6: 𝑃 ′ ← trim(𝑃 ⊙𝐴𝑞) = (𝜈0,𝜈𝑓 , {N𝑎}𝑎∈Σ)

7: 𝛾𝑓 [𝑖]←

{︃
1 if 𝜈𝑓 [𝑖] > 0,

0 otherwise,
for all 1 ≤ 𝑖 ≤ 𝑙𝑒𝑛(𝜈𝑓 )

8: 𝛽[𝑞]← 𝜈⊤
0 (I−NΣ)

−1𝛾𝑓

9: end
10: return 𝛽

The below theorem proves correctness of the algorithm.

Theorem 33. Algorithm 11 is correct.

Proof. Let us consider some 𝑞 ∈ 𝑄. Then, the backward language of the NFA 𝐴𝑞 on line 2
is given as 𝐿(𝐴𝑞) = 𝐿−1

𝐴 (𝑞). Further, after the 5th line, 𝐴𝑞 is an unambiguous automaton.
Therefore, from Lemma 40, we get

weight𝑃 (𝐿(𝐴𝑞)) = 𝜈⊤
0 (I−NΣ)

−1𝛾𝑓 . (5.32)
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Finally, since 𝐿(𝐴𝑞) = 𝐿−1
𝐴 (𝑞), we get

weight𝑃 (𝐿(𝐴𝑞)) = weight𝑃 (𝐿
−1
𝐴 (𝑞)) = 𝛽𝑃,𝐴(𝑞), (5.33)

which concludes the proof.

The advantage of the presented algorithm is that it can be used for computing the values
of 𝛽𝑃,𝐴 for general NFAs. Its disadvantage is again the time complexity. This is caused
by the repeated computation of the ⊙-product and the inverse (I−NΣ)

−1. Therefore, we
again give a theorem that allows us to compute 𝛽𝑃,𝐴 values more efficiently. This theorem is
an analogy to Theorem 32. This improvement, however, works only if the input automaton
is unambiguous (fortunately, it can still be useful in practice). The basic intuition behind
the below theorem is very similar to the intuition behind Theorem 32.

Theorem 34. Let 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) be a trimmed DPA over Σ with just one initial
state 𝑠, i.e., 𝐼𝑃 = {𝑠}, such that 𝐿(supp(𝑃 )) = Σ*. Further, let 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 )
be a trimmed UFA, and let {T𝑎}𝑎∈Σ be the transition matrices of weighted(𝐴). We also
consider WFA 𝑃 ′ given as 𝑃 ′ = trim(𝑃 ⊙𝐴) = (𝛽0,𝛽𝑓 , {B𝑎}𝑎∈Σ). Then, for all 𝑟 ∈ 𝑄, we
have

𝛽𝑃,𝐴(𝑟) = 𝛽⊤
0 ·Π𝑃 ′ · 𝛾1

𝑟 (5.34)

where Π𝑃 ′ = (I−BΣ)
−1 =

∑︀
𝑡≥0B

𝑡
Σ, and, for each (𝑞′, 𝑟′) ∈ 𝑄𝑃 ′,

𝛾1
𝑟 [(𝑞

′, 𝑟′)] =

{︃
1 if 𝑟′ = 𝑟,

0 otherwise.
(5.35)

The proof of this theorem is given in Appendix A. This theorem can be straightforwardly
used for computing 𝛽𝑃,𝐴 values for a UFA 𝐴. The method is almost the same as in the
case of 𝜃𝑃,𝐴(𝑞), but we repeat it here for completeness. In the first step, we compute the
product WFA 𝑃 ′ = trim(𝑃 ⊙ 𝐴) = (𝛽0,𝛽𝑓 , {B𝑎}𝑎∈Σ). In the second step, we compute
the matrix Π𝑃 ′ = (I −BΣ)

−1. Finally, we compute the values of 𝛽𝑃,𝐴 for all 𝑞 ∈ 𝑄 using
Equation 5.34. For the input unambiguous automaton, this approach is more efficient than
the previous algorithm because the ⊙-product and the matrix inverse are computed only
once.

5.5 Complexity
In this section, we give an estimation of the complexity of the proposed reduction algo-
rithms. For further consideration, we assume that the alphabet has some fixed size. The
complexity of each algorithm depends on the complexity of computation of the state labels.
If the input NFA 𝐴 is unambiguous and the input probabilistic automaton 𝑃 meets the
conditions given in Theorem 32 and Theorem 34, respectively, then the state labels can be
computed with complexity 𝒪(|𝑄𝑃 |3|𝑄𝐴|3) (see Section 4.4). If the input NFA is ambiguous,
the state labels are computed with exponential-time complexity in the number of states of
𝐴, which is caused by disambiguation.

When the state labels are already computed, the pruning reduction iterates over all
subsets of 𝐹𝐴. Therefore, the worst-case complexity is exponential in the number of states
of 𝐴 (the same conclusion holds also for the modified pruning reduction and the relaxed
pruning reduction).
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Now, we focus on the complexity of the self-loop reduction. Meanwhile, we do not
consider the complexity of computing the state labels. Before the main cycle, we can sort
the states according to the value of 𝛽𝑃,𝐴 with complexity 𝒪(|𝑄𝐴| log |𝑄𝐴|). Inside the main
cycle, the operation sladd can be computed in linear time in the size of 𝐴 (linear in the
number of states and the number of transitions), i.e., the complexity is 𝒪(|𝑄𝐴|2). Hence,
the complexity of the self-loop reduction without the computation of the state labels is
𝒪(|𝑄𝐴|3).

To sum it up, the worst-case complexity of the pruning reduction is exponential in the
number of states of 𝐴 (regardless of whether or not 𝐴 is unambiguous). In the case of the
self-loop reduction, if the input NFA 𝐴 is unambiguous and the input probabilistic automa-
ton 𝑃 meets the conditions given in Theorem 34, then the algorithm runs in polynomial
time. If the conditions are not met, the worst-case complexity is exponential.
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Chapter 6

Implementation

In this chapter, we provide a brief description of a prototype tool for approximate reduction
of automata, which has been implemented based on the ideas presented in the previous
chapters. The tool is designed as a console application. We give a basic overview of the
implemented tool and describe some interesting parts in more detail.

The whole tool is implemented in Python 2.7. This language is chosen because of its
expressiveness and possibility of rapid development. The implementation also uses several
libraries, including:

∙ NumPy1 (part of SciPy) for linear algebra operations. This library provides data
types for representing vectors and matrices and operations with them (multiplication,
inverse computation, eigenvectors, etc.).

∙ PuLP2 for solving (integer) linear programming problems.

∙ FAdo3 for operations with finite automata.

Since the FAdo library does not provide disambiguation and since we also need more
control over the automata representation and operations, the classes for representing of
WFAs (NFAs) and the necessary operations over them were implemented. However, for
compatibility, our representation of NFAs can be converted to the FAdo format.

Below, we give more details on the implemented tool. First, we present the architecture
of the proposed tool. Then, we describe the basic classes, and we provide some imple-
mentation details related to the probabilistic distance computation and the approximate
reduction.

6.1 The Architecture of the Proposed Tool
In this section, we focus on the architecture of the implemented tool. The intended use
of the tool is the following: The inputs are a PCRE file and a PCAP file. The PCRE
file contains a set of REs describing a protocol or an attack and the PCAP file contains
the captured packets. The payloads of the packets are then converted to a format that is
used for learning. In the next step, a PA is learned from this file. The REs, stored in the
PCRE file, are converted to an NFA. Finally, this NFA and the learned PA are inputs of the

1http://www.numpy.org
2http://pythonhosted.org/PuLP/
3http://pythonhosted.org/FAdo/
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approximate reduction or the computation of the probabilistic distance. The implemented
prototype tool uses external tools for converting REs to NFAs and for learning of PAs. We
briefly describe these tools.

For learning of the PA, which represents the input traffic, the Treba tool is used.
Treba is a tool for learning PAs and HMMs [2]. It supports the Alergia algorithm, Baum-
Welch training, Viterbi training for HMMs, etc. This tool participated in the competition
on learning probabilistic automata and hidden Markov models, called PAutomaC in 2012
(team Hulden) [36]. The learned PAs are stored in the Treba format. To make the learning
process more automatic, our implemented tool contains a module for converting payloads
of packets to a format used for learning with the Treba tool. The captured packets are
loaded from a PCAP file, which can be obtained from the network traffic.

For converting regular expressions (PCREs4) to NFAs, the tool Netbench is used.
Netbench is a framework for experiments with packet processing algorithms [31]. It also
provides algorithms for synthesizing automata into a HW implementation to be used for
HW accelerated network traffic filtering. For our requirements, Netbench is extended to
provide an export of NFAs to a FA format (a proposed format for representation of NFAs,
similar to the Treba format and FAdo format).

The high-level architecture of the implemented system, including external components,
is shown in Figure 6.1.

PCRE File Netbench
Reduction / Distance

Computation

TrebaPacket
ConverterPCAP File

Result
REs NFA in FA

Format

Packets Payload
Strings

PA in Treba Format

Figure 6.1: The architecture of the implemented system (including external tools Treba
and Netbench).

6.2 Basic Classes and Operations
The fundamental building blocks of the implemented tool are classes representing WFAs
and NFAs. These classes also offer basic operations needed for computing the distance
of input languages and for the approximate reduction. We list these classes and some
important operations they provide.

CoreWFA A base class for representing WFAs. The WFAs are represented as a list of transi-
tions. The class provides the trim operation, product operation, automata restriction,
renaming states, and others. For the purpose of visualization, this class also offers
export to the Graphviz5 DOT language.

4Perl Compatible Regular Expressions
5http://www.graphviz.org
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NFA A class derived from CoreWFA and intended for representing NFAs. It provides dis-
ambiguation, backward automata identification, division of an automaton to subau-
tomata, exporting to the FAdo format, and others.

MatrixWFA A class derived from CoreWFA and intended for matrix-based operations over
WFAs. It provides construction of the transition matrix, initial and final vectors,
computation of the transition closure, and others. Note that, by the transition closure,
we mean the computation of (I−AΣ)

−1.

The input NFAs are required in the FA format, and the input PAs are required in the
Treba format. The classes NFAParser and WFAParser thus import such specified automata
into the inner representation. Except of these mentioned classes, our tool also contains
classes implementing the reduction methods proposed in this work. These classes are de-
scribed in the following sections.

6.2.1 Computation of the Transition Closure

In this section, we look in more detail on problems related to the computation of the
transition closure. As we said in the previous sections and chapters, the computation of
the transition closure ∑︁

𝑡≥0

A𝑡
Σ = (I−AΣ)

−1 (6.1)

is the most time consuming operation in our approach. By default, the matrix inversion
is computed numerically by Gaussian elimination. This may, however, cause problems,
especially if the matrix has bad properties (e.g., the matrix is ill-conditioned). Therefore,
more methods for computing the transition closure are implemented in this tool.

Direct inversion The first of the implemented approaches uses the standard function
from the NumPy library for computation of the matrix inversion. This approach, we
denote as the direct inversion.

Iterative multiplying The second implemented approach we denote as the iterative mul-
tiplying. It is based on the evaluation of the finite sum

∑︀𝑛
𝑡=0A

𝑡
Σ where 𝑛 is the

maximal number of iterations. Clearly, the accuracy of this method depends on the
value of 𝑛. When we compute the probability (or the weight) of a language 𝐿 using
this method, we actually consider only the probability (or the weight) of strings from
𝐿 with length at most 𝑛.

Hotelling-Bodewig algorithm The last implemented method is referred as Hotelling-
Bodewig algorithm. The matrix inversion is computed using the following recurrent
formula [33]:

V𝑛+1 = V𝑛(2I−AV𝑛), 𝑛 = 0, 1, 2, . . . (6.2)

Here, V0 = I, and A is the matrix whose inverse we want to compute. Except of this
simple method there are other possible (and more complicated) ways for an iterative
computation of the matrix inversion (e.g., [33]), but they are not considered in this
thesis.

The advantage of the direct computation of the matrix inversion is the time complexity.
The direct inversion method is faster than both mentioned iterated approximations (this is
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caused by the repetitive computations of the matrix multiplication). On the other hand,
the direct inversion method can be numerically unstable. An experimental comparison of
the rate of convergence of the considered methods in our context is presented in Section 7.2.

6.3 Probabilistic Distance Computation
In this section, we describe some interesting implementation details related to the ap-
proximate reduction and the probabilistic distance computation. The computation of the
probabilistic distance is implemented according to the algorithm described in Chapter 4.
The probabilistic distance is primarily used for measuring the difference between the orig-
inal and the reduced automaton. We also stated, that for unambiguous automata, the
described algorithm computes the distance in polynomial time. However, if we perform
the self-loop reduction on an unambiguous automaton, the reduced automaton need not be
unambiguous, and therefore, the computation of the distance may be practically infeasible
(disambiguation may yield a huge automaton, which is further used for the computation
of the transition closure). For this reason, an upper-bound on the probabilistic distance is
computed during the reduction as described in Chapter 5. Therefore, if we do not need the
exact distance, we can use this estimation.

Apart from the above mentioned approximation, further improvements of the distance
computation have been implemented. For instance, if we a priori know that 𝐿(𝐴) ⊆ 𝐿(𝐴′),
we do not need to compute the product automaton 𝐴 ∩ 𝐴′ because 𝐿(𝐴) = 𝐿(𝐴) ∩ 𝐿(𝐴′)
(we can take 𝐴 instead of the product automaton).

6.4 Approximate Reduction
For the approximate reduction of automata, both the pruning and the self-loop reduc-
tion introduced in Chapter 5 have been implemented (including all their variants). Basic
operations needed for the pruning and the self-loop reduction are provided by the class
CoreReduction. This class provides operations for computing the values 𝜃𝑃,𝐴 and 𝛽𝑃,𝐴
using the product construction or the approach based on subautomata described in Sec-
tion 5.4.

6.4.1 Pruning Reduction

The pruning reduction is provided by the class PruningReduction (derived from the class
CoreReduction). This class contains methods for each variant of the pruning reduction.

For solving the relaxed pruning reduction via integer linear programming, the library
PuLP is used. To recall, in the relaxed 𝑘-pruning reduction formulated as the integer linear
program, we are looking for a vector 𝑥 satisfying System 5.13. If this system has more
feasible solutions, we want to select the one with the least error. However, there is a small
problem with the implementation of the relaxed 𝑘-pruning reduction because the PuLP
library does not allow one to iterate over all feasible solutions. This can be solved by
iterative solving of the integer linear programming problem with a dynamic addition of
constraints. Consider that we have found some feasible solution 𝑥1 with the value 𝑉 =
𝑣⊤ · 𝑥1 and error 𝐸 = 𝑐⊤ · 𝑥1 satisfying System 5.13. Then, we add new constraints
𝑣⊤ · 𝑥 ≥ 𝑉 and 𝑐⊤ · 𝑥 ≤ 𝐸 in order not to obtain a worse solution as the solution found so
far in the next iteration. We also add the constraint 𝑥⊤

1 ·𝑥 ≤ 𝑥⊤
1 ·1−1 to obtain a different

solution. After we add these constraints, we solve the modified integer LP problem and if
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PuLP find some feasible solution, we again add new constraints for the found solution. We
repeat this process until some feasible solution is found or we reach the maximum number
of iterations.

6.4.2 Self-loop Reduction

The self-loop reduction is provided by the class SelfLoopReduction (derived also from
CoreReduction). The variants of the self-loop reduction are implemented according to
Chapter 5. In addition, the following heuristics was used: If addition of self-loops over each
symbol to a state does not reduce the size of the automaton, then these self-loops are not
included.

6.4.3 State Labels

The computation of the state labels is the most time consuming operation of the whole
reduction process (line 1 in Algorithms 6, 7, 8, 9). As we have already said, the complexity
is related to disambiguation and the computation of the matrix inverses. If the input
automaton is unambiguous, we can use the improved approach described in Section 5.4.

As a further optimization, the implementation of the computation of the state labels
uses the structure of the input automaton as well. Since the input NFA is obtained from
a union of regular expressions, the obtained structure of the input NFA often looks as shown
in Figure 5.5. Therefore, we can divide the whole automaton into subautomata (according
to Figure 5.5) and compute the state labels on each subautomaton separately. This can be
done because there is no “interaction” between states of the distinct subautomata (when
not considering the initial state). Hence, the state labels are computed according to the
following steps:

1. Divide the input NFA 𝐴 into subautomata {𝐴1, 𝐴2, . . . , 𝐴𝑛}.
2. For each subautomaton 𝐴𝑖, 1 ≤ 𝑖 ≤ 𝑛, compute the state labels.
3. Union the computed state labels to obtain the state labels of the NFA 𝐴 (the labels

computed in the second step together form the state labels of 𝐴).

Moreover, since the subautomata are independent, the second step can run in parallel.
The implemented tool also offers a possibility of storing of the computed state labels into
a file. These stored values can then be used for repeated reduction attempts with different
values of the restriction parameter. This way, the repeated reduction attempts are greatly
accelerated since the state labels do not need to be recomputed.
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Chapter 7

Experiments

This chapter provides results of experiments performed with the implemented prototype
tool for the approximate reduction of automata. The experiments were performed on a PC
with Intel Core i5, 3.3×4 GHz, 16 GiB of memory, and running Linux Debian Jessie. The
first set of experiments is devoted to learning of probabilistic automata. In the second
set, we focus on a comparison of the implemented methods for computing the transition
closure. The final set of experiments is then devoted to an evaluation of the proposed
automata reduction methods.

7.1 Learning of Probabilistic Automata
For our experience with learning of PAs, we use a sample of network traffic provided by
the ANT@FIT group. Together, we obtained several streams of captured packets of size
more than 20 GiB. For the learning, the Alergia algorithm implemented in the Treba
tool is used. In this experiment, we want to investigate the possibilities of learning of a PA
representing the input traffic. As we have already said, the time complexity of the proposed
reductions depends on the size of the input PA. Therefore, we want to obtain a suitable
PA for further experiments, and determine the influence of the threshold parameter 𝑡0 (see
Section 2.4.2 for details) and the number of input packets on the size of the learned PA. In
the experiment, the standard Alergia parameter 𝛼 = 0.05 is chosen. The results are shown
in Table 7.1.

From the table, we can see that the learning process with the Treba tool is very
memory-intensive. Also, it is worth of noticing how much the number of states increases
when we change the parameter 𝑡0 to 2. This increase is caused by the nature of the data
(sample) used for learning. Most of the captured packets are different from each other.
Therefore, the learned PA contains long branches, which are not merged by the Alergia
algorithm.

Since the complexity of the probabilistic distance computation and our automata re-
ductions depends on the size of the PA used, we will further use the PA learned from 2000
packets (this PA we denote as 𝑃2𝑘).

For the future, an important direction of research is how to improve the process of
obtaining the PA characterizing the network traffic.
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Table 7.1: The results of the learning of probabilistic automata with the Treba tool for
the parameter 𝑡0 ∈ {0, 1}. The column “Packets” denotes the number of used packets for
the learning process and the column “States” denotes the size (the number of states) of the
learned PA. By “OM”, we denote “Out of memory”. By the symbol ⋆, we denote that during
the learning process, the number of states of the final PA was determined by the Treba
tool, but the learning was not completed because of a lack of memory.

(a) Learning with parameter 𝑡0 = 1.

Packets States Time
1000 95 3.4s
2000 113 6.4s
8000 225 33.9s

10 000 268 2m 26.6s
20 000 OM –

(b) Learning with parameter 𝑡0 = 2.

Packets States Time
1000 455 607⋆ –
2000 679 410⋆ –
8000 1 354 569⋆ –

10 000 1 594 324⋆ –
20 000 OM –

7.2 Convergence of the Transition Closure
In Chapter 6, we described three possible ways of computing the transition closure. In
the following experiment, we compare the rate of convergence of these methods. In our
automata reduction techniques, we use the transition closure for computing the value of
𝑓(Σ*). Therefore, we compare here the convergence to this value, depending on the way of
computing the closure. The value of 𝑓(Σ*) is evaluated on the product of a learned PA and
an NFA used in network traffic monitoring. For the experiment, the NFA info.rules with
16 states (denoted as 𝐴) and the probabilistic automaton 𝑃2𝑘 learned from 2000 packets is
chosen. Then, the transition matrix AΣ, corresponding to the WFA 𝑃 ′ = trim(𝑃2𝑘 ⊙ 𝐴)
has 1355 rows.

We compute the value of 𝑓𝑃 ′(Σ*) using the direct inversion method, iterative multi-
plying, and the Hotelling-Bodewig algorithm. Using the direct inversion, we get the value
𝑓𝑃 ′(Σ*) = 4.16× 10−19 after 10s. The results of the other two methods, which both itera-
tively improve the precision of the result are shown, for various number of the iterations,
in Table 7.2.

As we can see from the table, the computation of the closure via the Hotelling-Bodewig
algorithm converges to an exact value 𝑓𝑃 ′(Σ*) computed by the direct inversion much faster
than via the iterative multiplying method. Therefore, if the direct inversion cannot be used,
the Hotelling-Bodewig algorithm can be more appropriate than the iterative multiplying.

7.3 Automata Reduction
The next experiments are finally devoted to the proposed reduction of automata. For these
experiments, we use the probabilistic automaton 𝑃2𝑘 learned from 2000 packets as described
in Section 7.1. In the experiments, we evaluated the algorithms proposed in Chapter 5 on
several automata obtained from regular expressions provided to us by the ANT@FIT group.

In the experiments, we, in particular, proceeded as follows: We reduced the automata
using the different proposed approaches. For the obtained reduced automata, we computed
the probabilistic distance (for bigger automata, we computed only the distance upper-
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Table 7.2: A comparison of the rate of convergence of 𝑓𝑃 ′(Σ*) for two iterative methods:
the Hotelling-Bodewig algorithm and the iterative multiplying.

(a) Hotelling–Bodewig

Iterations 𝑓𝑃 ′(Σ*) Time
2 0.0 11.4s
5 7.36× 10−20 13.1s
10 3.29× 10−19 15.9s
50 4.16× 10−19 40.1s

(b) Iterative multiplying

Iterations 𝑓𝑃 ′(Σ*) Time
50 8.25× 10−20 23.4s
100 1.04× 10−19 36.8s
500 2.37× 10−19 2m 23s
2000 3.93× 10−19 10m 47s
3000 4.10× 10−19 15m 42s
5000 4.16× 10−19 23m 17s

bound). Moreover, we also determined the error on the sample of traffic provided to us by
the ANT@FIT group, which we already used to obtain the PA 𝑃2𝑘.

We see the payload of the captured packets as strings. If some packet has no payload,
we consider this packet as an empty string 𝜀. The error is then computed as the quotient
of the number of misclassified packets and the number of all packets.

When the automata are synthesized into hardware, the input string is accepted, when
a final state is reached during the computational steps (the input string may not be com-
pletely processed). Therefore, when we compute the error, we also use this “prefix accep-
tance” (if a string 𝑤 is accepted in this way by some NFA 𝐴, we denote it as 𝑤 ∈𝑝𝑟 𝐿(𝐴)).
The packet 𝑝 is thus misclassified iff 𝑝 ∈𝑝𝑟 𝐿(𝐴)⊕𝑝 ∈𝑝𝑟 𝐿(𝐴𝑟) where 𝐴 is the original NFA,
𝐴𝑟 is the reduced NFA, and ⊕ is logical nonequivalence.

Let us now present more detailed information about reductions of each considered au-
tomaton.

http-bots The first automaton we consider is http-bots. The automaton was obtained
from the regular expression, which describes a part of the HTTP protocol. The automaton
has 8 states only. We performed the 𝑘-pruning, and the 𝑘-self-loop reduction for various
values of 𝑘. The results of the reduction are shown in Table 7.3. The error related to the
captured traffic (the column “Traffic error”) is obtained from a sample of 106 packets. The
traffic error evaluation took about 10 minutes for each pair of the reduced and the original
automaton.

From the table, we can see that, in the case of the self-loop reduction, the computed
probabilistic distance is greater than the traffic error, and the difference between the proba-
bilistic distance and the traffic error is quite small. Moreover, observe that we could remove
from the original NFA more than half of the states with the traffic error being less than 1 %.
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In the case of the 𝑘-pruning reduction, the difference between the traffic error and the
computed probabilistic distance is bigger. The difference seems to be caused mainly by
inaccuracy of the learned PA.

This experimental result can be supported by the following reasoning. In the case of
the self-loop reduction, we get that the probabilistic distance between the languages of the
original and the reduced automaton is an upper-bound of the traffic error. In addition,
the automaton obtained via the self-loop reduction decides on the acceptance of an input
string after reading some prefix. This kind of acceptance matches well with the fact that, in
our network monitoring application, we can classify some packets after certain prefix of its
payload. Also, the hardware accelerated devices usually implement the above mentioned
prefix acceptance for a given NFA. Moreover, the self-loop reduction over-approximate the
language, which is necessary for some applications (e.g., the error detection). Therefore,
the self-loop reduction is probably more suitable for our application and in the further
experiments, we focus mainly on the self-loop reduction.

Table 7.3: The reduction of the automaton http-bots with 8 states. The figures are
shown in Appendix B.

(a) The self-loop reduction

𝑘 States Traffic error Probabilistic distance Figure
0.0 1 0.992 0.999 B.1a
0.2 3 1.69× 10−3 7.86× 10−3 B.1b
0.5 4 8.90× 10−4 3.72× 10−3 B.1c
0.6 5 6.00× 10−6 6.86× 10−5 B.1d
0.7 6 0.0 1.34× 10−5 B.1e
1.0 8 0.0 0.0 B.1f

(b) The pruning reduction

𝑘 States Traffic error Probabilistic distance Figure
0.0 1 7.18× 10−3 2.00× 10−8 B.2a
0.5 4 8.41× 10−4 2.73× 10−13 B.2b
0.6 5 6.34× 10−3 2.00× 10−8 B.2c
0.7 6 0.0 0.0 B.1f
1.0 8 0.0 0.0 B.1f

info.rules The second automaton we used for our experiments with the reduction meth-
ods is info.rules. The automaton has 16 states. It was obtained from the regular expres-
sion, which describes authentication messages. We performed the 𝑘-self-loop reduction for
various values of 𝑘. The results of the reduction are shown in Table 7.4. The error related
to the captured traffic is obtained from the same sample as in the case of the previous au-
tomaton. The evaluation of the traffic error took about 9 hours for each pair of the reduced
and the original automaton.

The computed probabilistic distance is again greater than the traffic error. From the
table, we can see that, for the 𝑘-self-loop reduction with the parameter 𝑘 = 0.2, we obtained
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an automaton, which has only 25 % of states of the original automaton, and still the traffic
error is less than 1 %.

Table 7.4: The self-loop reduction of the automaton info.rules with 16 states. The
figures are shown in Appendix B.

𝑘 States Traffic error Probabilistic distance Figure
0.0 1 1.0 1.0 B.3a
0.2 4 8.61× 10−3 3.04× 10−2 B.3b
0.5 9 0.0 4.04× 10−10 B.3c
0.7 12 0.0 1.93× 10−12 B.3d
1.0 16 0.0 0.0 B.3e

shellcode.rules The next considered automaton is shellcode.rules with 95 states. It
was obtained from the regular expression representing several types of shellcodes. We
again performed the 𝑘-self-loop reduction for various values of 𝑘. The results are shown in
Table 7.5. The error related to the captured traffic is obtained from a sample of 5× 105

packets, and the evaluation of the traffic error took about 12 hours for each pair of the
reduced and the original automaton.

For each of the reduced automata, we give an upper-bound of the probabilistic distance
only. It is because the reduced automaton is no longer an unambiguous automaton. For
the computation of the exact distance, we therefore need the disambiguation of the reduced
automaton, which would yield a huge automaton.

The computed upper-bound of the probabilistic distance is not greater than the traffic
error for the automata reduced with the parameters 𝑘 = 0.3 and 𝑘 = 0.5. This is caused by
the inaccuracy of the learned PA. We can again see that we were able to achieve a reduction
of 70 % with the traffic error less than 1 %.

Table 7.5: The self-loop reduction of the automaton shellcode.rules with 95 states.

𝑘 States Traffic error Probabilistic distance
0.0 1 1.0 ≤1.0
0.3 29 1.60× 10−5 ≤1.27× 10−12

0.5 48 1.40× 10−5 ≤6.41× 10−19

0.7 67 0.0 ≤5.29× 10−25

1.0 95 0.0 0.0

chat.rules The last considered automaton is chat.rules with 219 states. The automaton
was obtained from the regular expression representing some parts of chat protocols (e.g.,
IRC). We again performed the 𝑘-self-loop reduction for various values of 𝑘. The results
are shown in Table 7.6. Since this automaton is ambiguous, the reduction is more time-
demanding (more concretely, the computation of the state labels took about 12 hours).
However, this computation is performed only once, independently on the number of the
performed reductions. The error related to the captured traffic is obtained from 105 packets,
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and the evaluation took about 13 hours for each pair of the reduced and the original
automaton.

For the same reason as in the case of the previous automaton, we give only an upper-
bound of the probabilistic distance for each reduced automaton only. The computed upper-
bound of the probabilistic distance is not greater than the traffic error for the automata
reduced with the parameter 𝑘 = 0.5. We can again see that we were able to achieve
a reduction of 70 % with the traffic error about 3 %.

Table 7.6: The self-loop reduction of the automaton chat.rules with 219 states.

𝑘 States Traffic error Probabilistic distance
0.0 1 1.0 ≤1.0
0.2 47 0.27 ≤1.0
0.3 66 3.15× 10−2 ≤1.02× 10−1

0.5 110 4.00× 10−5 ≤3.74× 10−8

0.7 154 0.0 ≤2.82× 10−16

1.0 219 0.0 0.0

Discussion

In this section, we performed experiments with reductions of automata used in network tra-
ffic filtering through the proposed approaches. The results have shown several things: The
accuracy of the reduction depends a lot on the learned probabilistic automaton. Currently,
we are able to use a restricted subset of the captured packets for the learning only. This
could be improved by a packet pre-filtering (briefly discussed in the final chapter). From
the first experiments, we also get that the self-loop reduction is probably more suitable for
use in network traffic filtering. This conclusion has been confirmed by the people from the
ANT@FIT group as well. For some applications in network filtering, it is crucial to make no
false negatives (e.g., in attacks detection). Therefore, for this mentioned application, only
over-approximate reductions are allowed. Note that, using the over-approximate reductions
may cause an increase of the network flow processed by the software resolver. Therefore,
for a real deployment, it is necessary to select the restriction parameters with respect to
the trade-off between the size of the automaton and the increase of the workload of the
software resolver.

The experiments have also shown that the most time-demanding operation is the eval-
uation of the traffic error based on the captured packets. It is mainly because the test
whether a string (payload of a packet) belongs to the language of an NFA is done by a sim-
ulation of the NFA (the reduced and the original one) in software. This problem could be
solved by a hardware accelerated device for the evaluation of the network error.1

Despite all the mentioned problems, the first experiments suggest that the proposed
reduction techniques, especially the self-loop reduction, are highly promising for use in net-
work traffic filtering. Indeed, using these techniques, we were able to reduce the considered
input automata to less than 30 % of their size with the traffic error less than 3 %.

1Such HW was not available at the time of writing this thesis. However, it has already been agreed with
the ANT@FIT group that the needed experiments will be performed in the near future.
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Chapter 8

Conclusion

The aim of this thesis was to propose techniques for approximate reduction of automata used
in network traffic monitoring. Since such approximate reductions do not need to preserve
the language, a method for quantification of the incurred error was first proposed. In
particular, we proposed a notion of probabilistic distance between languages, which utilizes
information about the input network traffic. The information about the network traffic
is expressed using probabilistic automata expressing probabilities of different packets. We
also gave an algorithm for computing the described distance. In the next part, we proposed
two approaches for approximate reduction of automata, including algorithms implementing
them in an efficient way. The first one—the pruning reduction—is based on removing
branches of an input automaton. The second one—the self-loop reduction—is based on
adding self-loops to certain states of an input automaton. The choice of branches to remove
or states on which self-loops should be added, is steered by the probabilistic automaton
representing the input traffic.

The proposed methods for the reductions were implemented and we performed exper-
iments with the reduction of automata used for network traffic filtering. The reductions
were steered by a probabilistic automaton learned by the Alergia algorithm from a captured
sequence of packets. For each reduced automaton, we computed the error on the captured
traffic. The experiments show that we are able to reduce an input automaton over 70 % of
its size with the traffic error less than 3 %, Although, we are not yet able to handle large
automata, our approach is highly promising for the future.

The most time-consuming part of the experiments concerning the reductions of au-
tomata is the traffic error evaluation. However, this operation could be effectively acceler-
ated in HW. Hence, for further experiments, we would like to exploit this possibility.

In the thesis, we used the Alergia algorithm for learning of the probabilistic automa-
ton representing the network traffic with respect to which the given automaton should be
reduced. In the future work, we want to deal with more advanced techniques for learning
of probabilistic automata. Currently, the possible ways to obtain a better PA seem to be
the following: First, one can use some expert knowledge for a pre-filtration of the captured
packets, which would then be used for the learning process. For example, one could think of
removing some parts of the packets, using their prefixes only, etc. Another possibility lies in
trying to use another algorithms for learning of the probabilistic automata and to compare
their accuracy in the context of the reduction framework. We would also like to turn our
attention to a special form of learning of the probabilistic automata—namely, learning of
a classical NFA in the first step and filling in the probabilities in the second step. Further,
one could also think of proposing new learning algorithms specialized for the given context.
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Moreover, we would like to explore further ways of reducing the input automata, possibly
combining the effect of our approximate reductions with the recently proposed approaches
for language-preserving reduction of NFAs.
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Appendix A

Proofs of Lemmas and Theorems

In this appendix, we give proofs of the lemmas and theorems that we have not presented
in the main text.

A.1 Chapter 4
In this section, we give proofs of lemmas and theorems, which are related to the probabilistic
distance computation.

A.1.1 Proofs of Section 4.1

The following lemma and theorem related to SPAs are needed for the probabilistic distance
computation.

Lemma 35. If an SPA 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) is well-formed, then every submatrix of
AΣ whose rows and columns are given by the nodes of a strongly connected component of
𝒢(AΣ) is substochastic.

Proof. Suppose that 𝐶 is a strongly connected component of 𝒢(AΣ) and AΣ[𝐶] is the
submatrix of AΣ corresponding to the nodes of 𝐶. Since AΣ is at most stochastic, so is
AΣ[𝐶]. There may occur two possibilities:

1. The component 𝐶 contains a final state 𝑞𝑖, i.e., 𝛼𝑓 [𝑖] > 0 for some 𝑖. Then the row
sum of the 𝑖-th row needs to be less than 1 (due to Inequality 2.11). Therefore, AΣ[𝐶]
is substochastic.

2. The component 𝐶 does not contain any final state. Then, since 𝑃 is well-formed, there
exists a state 𝑞 of the component 𝐶 with an outgoing transition leading to a state not
in 𝐶. Thus, the row sum of AΣ[𝐶] corresponding to the state 𝑞 is less than 1.

In both cases, we get that AΣ[𝐶] is a substochastic matrix.

The following theorem deals with the spectral radius of well-formed semi-probabilistic
automata.

Theorem 19. If an SPA 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) is well-formed, then 𝜌(AΣ) < 1.
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Proof. Since AΣ is at most a stochastic matrix, it holds that 𝜌(AΣ) ≤ 1 (see [14, Chapter
9.4]). Further, we will show that 𝜌(AΣ) ̸= 1 by contradiction. Suppose that 𝜌(AΣ) = 1.
Then, according to Theorem 1, there exists some access-equivalent class 𝐵 of AΣ, such that
𝜌(AΣ[𝐵]) = 1. From the definition of an access-equivalent class, the graph 𝒢(AΣ[𝐵]) is
strongly connected, and therefore, according to Theorem 3, the matrix AΣ[𝐵] is irreducible.
Moreover, since 𝑃 is well-formed, from Lemma 35, we obtain that AΣ[𝐵] is substochastic.
Finally, according to Theorem 4, 𝜌(AΣ[𝐵]) < 1, which is a contradiction.

A.1.2 Proofs of Section 4.2

The two technical lemmas stated below are used for computing 𝑓𝑃 (𝐿(𝐴)) for some UFA 𝐴
and PA 𝑃 and hence as a basis for proving Theorem 22.

Lemma 36. Let 𝐴 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) be a trimmed WFA over Σ. Then, for all 𝑝, 𝑞 ∈
𝑄𝐴, there is a 𝑘 ∈ N0, 𝑠 ∈ 𝐼𝐴, and 𝑓 ∈ 𝐹𝐴 such that for all 𝑚 ∈ N, if A𝑚

Σ [𝑝, 𝑞] > 0, then
A𝑚+𝑘

Σ [𝑠, 𝑓 ] > 0.

Proof. Let us assume that, for some 𝑚 ∈ N and 𝑝, 𝑞 ∈ 𝑄𝐴, the inequality A𝑚
Σ [𝑝, 𝑞] > 0

is satisfied. This implies the existence of a path in the automaton graph 𝒢(AΣ) between
vertices 𝑝 and 𝑞 of length 𝑚 (written as 𝑝  𝑚 𝑞). Moreover, since WFA 𝐴 is trimmed,
there exist paths 𝑠  𝑘1 𝑝 and 𝑞  𝑘2 𝑓 where 𝑠 ∈ 𝐼𝐴, 𝑓 ∈ 𝐹𝐴, and 𝑘1, 𝑘2 ∈ N0. Together,
we get 𝑠 𝑘1+𝑚+𝑘2 𝑓 , and thus A𝑚+𝑘

Σ [𝑠, 𝑓 ] > 0 for 𝑘 = 𝑘1+𝑘2 (𝑘 is independent of 𝑚).

Lemma 37. Let 𝐴 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) be a trimmed WFA over Σ. Then,

lim
𝑛→∞

𝛼⊤
0 A

𝑛
Σ𝛼𝑓 = 0⇐⇒ lim

𝑛→∞
A𝑛

Σ = 0. (A.1)

Proof. The implication from right to left is clear. We will prove the implication from left to
right by contradiction. So assume that lim𝑛→∞𝛼⊤

0 A
𝑛
Σ𝛼𝑓 = 0, and, moreover, we assume

an existence of some matrix element at the position (𝑖, 𝑗), such that lim𝑛→∞A𝑛
Σ[𝑖, 𝑗] is

greater than zero or that the limit does not exist. Moreover, due to AΣ is a nonnegative
matrix, for all 𝑚 ∈ N, we have A𝑚

Σ [𝑖, 𝑗] ≥ 0. This, together with the previous assumption,
gives us

lim sup
𝑛→∞

A𝑛
Σ[𝑖, 𝑗] > 0. (A.2)

Further, from Lemma 36, it follows that there exist 𝑘 ∈ N0, 𝑠 ∈ 𝐼𝐴, and 𝑓 ∈ 𝐹𝐴 such that

lim sup
𝑛→∞

A𝑛+𝑘
Σ [𝑠, 𝑓 ] = lim sup

𝑛→∞
A𝑛

Σ[𝑠, 𝑓 ] > 0. (A.3)

From the definition of matrix multiplication, we get

𝛼⊤
0 A

𝑛
Σ𝛼𝑓 =

𝑚∑︁
𝑙=1

𝑚∑︁
𝑘=1

𝛼⊤
0 [𝑘] ·A𝑛

Σ[𝑘, 𝑙] ·𝛼𝑓 [𝑙] ≥ 𝛼⊤
0 [𝑠] ·A𝑛

Σ[𝑠, 𝑓 ] ·𝛼𝑓 [𝑓 ] (A.4)

for 𝑛 ∈ N and 𝑚 = 𝑟𝑜𝑤𝑠(AΣ). Therefore,

lim sup
𝑛→∞

𝛼⊤
0 A

𝑛
Σ𝛼𝑓 ≥ 𝛼⊤

0 [𝑠] ·
(︂
lim sup
𝑛→∞

A𝑛
Σ[𝑠, 𝑓 ]

)︂
·𝛼𝑓 [𝑓 ] > 0, (A.5)

which is a contradiction with the assumption lim𝑛→∞𝛼⊤
0 A

𝑛
Σ𝛼𝑓 = 0.
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We now finally get to the theorem that together with the previous lemmas allows us to
compute 𝑓𝑃 (𝐿) for a language 𝐿 given by a UFA and a PA 𝑃 . The following theorem is an
analogy of Theorem 19.
Theorem 22. Let 𝑃 be a PA, 𝐴 be a UFA, and 𝑃 ′ be a WFA 𝑃 ′ = trim(𝑃 ⊙ 𝐴) =
(𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ), then 𝜌(AΣ) < 1.

Proof. We can determinize 𝐴 to obtain a deterministic finite automaton 𝐴. If we intersect
𝑃 with 𝐴, we obtain a semi-probabilistic automaton, which can be transformed into a well-
formed SPA 𝑃 , i.e., 𝑃 = wellFormed(𝑃 ⊙𝐴) = (𝛼̂0, 𝛼̂𝑓 , {Â𝑎}𝑎∈Σ). The functions generated
by weighted(𝐴) and weighted(𝐴) are equal, which follows from Lemma 20, and therefore
𝑓𝑃 ′ = 𝑓𝑃 . Moreover, from Lemma 14 and Theorem 19, we obtain

𝑓𝑃 (Σ
*) = 𝛼̂⊤

0 (I− Â)−1𝛼̂𝑓 = 𝑓𝑃 ′(Σ*) =

∞∑︁
𝑡=0

∑︁
𝑤∈Σ𝑡

𝑓𝑃 ′(𝑤). (A.6)

If we let 𝑎𝑛 =
∑︀

𝑤∈Σ𝑛 𝑓𝑃 ′(𝑤), according to Equation A.6, the series
∑︀∞

𝑛=0 𝑎𝑛 is convergent
(
∑︀∞

𝑛=0 𝑎𝑛 = 𝛼̂⊤
0 (I − Â)−1𝛼̂𝑓 ). Further, according to Equation 2.15, 𝑎𝑛 is also expressible

as 𝑎𝑛 = 𝛼⊤
0 A

𝑛
Σ𝛼𝑓 . Due to the convergence of the series, we get

lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

𝛼⊤
0 A

𝑛
Σ𝛼𝑓 = 0, (A.7)

and, according to Lemma 37, we obtain lim𝑛→∞A𝑛
Σ = 0. From Theorem 5, we finally get

𝜌(AΣ) < 1.

A.2 Chapter 5
In this section, we give proofs of lemmas and theorems, which are related to the approximate
reduction of automata.

A.2.1 Proofs of Section 5.3

The following lemmas are used for an estimation of the error of the self-loop reduction.
Lemma 38. Let 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) be a trim PA over Σ. Then, for every 𝑤 ∈ Σ*, we
have

𝑓𝑃 (𝑤.Σ
*) = weight𝑃 (𝑤). (A.8)

Proof. First, we get

𝑓𝑃 (𝑤.Σ
*) =

∑︁
𝑤′∈Σ*

𝛼⊤
0 A𝑤A𝑤′𝛼𝑓 = 𝛼⊤

0 A𝑤 ·

(︃ ∑︁
𝑤′∈Σ*

A𝑤′

)︃
·𝛼𝑓 =

= 𝛼⊤
0 A𝑤(I−AΣ)

−1𝛼𝑓

(A.9)

The last equality above is due to the equality
∑︀

𝑤′∈Σ* A𝑤′ =
∑︀

𝑡∈NA𝑡
Σ and Theorem 19.

Further, due to 𝑃 being a probabilistic automaton, for all 1 ≤ 𝑖 ≤ 𝑛 where 𝑛 = 𝑟𝑜𝑤𝑠(AΣ),
we get the following from the definition of PA.

𝛼𝑓 [𝑖] =1−
𝑛∑︁

𝑗=1

AΣ[𝑖, 𝑗] =
𝑛∑︁

𝑗=1

I[𝑖, 𝑗]−
𝑛∑︁

𝑗=1

AΣ[𝑖, 𝑗] =

=

𝑛∑︁
𝑗=1

(I[𝑖, 𝑗]−AΣ[𝑖, 𝑗]) = ((I−AΣ) · 1)[𝑖].
(A.10)
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Note that, the multiplication by a vector 1 in the last equality only replaces the explicit
summation. Thus, we have 𝛼𝑓 = (I −AΣ) · 1. From Theorems 5 and 19, we obtain that
the matrix (I −AΣ) is invertible. Therefore, we can multiply both sides by (I −AΣ)

−1,
and we get (I−AΣ)

−1𝛼𝑓 = 1. Finally, by a substitution to Equality A.9, we have

𝑓𝑃 (𝑤.Σ
*) = 𝛼⊤

0 A𝑤(I−AΣ)
−1𝛼𝑓 = 𝛼⊤

0 A𝑤 · 1 = weight𝑃 (𝑤), (A.11)

which concludes the proof.

Lemma 28. Let 𝑃 be a trim PA over Σ, and 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) be an NFA. Then, for all
𝑞 ∈ 𝑄 we have

𝑓𝑃 (𝐿
−1
𝐴 (𝑞).Σ*) ≤ 𝛽𝑃,𝐴(𝑞). (A.12)

Proof. We start with the following reasoning

𝑓𝑃 (𝐿
−1
𝐴 (𝑞).Σ*) =

∑︁
𝑤∈𝐿−1

𝐴 (𝑞).Σ*

𝑓𝑃 (𝑤)

≤
∑︁

𝑤∈𝐿−1
𝐴 (𝑞)

𝑓𝑃 (𝑤.Σ
*).

(A.13)

The previous inequality holds because there can be strings 𝑤1, 𝑤2 ∈ 𝐿−1
𝐴 (𝑞) such that

𝑤1.Σ
* ∩ 𝑤2.Σ

* ̸= ∅. Finally, from Lemma 38 and Inequality A.13, we obtain

𝑓𝑃 (𝐿
−1
𝐴 (𝑞).Σ*) ≤

∑︁
𝑤∈𝐿−1

𝐴 (𝑞)

𝑓𝑃 (𝑤.Σ
*) =

∑︁
𝑤∈𝐿−1

𝐴 (𝑞)

weight𝑃 (𝑤) = 𝛽𝑃,𝐴(𝑞), (A.14)

which concludes the proof.

A.2.2 Proofs of Section 5.4

The below lemma clarifies the relation between the multiplication of the transition matrices
of NFA, PA, and their product. This lemma is then used for a more efficient way of
computing the values 𝜃𝑃,𝐴 and 𝛽𝑃,𝐴.

Lemma 39. Let 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) be an NFA, let {T𝑎}𝑎Σ be its transition matrices encod-
ing its transitions (i.e., transition matrices of weighted(𝐴)), and let 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ)
be a PA over Σ. Further, let 𝐵 be a WFA over Σ given as 𝐵 = trim(𝑃 ⊙𝐴) =
(𝛽0,𝛽𝑓 , {B𝑎}𝑎∈Σ). Then, for each (𝑞1, 𝑞2), (𝑟1, 𝑟2) ∈ 𝑄𝐵 and for each 𝑥 ∈ Σ*, we have

A𝑥[𝑞1, 𝑟1] ·T𝑥[𝑞2, 𝑟2] = B𝑥[(𝑞1, 𝑞2), (𝑟1, 𝑟2)]. (A.15)

Proof. We prove this statement by induction on the length of 𝑥. For 𝑥 = 𝜀, we have

I[𝑞1, 𝑟1] · I[𝑞2, 𝑟2] = I[(𝑞1, 𝑞2), (𝑟1, 𝑟2)]. (A.16)

If 𝑞1 = 𝑟1 and 𝑞2 = 𝑟2, then both sides are equal to 1, otherwise they are equal to 0.
Therefore, the equation is valid.

For 𝑥 = 𝑎 ∈ Σ, according to the 6th line of Algorithm 1, we obtain

A𝑎[𝑞1, 𝑟1] ·T𝑎[𝑞2, 𝑟2] = B𝑎[(𝑞1, 𝑞2), (𝑟1, 𝑟2)]. (A.17)
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For the inductive case, we assume that the equality holds for each (𝑞1, 𝑞2), (𝑟1, 𝑟2) ∈ 𝑄𝐵,
and a string 𝑥 of length at most 𝑛. We prove that the equality is satisfied also for a string
𝑥.𝑎 of length at most 𝑛+ 1 where 𝑎 ∈ Σ:

A𝑥.𝑎[𝑞1, 𝑟1]·T𝑥.𝑎[𝑞2, 𝑟2] =

=

⎛⎝∑︁
𝑘∈𝑄𝑃

A𝑥[𝑞1, 𝑘] ·A𝑎[𝑘, 𝑟1]

⎞⎠ ·
⎛⎝∑︁

𝑙∈𝑄
T𝑥[𝑞2, 𝑙] ·T𝑎[𝑙, 𝑟2]

⎞⎠ =

=
∑︁
𝑘∈𝑄𝑃

⎛⎝A𝑥[𝑞1, 𝑘] ·A𝑎[𝑘, 𝑟1] ·
∑︁
𝑙∈𝑄

T𝑥[𝑞2, 𝑙] ·T𝑎[𝑙, 𝑟2]

⎞⎠ =

=
∑︁
𝑘∈𝑄𝑃

∑︁
𝑙∈𝑄

A𝑥[𝑞1, 𝑘] ·A𝑎[𝑘, 𝑟1] ·T𝑥[𝑞2, 𝑙] ·T𝑎[𝑙, 𝑟2] =

=
∑︁

(𝑘,𝑙)∈𝑄𝑃×𝑄

A𝑥[𝑞1, 𝑘] ·A𝑎[𝑘, 𝑟1] ·T𝑥[𝑞2, 𝑙] ·T𝑎[𝑙, 𝑟2] =

=
∑︁

(𝑘,𝑙)∈𝑄𝐵

A𝑥[𝑞1, 𝑘] ·A𝑎[𝑘, 𝑟1] ·T𝑥[𝑞2, 𝑙] ·T𝑎[𝑙, 𝑟2]+

+
∑︁

(𝑘,𝑙)∈(𝑄𝑃×𝑄)∖𝑄𝐵

A𝑥[𝑞1, 𝑘] ·A𝑎[𝑘, 𝑟1] ·T𝑥[𝑞2, 𝑙] ·T𝑎[𝑙, 𝑟2].

(A.18)

Now, we look at the second sum of the last expression. Since (𝑘, 𝑙) /∈ 𝑄𝐵, it means that the
state (𝑘, 𝑙) was either non-accessible or non-coaccessible in 𝑃 ⊙𝐴.

1. If the state (𝑘, 𝑙) is non-accessible in 𝑃 ⊙𝐴, then there do not exist both a path over
𝑥 from the state 𝑞1 to the state 𝑘 in 𝑃 and a path over 𝑥 from the state 𝑞2 to the
state 𝑙 in 𝐴. If both paths existed, the state (𝑘, 𝑙) would be accessible in 𝐵 because
(𝑞1, 𝑞2) is accessible in 𝐵. Therefore, we have A𝑥[𝑞1, 𝑘] ·T𝑥[𝑞2, 𝑙] = 0.

2. If the state (𝑘, 𝑙) is non-coaccessible (but accessible) in 𝑃 ⊙𝐴, then there do not exist
both a transition over 𝑎 from the state 𝑘 to the state 𝑟1 in 𝑃 and transition over 𝑎
from the state 𝑙 to the state 𝑟2 in 𝐴. If both these transitions existed, the state (𝑘, 𝑙)
would be coaccessible because there would be a path in 𝑃 ⊙ 𝐴 from (𝑘, 𝑙) to (𝑟1, 𝑟2)
where the state (𝑟1, 𝑟2) is coaccessible due to the assumption of the inductive case.
We thus have A𝑎[𝑘, 𝑟1] ·T𝑎[𝑙, 𝑟2] = 0.

Together, we obtain ∑︁
(𝑘,𝑙)∈(𝑄𝑃×𝑄)∖𝑄𝐵

A𝑥[𝑞1, 𝑘] ·A𝑎[𝑘, 𝑟1] ·T𝑥[𝑞2, 𝑙] ·T𝑎[𝑙, 𝑟2] = 0. (A.19)

If (𝑘, 𝑙) ∈ 𝑄𝐵, according to the induction hypothesis, we have

A𝑥[𝑞1, 𝑘] ·T𝑥[𝑞2, 𝑙] = B𝑥[(𝑞1, 𝑞2), (𝑘, 𝑙)], (A.20)

and also
A𝑎[𝑘, 𝑟1] ·T𝑎[𝑙, 𝑟2] = B𝑎[(𝑘, 𝑙), (𝑟1, 𝑟2)]. (A.21)

By substitution, we obtain∑︁
(𝑘,𝑙)∈𝑄𝐵

B𝑥[(𝑞1, 𝑞2), (𝑘, 𝑙)] ·B𝑎[(𝑘, 𝑙), (𝑟1, 𝑟2)] = B𝑥.𝑎[(𝑞1, 𝑞2), (𝑟1, 𝑟2)], (A.22)

which concludes the proof.
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The following theorem allows us to compute the value of 𝜃𝑃,𝐴(𝑞) for an NFA 𝐴, a PA
𝑃 , and any 𝑞 ∈ 𝐹𝐴 in a more efficient way. We are able to compute the 𝜃𝑃,𝐴 values directly
from the product 𝑃 ⊙𝐴.

Theorem 32. Let 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) be a trimmed PA over Σ, let 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 )
be a trimmed UFA, and let {T𝑎}𝑎∈Σ be the transition matrices of weighted(𝐴). Further, let
𝑃 ′ be a WFA given as 𝑃 ′ = trim(𝑃 ⊙ 𝐴) = (𝛽0,𝛽𝑓 , {B𝑎}𝑎∈Σ). Then, for each 𝑞 ∈ 𝐹 , we
have

𝜃𝑃,𝐴(𝑞) = 𝛽⊤
0 ·Π𝑃 ′ · 𝛾𝛼𝑓

𝑞 (A.23)

where Π𝑃 ′ = (I−BΣ)
−1 =

∑︀
𝑡≥0B

𝑡
Σ, and, for each (𝑝′, 𝑞′) ∈ 𝑄𝑃 ′,

𝛾
𝛼𝑓
𝑞 [(𝑝′, 𝑞′)] =

{︃
𝛼𝑓 [𝑝

′] if 𝑞′ = 𝑞,

0 otherwise.
(A.24)

Proof. First, from Theorem 22 and Lemma 14, it follows that (I − BΣ)
−1 =

∑︀
𝑡≥0B

𝑡
Σ.

Further, from the associativity of matrix multiplication, we get

𝛼⊤
0 ·A𝑥 ·𝛼𝑓 = (𝛼⊤

0 ·A𝑥) ·𝛼𝑓 =
∑︁
𝑙∈𝑄𝑃

(𝛼⊤
0 ·A𝑥)[𝑙] ·𝛼𝑓 [𝑙]. (A.25)

Similarly, for (𝛼⊤
0 ·A𝑥)[𝑙], we get

(𝛼⊤
0 ·A𝑥)[𝑙] =

∑︁
𝑘∈𝑄𝑃

𝛼⊤
0 [𝑘] ·A𝑥[𝑘, 𝑙]. (A.26)

If 𝛼⊤
0 [𝑘] = 0, then the whole product is zero. We can thus sum only over the states having

the corresponding values nonzero in 𝛼⊤
0 (i.e., states from the set of initial states 𝐼𝑃 ). Now,

we focus on the computation of 𝜃𝑃,𝐴(𝑞) for arbitrary 𝑞 ∈ 𝐹 . We start with the definition
of 𝑓𝑃 (𝐿):

𝜃𝑃,𝐴(𝑞) =
∑︁

𝑥∈𝐿−1
𝐴 (𝑞)

𝑓𝑃 (𝑥) =
∑︁

𝑥∈𝐿−1
𝐴 (𝑞)

𝛼⊤
0 ·A𝑥 ·𝛼𝑓 = (A.27)

=
∑︁

𝑥∈𝐿−1
𝐴 (𝑞)

∑︁
𝑙∈𝑄𝑃

⎛⎝∑︁
𝑘∈𝐼𝑃

𝛼⊤
0 [𝑘] ·A𝑥[𝑘, 𝑙]

⎞⎠ ·𝛼𝑓 [𝑙] = (A.28)

=
∑︁

𝑥∈𝐿−1
𝐴 (𝑞)

∑︁
𝑘∈𝐼𝑃

∑︁
𝑙∈𝑄𝑃

𝛼⊤
0 [𝑘] ·A𝑥[𝑘, 𝑙] ·𝛼𝑓 [𝑙]. (A.29)

Since 𝐴 is a trimmed unambiguous automaton, for each state 𝑝 ∈ 𝑄, it holds that there
exists at most one path from 𝑞0 to 𝑝 labeled by arbitrary 𝑥 ∈ Σ*. Indeed, if there were,
for some state 𝑝 and some string 𝑥, two distinct paths from 𝑞0 to 𝑝, we could extend these
paths from 𝑝 to some final state, which would yield two distinct accepting computations
on 𝑥 in 𝐴. This would be a contradiction because 𝐴 is unambiguous. Therefore, we have
T𝑥[𝑞0, 𝑝] = 1, if 𝑥 ∈ 𝐿−1

𝐴 (𝑝), and T𝑥[𝑞0, 𝑝] = 0 otherwise. Therefore, we get

𝜃𝑃,𝐴(𝑞) =
∑︁

𝑥∈𝐿−1
𝐴 (𝑞)

∑︁
𝑘∈𝐼𝑃

∑︁
𝑙∈𝑄𝑃

𝛼⊤
0 [𝑘] ·A𝑥[𝑘, 𝑙] ·𝛼𝑓 [𝑙] = (A.30)

=
∑︁
𝑥∈Σ*

∑︁
𝑘∈𝐼𝑃

∑︁
𝑙∈𝑄𝑃

𝛼⊤
0 [𝑘] ·A𝑥[𝑘, 𝑙] ·T𝑥[𝑞0, 𝑞] ·𝛼𝑓 [𝑙]. (A.31)
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Further, the expression 𝛼⊤
0 [𝑘] · A𝑥[𝑘, 𝑙] · T𝑥[𝑞0, 𝑞] · 𝛼𝑓 [𝑙] is greater than zero only if there

exists a path in 𝑃 from 𝑘 ∈ 𝑄𝑃 to 𝑙 ∈ 𝐹𝑃 labeled by 𝑥, and a path in 𝐴 from 𝑞0 to 𝑞 ∈ 𝐹
labeled by 𝑥. Thus, there exists also a path in 𝑃 ⊙ 𝐴 from the initial state (𝑘, 𝑞0) to the
final state (𝑙, 𝑞). Since these states are both accessible and co-accessible, they are included
into the trimmed automaton 𝑃 ′. Therefore, we can narrow the sum as follows:

𝜃𝑃,𝐴(𝑞) =
∑︁
𝑥∈Σ*

∑︁
(𝑘,𝑞0)∈𝐼𝑃 ′

∑︁
(𝑙,𝑞)∈𝑄𝑝′

𝛼⊤
0 [𝑘] ·A𝑥[𝑘, 𝑙] ·T𝑥[𝑞0, 𝑞] ·𝛼𝑓 [𝑙]. (A.32)

Moreover, according to Lemma 39, the equality A𝑥[𝑘, 𝑙] · T𝑥[𝑞0, 𝑞] = B𝑥[(𝑘, 𝑞0), (𝑙, 𝑞)] is
satisfied. Then, from Equation A.32, we obtain

𝜃𝑃,𝐴(𝑞) =
∑︁
𝑥∈Σ*

∑︁
(𝑘,𝑞0)∈𝐼𝑃 ′

∑︁
(𝑙,𝑞)∈𝑄𝑝′

𝛼⊤
0 [𝑘] ·B𝑥[(𝑘, 𝑞0), (𝑙, 𝑞)] ·𝛼𝑓 [𝑙] = (A.33)

=
∑︁
𝑥∈Σ*

𝛽⊤
0 ·B𝑥 · 𝛾

𝛼𝑓
𝑞 = (A.34)

= 𝛽⊤
0 ·Π𝑃 ′ · 𝛾𝛼𝑓

𝑞 , (A.35)

which concludes the proof.

The below lemma gives us a way of computing weight𝑃 (𝐿(𝐴)) for a UFA 𝐴 and a PA
𝑃 whose all states are final. The way of computing the weights is similar to computing
𝑓𝑃 (𝐿(𝐴)), the formulas differ in the form of the final vector only.

Lemma 40. Let 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) be a PA having all states final, 𝐴 be a UFA, and
𝑃 ′ = trim(𝑃 ⊙𝐴) = (𝛽0,𝛽𝑓 , {B𝑎}𝑎∈Σ) be a WFA. Then,

weight𝑃 (𝐿(𝐴)) = 𝛽⊤
0 · (I−BΣ)

−1 · 𝛾1
𝑓 (A.36)

where, for each 𝑞 ∈ 𝑄𝑃 ′, the vector 𝛾1
𝑓 is given as

𝛾1
𝑓 [𝑞] =

{︃
1 if 𝛽𝑓 [𝑞] > 0,

0 otherwise.
(A.37)

Proof. Consider the WFA 𝑃𝛼 obtained from 𝑃 by setting the accepting probabilities of
every state to 1, i.e., 𝑃𝛼 = (𝛼0,1, {A𝑎}𝑎∈Σ). Further, consider the WFA 𝑃𝛽′ given as
𝑃𝛽′ = trim(𝑃𝛼 ∩weighted(𝐴)) = (𝛽′

0,𝛽
′
𝑓 , {B′

𝑎}𝑎∈Σ). Since 𝑃 and 𝑃𝛼 differ only in accepting
probabilities (but both have the same set of final states), the WFAs 𝑃𝛽′ and 𝑃 ′ also differ
only in accepting probabilities. Therefore, 𝛽′

0 = 𝛽0 and B′
𝑎 = B𝑎 for all 𝑎 ∈ Σ. Also,

according to the definition of the product construction, we have 𝛽′
𝑓 = 𝛾1

𝑓 .
Since 𝑃 is a PA where all states are final, we have for every 𝑤 ∈ Σ*

weight𝑃 (𝑤) = 𝑓𝑃𝛼(𝑤). (A.38)

Further, from the definition of the product of WFAs and from Lemma 20, we obtain that,
for all 𝑤 ∈ 𝐿(𝐴), we have 𝑓𝑃𝛼(𝑤) = 𝑓𝑃𝛽′ (𝑤), and, for all 𝑤 /∈ 𝐿(𝐴), we have 𝑓𝑃𝛽′ (𝑤) = 0.
Together, we get

weight𝑃 (𝐿(𝐴)) = 𝑓𝑃𝛼(𝐿(𝐴)) = 𝑓𝑃𝛽′ (Σ
*). (A.39)

Moreover, from Theorem 22, we get that 𝜌(BΣ) < 1, and therefore, from Lemma 14, we get

𝑓𝑃𝛽′ (Σ
*) = 𝛽⊤

0 · (I−BΣ)
−1 · 𝛾1

𝑓 , (A.40)

which concludes the proof.
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The following theorem allows us to compute 𝛽𝑃,𝐴(𝑟) for NFA 𝐴, PA 𝑃 , and all 𝑟 ∈ 𝑄𝐴

in a more efficient way. However, we put an additional restriction 𝐿(supp(𝑃 )) = Σ* on 𝑃 .
Then, the values 𝛽𝑃,𝐴(𝑟) we are able to compute directly from the product 𝑃 ⊙ 𝐴 (this
theorem is analogy to Theorem 32).

Theorem 34. Let 𝑃 = (𝛼0,𝛼𝑓 , {A𝑎}𝑎∈Σ) be a trimmed DPA over Σ with just one initial
state 𝑠, i.e., 𝐼𝑃 = {𝑠}, such that 𝐿(supp(𝑃 )) = Σ*. Further, let 𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 )
be a trimmed UFA, and let {T𝑎}𝑎∈Σ be the transition matrices of weighted(𝐴). We also
consider WFA 𝑃 ′ given as 𝑃 ′ = trim(𝑃 ⊙𝐴) = (𝛽0,𝛽𝑓 , {B𝑎}𝑎∈Σ). Then, for all 𝑟 ∈ 𝑄, we
have

𝛽𝑃,𝐴(𝑟) = 𝛽⊤
0 ·Π𝑃 ′ · 𝛾1

𝑟 (A.41)

where Π𝑃 ′ = (I−BΣ)
−1 =

∑︀
𝑡≥0B

𝑡
Σ, and, for each (𝑞′, 𝑟′) ∈ 𝑄𝑃 ′,

𝛾1
𝑟 [(𝑞

′, 𝑟′)] =

{︃
1 if 𝑟′ = 𝑟,

0 otherwise.
(A.42)

Proof. First, from Theorem 22 and Lemma 14 really follows that (I−BΣ)
−1 =

∑︀
𝑡≥0B

𝑡
Σ.

Now, we prove the following equality

∀𝑟 ∈ 𝑄 :
⋃︁

(𝑞,𝑟)∈𝑄𝑃 ′

𝐿−1
𝑃 ′ ((𝑞, 𝑟)) = 𝐿−1

𝐴 (𝑟). (A.43)

Intuitively, if 𝑤 ∈ 𝐿−1
𝐴 (𝑟) then there exists some 𝑞 ∈ 𝑄𝑃 , such that 𝑤 ∈ 𝐿−1

𝑃 ′ ((𝑞, 𝑟)),
and vice versa (since 𝐿(supp(𝑃 )) = Σ*). Formally, let us first focus on the inclusion
𝑀 =

⋃︀
(𝑞,𝑟)∈𝑄𝑃 ′ 𝐿

−1
𝑃 ′ ((𝑞, 𝑟)) ⊆ 𝐿−1

𝐴 (𝑟). Consider some state 𝑟 ∈ 𝑄, and some string 𝑤 ∈𝑀 .
If there is a path in 𝑃 ′ from (𝑠, 𝑞0) to some (𝑞, 𝑟) where 𝑞 ∈ 𝑄𝑃 , labeled by 𝑤, there is also
a path in 𝐴 from 𝑞0 to 𝑟 labeled by 𝑤. Therefore, 𝑤 ∈ 𝐿−1

𝐴 (𝑟).
Now, we look at the reverse inclusion. Consider some 𝑤 ∈ 𝐿−1

𝐴 (𝑟). Since 𝐿(supp(𝑃 )) =
Σ*, there exists some state (𝑞, 𝑟) where 𝑞 ∈ 𝑄𝑃 in the product automaton, such that
𝑤 ∈ 𝐿−1

𝑃 ′ ((𝑞, 𝑟)). But we still have to prove that (𝑞, 𝑟) ∈ 𝑄𝑃 ′ (i.e., that the state (𝑞, 𝑟) is
not removed during the trimming). We prove this using the following reasoning: Due to 𝐴
being a trimmed UFA, there exists some state 𝑓 ∈ 𝐹 such that we reach the state 𝑓 from
𝑟 in 𝐴 by some string 𝑤′. Also, since supp(𝑃 ) is a DFA, and 𝐿(supp(P)) = Σ*, the support
automaton accepts the string 𝑤.𝑤′. Therefore, there exists a path from 𝑞 to some 𝑓 ′ ∈ 𝐹𝑃

in 𝑃 labeled by 𝑤′. And thus (𝑞, 𝑟) ∈ 𝑄𝑃 ′ .
In the next step, we prove that for all (𝑞1, 𝑟), (𝑞2, 𝑟) ∈ 𝑄𝑃 ′ , 𝑞1 ̸= 𝑞2, we have 𝐿−1

𝑃 ′ ((𝑞1, 𝑟))∩
𝐿−1
𝑃 ′ ((𝑞2, 𝑟)) = ∅. We prove this by a contradiction. Assume that there exists some 𝑤 ∈ Σ*

and states (𝑞1, 𝑟), (𝑞2, 𝑟) ∈ 𝑄𝑃 ′ , 𝑞1 ̸= 𝑞2, such that 𝑤 ∈ 𝐿−1
𝑃 ′ ((𝑞1, 𝑟))∩𝐿−1

𝑃 ′ ((𝑞2, 𝑟)). Therefore,
𝑤 ∈ 𝐿−1

𝑃 (𝑞1), and 𝑤 ∈ 𝐿−1
𝑃 (𝑞2), which is a contradiction, because supp(𝑃 ) is a DFA.

In the last step we prove the main equality. We start with the definition of the 𝛽𝑃,𝐴
function for some 𝑟 ∈ 𝑄:

𝛽𝑃,𝐴(𝑟) = weight𝑃 (𝐿
−1
𝐴 (𝑟)) = weight𝑃

⎛⎝ ⋃︁
(𝑞,𝑟)∈𝑄𝑃 ′

𝐿−1
𝑃 ′ ((𝑞, 𝑟))

⎞⎠ . (A.44)

Because the backward languages in the union are disjoint (as shown above), we obtain the
following:

𝛽𝑃,𝐴(𝑟) = weight𝑃 (𝐿
−1
𝐴 (𝑟)) =

∑︁
(𝑞,𝑟)∈𝑄𝑃 ′

weight𝑃 (𝐿
−1
𝑃 ′ ((𝑞, 𝑟))). (A.45)
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Now, we focus on computing weight𝑃 (𝐿
−1
𝑃 ′ ((𝑞, 𝑟))). Again, we start with the definition of

weight:
weight𝑃 (𝐿

−1
𝑃 ′ ((𝑞, 𝑟))) =

∑︁
𝑥∈𝐿−1

𝑃 ′ ((𝑞,𝑟))

𝛼⊤
0 ·A𝑥 · 1. (A.46)

Since 𝑠 is the only initial state of 𝑃 , and after we read 𝑥 we reach 𝑞 in 𝑃 , we have∑︁
𝑥∈𝐿−1

𝑃 ′ ((𝑞,𝑟))

𝛼⊤
0 ·A𝑥 · 1 =

∑︁
𝑥∈𝐿−1

𝑃 ′ ((𝑞,𝑟))

𝛼⊤
0 [𝑠] ·A𝑥[𝑠, 𝑞]. (A.47)

Further, since 𝐴 is unambiguous, there exists only one path from 𝑞0 to 𝑟 labeled by 𝑥.
Therefore, if 𝑥 ∈ 𝐿−1

𝐴 (𝑟) then T𝑥[𝑞0, 𝑟] = 1, and if 𝑥 /∈ 𝐿−1
𝐴 (𝑟) then T𝑥[𝑞0, 𝑟] = 0. And thus∑︁

𝑥∈𝐿−1
𝑃 ′ ((𝑞,𝑟))

𝛼⊤
0 [𝑠] ·A𝑥[𝑠, 𝑞] =

∑︁
𝑥∈𝐿−1

𝑃 ′ ((𝑞,𝑟))

𝛼⊤
0 [𝑠] ·A𝑥[𝑠, 𝑞] ·T𝑥[𝑞0, 𝑟] =

=
∑︁
𝑥∈Σ*

𝛼⊤
0 [𝑠] ·A𝑥[𝑠, 𝑞] ·T𝑥[𝑞0, 𝑟].

(A.48)

We also know that (𝑠, 𝑞0) and (𝑞, 𝑟) are states of 𝑃 ′. Therefore, from Lemma 39, we get∑︁
𝑥∈Σ*

𝛼⊤
0 [𝑠] ·A𝑥[𝑠, 𝑞] ·T𝑥[𝑞0, 𝑟] =

∑︁
𝑥∈Σ*

𝛼⊤
0 [𝑠] ·B𝑥[(𝑠, 𝑞0), (𝑞, 𝑟)]. (A.49)

Finally, ∑︁
𝑥∈Σ*

𝛼⊤
0 [𝑠] ·B𝑥[(𝑠, 𝑞0), (𝑞, 𝑟)] =

∑︁
𝑥∈Σ*

𝛽⊤
0 ·B𝑥 · 𝛾1

(𝑞,𝑟) = 𝛽⊤
0 ·Π𝑃 ′ · 𝛾1

(𝑞,𝑟) (A.50)

where for each (𝑞′, 𝑟′) ∈ 𝑄𝑃 ′

𝛾1
(𝑞,𝑟)[(𝑞

′, 𝑟′)] =

{︃
1 if (𝑞′, 𝑟′) = (𝑞, 𝑟),

0 otherwise.
(A.51)

Now, if we substitute Equality A.50 into Equality A.45, we get

𝛽𝑃,𝐴(𝑟) =
∑︁

(𝑞,𝑟)∈𝑄𝑃 ′

𝛽⊤
0 ·Π𝑃 ′ · 𝛾1

(𝑞,𝑟) = 𝛽⊤
0 ·Π𝑃 ′ · 𝛾1

𝑟 . (A.52)
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Appendix B

Reduced Automata

In this appendix, we give examples of the reduced automata used in network traffic filtering.
For clarity, multiple transitions between two states over different symbols are replaced by
a single transition labeled with a set of symbols. Note that, non-printable symbols are
denoted by their hexadecimal numbers.
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7 6
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Figure B.1: The 𝑘-self-loop reduction of the automaton http-bots.
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(a) 𝑘 = 0.0

0 3 14
[𝐺] [𝐸] [𝑇 ]

(b) 𝑘 = 0.5

0 257 6
[𝑂][𝑃 ] [𝑇 ][𝑆]

(c) 𝑘 = 0.6

Figure B.2: The 𝑘-pruning reduction of the automaton http-bots.
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Appendix C

Contents of the CD

The attached CD contains:

∙ dp_xhavle03.pdf – text of this thesis in PDF format,

∙ tex/ – the source code of this technical report in LATEX format,

∙ src/ – the source code of the implemented tool.
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