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ABSTRACT Analyzing the motion of the common carotid artery (CCA) wall yields effective indicators
for atherosclerosis. In this work, we propose a state-space model and a tracking method for estimating
the time-varying CCA wall radius from a B-mode ultrasound sequence of arbitrary length. We employ an
unscented Kalman filter that fuses two sets of measurements produced by an optical flow algorithm and a
CCA wall localization algorithm. This fusion-and-tracking approach ensures that feature drift, which tends
to impair optical flow based methods, is compensated in a temporally consistent manner. Simulation results
show that the proposed method outperforms a recently proposed optical flow based method.

INDEX TERMS Atherosclerosis, data fusion, unscented Kalman Filter, motion estimation, ultrasonography,
carotid artery, medical imaging, ultrasound imaging.

I. INTRODUCTION
A. BACKGROUND, MOTIVATION, STATE OF THE ART
According to the World Health Organization (WHO), over
31% of all deaths in 2016 were caused by coronary events,
most of which can be attributed to a single progressive disease
called atherosclerosis [1], [2]. It is well known that the pro-
gression of atherosclerosis is associated with increasing arte-
rial stiffness [3]. Several diagnostic methodologies exploit
this association in order to estimate the risk of coronary
events. These methodologies are generally based on mea-
surements of quantities that are intrinsically associated with
arterial stiffness [4], [5]. One of these quantities is the motion
of the arterial wall in response to variations in blood pressure
or blood flow, which occurs naturally in the human body.

This article presents a new methodology for the analysis of
the motion of the wall of the common carotid artery (CCA)
from a B-mode ultrasound sequence. In screening tests, meth-
ods based on the analysis of the motion of the CCA wall have
been shown to produce effective indicators for atherosclerosis
[6], [7]. The main challenge here is an accurate and reliable
estimation of CCAwall motion from an ultrasound sequence.
Typically, computer-aided methods for this task explicitly or
implicitly involve a procedure called speckle tracking [8].
One of the first applications of speckle tracking to the
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estimation of CCAwall motion was based on block matching
[9], [10]; however, the performance of block matching meth-
ods is negatively affected by a phenomenon known as speckle
decorrelation [9]. Subsequent studies addressed this issue by
using a state-space model for the evolution of the reference
block [11], [12] or for the movement of the artery [7], [13].

As an alternative to block matching, several authors pro-
posed speckle tracking methods based on optical flow [14].
For estimating CCA wall motion in particular, the Lucas-
Kanade algorithm and its extensions were used [15], [16].
A comparative study of different speckle tracking methods
in [17] demonstrated that a modified Lucas-Kanade algo-
rithm outperforms other optical flow algorithms as well as
block matching algorithms. In optical flow methods, speckle
decorrelation translates into a phenomenon known as feature
drift [18], which again negatively affects the performance.
Indeed, the position of a selected point (feature) is tracked
through cumulative summation of the estimated displace-
ments between consecutive ultrasound frames, and hence the
errors in the overall displacement estimates are accumulated
as well. This may result—especially in the case of long
ultrasound sequences—in a progressive divergence of the
estimated point trajectory from the true trajectory, i.e., the
estimated point ‘‘drifts away’’ from its true position. In [18],
a Lucas-Kanade algorithm basedmethod with explicit feature
drift compensationwas proposed; thismethod outperforms an
earlier method described in [15]. All the mentioned studies
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analyze longitudinal scans of the CCA, with the exception
of [15] and [18], where transverse scans of the CCA are ana-
lyzed using the Lucas-Kanade algorithm. In a transverse scan,
the shape of the CCA wall cross section can be approximated
by a circle, which simplifies the modeling.

B. CONTRIBUTION
In this work, we propose a new model-based method for
estimating CCA wall motion. The CCA wall cross section
is modeled as a circle, and our goal is to estimate the
time-varying radius of that circle from—possibly long—
B-mode ultrasound sequences showing the CCA transverse
section. Based on a new state-space model for CCA wall
motion, and using the result of an optical flow algorithm,
we employ the unscented Kalman filter (UKF) [19] to track
the time-varying center point and radius of the CCA wall
circle.

As mentioned earlier, the performance of optical flow
methods is impaired by the phenomenon of feature drift.
In order to counteract feature drift, our implementation of
the UKF fuses measurements from two different sources. One
source is the pyramidal implementation of the Lucas-Kanade
optical flow algorithm [20], which tracks the positions of
a set of feature points (FPs) around the CCA wall. Here,
an FP is a point in the ultrasound frame that is assumed
to represent the local tissue movement, as manifested by a
high response of the Harris detector [21]. The other source
is the circle localization algorithm proposed in [22], which
provides preliminary estimates of the center point and radius
of the CCA circle. In this new fusion approach, feature drift
in the tangential direction (with respect to the CCA circle)
is reflected by a deviation from the state-space model, while
feature drift in the radial direction is reflected by a deviation
from the estimates provided by the circle localization algo-
rithm. In contrast to the method of [18], the proposed method
compensates for the feature drift in a temporally consistent
manner that takes into account the natural smoothness of
CCAwall motion. This inherent temporally consistent feature
drift compensation is a major advantage of our method.

We assess the accuracy and robustness of the proposed
method in several different synthetic scenarios with various
levels of additive andmultiplicative noise and various degrees
of speckle decorrelation.We also demonstrate experimentally
that our method outperforms the method proposed in [18]
in all considered scenarios. We chose the latter method as a
reference method since, to the best of our knowledge, it is
the only existing method performing an explicit feature drift
compensation, which is required for good performance in the
case of long ultrasound sequences. The reference method was
already benchmarked to a conventional artery wall tracking
method in [18]. Finally, we present results obtained for a real
ultrasound sequence and discuss their physiological validity.

The proposed method differs from the method previously
presented in our conference publication [23] in that it esti-
mates (tracks) the fundamental frequency—corresponding to
the heart rate—used in the underlying state-space model.

Thus, in contrast to [23], the fundamental frequency does
not have to be precisely known in advance and is allowed
to vary with time. Furthermore, compared to [23], our vali-
dation of the performance of the proposed method is based
on more realistic simulated sequences with a time-varying
fundamental frequency, and we present a detailed description
of the generation of these sequences. Finally, the technical
presentation is more detailed.

C. PAPER ORGANIZATION
The remainder of this paper is organized as follows.
An overview of the proposed method is presented in
Section II. The calculation of the input to the UKF is
described in Section III. The signal and state-space mod-
els on which the proposed method is based are developed
in Section IV. The operation of the UKF is discussed in
SectionV. Finally, experimental results obtained for synthetic
and real data are presented in Section VI.

FIGURE 1. One frame recursion of the proposed method.

II. METHOD OVERVIEW
For tracking a circle representing the CCAwall cross section,
the proposed method fuses the results produced by the pyra-
midal Lucas-Kanade optical flow algorithm of [20] and by
the circle localization algorithm of [22]. This fusion is per-
formed by an UKF [19], which tracks the circle parameters
and related quantities in a frame-sequential, frame-recursive
manner. The input to our method is a B-mode ultrasound
video sequence consisting of frames I t that show tempo-
rally successive transverse scans of the CCA. One recursion
of the method, corresponding to frame (or time) index t ,
is visualized in Figure 1. The basic geometry of the CCA
wall representation by a circle and of the surrounding FPs
is depicted in Figure 2. We denote the center point of the
circle by ct , the circle radius by rt , and the two-dimensional
Cartesian position vector of the n-th FP by y(n)t . In Figure 3,
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FIGURE 2. CCA wall circle (dashed) and FPs (bullets).

we visualize each step of the proposed method (as presented
in Figure 1).

For each frame I t with t = 1, 2, . . . , our method calcu-
lates a list Ŷt of estimates of Nt FP positions, ŷ(n)t for n =
1, 2, . . . ,Nt , as well as an estimate of the CCA circle center
point, ĉt , and of the CCA circle radius, r̂t . For the first frame,
t = 1, the FP position list Ŷ1 is empty and the CCA circle
parameter estimates ĉ1 and r̂1 are calculated by applying the
circle localization algorithm of [22] to I1.
For the further frames, t = 2, 3, . . . , the FP position list

Ŷt and the circle parameter estimates ĉt and r̂t are calculated
frame-sequentially as follows (see Figures 1 and 3). In a first
stage, as explained in Section III, we determine quantities
that serve as the input to the UKF. First, the previous FP
position list Ŷt−1 is updated. To this end, we perform an FP
inclusion step in which new FPs are identified in an annular
search region in frame I t−1 that depends on the previous
circle parameter estimates ĉt−1 and r̂t−1, and the positions
of these new FPs are estimated and included in the list. The
resulting augmented list will be denoted by Ŷ

′

t−1. Next, in the
FP migration step, the pyramidal Lucas-Kanade optical flow
algorithm is used to move the FP positions in Ŷ

′

t−1 such
that they conform to the current frame I t ; this results in
an updated FP position list Ỹ

′

t and a list of corresponding
error metrics Et . Finally, in the FP exclusion step, FPs with
a low confidence of successful localization by the optical
flow algorithm, as determined from Et , are excluded from
the FP position list. This yields a preliminary FP position
list Ỹt consisting of preliminary FP position estimates ỹ(n)t ,
n = 1, 2, . . . ,Nt . We note that the FP inclusion and exclusion
steps are performed because of speckle decorrelation. Indeed,
an FP may become progressively harder to localize (i.e.,
with less confidence) via the optical flow algorithm as the
ultrasound image evolves. Such FPs need to be excluded from
the tracking process and possibly replaced by new FPs.

In parallel to the FP inclusion, migration, and exclusion
operations, preliminary circle parameter estimates c̃t and r̃t
are calculated by applying the circle localization algorithm
of [22] to the current frame I t .

Then, in a second stage, theUKF fuses the information pro-
vided by the preliminary FP position list Ỹt and by the prelim-
inary circle parameter estimates c̃t and r̃t . This information

constitutes the input (i.e., the ‘‘observed measurements’’) of
the UKF. The UKF then calculates final FP position estimates
ŷ(n)t , n = 1, 2, . . . ,Nt , whichmake up the final FP position list
Ŷt , as well as final circle parameter estimates ĉt and r̂t . This
is described in Section V. The UKF is based on a stochastic
‘‘system model’’ that describes the temporal variation of the
CCA circle parameters, the evolution of the FP positions, and
the extraction of the UKF input. This system model will be
developed in Section IV.

III. CALCULATION OF THE UKF INPUT
The input to the UKF at frame time t consists of the prelim-
inary FP position list Ỹt comprising preliminary FP position
estimates ỹ(n)t , n = 1, 2, . . . ,Nt , as well as of the preliminary
circle parameter estimates c̃t and r̃t (see Figure 1). These
quantities are calculated as described next.

A. FP INCLUSION
First, the previous FP position list Ŷt−1 is updated by per-
forming the FP inclusion, migration, and exclusion steps.
In the FP inclusion step, we use the Harris detector [21] to
detect new FPs and estimate their positions within an annular
search region in frame I t−1. The annular search region is
defined by the center point ĉt−1, the inner radius r̂t−1 −1r ,
and the outer radius r̂t−1 + 1r , where ĉt−1 and r̂t−1 are the
previous circle parameter estimates and 1r > 0 is a fixed
parameter. From the set of detected new FPs, we discard all
FPs whose Harris response [21] is lower than a threshold
τh, and the surviving new FPs are ordered in the sense of
decreasing Harris response. Let Ynew

t denote the resulting
ordered list of new FP positions.

Going through the list Ynew
t in the chosen order, each new

FP position is now included in the overall FP position list if it
is sufficiently distant from all the FP positions in Ŷt−1 and all
the new FP positions included previously. More specifically,
if the Euclidean distances of the first FP position in Ynew

t
(i.e., the one with the largest Harris response) from all the FP
positions in Ŷt−1 are larger than a threshold d > 0, then that
FP position is added to Ŷt−1, which results in an augmented
list. A similar operation is done for the second, third, etc.
FP position in Ynew

t : if the distances of the respective FP
position from all the FP positions in the current augmented
list are larger than d , then that FP position is added to the
current augmented list. Processing all the FP positions in
Ynew
t in this manner yields a final augmented list of N ′t−1 FP

positions ŷ(n)′t−1, n = 1, 2, . . . ,N ′t−1, which will be denoted

as Ŷ
′

t−1. By the above construction, the FP positions ŷ(n)′t−1
are approximately uniformly distributed in the annular search
region, and the corresponding FPs have predominantly high
Harris responses.

B. FP MIGRATION
The augmented FP position list Ŷ

′

t−1 was calculated from
frame I t−1, and thus it does not yet take into account the
current frame I t . Therefore, in the next step of our method—
the FP migration step—we adapt Ŷ

′

t−1 to I t . To this end,
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FIGURE 3. Visualization of the individual steps of the proposed method—as presented in Figure 1—for two successive ultrasound frames It−1 (in (a)) and
It (in (b)–(e)). Bullets represent FPs. In particular, the green bullets in (a) depict FPs newly included by the FP inclusion step, while the red bullets in
(c) depict FPs to be excluded by the FP exclusion step. The dotted circles in (a) represent the boundary of the annular search region used in the FP
inclusion step. The dashed circle in (d) represents the preliminary CCA circle calculated by the circle localization algorithm of [22]. The solid circle in
(e) represents the final CCA circle estimate produced by the UKF. The width of the annular search region in (a) and the length of the FP motion vectors in
(b) are exaggerated for better visualization.

we use the pyramidal implementation of the Lucas-Kanade
optical flow algorithm [20] to move each FP position ŷ(n)′t−1

in Ŷ
′

t−1 to a new position, denoted as ỹ(n)′t , that depends on
both ŷ(n)′t−1 and I t . The resulting list of N

′

t−1 FP positions ỹ(n)′t ,

n = 1, 2, . . . ,N ′t−1 is denoted as Ỹ
′

t .

For each FP position ỹ(n)′t in Ỹ
′

t , we furthermore determine
an error metric ε(n)t by comparing the J × J patch of frame
I t centered at position ỹ(n)′t to the J × J patch of frame I t−1
centered at position ŷ(n)′t−1. More specifically, ε(n)t is calculated
as the `1 metric between the two patches, i.e.,

ε
(n)
t ,

J∑
k=1

J∑
l=1

∣∣I (ỹ′t )t (k, l)− I
(ŷ′t−1)
t−1 (k, l)

∣∣, (1)

where I
(ỹ′t )
t (k, l) and I

(ŷ′t−1)
t−1 (k, l) denote corresponding pix-

els of the two patches. The list of error metrics ε(n)t , n =
1, 2, . . . ,N ′t−1 will be denoted as Et . The use of this metric
is based on the assumption that the motion of the examined
tissue in the neighborhood of an FP can be approximated
sufficiently well by a simple translation. This assumption can
be relaxed, as discussed in Section VII.

C. FP EXCLUSION
The FP migration step described above is followed by the FP
exclusion step. An FP position ỹ(n)′t is excluded from the FP
position list Ỹ

′

t if the corresponding error metric ε(n)t in list
Et satisfies ε

(n)
t > αεt , where εt is the arithmetic mean of all

the error metrics in Et and α > 1 is a fixed parameter. This
rule is motivated by our empirical observation that there is
usually a small proportion of FPs whose error is much higher
than the average, and excluding these ‘‘outliers’’ improves the
tracking accuracy. The FP positions surviving this exclusion
step are denoted as ỹ(n)t , n = 1, 2, . . . ,Nt , and the corre-
sponding list as Ỹt . This list constitutes one of the inputs to
the UKF.

D. PRELIMINARY CIRCLE PARAMETER ESTIMATION
The second input to the UKF is obtained by applying the
circle localization algorithm of [22] to the current frame I t .
This results in ‘‘preliminary’’ circle parameter estimates c̃t
and r̃t . The circle localization algorithm of [22] differs from
standard algorithms such as the Hough transform [24] in that
it utilizes the pixel intensity directly rather than the image
gradient. This is beneficial in our context because the blurred
appearance and speckled texture of ultrasound images make
accurate gradient determination challenging. The preliminary
circle parameter estimates c̃t and r̃t provide a complementary
‘‘absolute’’ position information that is used in the UKF to
compensate for feature drift. Without this absolute position
information—i.e., relying only on the relative optical flow
information underlying the FP migration step—the FP posi-
tion estimates and circle radius estimates produced by the
UKF would drift away from the CCA wall (as explained
earlier in Section I-A).

IV. SYSTEM MODEL
A major contribution of our work is a new state space model
that constitutes a stochastic description of the dynamics of
CCA wall motion (within the transverse cross section con-
sidered) and of a related measurement process. This model
is inspired by the state-space model of [25], which uses a
Fourier series with time-varying coefficients whose temporal
evolution is modeled by a random walk. The proposed state
space model consists of a state evolution model and a mea-
surement model, and it provides the basis for the operation
of the UKF. We note that although this model is designed
for the CCA transverse section, the underlying approach can
be used in many other speckle-tracking scenarios where a
quasi-periodic motion is observed.

A. CCA CIRCLE RADIUS AND FP RADII
Our state space model is based on models for the
time-dependence of the CCA circle radius and of the FP radii.
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The regularity of the heart beat manifests itself in an approx-
imate periodicity of the movement of the CCA wall. This
approximate periodicity suggests the use of a Fourier series
to model the CCA wall movement [26, Ch. 11]. Concretely,
we model the time-dependence of the CCA circle radius rt
by the sum of a constant R that describes the mean CCA
circle radius, a quasi-periodic function that is constructed
as the superposition of M harmonic components with time-
varying Fourier coefficients a(m)t and b(m)t , m = 1, 2, . . . ,M
and time-varying fundamental frequency, and a slowly vary-
ing component γt that represents the effect of breathing
[18], [27]. That is,

rt = R+
M∑
m=1

(
a(m)t cos(mϕt )+ b

(m)
t sin(mϕt )

)
+ γt , (2)

where mϕt is the instantaneous phase of the m-th component
and ϕt can be considered as the ‘‘fundamental’’ instantaneous
phase (whose temporal derivative—if t were continuous—
would be a time-varying fundamental frequency).

We consider Nt FPs at each frame time t . The position of
the n-th FP at frame time t , relative to the CCA circle center
point ct , can be expressed as

y(n)t =

(
ρ
(n)
t cos θ (n)t

ρ
(n)
t sin θ (n)t

)
, n = 1, 2, . . . ,Nt . (3)

Here, ρ(n)t (referred to as the ‘‘FP radius’’) and θ (n)t represent
the polar coordinates of FP n with respect to the center ct ,
as illustrated in Figure 2. The FP radius is modeled as

ρ
(n)
t = rt + δ̃(n) + δ

(n)
t , n = 1, 2, . . . ,Nt , (4)

where rt is the CCA circle radius, δ̃(n) denotes an initial
approximation of the radial deviation of the FP from the CCA
circle (which was calculated at the frame time when the FP
was included in the FP position list, see Section V-A), and
δ
(n)
t denotes a time-varying radial deviation.

B. STATE
The UKF estimates a time-varying state vector xt in a frame-
recursive manner, using at each frame time t the results of the
previous frame time t−1 and a measurement vector zt . In our
method, the state is a vector of dimension Lt , 2M+2Nt+7
defined as

xt ,
(
aTt bTt ϕ

T
t γ

T
t Rt cTt p(1)Tt · · · p(Nt )Tt

)T
. (5)

Here, related to the CCA circle radius model in (2), at ,
(a(1)t · · · a

(M )
t )T and bt , (b(1)t · · · b

(M )
t )T are the vectors

of time-varying Fourier coefficients of the quasi-periodic
component of the CCA circle radius, ϕt , (ϕt ϕ̇t )T com-
prises the fundamental instantaneous phase and its deriva-
tive, i.e., the time-varying fundamental frequency, γ t ,
(γt γt−1)T comprises the current and previous samples of
the breathing component of the CCA circle radius, and Rt
is a (formally) time-varying version of the mean CCA circle
radius R. Furthermore, related to the FP model in (3) and (4),

ct , (c(1)t c(2)t )T is the CCA circle center point in Cartesian
coordinates, and the FP position parameter vector

p(n)t ,

(
δ
(n)
t

θ
(n)
t

)
(6)

characterizes the position of FP n in polar coordinates.
Note that from the state xt , it is possible to determine
the CCA circle center point ct and radius rt as well as
all the FP positions (up to the initial radial deviation
approximations δ̃(n)).

C. STATE EVOLUTION MODEL
TheUKF relies on a state evolutionmodel, which is a stochas-
tic model for the one-frame evolution of the state xt , i.e., the
transition from xt−1 to xt . For a basic formulation of the
state evolution model, we temporarily assume that Nt = N
and Lt = 2M + 2N + 7 = L are constant; an extension
to time-varying Nt and Lt will be given in Section V-A.
We choose a linear state evolution model given by

xt = 8xt−1 + ut , t = 1, 2, . . . . (7)

Here, 8 is an L × L block-diagonal matrix defined as

8 , diag
{
I2M ,8ϕ,8γ , 1, I2, φδ, 1, . . . , φδ, 1︸ ︷︷ ︸

N times ‘‘φδ, 1’’

}
, (8)

where

8ϕ ,

(
1 1

0 1

)
, 8γ ,

(
1+ φγ −φγ

1 0

)
,

and φγ , φδ ∈ (0, 1). Furthermore, the driving process ut is an
independent and identically distributed (iid) L-dimensional
zero-mean process with covariance matrix

Cu , diag
{
σ 2
abI2M ,6ϕ,6γ , 0, σ

2
c I2, σ

2
δ , σ

2
θ , . . . , σ

2
δ , σ

2
θ︸ ︷︷ ︸

N times ‘‘σ 2
δ , σ

2
θ ’’

}
,

(9)

where

6ϕ , σ 2
ϕ

(
1/4 1/2

1/2 1

)
, 6γ , σ 2

γ

(
1 0

0 0

)
.

This model summarizes the following individual state evolu-
tion models:

a(m)t = a(m)t−1 + (ut )m , m = 1, 2, . . . ,M ,

b(m)t = b(m)t−1 + (ut )M+m , m = 1, 2, . . . ,M ,

ϕt = 8ϕϕt−1 + (ut )2M+1, 2M+2,

γ t = 8γ γ t−1 + (ut )2M+3, 2M+4,

Rt = Rt−1,

ct = ct−1 + (ut )2M+6, 2M+7,

δ
(n)
t = φδδ

(n)
t−1 + (ut )2M+6+2n , n = 1, 2, . . . ,N ,

θ
(n)
t = θ

(n)
t−1 + (ut )2M+7+2n , n = 1, 2, . . . ,N .
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Here (·)i denotes the i-th element of the vector in parentheses
and (·)i,j denotes the vector comprising the i-th and j-th
elements of the vector in parentheses. Note that the state evo-
lution models for a(m)t and b(m)t (m = 1, 2, . . . ,M ), ct, and θ

(n)
t

(n = 1, 2, . . . ,N ) are random walk models, ϕt is modeled
by a constant velocity model, the state evolution model for γt
is a second-order auto-regressive (AR(2)) model, Rt is mod-
eled as constant (because the variance of (ut )2M+5 is zero),
and δ(n)t is modeled by a first-order auto-regressive (AR(1))
model. We use AR models, rather than simple random walk
models, for γt and δ

(n)
t because the AR model effectively

limits the range of feasible values. This helps prevent the FPs
from drifting away from the CCAwall, and is one reason why
our method is able to compensate the feature drift resulting
from the optical flow algorithm. (The other reason is the use
of the results of the circle localization algorithm of [22] as an
additional input to the UKF, as explained in Section III-D.)
For a larger variance of (ut )l , the respective state component
(xt )l tends to change more rapidly and less smoothly.

D. MEASUREMENT MODEL
The UKF also relies on a measurement model in addition
to the state evolution model. The measurement model is a
stochasticmodel for the dependence of the observedmeasure-
ments on the state xt . We recall from Sections II and III that
our measurements are given by the preliminary FP position
estimates ỹ(n)t , n = 1, 2, . . . ,N contained in the preliminary
FP position list Ỹt and by the preliminary CCA circle param-
eter estimates c̃t and r̃t .

We model the preliminary FP position estimates ỹ(n)t as
the CCA circle center point ct plus noisy versions of the
true FP position vectors y(n)t =

(
ρ
(n)
t cos θ (n)t ρ

(n)
t sin θ (n)t

)T
(cf. (3)), i.e.,

ỹ(n)t = ct + y
(n)
t + v

(n)
t , n = 1, 2, . . . ,N . (10)

Here, ρ(n)t is given by Equation (4), i.e., ρ(n)t = rt + δ̃(n) +
δ
(n)
t , in which, in turn, rt is given by Equation (2) with R
formally replaced by Rt . Thus, expression (10) involves the
state components (cf. (5)) at , bt , ϕt , γt , Rt , ct , and p

(n)
t =

(δ(n)t θ
(n)
t )T for n = 1, 2, . . . ,N ; note that ϕt and θ (n)t

enter in a nonlinear manner. Furthermore, the measurement
noise processes v(n)t aremutually independent, iid, zero-mean,
two-dimensional processes with covariance matrix Cv(n) ,
diag{σ 2

v,1, σ
2
v,2}.

In a similar manner, the preliminary CCA circle parameter
estimates c̃t and r̃t are modeled as noisy versions of the true
CCA circle parameters ct and rt , respectively, i.e.,

c̃t = ct + v
(c)
t , r̃t = rt + v

(r)
t , (11)

where v(c)t and v(r)t are mutually independent, iid, zero-mean
processes with covariance Cv(c) , σ 2

v(c)
I2 and variance σ 2

v(r)
,

respectively. The expressions (11) involve the state compo-
nents (cf. (5)) at , bt , ϕt , γt , Rt , and ct .

Finally, the overall measurement vector zt comprises all the
measurements, i.e.,

zt ,
(
ỹ(1)Tt ỹ(2)Tt · · · ỹ(N )T

t c̃Tt r̃t
)T
.

We can now summarize the measurement models (10) and
(11) into an overall measurement model

zt = g(xt )+ vt , (12)

where

g(xt ) ,
(
cTt +y

(1)T
t cTt +y

(2)T
t · · · cTt +y

(N )T
t cTt rt

)T (13)

and vt ,
(
v(1)Tt · · · v(N )T

t v(c)Tt v(r)t
)T. The covariance matrix

of vt is given by

Cv , diag
{
σ 2
v,1, σ

2
v,2, . . . , σ

2
v,1, σ

2
v,2︸ ︷︷ ︸

N times ‘‘σ 2
v,1, σ

2
v,2’’

, σ 2
v(c) , σ

2
v(c) , σ

2
v(r)
}
.

V. UKF OPERATION
The UKF [19] is a suboptimal sequential Bayes filter that cal-
culates at each frame time t = 2, 3, . . . estimates of the poste-
rior mean E{xt |z1:t } and posterior covariance Cov{xt |z1:t } of
the state xt , where z1:t , (zT1 · · · z

T
t )

T. These estimates will be
denoted by x̂t and Pt , respectively; note that x̂t ≈ E{xt |z1:t }
provides an estimate of xt . We use a UKF, rather than simply
a Kalman filter [28, Ch. 2], because of the nonlinearity of
our measurement model (12). Also, in comparison to the
extended Kalman filter [28, Ch. 2], the UKF usually pro-
vides a better estimation accuracy while its computational
complexity is of the same order [19]. We use a slightly
modified version of the UKF algorithm that includes an FP
allocation/deallocation step to account for the time-varying
number of state variables. Each UKF recursion thus con-
sists of the following steps, which are described further
below: FP allocation/deallocation, state prediction, calcula-
tion of sigma-points, measurement prediction, update, and
estimation. These steps are performed at each frame time
t = 2, 3, . . . .

A. FP ALLOCATION/DEALLOCATION
According to (5), the inclusion of a new FP n in the previous
FP position list Ŷt−1—as described in Section III-A—entails
a corresponding allocation (insertion) of the FP position
parameter vector p(n)t−1 in the state vector xt−1. This implies an
analogous allocation of an estimate of p(n)t ′ in the state estimate
vector x̂t ′ for t ′ = t−1, t, . . . We initialize this estimate as
(cf. (6)) p̂(n)t−1 , (δ̂(n)t−1 θ̂

(n)
t−1)

T
=
(
0 tan−1(ξ (2)t−1/ξ

(1)
t−1)

)T,
where ξ (1)t−1 and ξ

(2)
t−1 are the Cartesian coordinates of ξ t−1 ,

ŷ(n)t−1 − ĉt−1. Here, ŷ
(n)
t−1 is the initial FP position obtained

in the FP inclusion step (see Section III-A), and ĉt−1 is the
previous estimate of the circle center. Furthermore, corre-
sponding variances are allocated as two additional elements
on the diagonal of the approximate covariance matrix Pt ′ for
t ′ = t − 1, t, . . .. These variances are initialized in Pt−1
as s2δ and s2θ , which are parameters expressing our a priori
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uncertainty about δ(n)t−1 and θ (n)t−1, respectively. Finally, we
calculate an initial approximation of the radial deviation
of the new FP from the previous estimate of the CCA
circle as δ̃(n) = ‖ξ t−1‖2 − r̂t−1, where ‖ · ‖2 denotes the `2
(Euclidean) norm; we recall that δ̃(n) is used in the FP radius
model (4) for t ′ = t−1, t, . . ..
Similar allocation operations are applied to the transition

matrix 8 in (8) and the covariance matrix Cu in (9), which
thereby become time-varying. More specifically, the values
φδ and 1 are inserted as additional diagonal elements of 8t ′ ,
and the values σ 2

δ and σ 2
θ are inserted as additional diagonal

elements of Cu,t ′ , in both cases for t ′ = t−1, t, . . ..
Conversely, the exclusion of FP n at time t—as described in

Section III-C—entails a deallocation (removal) of the corre-
sponding FP position parameter vector p(n)t−1 in the state vector
xt−1. This implies analogous deallocation operations in x̂t ′ ,
Pt ′ , 8t ′ , and Cu,t ′ for t ′ = t−1, t, . . ..

B. STATE PREDICTION
In the state prediction step of the UKF recursion at frame
time t , a ‘‘predicted’’ state mean x̂t|t−1 and covariance Pt|t−1
are calculated by propagating the previous mean x̂t−1 and
covariance Pt−1 through the linear state evolution model (7).
This results in

x̂t|t−1 = 8t x̂t−1, Pt|t−1 = 8tPt−18T
t + Cu,t .

C. CALCULATION OF SIGMA-POINTS
Next, so-called sigma-points are used to approximate the
propagation of the predicted mean x̂t|t−1 and covariance
Pt|t−1 through the nonlinear measurement model (12).
According to [19], for state vector dimension Lt , there are
2Lt + 1 sigma-points x̂(l)t and corresponding weights w(l)

t ,
l = 0, 1, . . . , 2Lt , which are calculated as

x̂(l)t =


x̂t|t−1, l = 0,

x̂t|t−1 + (61/2
t )l, l = 1, 2, . . . ,Lt ,

x̂t|t−1 − (61/2
t )l−Lt , l = Lt+1,Lt+2, . . . , 2Lt ,

w(l)
t =


1/3, l = 0,

1− w(0)
t

2Lt
, l = 1, 2, . . . , 2Lt .

Here, (61/2
t )l denotes the l-th column of 61/2

t , which is a
square root of the matrix 6t ,

Lt
1−w(0)

t
Pt|t−1, i.e., any square

matrix satisfying
(
6

1/2
t
)T
6

1/2
t = 6t . We note that w(0)

t can
be chosen differently from 1/3, as discussed in [19].

D. MEASUREMENT PREDICTION
The sigma-points are now propagated through the (noiseless)
nonlinear measurement model (12), i.e.,

ẑ(l)t = g(x̂(l)t ), l = 0, 1, . . . , 2Lt .

Then, a ‘‘predicted’’ measurement ẑt|t−1 and an innovation
covariance matrix St|t−1 are calculated as

ẑt|t−1 =
2Lt∑
l=0

w(l)
t ẑ

(l)
t ,

St|t−1 =
2Lt∑
l=0

w(l)
t (ẑ(l)t − ẑt|t−1)(ẑ

(l)
t − ẑt|t−1)

T
+ Cv.

E. UPDATE
Next, we perform the update step of the ordinary Kalman
filter [28, Ch. 2], i.e.,

x̂t = x̂t|t−1 + Gt (zt − ẑt|t−1),

Pt = Pt|t−1 − GtSt|t−1GT
t .

Here Gt is a sigma-point approximation of the Kalman gain
matrix, which is given by

Gt =
( 2Lt∑

l=0

w(l)
t (x̂(l)t − x̂t|t−1)(ẑ

(l)
t − ẑt|t−1)

T
)
S−1t|t−1.

F. ESTIMATION
Evaluating g(·) in (13) for the state estimate x̂t yields

g(x̂t ) =
(
ĉTt +ŷ

(1)T
t ĉTt +ŷ

(2)T
t · · · ĉTt +ŷ

(Nt )T
t ĉTt r̂t

)T
We use the vectors ŷ(n)t as the final estimates of the FP
positions y(n)t , for n = 1, 2, . . . ,Nt ; these estimates constitute
the final FP position estimate list Ŷt . Similarly, we use ĉt
and r̂t as the final estimates of the CCA circle parameters
ct and rt . Note that the FP position estimate list Ŷt and the
center point estimate ĉt are used only internally, namely, as an
input to the FP inclusion step at the next frame time t+1,
as explained in Sections II and III-A. On the other hand, r̂t
forms the output of the overall method.

G. INITIALIZATION
At frame time t = 1, no FPs are allocated yet, i.e., N1 = 0.
We initialize the mean x̂1 and covariance matrix P1 as (cf. (5))

x̂1 =
(
0 0 · · · 0︸ ︷︷ ︸

2M+1 times ‘‘0’’

ϕ̇1 0 0 r̂1 ĉ
T
1
)T
,

P1 = diag
{
s2abI2M , s

2
ϕI2, s

2
γ I2, s

2
R, s

2
cI2
}
.

Here, ϕ̇1 is an initial value1 of the time-varying fundamental
frequency ϕ̇t , and r̂1 and ĉ1 are initial CCA circle parameter
estimates that are calculated by the circle localization algo-
rithm of [22]. The variances s2ab, s

2
ϕ , s

2
γ , s

2
R, and s

2
c are param-

eters expressing our a priori uncertainty about the Fourier
coefficients a(m)1 and b(m)1 (m = 1, 2, . . . ,M ) as well as about
ϕ1, γ 1, R1, and c1, respectively.

1The fundamental instantaneous phase ϕt and the time-varying funda-
mental frequency ϕ̇t are part of the state xt—see (5)—and thus are esti-
mated (tracked) along with the other state components. Therefore, in contrast
to [23], the fundamental frequency does not have to be precisely known in
advance. However, a reasonable initialization of ϕ̇t at t = 1 is required for
the method to converge.
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TABLE 1. Parameters of the proposed method that were used in the experiments (common for all ultrasound sequences). One pixel (px) corresponds
to 70 µm.

VI. NUMERICAL RESULTS AND DISCUSSION
In this section, we present numerical results demonstrating
the performance of the proposed method in comparison to
an improved version of the state-of-the-art reference method
described in [18]. The latter method was chosen as a refer-
ence method because, similarly to the proposed method, it
performs an explicit feature drift compensation and is thus
suited to the case of long ultrasound sequences.

A. BASIC SIMULATION SETUP
We considered the following types of experimental data.
Data set S was created synthetically through a time-varying
transformation of a real ultrasound image, and was used to
evaluate the robustness of the proposed method to additive
and multiplicative noise.Data set Fwas created synthetically
by means of the Field II simulation program [29], [30],
and was used to determine the method’s performance in the
presence of speckle decorrelation. Finally, we validated our
method on a real ultrasound sequence. More detailed descrip-
tions of these experimental data will be provided in later
subsections.

TABLE 2. Parameters of the proposed method that were used in the
experiments (not common for all ultrasound sequences). One pixel (px)
corresponds to 70µm.

The parameters of the proposed method that we used in
our experiments are listed in Tables 1 and 2. In the course
of our experiments, we observed that the circle localization
algorithm used in the reference method [18] performs poorly
on our data. Therefore, for a fair comparison of tracking
accuracy, we modified the reference method such that it uses
the circle localization algorithm used in our method (see
Section III-D). Furthermore, in both the proposedmethod and
the reference method, we included a correction of the radius

estimation bias exhibited by the circle localization algorithm.
More specifically, the preliminary circle radius r̃t , used sub-
sequently by the UKF, was obtained by subtracting a constant
from the radius estimate computed by the circle localization
algorithm. For data sets S and F, we estimated this constant
from sequence S∞ and F0, respectively, by averaging over all
frames the error of the radius estimates produced by the circle
localization method. Note that we were able to determine
this error because for data sets S and F the ground truth is
available.

The proposed method was implemented in MATLAB on
an Intel(R) Core(TM) i5-7500 CPU with a base frequency
of 3.40GHz, without the use of multi-threading. The pro-
cessing of one frame always took less than 40ms. In partic-
ular, the processing of a single frame of 348 × 280 px from
dataset S (discussed later) took on average 26ms.

B. MOTION MODEL
To generate the simulated sequences, we modeled the CCA
wall transverse section by a circle with a time-varying radius
rt that is the sum of a pulse wave component and a breathing
component. For the pulse wave component, we employed
the parametric model proposed in [31], whose parameters we
chose such that they conformed to radius estimates obtained
from real ultrasound sequences. In order to introduce smooth
variations in the pulse rate, we frequency-modulated the pulse
wave by a sine function with a period of half a minute. During
one period of the modulating sine function, the heart rate
varies between 70 and 110 beats per minute. The breathing
component was modeled as the absolute value of a sine func-
tion whose frequency is much lower than the assumed heart
rate. Further details of the motion model and its parameters
are provided in [18].

C. PERFORMANCE METRICS
For measuring the accuracy of radius estimation in those
cases where a ground truth rt is available (data sets S and F),
we use the root mean square error (RMSE). Assuming K
simulation runs, each producing an estimated radius sequence
r̂t,k (t = 1, 2, . . . ,T ; k = 1, 2, . . . ,K ), the RMSE is
defined as the square root of the average of the squared
error (r̂t,k − rt )2 taken over all frames t and all simulation
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runs k , i.e.,

RMSE ,

√√√√ 1
K

K∑
k=1

RMSE2
k ,

where RMSEk ,
√

1
T

∑T
t=1(r̂t,k − rt )2. We also consider

the inter-realization empirical standard deviation of RMSEk ,
which is denoted SD and defined as

SD ,

√√√√ 1
K

K∑
k=1

(RMSEk − RMSEk )
2
,

where RMSEk , 1
K

∑K
k=1 RMSEk .

D. SYNTHETIC DATA SET S
Data set S consists of a synthetic ultrasound sequence,
referred to as S∞, as well as K = 100 realizations of four
‘‘noisy’’ synthetic ultrasound sequences, referred to as S+25,
S+15, S

∗

25, and S∗15. Each sequence comprises T = 960 ultra-
sound frames. With a frame rate of 32 fps, this corresponds
to 30 seconds of continuous recording.

FIGURE 4. (a) Reference image (simultaneously first frame of sequence
S∞), (b)–(e) first frame of realizations of the synthetic sequences S+25,
S+15, S∗25, and S∗15, respectively.

Sequence S∞ was derived from a reference image, shown
in Figure 4(a), through a time-varying deformation. The refer-
ence image was chosen as a real ultrasound image of the CCA

FIGURE 5. Results of the proposed method and the reference method for
ten realizations of S+15 during 200 frames: (a) Radius estimates obtained
with the proposed method, (b) radius estimates obtained with the
reference method, (c) corresponding time-varying RMSEs.

TABLE 3. RMSE and SD (both in µm) for data set S. Lower values are
better.

transverse section of a healthy subject, which was acquired
as described in Section VI-F. The frames of S∞ were then
obtained by deforming the reference image in accordance
with the motion model described in Section VI-B. More
specifically, the CCA circle radius for each frame was calcu-
lated from themotionmodel, a displacement field (describing
the tissue displacement at each pixel of the reference image)
was calculated from the CCA circle radius, and the reference
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FIGURE 6. Results of the proposed method and the reference method for
ten realizations of S∗15 during 200 frames: (a) Radius estimates obtained
with the proposed method, (b) radius estimates obtained with the
reference method, (c) corresponding time-varying RMSEs.

FIGURE 7. First frame of the synthetic sequence F0.

image was transformed according to the displacement field.
A more detailed description of this procedure can be found
in [18]. Finally, the noisy sequences of data set S were
obtained by corrupting S∞ by additive Gaussian noise (in the
case of S+25 and S+15) or by multiplicative Gaussian noise
(in the case of S∗25 and S

∗

15). The subscript, 25 or 15, indicates
the signal-to-noise ratio in decibels. Similarly to [17], we use
noisy sequences to evaluate the robustness of the methods
within a simple, controlled, and reproducible setting. In real
B-mode (log-compressed) images, the noise characteristics

FIGURE 8. Results of the proposed method and the reference method for
sequence F2 during 200 frames: (a) Radius estimates, (b) absolute value
of the corresponding estimation errors.

TABLE 4. RMSE (in µm) for data set F. Lower values are better.

would be more complex than the additive and multiplicative
Gaussian characteristics employed here, although additive
noise would still be the most prominent component [32].
We created K=100 realizations of each of the four sequence
types S+25, S

+

15, S
∗

25, and S∗15 by using 100 realizations of the
respective noise process (i.e., the same ultrasound sequence
S∞ was corrupted by different noise realizations). Note that
for S∞, formally, K=1. For each of the noisy sequences S+25,
S+15, S

∗

25, and S∗15, the first frame of one realization is shown
in Figures 4(b)–(e), respectively.

For each sequence or sequence type, we calculated RMSE
and SD for the radius estimates that we obtained with the
proposed method and with the reference method [18]. Except
for S∞, this calculation was based on theK=100 realizations
of the respective noise process. The results are presented
in Table 3, along with the average RMSE and SD taken
over all sequences. One can see that the proposed method
always outperforms the reference method in terms of RMSE.
In addition, the SD results show that the estimates produced
by the proposed method are much more consistent across
multiple realizations.
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FIGURE 9. Estimates of the CCA wall circle obtained for four frames of sequence F2 with the proposed method (red) and the reference method (blue):
(a) frame 1 (0 s), (b) frame 200 (6.25 s), (c) frame 400 (12.50 s), and (d) frame 600 (18.75 s). The ground truth is not shown since it typically overlaps with
the estimates produced by the proposed method.

In Figure 5, we show the individual estimated radius
sequences r̂t,k obtained with either method for ten realiza-
tions of S+15. The figure also shows the time-varying RMSEs,

i.e., RMSEt ,
√

1
K

∑K
k=1(r̂t,k− rt )2. It can be observed that

the estimates obtained with the proposed method are almost
always closer to the ground truth. The large variability of
the results of the reference method (across the individual
realizations) is primarily caused by feature drift [18].

Figure 6 shows analogous results obtained for S∗15. One
can observe that the proposed method exhibits an even larger
performance gain relative to the reference method. This is
due to an even stronger feature drift, which is effectively
compensated by the proposed method but less well by the
reference method. We note that the increase in the RMSE of
the proposed method that is observed in Figure 6(c) between
12 s and 14 s is caused by a temporary circle localization
error; the RMSE starts decreasing again around 22 s, which
is however not shown in Figure 6(c).

E. SYNTHETIC DATA SET F
Data set F consists of three synthetic ultrasound sequences
referred to as F0, F2, and F5. Each sequence again comprises
T = 960 ultrasound frames or 30 seconds of continuous
recording (assuming a frame rate of 32 fps).

Sequence F0 was created by means of the Field II simu-
lation program [29], [30]. First, a three-dimensional tissue
model (reference phantom) was generated. This reference
phantom consists of infinitesimally small objects called scat-
terers, whose positions are uniformly distributed in the phan-
tom with a density of about 50mm−3. With the resolution
cell volume given by 0.2mm3, about ten scatterers occupy
one resolution cell. Each scatterer has an amplitude that is
randomly drawn from a zero-meanGaussian distribution. The
standard deviation of that distribution was chosen equal to the
intensity of the real ultrasound image that was used to create
data set S (see Figure 4(a)), at the position corresponding
to the scatterer’s lateral and axial coordinates relative to a
simulated ultrasound probe. The simulated ultrasound probe
consisted of 192 elements, 72 of which were active during
each single-line scan. The center frequency of the probe was

FIGURE 10. Estimates of the CCA circle radius obtained for the real
ultrasound sequence with the proposed method and the reference
method.

set to 10MHz. In each frame, 64 lines were scanned.With this
set of parameters, we achieved a lateral resolution of 1.6mm
and an axial resolution of 0.32mm.

An individual phantom was then created for each frame by
displacing the scatterers of the reference phantom according
to the motion model described in Section VI-B. The resulting
sequence of phantoms was passed to the Field II simulation
program, which produced the ultrasound sequence F0. The
first frame of F0 is shown in Figure 7.
To simulate speckle decorrelation, we then created

sequences F2 and F5 by replacing in each frame of F0 2%
and 5% of the scatterers, respectively, with new scatterers.2

The new scatterers were again uniformly distributed in the
phantom of the respective frame, and their amplitudes were
chosen as explained above. A more detailed description of
this generation process is provided in [18]. Because of the
high runtime of the Field II simulations, we generated only

2Speckle decorrelation is more commonly associated with a nonuniform
motion of the scatterers [9]. However, our approach of randomly replacing a
proportion of the scatterers with new ones can be motivated by the fact that
the complex ultrasound image (before envelope detection) can be modeled
as the sum of complex phasors whose amplitudes and phases are determined
by the scatterer’s reflectivity and distance to the transducer, respectively [32].
Due to phase wrapping, it is irrelevant whether a scatterer travels, e.g., half or
one and a half of the ultrasound wavelength. Thus, the effect of a nonuniform
scatterer motion is similar to that of randomly drawing new scatterers.
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FIGURE 11. Estimates of the CCA wall circle obtained for four frames of the real ultrasound sequence with the proposed method (red) and the reference
method (blue): (a) frame 1 (0 s), (b) frame 200 (1.77 s), (c) frame 400 (3.56 s), and (d) frame 600 (5.35 s). Note that for frame 1, the two estimates
coincide visually.

a single realization for each of the sequences F0, F2, and F5,
i.e., the number of realizations for data set F is K = 1. The
frames of sequences F2 and F5 are similar visually to those of
F0 (see Figure 7).

In Table 4, we list the RMSE obtained with the proposed
method and the reference method for data set F. As in the case
of data set S, the proposed method is seen to consistently out-
perform the reference method. Furthermore, Figure 8 shows
the estimated radius sequences and the absolute estimation
errors obtained for sequence F2. Again, the proposed method
is seen to estimate the radius much more accurately than
the reference method. Finally, still for sequence F2, Figure 9
shows the CCA circle estimates obtained with the proposed
method and the reference method at four different frames
times. It is seen that, while the estimates of the two methods
are generally similar, the estimates of the reference method
are slightly biased towards lower values of the radius. This
confirms the results shown in Figure 8(a).

F. REAL ULTRASOUND SEQUENCE
To complement the results obtained for the synthetic data
sets S and F, we consider a real ultrasound video sequence
that shows the CCA transverse section of a healthy test sub-
ject (sex: male, age: 27, weight: 64 kg). This sequence was
measured using an Ultrasonix OP device with linear probe
L145/38 (Ultrasonix Medical, Richmond, BC, Canada). The
sequence length is 787 frames, and the frame rate is 112 fps.
The sequence was obtained with the subject’s informed con-
sent and with approval from the ethics committee.

Figure 10 shows the estimated radius waveform, while Fig-
ure 11 shows the CCA circle estimates at four different frame
times. From Figure 10, one can conclude that the estimated
radius waveform obtained with either method exhibits the
typical characteristics described for example in [26], where
the waveform during a cardiac cycle consists of two consec-
utive peaks (local maxima), the first associated with the for-
ward wave and the second associated with the reflected wave.
One can furthermore see in Figure 10 that after an initial
convergence period—which spans approximately two cardiac
cycles—the waveform produced by the proposed method is

smoother than that produced by the reference method. Both
Figure 10 and Figure 11 show that the proposed method
generally yields larger radius estimates than the reference
method; however, no conclusion regarding estimation accu-
racy can be drawn from this observation as no ground truth
is available. From the radius waveform obtained with the
proposed method, we can derive the following approximate
values of diagnostically relevant parameters: the heart rate is
obtained as 80 beats per minute, the diastolic artery diameter
Dd as 6.00mm, the systolic artery diameter Ds as 6.48mm,
the pulse diameter Ds − Dd as 0.48mm, and the circum-
ferential strain (Ds−Dd)/Dd as 0.08. All these values are
in the typical range for a healthy male subject [26, Ch. 9].
If measurements of the pulse pressurewere available, it would
also be possible to calculate various arterial stiffness indices
such as arterial distensibility and compliance [26, Ch. 9].

VII. CONCLUSION
The method we proposed in this paper is able to continu-
ously and accurately track a circular approximation of the
common carotid artery (CCA) wall, based on an observed
B-mode ultrasound sequence of arbitrary length. We used an
unscented Kalman filter (UKF) to track a composite state
characterizing CCA wall motion. The operation of the UKF
relies on a new state-space model that describes the dynamics
of CCA wall motion and a related measurement process in
a stochastic manner. The UKF fuses two different sets of
measurements, of which one is produced by the pyramidal
Lucas-Kanade optical flow algorithm and the other by a
recently proposed CCAwall localization method. This fusion
enables an effective, temporally consistent compensation of
feature drift, which normally impairs the performance of
optical flow based methods. The temporally consistent com-
pensation of feature drift is a major advantage of our method
over state-of-the-art methods.

We performed a quantitative evaluation of the accuracy of
the proposed method for synthetic data sets containing addi-
tive andmultiplicative noise and emulating speckle decorrela-
tion. Our results demonstrate significant performance advan-
tages relative to the state-of-the-art method presented in [18].
We also validated our method for a real ultrasound sequence.
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The CCA circle radius waveform estimated by the pro-
posed method can be used to calculate various indices that
provide information about the health of the cardiovascular
system [6], [7]. Moreover, because by its effective feature
drift compensation the proposed method can be applied to
arbitrarily long ultrasound sequences, it is possible to average
clinically relevant indices over many cardiac cycles, thereby
improving accuracy and reliability. In addition, the Fourier
series coefficients calculated by our method can be used for
a frequency analysis of the CCA radius waveform sequence,
which is potentially useful for the diagnosis of cardiovascular
diseases [33]. Developing an extension of our method that
allows the estimation of other clinically important parameters
of the CCA, such as radial and longitudinal strain [26], is an
interesting direction for future research.

The proposed method can be extended in various other
ways. For example, some or all of the parameters of the
method can be included in the state and estimated online.
The CCA wall can be characterized by a more sophisticated
family of contours (instead of circles). Finally, an improved
optical flow algorithm can be employed. Indeed, the pyra-
midal Lucas-Kanade algorithm used in our method is based
on the assumption that tissue motion in the neighborhood
of an FP can be approximated sufficiently well by a simple
translation. The same assumption underlies our definition of
the error metric ε(n)t in (1). To better account for nonuniform
tissue motion, the translation assumption can be relaxed by
using an affine model for the velocity field [34] or a global
optical flow algorithm such as [35]. The image patch I

(ỹ′t )
t

in (1) can then be replaced by an appropriately warped and
translated version of the original image patch.
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