
 

 

 

 

Audio Dequantization Using (Co)Sparse 
(Non)Convex Methods 

 
ZÁVIŠKA, P.; RAJMIC, P.; MOKRÝ, O. 

 

ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP) 

eISBN: 978-1-7281-7605-5 

DOI: https://doi.org/10.1109/ICASSP39728.2021.9414637  

 

Accepted manuscript 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 
for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. ZÁVIŠKA, P.; RAJMIC, P.; MOKRÝ, O. "Audio Dequantization Using (Co)Sparse (Non)Convex 
Methods", ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), 2021. DOI: 10.1109/ICASSP39728.2021.9414637. Final version is available at 
https://ieeexplore.ieee.org/document/9414637 

dspace.vutbr.cz 

https://doi.org/10.1109/ICASSP39728.2021.9414637
https://ieeexplore.ieee.org/document/9414637


AUDIO DEQUANTIZATION USING (CO)SPARSE (NON)CONVEX METHODS

Pavel Záviška, Pavel Rajmic, Ondřej Mokrý∗

Signal Processing Laboratory, Brno University of Technology, Brno, Czech Republic

ABSTRACT
The paper deals with the hitherto neglected topic of audio de-
quantization. It reviews the state-of-the-art sparsity-based ap-
proaches and proposes several new methods. Convex as well
as non-convex approaches are included, and all the presented
formulations come in both the synthesis and analysis variants.
In the experiments the methods are evaluated using the signal-
to-distortion ratio (SDR) and PEMO-Q, a perceptually moti-
vated metric.

Index Terms— Audio dequantization, sparsity, cospar-
sity, convex, nonconvex, evaluation, perception

1. INTRODUCTION

The task of dequantization is to recover a signal from its
quantized observation. Quantization is a nonlinear distortion
that introduces perceptually unpleasant artifacts. Practically,
a digital signal is always quantized, but normally the bit depth
of each audio sample is so high (at least 16 bits per sample)
that the effect of quantization is imperceptible. However,
once the bit allocation starts to decrease, the quantization
starts to be pronounced. Using a low bit depth in audio may
be forced (the bandwidth limitation in communication sys-
tems [1], an inadequate setup during music recording) or
intentional (compression of the signal via straightforward bit
depth reduction, mild requirements on the quality). The time-
domain quantization actually fits into a more complex audio
coding task; recently, a novel audio coding strategy has been
proposed with quantization allowed in multiple domains [2].

In the past decade, audio processing methods exploiting
the sparsity of audio signals has drawn much attention. This
is also true for the area of audio dequantization, but it is clear
from a look into the literature that the interest in this task is
much weaker than the attention paid to the closely related re-
construction problems of audio declipping [3, 4, 5] and audio
inpainting (i.e., filling the missing gaps in the signal) [6, 7, 8].

The quantization limits the number of possible values the
signal can attain; each original signal sample is rounded to
the nearest quantization level [9]. In this study, we stick to
the uniform quantizer for simplicity, although non-uniform
quantizers [10] could be considered without loss of general-
ity. In the case of the standard, so-called mid-riser uniform
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quantizer, all the quantization levels are equally distributed.
The quantization step is ∆ = 2−w+1, with w denoting the
word length in bits per sample (bps). Specifically, the quan-
tized signal xq ∈ RN is obtained according to the formula

(xq)n = sgn+(xn) ·∆ ·
(⌊
|xn|
∆

⌋
+

1

2

)
, (1)

where the n-th sample of the signal is indicated by the index
n, and sgn+(z) returns 1 for z ≥ 0 and −1 for z < 0.

For the sake of reviewing the state of the art, it will be
convenient to discuss the issue referred to as the solution con-
sistency. The solution to a dequantization problem is called
consistent with the observed samples if each sample of the
dequantized signal lies within the same quantization interval
as the respective original sample does. If this is not true, the
solution is called inconsistent.

Brauer et al. [1] approximate the dequantization by for-
mulating a convex optimization problem, solved by the prox-
imal splitting algorithms [11, 12]. They work exclusively on
speech signals and no computer implementation is available,
unfortunately. The method of [1] is consistent with the quan-
tized observations.

Záviška et al. [13] follow up on the just mentioned study.
They continue in exploring the potential of sparsity-based
methods in reconstructing quantized audio. The authors
reimplement the method of [1] but in particular, they sig-
nificantly extend the range of the evaluation scenarios and
introduce also the analysis (cosparse) model. They also show
that using the Gabor transform in place of the discrete cosine
transform used in [1] leads to improved results.

Rencker et al. [14, 15] allow inconsistency of the solu-
tion. However, the inconsistency is penalized, leading to an
unavoidable existence of a user-defined parameter that bal-
ances the degrees of sparsity and inconsistency of the solu-
tion. Their formulation also leads to a convex problem, but
now admitting a quick solver, which comes from the fact that
the inconsistency penalty is a smooth function.

Even more recently, a deep-learning-based method has
been published [16]. Nonetheless, the classical approaches
have not yet been fully explored, which is why the goal of this
paper is to evaluate a number of sparsity-based audio dequan-
tization methods. In the paper, we cover the methods men-
tioned above but also propose several brand new approaches.



2. SPARSITY-BASED FORMULATION

The above introduced consistent solution is formally charac-
terized such that it belongs to the set Γ ⊂ RP , where

Γ = {x ∈ RP | ‖x− xq‖∞ < ∆/2}. (2)

In words, the dequantized sample cannot lie outside of the
quantization interval that corresponds to the original sample.
The set Γ is a convex, multidimensional interval, or a box,
which indicates the relationship to audio inpainting and de-
clipping [2]. This observation also motivates the adaptation
of efficient reconstruction algorithms to dequantization.

Given xq, there are numerous feasible signals in Γ, mak-
ing the reconstruction ill-posed. Sparsity can come into play
here as a regularizer. In audio, the assumption of sparsity of
the time-frequency coefficients of the signal is usually em-
ployed. Denote c ∈ CQ a vector of coefficients and x ∈ RP
a time-domain signal. The regularized problem is then to find
x ∈ Γ such that the corresponding coefficients c are as sparse
as possible. The time-frequency transforms are assumed re-
dundant (therefore Q > P ), leading to two distinct variants
based on the relationship between x and c [17]:

arg min
c∈CQ

‖c‖0 subject to A∗c ∈ Γ, (3a)

arg min
x∈RP

‖Ax‖0 subject to x ∈ Γ. (3b)

The symbol ‖ · ‖0 returns the number of non-zero elements in
the vector, i.e., sparsity. Since the formulation (3a) uses the
operator A∗ called synthesis, it is referred to as the synthesis
formulation. Similarly, (3b) is the analysis formulation.

The condition A∗c ∈ Γ in Eq. (3a) may be equivalently
written as c ∈ Γ∗ with Γ∗ = {c′ ∈ CQ | A∗c′ ∈ Γ}. The
crucial observations are that both the sets Γ and Γ∗ are convex
and that there exist explicit formulas for the corresponding
projection operators [18]. This fact is utilized by the numeri-
cal solvers described in Sec. 3.

Throughout the rest of the paper, we assume the use of
Parseval tight frames, i.e. linear operators for which it holds
A∗A = Id [19]. Any tight frame can be simply scaled to
become Parseval-tight.

3. PROBLEMS AND ALGORITHMS

The presence of the `0 penalty makes the problems in (3) NP-
hard and therefore the solutions need to be approximated in
practice. This section is devoted to the presentation of for-
mulations that follow from different means of approximation,
and the corresponding algorithms.

3.1. Consistent `1 minimization

The first option is to use the `1 norm instead of `0 to make the
whole problem convex [20, 21], allowing the use of convex
optimization [22, 23].

Algorithm 1: Douglas–Rachford algorithm solving (4)

Input: Set starting point z(0) ∈ CQ and parameter γ > 0.
for i = 0, 1, . . . do

c(i) = projΓ∗(z(i))
z(i+1) = z(i) + softγ(2c

(i) − z(i))− c(i)

return c(i)

Algorithm 2: Chambolle–Pock algorithm solving (6)

Input: Set starting points p(0) ∈ RP ,q(0) ∈ CQ.
Set parameters ζ, σ > 0, ζσ‖A‖2 < 1, and ρ ∈ [0, 1].
for i = 0, 1, . . . do

q(i+1) = clip1(q
(i) + σAx(i))

p(i+1) = projΓ(p
(i) − ζA∗q(i+1))

x(i+1) = p(i+1) + ρ(p(i+1) − p(i))

return p(i+1)

The convex relaxation of (3a) reads

arg min
c∈CQ

‖c‖1 subject to A∗c ∈ Γ. (4)

To solve (4) numerically, proximal splitting methods [11] of-
fer a suitable choice. We show in [13] that the solution to (4)
can be found via the Douglas–Rachford (DR) algorithm [11,
Sec. 4]. The DR algorithm is summarized in Alg. 1. Bearing
in mind that A∗c ∈ Γ is equivalent to c ∈ Γ∗, the DR algo-
rithm is derived such that its first step uses the projection onto
the set Γ∗. The projection can be computed as [18]

projΓ∗(c) = c +A (projΓ(A∗c)−A∗c) . (5)

The second step of the DR algorithm uses softα, the soft
thresholding operator with a threshold α > 0 [20, 24].

Similar to the synthesis model, we relax (3b) as

arg min
x∈RP

‖Ax‖1 subject to x ∈ Γ. (6)

Compared with (4), the analysis problem (6) is more chal-
lenging because of the presence of the composite function
‖A · ‖1. The proximal operator of such a composition is not
available even in the case of a Parseval tight frame in place of
A [25]. However, the Chambolle–Pock (CP) algorithm [12]
can handle such an optimization problem. The CP algorithm
for dequantization is summarized in Alg. 2. In the algorithm,
clipα = Id− softα.

3.2. SPADQ, non-convex minimization

Another option in approximating the problems (3) is to re-
lax the strict relationship of x and c and approach the prob-
lem heuristically [5, 26]. The acronym SPADQ stands for the
Sparse Audio Dequantizer, a natural adaptation of the Sparse
Audio Declipper (SPADE) [5, 26] or Inpainter (SPAIN) [27]
to the task of audio dequantization. The dequantization mod-
els are derived from a reformulation of (3) with less rigid



coupling of the signal and the coefficients, governed by the
parameter ε. Based on [5, 26], three options are available:

arg min
c,z∈CQ

‖z‖0 subject to A∗c ∈ Γ, ‖c− z‖2 ≤ ε, (7a)

arg min
x∈RP ,c∈CQ

‖c‖0 subject to x ∈ Γ, ‖x−A∗c‖2 ≤ ε, (7b)

arg min
x∈RP ,c∈CQ

‖c‖0 subject to x ∈ Γ, ‖Ax− c‖2 ≤ ε. (7c)

The respective algorithms (S-SPADQ, S-SPADQ DR, and A-
SPADQ) all use an iterative routine, the principal steps of
which are the adaptive hard thresholding and the projection
onto Γ. Actually, the three SPADQ algorithms are identical
to their counterparts for audio declipping, only the definition
of the feasible set Γ differs between SPADQ and SPADE. Due
to this fact and due to a lack of space, we do not reprint the
algorithms here; the reader can find them in [26].

3.3. Inconsistent `1 minimization

The last option to approximate (3) combines the `1 relaxation
with the relaxation of the constraints x ∈ Γ or c ∈ Γ∗. As
a result of the constraint relaxation, the method is not consis-
tent in the sense described above. However, it may yield a
sparser solution while not being too far from the feasible set.
The synthesis and analysis formulations read

arg min
c∈CQ

λ‖c‖1 +
1

2
d2

Γ(A∗c), (8a)

arg min
x∈RP

λ‖Ax‖1 +
1

2
d2

Γ(x), (8b)

where the symbol dC(·) denotes the distance from the set
C, i.e., dC(·) = ‖ · −projC(·)‖2, and λ > 0 controls the
trade-off between the sparsity and the consistency of the so-
lution. The synthesis variant (8a) can be solved via FISTA, as
shown recently in [14]. FISTA is a proximal gradient method
[28, 11, 4]), accelerated thanks to the fact that 1

2d
2
C is differ-

entiable, with the gradient ∇ 1
2d

2
C(x) = x − projC(x) [15].

The resulting algorithm is Alg. 3.
Alternatively, we can use the DR algorithm to solve (8a).

From [24, Example 6.65], we know that

proxαd2C/2(z) =
1

α+ 1
(α projC(z) + z) , (9)

which is a convex combination of a point and its projection
onto C. This formula is used as the proximal operator of the
second term in (8a). The resulting algorithm is Alg. 4.

The analysis-based problem (8b) can be solved using the
CP algorithm; see Alg. 5. Note that the update of p uses the
proximal operator presented in (9). Finally, we propose two
alternatives of tackling (8b) by means of another approxima-
tion. First, let us apply the DR algorithm to the problem. The
proximal operator of the distance function can again be taken

Algorithm 3: FISTA solving (8a)

Input: Set starting points c(0) ∈ CQ and z(0) = c(0).
Set parameters µ and t(0) = 1.
for i = 0, 1, . . . do

c(i+1) = softλµ
(
z(i) − µA(A∗z(i) − projΓ(A

∗z(i)))
)

t(i+1) =
(
1 +

√
1 + 4(t(i))2

)
/2

z(i+1) = c(i+1) + t(i)−1

t(i+1)

(
c(i+1) − c(i)

)
return A∗c(i+1)

Algorithm 4: Douglas–Rachford algorithm solving (8a)

Input: Set starting point z(0) ∈ CQ and parameter γ > 0.
for i = 0, 1, . . . do

c(i) = 1
γ+1

(γ projΓ∗(z(i)) + z(i))

z(i+1) = z(i) + softγλ(2c
(i) − z(i))− c(i)

return c(i)

from (9). The proximal operator of α‖A · ‖1 = α‖ · ‖1 ◦ A
is problematic. If the involved linear operator were the syn-
thesis, the same composition rule could be followed as in the
case of the projection (5). For A being the analysis, no such
rule can be applied, though. Nevertheless, [25] shows that
an approximation can be done using the so-called approximal
operator, which turned out to be very successful in the case
of audio inpainting. In our case, it takes the form

approxα‖·‖1◦A(x) = A∗softα(Ax). (10)

Substituting the proximal operator of distance in Alg. 4 with
the approximal operator from (10) results in Alg. 6. As the
second alternative, FISTA can also be used for the approxi-
mation of the analysis variant (8b), since dΓ is differentiable
and the proximal operator of ‖A · ‖1 can be substituted with
the approx, just as above. The resulting algorithm is in Alg. 7.

4. EXPERIMENTS AND RESULTS

For the experiments, an audio database containing ten musical
excerpts sampled at 44.1 kHz, with an approximate duration
of 7 seconds, was used. The excerpts were extracted from
the EBU SQAM database1 and thoroughly selected to cover
a wide range of signal sparsity.

The signals were first peak-normalized and then quan-
tized according to (1), using 7 different word lengths, w =
2, 3, . . . , 8. The Discrete Gabor transform (DGT) was chosen
as the sparsity-promoting transform, using a Hann window
8192 samples long (185.8 ms). The DGT used a 75% overlap
of the windows and 16384 frequency channels. The algo-
rithms were implemented in MATLAB 2019b. They rely on
the LTFAT toolbox [29] for the time-frequency operators.

The physical similarity of waveforms was measured us-
ing the ∆SDR, which expresses the signal-to-distortion ra-
tio (SDR) improvement of the quantized signal to the recon-

1https://tech.ebu.ch/publications/sqamcd



Algorithm 5: Chambolle–Pock algorithm solving (8b)

Input: Set starting points p(0) ∈ RP , c(0) ∈ CQ.
Set parameters ζ, σ > 0, ζσ‖A‖2 < 1, and ρ ∈ [0, 1].
for i = 0, 1, . . . do

c(i+1) = clipλ(c
(i) + σAx(i))

u(i+1) = p(i) − ζA∗c(i+1) % auxiliary
p(i+1) = 1

ζ+1

(
ζ projΓ(u

(i+1)) + u(i+1)
)

x(i+1) = p(i+1) + ρ(p(i+1) − p(i))

return p(i+1)

Algorithm 6: Douglas–Rachford alg. approximating (8b)

Input: Set starting point u(0) ∈ RP and parameter γ > 0.
for i = 0, 1, . . . do

x(i) = 1
γ+1

(γ projΓ(u
(i)) + u(i))

u(i+1) = u(i) +A∗softγλ
(
A(2x(i) − u(i))

)
− x(i)

return x(i)

Algorithm 7: FISTA approximating (8b)

Input: Set starting points x(0) ∈ RP and u(0) = x(0).
Set parameters µ and t(0) = 1.
for i = 0, 1, . . . do

x(i+1) = A∗softµλ
(
A(u(i) − µ(u(i) − projΓ(u

(i))))
)

t(i+1) =
(
1 +

√
1 + 4(t(i))2

)
/2

u(i+1) = x(i+1) + t(i)−1

t(i+1)

(
x(i+1) − x(i)

)
return x(i+1)

structed signal. Note that in dequantization, the SDR is equiv-
alent to the signal-to-artifacts ratio (SAR). Since we are inter-
ested mostly in perceptual quality (which may not correspond
to the SDR values), we evaluate the reconstructed signals us-
ing the PEMO-Q metric [30], which uses an objective differ-
ence grade (ODG) scale of −4 to 0 (worst to best).

The parameters of the algorithms need fine-tuning to
achieve the best possible results. In the case of `1 minimiza-
tion, the ∆SDR values tend to gain rapidly during the first
couple of iterations but then drop and stabilize at a lower
value. This is explained by the fact that during the conver-
gence, the algorithms retain the signal within the consistent
area, while the `1 norm of the coefficients decreases. When
their `1 norm is pushed too far towards zero, the waveform
is also affected, tending to incorrectly settle close to the edge
of the feasible quantization intervals. Interrupting the con-
vergence at the SDR peak provides results with the most
similar waveforms to the original (in practice unknown) sig-
nal. The first bar chart in Fig. 1 shows the best achievable
∆SDR values, which in our case correspond to stopping the
convergence after approximately 100 iterations. Letting the
algorithms fully converge yields significantly better results in
terms of the perceptual metric. The PEMO-Q ODG values
are presented as the second chart of Fig. 1 and they were
reached after 500 iterations of each algorithm.
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Fig. 1. Average ∆SDR and PEMO-Q ODG results.

The ∆SDR results suggest no clear winner. The SPADQ
algorithms perform well for word lengths of 4–7 bps but for
other tested word lengths they are outperformed by the con-
vex methods. In the case of consistent `1 minimization, it is
clear that except for the 2 bps case, the analysis variant using
the CP algorithm outperforms the synthesis variant using the
DR algorithm. The results of the inconsistent problem for-
mulations also indicate the predominance of analysis-based
formulations; this behavior can also be observed in audio de-
clipping and inpainting. The effect of inexact computation of
the thresholding step (10) turns out to have negligible influ-
ence, as in the case of inpainting [25].

The PEMO-Q results indicate that for w ≥ 4 bps all
the methods improve the perceptual quality. The overall
PEMO-Q results roughly correspond to the ∆SDR results.
Small differences can be found in the case of SPADQ or
methods based on inconsistent `1 minimization. Finally,
the FISTA algorithms seem to perform worse than the other
methods in both the ∆SDR and PEMO-Q.

The MATLAB implementation and data are available at
http://github.com/zawi01/audio_dequantization.

5. CONCLUSION

The paper discussed a number of sparsity-based approaches
to dequantization. The audio signals were subjected to uni-
form quantization. The signals were reconstructed using con-
vex and non-convex approaches, respecting strictly, or only
approximately the solution consistency. None of the ∆SDR
and PEMO-Q results suggest a clearly preferred method for
audio dequantization. Among the convex methods, the vari-
ants involving the analysis time-frequency operator appear to
give better results than the synthesis-based variants do.

http://github.com/zawi01/audio_dequantization
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