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Abstract: We propose recovering 1D piecewice linear signal using a sparsity-based method consist-
ing of two steps. The first step is signal segmentation via optimization algorithms solving sparsity
based model. Second step consists of applying an ordinary mean square method on each detected
segment of the signal. We show results of our experiments on two types of the signal.
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1 INTRODUCTION

We explore signal recovering by use combination of convex optimization methods for segmenting of
noisy piecewise linear signal and signal denoising by use of mean square method at each detected
segment of the signal. The number of segments is considerably lower than the number of signal
samples, which suggests using sparse signal processing techniques [1].

2 PROBLEM FORMULATION

The overparameterization model should be introduced first. We suppose 1D piecewise linear signal
f. Each element of the signal f can be described by two parameterization coefficients: constant offset
(parameter a) and constant slope (parameter b). So the i-th element of the signal is defined as fi =
ai +bii, alternatively

f = a+Db i.e. f = [ID]

[
a
b

]
= Ax, (1)

where a, b ∈ RN , I = IN is the identity matrix, D = diag(1,2, . . . ,N) is the diagonal matrix with
the values 1,2, ...,N on its main diagonal. Note that vectors a and b are piecewise constant in each
segment so they are sparse under the difference operation. Due to this assumption we can formulate
the recovery problem using total variation (TV):

â, b̂ = argmin
a,b

1
2

∥∥∥∥y− [ID]

[
a
b

]∥∥∥∥2

2
+ τa TV(a)+ τb TV(b), (2)

where y is observed signal which is corrupted by uncorrelated Gaussian noise e with zero mean and
positive variance y = f+ e, and TV(·) is the total variation functional defined as

TV(z) = ‖∇z‖1 =
N−1

∑
i=1
|zi+1− zi| , (3)
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and finally â, b̂ are achieved optimizers. The nonzero values in ∇â and ∇b̂ indicate possible segment
borders, the nonzero values should be on shared positions. Positive constants τa,τb are regularization
weights, with their values depending on the properties of the signal and noise level. The regularization
weights should be carefully tuned.

3 METHODOLOGY

The solution of signal denoising is divided into two parts. First, the breakpoints are detected describ-
ing each segment of the signal. This is done by proximal splitting methods. Second is the denoising
of each segment of the signal by least squared method.

3.1 SIGNAL SEGMENTATION

Signal segmentation is achieved by finding the breakpoints. To identify breakpoints, it is necessary
to solve the optimalization problem (2). For solving this problem proximal splitting algorithms can
be used. Proximal splitting algorithm is an iterative way to minimize a sum of convex functions by
repetitive evaluation of their gradients or proximal operators. The basic optimalization problem is

argmin
x

f1(x)+ f2(x). (4)

For solving this optimalization problem, two appropriate algorithms are available, namely the Forward-
Backward and Douglas-Rachford algorithm [2]. Is proven that proximal algorithms converge to the
optimal value which is minimum in case that (4) is convex. The convergence is in practice influenced
by the character of functions and the choice of parameters of algorithm.

3.1.1 Used proximal splitting algorithms

We assign: f1(x) = 1
2‖y−Ax‖2

2, f2(x) = f2(a,b) = τa TV(a)+ τb TV(b).

Forward-Backward (FB) splitting algorithm solves problem (4) where f1(x) is convex and differen-
tiable with a β-Lipschitz continuous gradient ∇ f1(x) = A>(Ax−y) [3]. Proximal operator of f2(x)

is prox f2
(x) = prox f2

(a,b) =
[

proxτaTV(·)(a)
proxτbTV(·)(b)

]
. The proximal operator of TV(·) for 1D signals can be

computed fast using the Condat’s algorithm [4]. The algorithm consists of a forward (gradient) step
using function f1 and a backward (proximal) step using function f2.

Douglas-Rachford (DR) algorithm does not require function f1 having β-Lipschitz continuous gradi-
ent. This algorithm consists of two proximal steps using functions f1 and f2. Instead of the gradient
step, proximal operator of f1 is used, which is prox f1

(x) = (I+ τA>A)−1(x+ τA>y) [3].

3.1.2 Detection of breakpoints

From the solution â and b̂, the breakpoints can be established. Nonzero values in ∇â and ∇b̂ indicate
possible segment borders. In theory, the nonzero values should share the same position, but in practice
they are not and there are found more segments than there should be. This happens because it is
complicated to set regularization parameters to achieve piecewise constant solution in a and b so that
in ∇â and ∇b̂ are found more nonzero values. Because of this we used thresholding with threshold
λa for ∇â and threshold λb for ∇b̂ to find appropriated segment borders. After thresholding is created
vector of breakpoints as:

bp = [0,sort(bpa∪bpb),N], (5)

where bpa and bpb are positions of nonzero values in ∇â satisfying condition |âi| > λa and in ∇b̂
satisfying condition

∣∣b̂i
∣∣> λb, respectively. N is length of signal y.
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3.2 SIGNAL DENOISING

In each detected segment we perform simple denoising of the signal by least squared method finding
optimal parameters:

βk = (XT
k Xk)

−1XT
k y(bpk : bpk+1), (6)

where βk =
[
ȧk ḃk

]T

is vector with parameter ȧ and ḃ (offset and slope) belonging to the k-th segment of signal y, and

Xk =

[
1 1 . . . 1 1

bpk bpk +1 . . . bpk+1−1 bpk+1

]T

.

For each segment k we get parameter ȧk and parameter ḃk. With obtained parameters we can recon-
structed the signal y, and observed the denoised signal ŷ according to:

ŷ = ȧ+Dḃ, (7)

where ȧ and ḃ contain parameter ȧk resp. parameter ḃk for each element of k-th segment of y.

4 EXPERIMENTAL RESULTS

Two experiments of signal denoising were performed. First experiment was performed with sawtooth
signal and the second with the randomly generated signal.

4.1 RESULTS FOR SAWTOOTH SIGNAL

A periodic sawtooth signal of length N = 150 with line slope equal to 1 was generated. Vector b∈RN

is a vector of ones. Vector a ∈ RN is, according to the assumption, piecewise constant, and for each
subsequent segment, it takes value lowered by L= 25, which is the selected period length. Computing
[ID][ab]> and adding Gaussian IID noise then synthesizes the noisy sawtooth.
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Figure 1: Approximating sawtooth signal after first step with τa = 51.8 and τb = 12540. We have
TV(b) = 0, TVFB(b̂) = 0, TVCR(b̂) = 0, TV(a) = 55.9, TVFB(â) = 6.29, TVDR(â) = 5,65. Signal
to noise ratio (SNR) of the observed signal is SNR = 19.68dB, recovered signal after first step has

SNRFB = 6.83dB, SNRDR = 6.77dB.

Regularization parameters τa,τb and threshold parameters λa and λb were carefully tuned to obtain
stepwise parameter vector a producing signal that has breakpoints at the same positions as the clean
one does. The resulting signal of first step and the parameters found are depicted in Fig. 1. Recovered
sawtooth signal ŷ and its parameters are depicted in Fig. 2.
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Figure 2: Approximating sawtooth signal after second step with λa = 0.075 and λb = 0.075. SNR is
SNR = 19.68dB, of the recovered signal after second step SNRFB = 30.77dB, SNRDR = 30.77dB.

4.2 RESULTS FOR RANDOMLY GENERATED SIGNAL

Second, we performed a similar experiment on a randomly generated signal of length N = 150 with
five linear segments. Vectors a∈RN and b∈RN are, according to the assumption, piecewise constant.
Computing [ID][ab]> and adding Gaussian IID noise then synthesizes the noisy signal. The resulting
signal of breakpoints detection and the parameters found are depicted in Fig. 3. Recovered random
signal ŷ and its parameters are depicted in Fig. 4.
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Figure 3: Approximating randomly generated signal after first step τa = 43.27 and τb = 3850. We
have TV(b) = 2.3, TVFB(b̂) = 1.8, TVCR(b̂) = 1.66, TV(a) = 1.1, TVFB(â) = 12.4,

TVDR(â) = 21.45. SNR of the observed signal is SNR = 18.91dB, recovered signal after first step
has SNRFB = 21.86dB, SNRDR = 21.8dB.

5 CONCLUSION

The experiments present the fact that the suggested approach gives relatively good results. Detected
positions of breakpoints in â and b̂ are not the same although it is supposed that they should be on
the same positions. Such a problem, however, can be solve by enforcing joint breakpoints using a
group-sparse model, which can be provided by usage of a `21 mixed norm in (2) instead of a used `1
norm. This will be the topic of further research.
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Figure 4: Approximating randomly generated signal after second step λa = 8 and λb = 0.15. SNR
of the observed signal is SNR = 18.91dB, of the recovered signal after second step

SNRFB = 31.03dB, SNRDR = 31.03dB.

REFERENCES

[1] Giryes, R.; Elad, M.; Bruckstein, A.M.: Sparsity Based Methods for Overparameterized Varia-
tional Problems, SIAM journal on imaging sciences, vol. 8, no. 3, pp. 2133 - 2159, 2015.

[2] Combettes, P.L.; Pesquet, J.C.: Proximal splitting methods in signal processing, Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, Springer, 2011, DOI: 10.1007/978-
1-4419-9569-8_10

[3] Condat, L.: A Generic Proximal Algorithm for Convex Optimization—Application to Total Vari-
ation Minimization, Signal Processing Letters, IEEE, vol. 21, no. 8, pp. 985-989, 2014, DOI:
10.1109/LSP.2014.2322123

[4] Condat, L.: A Direct Algorithm for 1-D Total Variation Denoising, Signal Processing Letters,
IEEE, vol. 20, no.11, pp. 1054-1057, 2013, DOI: 10.1109/LSP.2013.2278339

358




