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Abstract
This thesis deals with computing of parasitic magnetic fields of the misaligned deflection
coil due to the manufacturing imperfections. The relation between the multipole mag-
netic fields and the asymmetric winding distribution of an electron deflection system is
discussed. Novel and fast 2D methods of calculation are introduced. The results are then
compared with the 3D final elements method as well as with an experiment. Consequently,
the influence of the parasitic multipole fields due to the manufacturing imperfections on
astigmatism is examined.

Keywords
Deflection coil, saddle coil, manufacturing imperfections, parasitic aberrations, magnetic
dipole field.

Abstrakt
Tato práce se zabývá výpočtem parazitických magnetických polí neseřízené deflekční cívky
z důvodu výrobních nepřesností. Vztah mezi multipólovými magnetickými poli a asymet-
rickým rozložením vynutím elektronové vychylovací cívky je rozebrán. Nové a rychlé
2D metody výpočtu jsou představeny. Výsledky jsou poté porovnány s 3D metodou
konečných prvků a s experimentem. Vliv multipólových parazitických polí způsobených
nepřesností výroby na astigmatismus je tak v důsledku prošetřen.
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1. INTRODUCTION

1. Introduction
The deflection coils are types of magnetic coils used inside electron microscopes. They

enable us to manipulate the trajectory of the electron beam, and they are indispensable
for scanning with the electron beam over the sample or optimizing the beam position
on the sample concerning the optical aberrations. Another critical use of deflection coils
is an accurate adjustment of concentricity of electron-optical elements in the electron
microscope. During the production process, manufacturers face the challenging procedure
of accurately adjusting the mechanical parts on the optical axis in the electron microscope.
Moreover, it is impossible to reach the required production precision for the concentricity
of optical elements, and therefore, a solution in the form of a deflection element is required.
The most crucial goal of the design process is to find an optical system with the required
aberration coefficients. Deflection coils are designed in many forms, such as toroidal,
Helmholtz or saddle coils. However, only saddle coils are widely used by manufacturers
due to their smallest optical aberrations from all coils mentioned above. Saddle coils are
convenient for generating a uniform magnetic field perpendicular to the cylinder axis.

The accuracy in the manufacturing process is always limited. Therefore, by study-
ing the magnetic field produced by an asymmetric saddle coil with the dependency
on the manufacturing precision, we could set out the conditions for a more cost-effective
manufacturing process of the saddle coils for the electron beam deflection in electron
microscopes. Furthermore, as a result, it would allow us to obtain a higher resolution
of transmission electron microscopes for lower production costs.

Chapter 2 deals with the following areas. Brief history and the key milestones of elec-
tron microscopy are discussed. Reduced axial magnetic potentials characterize parasitic
or multipole magnetic fields. Therefore, the radial expansion of the magnetic field is men-
tioned. Consequently, the quality of the optical system can be judged by the use of the
trajectory equation. A general overview is given of the design of the transmission electron
microscope and its main parts to provide a holistic perspective and set this thesis in the
broader context of current challenges of design and manufacturing philosophy. Focus is
given to the most widespread deflection systems and the corrector systems in the form of
stigmators.

Chapter 3 introduces the reader to the calculation methods of the parasitic multipoles
of the misaligned deflection coil. The infinite dipole method is brought up. However, it is
only an approximation according to the top-hat model. Therefore, new and more precise
methods are introduced. They are called the normalized Fourier series coefficients and the
corrected multipole methods. They reduce the problem of parasitic multipoles fields of
the misaligned deflection coil to the sets of perfect multipoles. Therefore, the misaligned
deflection coil problem is mapped on the group of previously solved problems. Moreover,
they are easy to implement in the Electron Optical Design software. 3D final elements
method was chosen to validate the new approaches.

Chapter 4 is dedicated to evaluating the results of simulation methods qualitatively.
Multipole fields of the misaligned saddle coil are calculated for increasing the misalignment
angle by each method.

Chapter 5 brings the new simulation methods to the test in the experiment. Micro-CT
is then carried out to precisely measure the misalignment of the saddle deflection coils
used in the experiment. Thus, novel calculation methods are experimentally tested.
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2. Theoretical part
2.1. History
The early history of electron microscopy dates back to the early 20th century. First,
essential steps were laid down by a German physicist and a pioneer of electron optics,
prof. Hans Busch. He suggested in 1926 that a magnetic field in the short coil could
be used to focus the electron beam to a point similarly as glass lenses focus light [1].

This discovery that electrons could be used instead of photons greatly inspired a physi-
cist Ernst Ruska when he first read about it in the academic journal Archiv für Elek-
trotechnik [2]. However, it was no straightforward task from the idea to the first electron
microscope. Ruska and together with an electrical engineer Max Knoll, demonstrated
the first proof of concept that the magnetic coil can work as the electron lens in 1931 [3].
Two short magnetic lenses were put together with a modest magnification of 14.4. Today
this apparatus is considered the first electron microscope. At first, Ruska, and Knoll
hoped that the electron microscope resolution would not be limited in the same way as it
is the case of the optical microscope, which is limited by the Abbe diffraction limit and
by the wavelength of light. When Ruska first found out about the controversial and not
entirely accepted theory of the French physicist de Broglie that all matter, and therefore
electrons, exhibits wave-like behavior, he was deeply disappointed that the electron mi-
croscope resolution is limited by the wavelength again as well. The only encouragement
for Ruska was that he calculated with the help of de Broglie’s theory that the maxi-
mum resolution for electron microscopy is to be about five orders of magnitude higher
than of the optical microscope. So there was no reason to abandon the pursuit of electron
microscopy. At that time, not many experts took Ruska’s and Knoll’s approach seriously,
and still, many problems had to be overcome, but the time showed they were right [3].

A slight concern gave a German physicist Otto Scherzer in 1936 when he proved there is
a fundamental limit to the resolution because all rotationally symmetric fields of the elec-
tron lenses have an unavoidable and always positive spherical and chromatic aberration.
So, these aberrations can not be compensated by combing multiple rotationally symmet-
ric lenses. This statement is nowadays called Scherzer’s theorem. Nevertheless, Scherzer
pursued the development of corrective elements for spherical and chromatic aberrations
in the form of multipoles or by time-varying electromagnetic fields [4].

Vladimir K. Zworykin developed the first scanning electron microscope in the modern
sense in 1942. He was the first who realized that secondary electrons could provide
topographical contrast, and he managed to enhance the signal by biasing the electron
collector positively relative to the specimen. He was able to reach a decent resolution of 50
nm, but it was considered low in comparison with the transmission electron microscopy [5].

Albert Crewe invented the first field emission electron source in 1968 [6]. It was an es-
sential milestone for higher resolution because of its higher brightness and lower energy
dispersion. Furthermore, with his unremitting effort, he patented and tried to unsuc-
cessfully develop the first hexapole corrector of spherical aberration in electron optics
in 1980 [7].

Max Haider and Harald Rose started the development of spherical aberration corrector
in Germany in 1992. Later, Max Haider cofounded CEOS company in 1996 [8].
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2. THEORETICAL PART

Finally, Ernst Ruska was awarded the Nobel Prize in Physics in 1986 ”for his funda-
mental work in electron optics and the design of the first electron microscope.” The other
part of the prize was awarded to Gerd Binnig and Heinrich Rohrer for their development
of another revolutionary instrument called a scanning tunneling microscope [9].

2.2. Trajectory equation
Newton’s second law of motion describes a motion of an object with a mass m [10]. Net
force ~F acting on the object produces an acceleration ~a

~F = m~a =
d(m~v)

dt
, (2.1)

where ~v is velocity of the object and t is time. Electron in the electric ~E or magnetic ~B
field is influenced by the Lorentz force [11] p. 204

~FLor = −e( ~E + ~v × ~B), (2.2)

where e is the elementary charge. Then, equation of motion with the relativistic correction
is

d
dt

(γm0~v) = −e( ~E + ~v × ~B), (2.3)

where m0 the rest mass and γ is the Lorentz factor [11] p. 486

γ =
1√

1− v2

c2

, (2.4)

where c is the speed of light in a vacuum. It is necessary to use the realistic correction
for Newton’s second law of motion because even the standard energies of 60-300 keV
of TEM change the characteristics of the electron substantially compared to the classical
approximation. These changes are summarized in the table 2.1.

Table 2.1: The relativistic effects of an electron for various kinetic energies.
Relativistic electron

Kinetic energy Ek [eV] Wavelength λ [m] v/c [-] m/m0 [-]
100 1.22−09 0.002 1.000002
101 3.86−10 0.006 1.000020
102 1.22−10 0.020 1.000196
103 3.86−11 0.062 1.001957
104 1.22−11 0.195 1.019567
6 · 104 4.85−12 0.446 1.117403
105 3.69−12 0.548 1.195672
3 · 105 1.96−12 0.777 1.587016
106 8.69−13 0.941 2.956719
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2.2. TRAJECTORY EQUATION

Relativistic kinetic energy in the electric potential

The kinetic energy of charged particle with a relativistic velocity in the electrostatic
potential Φ, [12] p. 19, is

eΦ = γmc2 −mc2. (2.5)
Let’s rewrite eq. (2.5) as

eΦ

mc2
= γ − 1. (2.6)

Let’s define ε as
ε =

e

2mc2
(2.7)

and substitute eq. (2.7) to the eq. (2.5)

γ = 1 + 2εΦ, (2.8)

γ2 = (1 + 2εΦ)(1 + 2εΦ) = 1 + 4εΦ(1 + εΦ) = 1 + 4εΦ∗, (2.9)
where Φ∗ is so called relativistically corrected potential

Φ∗ = Φ(1 + εΦ). (2.10)

From Lorentz factor eq. (2.4) we get

v2 = c2
γ2 − 1

γ2
(2.11)

and from eq. (2.9) we get eq. (2.7) and (2.11)

v2 = c2
4εΦ∗

γ2
=

1

γ2
2eΦ∗

m
. (2.12)

The velocity of charged particle is

v =
1

γ

√
2eΦ∗

m
=

1

1 + 2εΦ

√
2εΦ∗

m
. (2.13)

For clarity let’s define derivation notation with respect to the z coordination
dx

dz
= x′,

dy

dz
= y′ (2.14)

and with respect to the time t coordination
dx

dt
= ẋ,

dy

dt
= ẏ,

dz

dt
= ż. (2.15)

The magnitude of the velocity ~v in the Cartesian coordinate system x, y, z can be expressed
as

v = |~v| =

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]1/2

=

[(
dx

dz

dz

dt

)2

+

(
dy

dz

dz

dt

)2

+

(
dz

dz

dz

dt

)2
]1/2

=

=

[(
dz

dt

)2

·

((
dx

dz

)2

+

(
dy

dz

)2

+ 1

)]1/2
=
dz

dt

(
x′

2
+ y′

2
+ 1
)1/2

=

= ż
(
1 + x′

2
+ y′

2
)1/2

for ż > 0, (2.16)
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2. THEORETICAL PART

ż =
v(

1 + x′2 + y′2
)1/2 . (2.17)

It helps us to calculate the velocity in z direction just from the magnitude of the velocity ~v
and x′ and y′. Keep in mind ż > 0 because it comes from the square root expression.
The cross product of the velocity ~v and the magnetic induction ~B is

~v × ~B =

 ~i ~j ~k
vx vy vz
Bx By Bz

 = (ẏBz − żBy, żBx − ẋBz, ẋBy − ẏBx) . (2.18)

So, the eq. (2.3) can be written by its components with help of eq. (2.19) for electron as

x :
d

dt

 mẋ√
1− v2

c2

 = −e (Ex + yBz − żBy) ,

y :
d

dt

 mẏ√
1− v2

c2

 = −e (Ey + żBx − ẋBz) ,

z :
d

dt

 mż√
1− v2

c2

 = −e (Ez + ẋBy − ẏBx) .

(2.19)

It is convenient to define complex variables

w(z) = x(z) + iy(z), (2.20)

Ew(z) = Ex(z) + iEy(z), (2.21)

Bw(z) = Bx(z) + iBy(z). (2.22)

So, by summing elements x and y from eq. (2.19) with substitution of eq. (2.20) and
(2.21) we obtain

x+ iy :
d

dt
[γmẇ] = −e (Ew − iẇBz + iżBw) = −eEw − ież (Bw − w′Bz) (2.23)

and similarly for z

z :
d

dt
[γmż] = −e

[
Ez +

1

2i

(
˙̄wBw − ẇB̄w

)]
. (2.24)

The left side from eq. (2.23) with help of eq. (2.13) is

d

dt
[γmẇ] =

d

dz

dz

dt
[γmẇ] = ż

d

dz
[γmw′ż] =

= ż
d

dz

[
1

γ

(
2eΦ∗

m

)1/2
γmw′

(1 + w′ẇ′)1/2

]
. (2.25)
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2.3. PARAXIAL APPROXIMATION

And we get the trajectory equation of electron in electric and magnetic field [13]

d

dz

[(
Φ∗

1 + w′w̄′

)1/2

w′

]
= −1

2
Ewγ

(
1 + w′w̄′

Φ∗

)1/2

− iη (Bw − w′Bz) , (2.26)

only for electron e > 0 and for vz > 0, where η is

η =

√
e

2m
. (2.27)

2.3. Paraxial approximation
If the electron moves close to the optical axis, its trajectory can expressed from eq. (2.26)
in the form of the paraxial equation for rotationally symmetric fields

w′′ +

(
γΦ′

2Φ∗ − iη√
Φ∗
B

)
w′ +

(
γΦ′′

4Φ∗ − iη

2
√
Φ∗
B′
)
w = 0, (2.28)

where Φ = Φ(z) is the electrostatic potential define as ~E = −∇Φ and B = B(z) the
magnetic induction on the optical axis in the paraxial approximation [13].

2.4. General expansion of magnetic field
A magnetic field in the paraxial domain is of the utmost importance in electron optics.
In the proximity of the optical axis, the magnetic field can be expressed as a radial
series expansions only from the axial reduced magnetic potential ψm. So, only from the
knowledge of reduced magnetic potential on the optical axis the magnetic field can be
derived. It is assumed that the optical axis is straight and the paraxial domain is source
free, i.e., all windings of coils are far away from the optical axis [12] p. 73.

The magnetic scalar potential Ψ can be expressed from the Laplace equation [13] as

Ψ(r, ϕ, z) =
∞∑

m=0

∞∑
i=0

(−1)i
1

4i
m!

i!(m+ i)!
ψ(2i)
m (z)r2i+m cos(mϕ+ αm) (2.29)

where ψm is the axial reduced magnetic potential, r is radial distance and αm is angle of
rotation.

The magnetic induction in cylindrical coordinates is

~B = −µ0∇Ψ = −µ0

(∂Ψ
∂r

,
1

r

∂Ψ

∂ϕ
,
∂Ψ

∂z

)
, (2.30)

so the equation (2.29) becomes

Br = −µ0

∞∑
m=0

∞∑
i=0

(−1)i
2i+m

4i
m!

i!(m+ i)!
ψ(2i)
m (z)r2i+m−1 cos(mϕ+ αm), (2.31)

Bϕ = µ0

∞∑
m=0

∞∑
i=0

(−1)i
m

4i
m!

i!(m+ i)!
ψ(2i)
m (z)r2i+m−1 sin(mϕ+ αm), (2.32)

Bz = −µ0

∞∑
m=0

∞∑
i=0

(−1)i
1

4i
m!

i!(m+ i)!
ψ(2i+1)
m (z)r2i+m cos(mϕ+ αm). (2.33)
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2. THEORETICAL PART

Rotationally symmetric fields

Rotationally symmetric fields are important for description of magnetic lenses. They do
not depend on the angle ϕ. The magnetic scalar potential Ψ0 and magnetic induction ~B0

is obtain from (2.29) and (2.30) for conditions α0 = 0 and m = 0 as

Ψ0(r, ϕ, z) =
∞∑
i=0

(−1)i
1

4i
1

(i!)2
ψ

(2i)
0 (z)r2i, (2.34)

Br,0 = −µ0

∞∑
i=0

(−1)i
2i

4i
1

(i!)2
ψ

(2i)
0 (z)r2i−1, (2.35)

Bϕ,0 = 0, (2.36)

Bz,0 = −µ0

∞∑
i=0

(−1)i
1

4i
1

(i!)2
ψ

(2i+1)
0 (z)r2i. (2.37)

Dipole field

The dipole field is important for description of deflection coils and contrary to the magnetic
lenses it does depend on the angle ϕ. The magnetic scalar potential Ψ1 and the magnetic
induction ~B1 is obtain from (2.29) and (2.30) for condition m = 1 as

Ψ1(r, ϕ, z) =
∞∑
i=0

(−1)i
1

4i
1

i!(1 + i)!
ψ

(2i)
1 (z)r2i+1 cos(ϕ+ α1), (2.38)

Br,1 = −µ0

∞∑
i=0

(−1)i
2i+ 1

4i
1

i!(1 + i)!
ψ

(2i)
1 (z)r2i cos(ϕ+ α1), (2.39)

Bϕ,1 = µ0

∞∑
i=0

(−1)i
1

4i
1

i!(1 + i)!
ψ

(2i)
1 (z)r2i sin(ϕ+ α1), (2.40)

Bz,1 = −µ0

∞∑
i=0

(−1)i
1

4i
1

i!(1 + i)!
ψ

(2i+1)
1 (z)r2i+1 cos(ϕ+ α1). (2.41)

Quadrupole field

The quadrupole field is crucial for description of stigmators. The magnetic scalar potential
Ψ2 and magnetic induction ~B2 is obtain from (2.29) and (2.30) for condition m = 2 as

Ψ(r, ϕ, z) =
∞∑
i=0

(−1)i
1

4i
2

i!(2 + i)!
ψ

(2i)
2 (z)r2i+2 cos(2ϕ+ α2) (2.42)

Br,2 = −µ0

∞∑
i=0

(−1)i
2i+ 2

4i
2

i!(2 + i)!
ψ

(2i)
2 (z)r2i+1 cos(2ϕ+ α2) (2.43)

Bϕ,2 = µ0

∞∑
i=0

(−1)i
2

4i
2

i!(2 + i)!
ψ

(2i)
2 (z)r2i+1 sin(2ϕ+ α2) (2.44)
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2.5. DEFLECTION OF ELECTRON BEAM

Bz,2 = −µ0

∞∑
i=0

(−1)i
1

4i
2

i!(2 + i)!
ψ

(2i+1)
2 (z)r2i+2 cos(2ϕ+ α2). (2.45)

The power series can be found in the book Electron optics by Peter W. Hawkes, and
Erwin Kasper [14] on pages 87-89.

2.5. Deflection of electron beam
Every kind of electron beam technology utilizes a deflection to a greater or lesser degree.
To achieve deflection of the electron beam, either transverse electrostatic or magnetic
fields is applied. The main focus is to achieve a lateral shift of the focused electron beam
spot (the electron probe) with as little disturbance as possible. The focused spot is moved
in a raster pattern over a specified area of a specimen or a screen. Prominent examples
are various electron and ion microscopes, electron lithographs, focused ion beam technol-
ogy, oscilloscope cathode-ray tubes, and television tubes. Furthermore, even instruments
with a fixed beam, such as transmission electron microscope, use the deflection for non-
mechanical alignment of the column. It is also necessary to use a deflection system for
electron-beam blanking. An exciting application is a scanning electron microscope, where
magnification is altered just by changing the scanned area of the sample. However, high
resolution is connected with small deflection angles and proximity of the pole pieces to
the sample (working distance) to minimize spherical and chromatic aberrations. For such
applications, the design of the deflection system is as essential as the design of the lenses
[14] p. 483-483.

2.5.1. Simplified deflection of electrons by constant field
Electrons accelerated by voltage U with the kinetic energy E = eU pass trough a uniform
electric field of a parallel-plate capacitor | ~E| = u/d, where ±u/2 is the bias and d is
distance between two plates, or trough a uniform magnetic field | ~B|, see Fig. 2.1. For small
angles of deflection γ is used γ = x/L because of sin γ ' tan γ ' γ. So, electrons pass
trough the uniform transverse fields of length h and they have a constant momentum
component pz = mv. Then Lorentz force ~F = d~p/dt acts on electrons and changes
its momentum component px during the time T = h/v as

px =

∫ T

0

Fx dt = e

∫ T

0

(Ex + vBy) dt = e

v

∫ h

0

(Ex + vBy) dz = eh (Ex/v +By) . (2.46)

The angle of deflection is than γ = |px| /pz and by using relativistic momentum as

p = mv = [2m0E (1 + E/2E0)]
1/2 . (2.47)

we receive for deflection by electric field

γ =
eh

mv2
Ex =

h

2d

u

U

1 + E/E0

1 + E/2E0

(2.48)

and for deflection by electric field

γ =
eh

mv
By =

ehBy

[2m0E (1 + E/2E0)]
1/2
, (2.49)
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2. THEORETICAL PART

where E0 = m0c
2. This approach is introduced by Ludwig Reimer in [12] p. 39.

Notice that the angle of magnetic deflection is inversely proportional to the square
root of the electron accelerating voltage. However, the angle in electrostatic deflection
is inversely proportional to the electron accelerating voltage. So, magnetic deflection is
preferred for high energies of particles. Moreover, magnetic deflectors can be used without
significantly increasing current for higher accelerating voltages difference. Electrostatic
deflectors need a high voltage supply, they take up more space, and they are limited by the
dielectric strength of the vacuum, around 3 kV/mm. Additionally, two capacitor plates
work like an ion vacuum pump, which causes additional noise. Nevertheless, electrostatic
deflectors are standard for oscilloscope displays because it is easier to scan at high fre-
quencies. Scanning with magnetic deflectors at high frequencies is limited by the large
inductance of the deflection coils.

Fig. 2.1: Deflection of the electron beam by electrostatic deflector. Adapted
from [12] p. 39.

2.6. Transmission electron microscope design
The TEM design can vary wildly depending on abilities (Scanning TEM, Low-voltage
electron microscope, Cryo-TEM, Environmental TEM, Aberration corrected TEM, and
Ultrafast and dynamic TEM) and manufacturer. The main components are summed up
below, and in Fig. 2.2 [15] p. 9.

• Electron source: It is a electrical device that creates a electron beam in the
vacuum. It is very important that the electron gun produce a very narrow electron
beam (high brightness) with a small difference in kinetic energy from 0.2 eV to 3 eV
to limit chromatic aberration. There are four main types of electron beam emission
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2.6. TRANSMISSION ELECTRON MICROSCOPE DESIGN

mechanisms: thermionic emission, Schottky effect field emission gun, field electron
emission, and photocathode.

• Accelerator: One or more anodes that accelerate electrons to the required energy.
The typical kinetic energy of the electron is from 60 keV to 300 keV nowadays.

• Electron lens: Is used an electric or magnetic field to focus an electron beam
by use of Lorentz force. The typical optical system uses several condenser lenses,
objective lenses, and projective lenses to focus the electron beam from the source
to the sample and then the image sample to the detector.

• Apertures: They are used to limit the diameter of the electron beam to suppress
the impact of optical aberrations as well as to lower the number of stray electrons
to decrease noise. However, too small apertures decrees electron current and limit
resolution because of the diffraction limit.

• Stigmators: They are used to correct optical aberration called astigmatism. Their
coils create quadrupole, hexapole, octupole, and higher magnetic fields, and they
create a much weaker field than magnetic lenses. Several stigmators are commonly
used at multiple positions to correct electron beam.

• Specimen region: A vacuum chamber where the sample where is located. The
sample is inserted via airlocks to mitigate vacuum deterioration inside of TEM.
The pressure around the sample is commonly better than 10−4 Pa, but more spe-
cialized microscopes can reach the specimen region pressure up to 102 Pa as it is
in the case of environmental TEM.

• Specimen holder: A mechanism, which holds the sample during a transport and
measurement. Movement is utilized in the x and y direction up to ±1 mm and
up to ±0.5 mm in the z-direction. For tomography measurement, it is possible to
tilt the sample up to ±70°. More advanced TEM utilizes heating or cooling of the
sample. A great afford focused on limiting the thermal shift of the sample during
measurement.

• Vacuum system: Sufficient vacuum level has to be reached in order to increase
the mean free path of the electrons. A high vacuum level is also required for various
working principles of the electron gun. Air is pumped with the help of vacuum
pumps in several stages because there is no vacuum pump that can effectively work
from the atmospheric pressure up to ultra-high vacuum. The first stage usually
consists of a rotary vane pump or diaphragm pump. In the next stage, the turbo-
molecular or diffusion pump reaches HV. For reaching UHV conditions, an ion pump
or a sorption pump is used.

• Detectors: The primary electrons of the electron beam interact with the sam-
ple. The interaction produces elastic and non-elastic scattered electrons, secondary
electrons, cathodoluminescence, or X-rays. Commonly used detectors are X-ray de-
tectors, CCD and CMOS cameras, fluorescent viewing screens, or electron energy
loss spectrometers.
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• Lens power supply: An indispensable part of the TEM design is very stable
current and voltage sources. The typical stability of the source is 10 ppm or better.

• Personal computer: Since the design of Tecnai TEM in 1998, the trend has
been to operate TEM with the remote control of the operator, and more and more
processes are being automated and controlled via personal computer. These benefits
lower acoustic vibration and thermal expansion caused by human presence.

Fig. 2.2: The design of the transition electron microscope and its main components
[15] p. 10.

2.7. Correction elements
”Like much else in real life, electron-optical systems are not perfect” - Handbook of Charged
Particle Optics [12] p. 601.

Literature distinguishes fundamental aberrations and parasitic aberrations. The spher-
ical aberration of perfectly round lenses represents fundamental aberrations. Misaligned
objectives lenses, magnetic inhomogeneities of the polepieces, thermal drift, misshaped
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polepieces, and misaligned deflectors or departure from rotational symmetry during ma-
chining in general causes astigmatism as well. They collectively represent parasitic aber-
rations. Various devices are deployed for the correction of optical aberration of electron-
optical systems. These devices include deflectors, stigmators, electrostatic mirrors, and
spherical and chromatic aberration correctors. [23] p. 601

2.7.1. Deflectors
Deflectors create a dipole electric or magnetic field to deflect charged particles. It is
crucial to position the sample close to the lens to keep the aberration influence low.
Hence, the deflectors are positioned upstream from the lens. An important application
for magnetic deflection coils is TEM to fine adjust the concentricity of electron-optical
elements. During the production and assembly of the microscope parts, the inevitable
mechanical misalignment of the optical elements occurs. This occurs not only due to
limited production accuracy but also due to the limited assembly accuracy of mechanical
parts. So, it is impossible to reach the required production precision for the concentricity
of elements by mechanical means. When an electron beam propagates from one optical
element to another, the coaxiality of the optical elements must be maintained, see Fig. 2.3
(a). This axial misalignment causes the electron beam to propagate asymmetrically off
the optical axis. Therefore, higher aberrations are observed. Nevertheless, manufacturers
found a solution in the form of magnetic deflectors. Pair of the magnetic deflector inX and
Y is placed between each optical element to maintain concentricity, see Fig. 2.3 (b). Thus,
mechanical imperfections are compensated, and optical aberrations are greatly reduced
cost-effectively. It is necessary to manufacture the deflection coils with high accuracy. To
deflect the electron beam in both X and Y direction, a set of two deflectors is used and
they are rotated 90° to each other. Magnetic deflectors are more commonly used due to
their stronger deflection force for electrons and lower aberrations. The most wildly used
magnetic defectors are summarized below.

Fig. 2.3: An optical system is suffering from the inevitable mechanical misalignment in
(a). The corrected optical system by sets of deflection coils in (b).
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Toroidal deflectors

The toroidal deflector consists of four coils and its wires are wounded in the plane, see
Fig. 2.4. Wires are wound on the rotationally symmetric magnetic form with respect to
the Z axis, and wires also lie in a plane together with the Z axis. The magnetic form
with coils has to be placed with respect to the optical axis of lenses. Wires supplying
current to the coils are supposed not to contribute to the deflection field by its magnetic
field. Otherwise, the quality of performance is worsened by additional aberrations due
to misalignment and inaccuracy of placement. All these factors make the manufacturing
process more challenging and expensive [14] p. 483-484.

Fig. 2.4: Toroidal deflector for one direction. It consists of four coils and opposite coils
lie in a plane. The half-angle is ϑ = π/3 rad.

Helmholtz coil deflectors

A Helmholtz coil is a device that produces a region with an almost uniform magnetic
field, i.e., ∂2B/∂z2 = 0. It is named after the German physicist Hermann von Helmholtz.
It consists of two identical circular coils (electromagnets) connected in series (both coils
carry an equal electric current I), and they are placed coaxially, Fig. 2.5. They both have
an equal amount of turns N , the radius R, and the distance between two coils is also R
to create as much homogeneous magnetic field between the coils as possible. Helmholtz
coil is a wildly used instrument to cancel the Earth’s magnetic field or other external
magnetic fields. The magnetic induction in the middle of two coils is given by [16]

B =

(
4

5

)3/2
µ0NI

R
, (2.50)

where µ0 is the vacuum permeability. An exciting application of this coil is in the form of
a double-focusing Helmholtz-coil spectrometer. It is a core-free spectrometer under de-
velopment with an expected momentum resolution of 0.3% [17]. Helmholtz coil deflectors
are considered to be a subset of general saddle coil deflectors. In today’s TEM, Helmholtz
coils are not used due to higher optical aberrations than the saddle coils.
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Fig. 2.5: (a): Helmholtz-coil diagram with a deflected electron beam. Flowing current
creates magnetic induction in the +X direction. Hence, the electron beam is deflected
in − (b): Cross-section of the Helmholtz coil with magnetic field lines. Note that the
magnetic field is almost uniform [19].

Saddle coil deflectors

Saddle-shaped coils are convenient for generating a magnetic field perpendicular to the
optical axis Z, see Fig 2.6. It consists of two identical coils which are bent on the cylinder.
Each part carries the same current I, and the current flows in the same direction in the
Z axis [14] p. 483-487. The current generates a magnetic induction at the origin in the X
direction. Such magnetic induction deflects the electron beam in the +Y direction. It is
crucial to design the saddle coil with optimum geometry. The saddle coil is almost always
designed with the full angle 2ϑ = 120° to nullify the hexapole field, which is responsible
for three-fold astigmatism. The problem of maximizing the uniformity of the magnetic
field around the origin was studied as well, and it was found to be 2ϑ = 120° and h/D = 2
[18]. The drawing with the dimensions of the saddle coil and with the core is in Fig. 2.7.
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Fig. 2.6: The geometry of the saddle deflection coil with the full angle 2ϑ, height h,
diameter D and current I.
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2.7. CORRECTION ELEMENTS

Fig. 2.7: Design of the saddle coil with its dimensions and ferrite core made of iron.
This design is used for simulation in EOD and COMSOL software to study the effect of
misalignment ε. Simulated for 10 Ampere-turns, h = 15 mm, D = 2R = 22 mm and
ϑ = π/3 rad.
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2.7.2. Stigmators
A stigmator is a device of electron microscopes for the correction of optical aberration
called astigmatism. Astigmatism limits the resolution of electron microscope [12] p. 32.
Therefore, almost all current electron microscopes correct astigmatism with stigmators to
improve the resolution. Depending on the number of electrodes, it creates an electrostatic
or magnetic quadrupole, hexapole, or octupole. The quadrupole stigmator creates a
quadrupole field perpendicular to the electron beam to reshape the elliptic cross-section
of the beam to the circular cross-section, see Fig 2.8. Thus, 2-fold astigmatism is corrected
[14] p. 859. The stigmators field is much weaker compared to the field of lenses. Only
one stigmator pair is usually used in the SEM, but TEM designs commonly use several
stigmator pairs.

Fig. 2.8: (a): An axial view of a quadrupole stigmator for correction of twofold astigma-
tism. Electric current I flows through a set of coils to generate a magnetic quadrupole.
Magnetic induction ~B acts on the electron beam, and the Lorenz force ~F reshapes the
electron beam from an elliptical shape to a circular shape. Therefore, astigmatism is
corrected. (b): Before astigmatism correction. (C): After astigmatism correction.
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3. Calculation methods
Novel methods for calculating multipole fields of the misaligned saddle coil are intro-

duced in this chapter. The most recent version 5.009 of EOD (Electron optical design)
software [21] does not include an option for calculating multipole fields of the misaligned
saddle coil, a misaligned multipole in general. Thus, the main effort is focused on devel-
oping mathematical methods that could calculate the multipole fields of the misaligned
saddle coil and be implemented in the EOD software as well. The three new meth-
ods are the infinite dipole method, the normalized Fourier series coefficients method and
the corrected multipole method. These new methods are then compared with results
obtained by the 3D finite element method (3D FEM) COMSOL Multiphysics [22] to val-
idate the new methods independently. The main advantage is in the saving of computa-
tional time. The computation time for the standard saddle coil is in the order of 100 s
for EOD. The standard computation time for the competitive method 3D FEM is 100 h
for COMSOL Multiphysics. So, time savings during an electron-optic development could
be enormous.

3.1. The infinite dipole method
Novel method∗ for calculation of the magnetic scalar potential Ψ(ϕ, r) of the misaligned,
infinitely long saddle coil is introduced in this section. The idea of this approach is
sometimes called the top-hat method, because the field of the infinite coil is then reduced
to the height h to approximate the real-size deflection coil. This method can be used
for fast approximation of multipoles fields due to the misalignment. The magnetic scalar
potential for an infinitely long dipole, see Fig. 3.1, can be described as

Ψ(ϕ, r) =
∞∑

m=0

ψa,m

( r
R

)m
cos(mϕ) +

∞∑
m=0

ψb,m

( r
R

)m
sin(mϕ) (3.1)

where r is a radial distance from the optical axis to the windings and radius R, ψa,m is a
reduced axial magnetic multipole potential for multipole of order m of radius R

ψa,m =
µ0M

2πRm

∫ b

a

cos(mϕ)NIfε(ϕ)dϕ, (3.2)

where µ0 is permeability of vacuum. If the coil is surrounded by magnetic material of
radius Rmat, the coefficient is M = 1 + (1 + R/Rmat)

2m. fε(ϕ) is azimuthal unit current
distribution of the misaligned saddle coil, see eq. (3.14), NI stands for number of ampere-
turns of the coil. Similarly, the ψb,m is a magnetic scalar potential for multipole of order
m

ψb,m =
µ0M

2πRm

∫ b

a

sin(mϕ)NIfε(ϕ)dϕ. (3.3)

ψa,m and ψb,m enable us to determinate all reduced axial field functions of the misaligned
saddle coil. The infinite dipole method is only approximation to the finite dipole.

∗Method proposed by Dr. Peter Tiemeijer and Dr. Ondřej Sháněl.
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Fig. 3.1: (a): An axial view of the saddle deflection coil with half-angle ϑε = π/3 rad with
the angle of misalignment ε and radius R. (b): Axial reduced dipole magnetic potential
ψa,1 of the deflection coil of height h for the infinite dipole method. It is an approximation
according to the top-hat method.

The magnetic scalar multipole potentials are thus calculated for the angle of misalign-
ment ε of the saddle coil and the coil winding half-angle ϑε = π/3 rad as

ψa,m =
µ0M

2πRm

[∫ π
3
+ε

−π
3
+ε

NI cos(mϕ)dϕ−
∫ 4π

3

2π
3

NI cos(mϕ)dϕ

]
. (3.4)

ψa,m =
µ0NIM

mπRm

{[
sinmϕ

]π
3
+ε

−π
3
+ε

−
[

sinmϕ
] 2π

3

4π
3

}
, (3.5)

ψa,m =
µ0NIM

mπRm

{
− 2 sin

m
(
+π

3
+ ε+ π

3
− ε
)

2
sin

m
(
−π

3
+ ε− π

3
− ε
)

2

− 2 sin
mπ 4−2

3

2
sin

mπ 4+2
3

2

}
,

ψa,m =
µ0NIM

mπRm

[
sin mπ

3
cosmε− sin mπ

3
cosmπ

]
, (3.6)

ψa,m =
µ0NIM

mπRm
sin mπ

3

[
cos(mε)− cos(mπ)

]
. (3.7)

Similarly, the Cb,m is calculated

ψb,m =
µ0M

2πRm

[∫ π
3
+ε

−π
3
+ε

NI sin(mϕ)dϕ−
∫ 4π

3

2π
3

NI sin(mϕ)dϕ

]
, (3.8)

ψb,m = −µ0NIM

2nπRm

{[
cosmϕ

]π
3
+ε

−π
3
+ε

−
[

cosmϕ
] 2π

3

4π
3

}
, (3.9)

ψb,m =
µ0NIM

2nπRm

{[
cosmϕ

]−π
3
+ε

π
3
+ε

−
[

cosmϕ
] 4π

3

2π
3

}
, (3.10)
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ψb,m =
µ0NIM

2mπRm

{
cos
(
m
(
− π

3
+ ε
))

− cos
(
m
(π
3
+ ε
))

+ cos
(
m
4π

3

)
− cos

(
m
2π

3

)}
,

(3.11)

ψb,m =
µ0NIM

2mπRm

{
− 2 sin

m
(
−π

3
+ ε+ π

3
+ ε
)

2
sin

m
(
−π

3
+ ε− π

3
− ε
)

2

− 2 sin
mπ 4+2

3

2
sin

mπ 4−2
3

2

}
,

ψb,m =
µ0NIM

2mπRm

{
−2 sin(mε) sin

(
−mπ

3

)
− 2 sin(mπ) sin

(
m
π

3

)}
, (3.12)

ψb,m =
µ0NIM

mπRm
sin mπ

3
sin(mε). (3.13)

3.2. The normalized Fourier series coefficients method
Newly developed normalized Fourier series coefficients method enables us to calculate all
reduced axial magnetic multipole potential functions for the misaligned saddle coil. The
problem of the misaligned deflection coil is reduced to the sum of fields of perfect multipole,
for which there are already known solutions. The normalized Fourier series coefficients
method consists of calculation of the Fourier series coefficients of current unit I of the
angular distribution of the excitation for the asymmetrical saddle coil, see Fig. 3.2 (b).
The normalization of the Fourier series coefficients has to be carried out as well. Normal-
ized Fourier series coefficients are used to find out the correct value for all reduced axial
magnetic multipole potential functions for misaligned saddle coil. The method for ana-
lytical and numerical computation of multipole components of a perfectly aligned saddle
coil is published by prof. Lencová in [20]. This method is implemented in the EOD [21]
software and is used to calculate axial field functions of perfect general multipole ψm,p

for Normalized Fourier series coefficients method. Therefore, the misaligned deflection
coil problem is reduced on the group of previously solved problems.

Let us define an angular distribution of the unit excitation for the saddle coil fε(ϕ)
with the half-angle ϑε and the angle of misalignment ε on the interval [0, 2π] as follow

fε(ϕ) =


1 ϕ ∈ [0, ϑε + ε) ,
0 ϕ ∈ [ϑε + ε, π − ϑε) ,

−1 ϕ ∈ [π − ϑε, π + ϑε) ,
0 ϕ ∈ [π + ϑε, 2π − ϑε + ε) ,
1 ϕ ∈ [2π − ϑε + ε, 2π] .

(3.14)

The positive +1 and negative −1 value denotes direction of unit current flow in Fig. 3.2 (b)
and Fig. 3.3.
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Fig. 3.2: (a): The geometry of the saddle deflection coil. (b): An axial view of the
saddle deflection coil with the angle of misalignment ε. The direction of the current flow
I. (c) - (f): Perfectly aligned multipoles of order m to generate reduced axial magnetic
potentials ψm,p, which are used to approximate the multipole fields of misaligned dipole
in (b).
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Fig. 3.3: A plot of the function fε(ϕ) from eq. (3.14). A visualization of the unit current
distribution for the misaligned saddle coil.

Angular excitation fε(ϕ) can be written in the form of Fourier series defined in the
sine-cosine form, [25] p. 11, with a period P as

fε(ϕ) =
A0

2
+

∞∑
m=1

[
Am cos

(2π
P
mϕ
)
+Bm sin

(2π
P
mϕ
)]

(3.15)

and its Fourier coefficients are given by

A0 =
2

P

∫ ϕ0+P

ϕ0

fε(ϕ) dϕ, (3.16)

Am =
2

P

∫ ϕ0+P

ϕ0

fε(ϕ) cos
(2π
P
mϕ
)
dϕ, (3.17)

Bm =
2

P

∫ ϕ0+P

ϕ0

fε(ϕ) sin
(2π
P
mϕ
)
dϕ. (3.18)

Let us consider the angular distribution of the excitation fε(ϕ) with the period P = 2π rad,
the half-angle ϑε = π/3 rad and the angle of misalignment of the saddle coil ε in Fig. 3.2 (b).
Then Fourier series coefficient A0 is

A0 =
1

π

∫ 2π

0

fε(ϕ) dϕ = 0, (3.19)

because multipole does not hold a focusing property, A0 is always zero for multipole.
The Fourier series coefficient Am is

Am =
1

π

[ ∫ π
3
+ε

−π
3
+ε

+1 · cos
(
mϕ
)
dϕ+

∫ 4π
3

2π
3

−1 · cos
(
mϕ
)
dϕ
]
, (3.20)

Am =
2

mπ
sin mπ

3

[
cos(mε)− cos(mπ)

]
. (3.21)
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Similarly, the Bm is calculated

Bm =
1

π

[∫ π
3
+ε

−π
3
+ε

+1 · sin(mϕ)dϕ+

∫ 4π
3

2π
3

−1 · sin(mϕ)dϕ

]
, (3.22)

Bm =
2

mπ
sin mπ

3
sin(mε). (3.23)

The calculation of the Fourier series coefficients Am and Bm is greatly inspired by the
infinite dipole method in section 3.1. Results for Fourier series coefficients Am, Bm are
in Fig. 3.4.

Fig. 3.4: (a): Fourier series coefficients for calculating dipole fields of the misaligned saddle
coil. (b): Fourier series coefficients for calculating quadrupole fields of the misaligned
saddle coil. It is calculated for the half-angle ϑε = π/3 rad and the misalignment angle ε.

The multipole components of the reduced axial magnetic potential of the misaligned
saddle coil are calculated as

ψm,cos(z) =
Amψm,p(z)

A1(ε = 0)
(3.24)

and
ψm,sin(z) =

Bmψm,p(z)

A1(ε = 0)
, (3.25)

where ψm,p(z) is the reduced axial magnetic potential of the perfectly aligned multipole
of order m with the half-angle ϑm = π/(3m) rad and with an equal amount of ampere-
turns as for the misaligned dipole. Diameter D and height h of the added multipoles stay
the same as well as it is for the original misaligned saddle coil. The reduced axial magnetic
potential ψm,p(z) for a perfectly aligned multipole of order m and with the corresponding
half-angle ϑm can be calculated with EOD software.

The angle of rotation αm between ψm,cos(z) and ψm,sin(z) is αm = π/(2m) rad, see
Fig 3.2. Therefore, no rotation of the fields ψm,cos is needed. The field ψm,sin has to be
rotated by angle αm in EOD software. Eq. (3.26) and eq. (3.27) produce no magnetic
hexapole for m = 3, i.e., no three-fold astigmatism is produced because no such effect
is observed for the half-angle ϑ = π/3 rad of the saddle coil and even with the nonzero
misalignment angle ε.
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Instead of multiplying the reduced axial potentials ψm,p(z) by normalized Fourier series
coefficients, it is possible to apply it on the current I of the perfectly aligned multipoles,
see Fig. 3.2: (c) - (f), as

Im,cos =
AmI

A1(ε = 0)
(3.26)

and
Im,sin =

BmI

A1(ε = 0)
. (3.27)

Currents Im,cos and Im,sin are used for to calculate the multipole components of the reduced
axial magnetic potential of the misaligned saddle coil.

3.3. The corrected multipole method
New corrected multipole method is introduced for the multipole expansion of the angular
distribution of the excitation of the saddle coil with broken symmetry for simplification
of calculation of the magnetic field in the program for the design of electron microscopes
EOD [21]. The corrected multipole method replaces the asymmetric angular distribution
of the excitation of the saddle coil with infinitely many multipoles with a perfectly sym-
metric angular distribution of the excitation as in Fig. 3.5. The number of ampere-turns
of the symmetrical multipoles is the same as for the asymmetric saddle coil. Diameter D
and height h, see Fig. 3.2 (a), of the added multipoles stay the same as well as it is for the
original misaligned saddle coil. Thus, the original magnetic field of the asymmetric saddle
coil is replaced with the sum of magnetic fields of infinitely many symmetrical multipoles.
No hexapole field is created by perfect dipole for the the half-angle ϑε = π/3 rad and as
well as for the misaligned dipole. And higher multipoles are usually irrelevant.

The Fourier series approach is often helpful because it can be truncated, i.e., only the
first few terms need to be used to approximate the original function. Moreover, it is also
essential in our case that only the first few multipoles (dipoles, quadrupoles) have to be
used for a good approximation of the original asymmetrical dipole.

Let us define an angular distribution of the excitation of the perfectly aligned saddle
coil for dipole (m = 1) with half-angle ϑ1, see Fig. 3.6, as

f1(ϕ) =


1 ϕ ∈ [0, ϑ1) ,
0 ϕ ∈ [ϑ1, π − ϑ1) ,

−1 ϕ ∈ [π − ϑ1, π + ϑ1) ,
0 ϕ ∈ [π + ϑ1, 2π − ϑ1) ,
1 ϕ ∈ [2π − ϑ1, 2π] .

(3.28)
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Fig. 3.5: (a): The angular distribution of the excitation for the asymmetrical saddle coil
with half-angle ϑε and angle of misalignment ε from eq. (3.6). This asymmetrical saddle
coil is approximated by perfectly symmetric angular distributions of two dipoles in (b).
The cosine part f1 of the angular distribution is marked with black stripes and the sine
part f1 with gray stripes. The angle between the sine and cosine dipole parts is α1 = π/2
rad. In (c), there is the symmetric angular distribution of two quadrupoles from eq. (3.7).
The sine part f2 of the angular distribution is marked with black stripes, and the sine
part f2 with gray stripes. The angle between the sine and cosine dipole quadrupole parts
is α2 = π/4 rad. The goal is to find the half-angles ϑm,cos and ϑm,sin.

Fig. 3.6: A plot of the function f1(ϕ) from eq. (3.28). A visualization of the unit current
distribution for the perfectly aligned saddle deflection coil with the half-angle ϑ1.
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Angular distribution of the excitation of the perfectly aligned quadrupole (m = 2)
with a half-angle ϑ2 , see Fig. 3.7, is defined as

f2(ϕ) =



1 ϕ ∈ [0, ϑ2) ,
0 ϕ ∈ [ϑ2, π/2− ϑ2) ,

−1 ϕ ∈ [π/2− ϑ2, π/2 + ϑ2) ,
0 ϕ ∈ [π/2 + ϑ2, π − ϑ2) ,
1 ϕ ∈ [π − ϑ2, π + ϑ2) ,
0 ϕ ∈ [π/2 + ϑ2, 3π/2− ϑ2) ,

−1 ϕ ∈ [3π/2− ϑ2, 3π/2 + ϑ2) ,
0 ϕ ∈ [3π/2 + ϑ2, 2π − ϑ2) ,
1 ϕ ∈ [2π − ϑ2, 2π] .

(3.29)

Fig. 3.7: A plot of the function f2(ϕ) from (3.29). A visualization of the unit current
distribution of the perfectly aligned quadrupole (m = 2) with the half-angle ϑ2.

Similarly, the hexapole and octupole angular distribution of the excitation could be
defined. The general function fm(ϕ) of unit current distribution for multipole of order m
with the half-angle ϑm is

fm(ϕ) =
2m∑
k=0

(−1)kχ[ kπ
m

−ϑm; kπ
m

+ϑm], (3.30)

where χI : X → {0, 1} is the indicator function of a subset I of a set X defined as

χI(ϕ) :=

{
1 if ϕ ∈ I,

0 if ϕ /∈ I.
(3.31)

The general multipole fm(ϕ) can be also defined as

fm =
2m∑
k=0

(−1)kH

(
ϕ−

(
kπ

m
− θm

))
H

(
kπ

m
+ θm − ϕ

)
, (3.32)
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where H(ϕ) is the Heaviside step function defined as

H(ϕ) :=

{
1, ϕ > 0

0, ϕ ≤ 0
. (3.33)

Now, the goal is to approximate the original angular distribution of the excitation of
the misaligned saddle coil with the half-angle ϑε = π/3 rad and the angle of misalignment
ε by perfectly aligned multipoles with angular distributions of the excitation with the half
angles ϑm as in Fig. 3.5. Therefore, half-angles ϑm,cos and ϑm,sin must be found.

3.3.1. Numerical solution
The half angles of multipoles ϑm,cos and ϑm,sin are calculated by equalization of Fourier
series coefficients Am and Bm, eq. (3.17) and (3.18), for fε(ϕ) and for Fourier series
coefficients am of the particular multipole such as f1(ϕ) and f2(ϕ) or generally fm(ϕ) as

Am = am, (3.34)

Bm = am. (3.35)

Coefficient bm could be used instead of am in eq. (3.35) as well, but only if the multipole
fm(ϕ) is rotated.

The equations (3.34) and (3.35) can be rewritten∫ 2π

0

fε(ϕ) cos(mϕ) dϕ =

∫ 2π

0

fm(ϕ) cos(mϕ) dϕ, (3.36)

∫ 2π

0

fε(ϕ) sin(mϕ) dϕ =

∫ 2π

0

fm(ϕ) cos(mϕ) dϕ. (3.37)

Equations (3.36) and (3.37) can be solved for ϑm,cos and ϑm,sin by use of numerical
method such as the bisection method.

3.3.2. Analytical solution
The corrected multipole method can be also solved analytically to find the particular half-
angle ϑm,cos and ϑm,sin. Let us calculate the Fourier series coefficients of general symmetric
multipole fm(ϕ), eq. (3.30), with a period P = 2π. The 0th coefficient is

am,0 =
1

π

∫ 2π

0

fm(ϕ)dϕ =
1

π

∫ 2π

0

2m∑
k=0

(−1)kχ[ kπ
m

−ϑm; kπ
m

+ϑm]dϕ = 0, (3.38)

where m signifies the mth order of multipole function fm(ϕ) and zero index signifies the
0th coefficients of the Fourier series. am,l signifies the mth order of multipole function
fm(ϕ) and l signifies the lth coefficients of the Fourier series as

am,l =
1

π

∫ 2π

0

fm(ϕ) cos(lϕ)dϕ =
1

π

∫ 2π

0

2m∑
k=0

(−1)kχ[ kπ
m

−ϑm; kπ
m

+ϑm] cos(lϕ)dϕ (3.39)
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=
1

π

2m∑
k=0

∫ 2π

0

(−1)kχ[ kπ
m

−ϑm; kπ
m

+ϑm] cos(lϕ)dϕ (3.40)

=
1

π

2m∑
k=0

∫ min{2π, kπ
m

+ϑm}

max{0, kπ
m

−ϑm}
(−1)k cos(lϕ)dϕ (3.41)

=
1

πl

{
sin(lϑm)− sin

[
l(2π−ϑm)

]
+

2m−1∑
k=0

(−1)k
[

sin
(
l
(kπ
m

+ϑm

))
− sin

(
l
(kπ
m

−ϑm

))]}
(3.42)

=
2

πl

[
sin(lϑm) +

2m−1∑
k=0

(−1)k cos
(kπl
m

)
sin(lϑm)

]
. (3.43)

am,l =
2

πl

2m∑
k=0

(−1)k cos
(kπl
m

)
sin(lϑm). (3.44)

Similarly for the sine part

bm,l =
1

π

∫ 2π

0

fm(ϕ) sin(lϕ)dϕ =
1

π

∫ 2π

0

2m∑
k=0

(−1)kχ[ kπ
m

−ϑm; kπ
m

+ϑm] sin(lϕ)dϕ = 0. (3.45)

bm,l is equal to zero, because fm(ϕ) is an even function.
To replace the original misaligned saddle coil winding with symmetrical multipoles to

create the same magnetic field, corresponding Fourier series coefficients has to be equal.
We are interested only in lth coefficients of the Fourier series of the mth order of multipole
function fm(ϕ), so m = l. Am is the Fourier series coefficient of fε(ϕ), eq. (3.14). For
ϑm,cos from eq. (3.22) and eq. (3.44)

Am = am,l, (3.46)

for m = l

2

mπ
sin mπ

3

[
cos(mε)− cos(mπ)

]
=

2

mπ

2m∑
k=0

(−1)k cos
(kπm
m

)
sin(mϑm,cos), (3.47)

ϑm,cos =
1

m
arcsin

(
sin mπ

3

[
cos(mε)− cos(mπ)

]∑2m
k=0(−1)k cos(kπ)

)
for − π

2
≤ ϑm,cos ≤

π

2
. (3.48)

For ϑm,sin from eq. (3.23) and eq. (3.44)

Bm = am,l, (3.49)

for m = l
2

mπ
sin mπ

3
sin(mε) = 2

mπ

2m∑
k=0

(−1)k cos
(kπm
m

)
sin(mϑm,sin), (3.50)

ϑm,sin =
1

m
arcsin

(
sin mπ

3
sin(mε)∑2m

k=0(−1)k cos(kπ)

)
for − π

2
≤ ϑm,sin ≤ π

2
. (3.51)
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Equations (3.48) and (3.51) are valid for the half-angle ϑε = π/3 rad of the misaligned
saddle coil. The solutions for half-angles ϑm can be seen in Fig. 3.8.

Fig. 3.8: Analytically calculated half-angles ϑm by the corrected multipole method for
the misaligned saddle coil with half-angle ϑε = π/3 rad and the angle of misalignment ε
from eq. (3.48) and (3.51).

Thus, the original multipole magnetic field of the misaligned dipole, which is generated
by the angular distribution of the excitation of the saddle coil with broken symmetry fε, is
approximated for m = 1 by two magnetic fields of dipoles rotated by π/2 rad against each
other. Their magnetic field is generated by the angular distributions of the excitation of
the saddle coils with half-angles ϑ1,cos and ϑ1,sin. To approximate further, the magnetic
field of quadrupoles m = 2 generated by fε quadrupoles with the angular distribution
of the excitation with half-angles ϑ2,cos and ϑ2,sin need to be added. Quadrupoles are
rotated by π/4 rad against each other. For m = 3 and ϑε = π/3 rad, half-angles are
ϑ2,cos = 0 rad and ϑ2,sin = 0 rad. No hexapole fields are created by the misaligned dipole
for the half-angle ϑε = π/3 rad. For even more precise approximation m = 4, octupoles
with half-angles ϑ4,cos, ϑ4,sin can be added. Multipoles of order m are always rotated by
π/(2m) rad against each other.

Then, the half-angles of multipoles ϑ1,cos, ϑ1,sin, ϑ2,cos, ϑ2,sin can be used to calculate
magnetic multipoles in the EOD software to approximate the original magnetic multipole
fields of the misaligned saddle coil. However, it is possible that replacing the original
asymmetric windings with several and even infinitely many symmetrical windings will
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produce its own parasitic multipoles magnetic fields. For example, if dipole’s half-angle
is not ϑ1,cos = π/3 rad, additional hexapole and decapole is generated. If quadrupole’s
half-angle is not ϑ2,cos = π/6 rad, additional dodecapole is generated. However, they are
negligible compared to the magnetic dipoles and quadrupoles produced by the asymmetric
winding, which are of primary interest in the first place.

3.4. 2D and 3D finite element method
The 3D finite element method simulations were carried out to quantitatively as well as
qualitatively confirm multipole fields of misaligned saddle coil for methods mentioned
in the Section 3.2 and 3.3. The 3D solution of the field was computed in the software
COMSOL Multiphysics version 5.4 with AC/DC module. There are some disadvantages
of 3D simulation compared to 2D simulation. Rather, sizeable random-access memory is
needed, and the computational time is usually substantially longer. Therefore, the mesh
is not as dense as the 2D simulation, and the relative accuracy is lower. Few aspects of
2D and 3D simulation are summed up in Table 3.1. A model of the saddle deflection with
the iron core in Fig. 3.9. The magnetic induction ~B of the misaligned saddle coil was
exported from COMSOL to EOD software. The magnetic induction ~B was accurately
interpolated by use of REAF [24]. The interpolation method interpolates all multipole
components up to order m = 8 as well as calculates corresponding reduced axial magnetic
potentials. The dimensions of the misaligned saddle coil can be found in Fig. 2.7.

Table 3.1: A comparison of 2D and 3D simulations.
2D FEM computation 3D FEM computation

Software EOD COMSOL
Finite element method First order Second order
Computational time ~8 s ~10 min
Relative accuracy up to 10−16 10−9

Number of mesh elements ~0.4 milion ~3 milion
Minimum used element size 0.02 mm 0.33 mm
RAM requirements ~50 MB ~30 GB
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Fig. 3.9: (a): A representation of the saddle deflection coil with a cross section of the iron
core in the COMSOL Multiphysics software. Dimensions corresponds to Fig. 2.7. (b): A
visualization of the mesh elements.

The CAD design of the saddle coil and with the core from the EOD software is
in Fig. 3.10.

Fig. 3.10: CAD design of the saddle deflection coil from EOD software from Fig. 2.7.
Saddle coil in red, iron core in black.

The material of the core is set to be a general iron. For linear computation (no satu-
ration effect of magnetic material) is relative permeability µr = 2500. For nonlinear com-
putation (with saturation of magnetic material) is the magnetization curve in Fig. 3.11.
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Fig. 3.11: The magnetization curve of general iron used for calculation in EOD software.

Dirichlet boundary condition was used for calculation of multipoles in EOD. Magnetic
insulator, ~n× ~A = 0, is the boundary condition for COMSOL simulations. ~n is the normal
vector to the boundary and ~A is magnetic vector potential.

No significant difference between materials such as general iron and permendur was
found for the standard deflection system with a core for 10 At. The relative difference for
the maximum of the reduced axial magnetic potential was found to be less than 0.05 %. No
significant difference was found for the core lengths either. The relative difference between
the core length 6h and 2h for the maximum of the reduced axial magnetic potential was
found to be less than 0.02 %. So, the length of the saddle coil core was chosen to be 2h.
No significant saturation effect of the coil core material was found for the ampere-turn
10 At. The relative difference between the linear computation (no saturation of magnetic
materials) and the non-linear computation (with a saturation of the magnetic material)
in the maximum of the reduced axial magnetic potential was found to be less than 0.01 %.
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4. Results of simulations
This chapter deals with comparing multipole reduced axial magnetic potentials of

the misaligned saddle deflection with decency on the angle of misalignment ε. It shows the
results of implementing the normalized Fourier series coefficients method and the corrected
multipole method to 2D FEM solutions of EOD software. The 3D FEM solutions are
shown as well. All simulations were carried out for the EOD saddle coil design in Fig. 3.10
and its closest representation in Comsol Multiphysics software in Fig. 2.7. The half-angle
of the saddle coil is set to be ϑε = π/3 rad and 10 At.

4.1. The perfect saddle coil
First, it is essential to compare the results of 2D and 3D FEM for the perfect ε = 0 rad
saddle coil, see Fig. 4.1. Although the reduced dipole axial magnetic potential ψ1,cos
does not equal for all points on the Z axis, the difference is considered negligible. It
is interesting to point out that the percentage difference is under 10 % for Z axis from
-15 mm to +15 mm. That corresponds to the length of the iron core. These results are
an important benchmark for comparing multipole fields caused by the misalignment.

Fig. 4.1: On the left: The reduced dipole axial magnetic potential ψ1,cos(z) for the 2D
FEM EOD, the 3D FEM Comsol Multiphysics, and the infinite dipole method for the
perfect saddle deflection coil. On the right: The percentage difference between the two.

4.2. Misaligned saddle coil
The values for the misalignment angle are set to be in the range of ε = ±5°. This range
is sufficient to compare the behavior of multipole fields from the manufacturing point of
view because standard manufacturing precision is usually ε = ±2°. The question of how
to quantitatively compare multipole fields for each method now arises. Three approaches
were chosen: plotting reduced multipole axial magnetic potentials for each method for ε =
2°, comparing values of global extrema of reduced multipole axial magnetic potentials, and
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comparing the total area under the curve of reduced multipole axial magnetic potential
for each method for varying angle of misalignment ε.

4.2.1. Dipole cosine field
The reduced dipole axial magnetic potential ψ1,cos varies only slightly for change in the mis-
alignment angle ε, see Fig 4.2. The normalized Fourier series coefficients method and
the corrected multipole method show the same results. The 3D FEM Comsol method
exhibit excellent correspondence with 2D models, and it argues in favor of the validity
of 2D models for ψ1,cos. The percentage difference between the 2D and the 3D FEM is
under 1 % for global extrema and under 3 % for the area under the curve, see Fig 4.3.

Fig. 4.2: On the left: Global extrema of reduced dipole axial magnetic potential ψ1,cos(ε)
for the normalized Fourier series coefficients method, the corrected multipole method, and
3D FEM Comsol Multiphysics with dependence on the angle of misalignment ε. On the
right: The percentage difference between the methods.
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Fig. 4.3: On the left: The integral value of reduced dipole axial magnetic potential ψ1,cos(ε)
for the normalized Fourier series coefficients method, the corrected multipole method, and
the 3D FEM Comsol Multiphysics with a dependence on the angle of misalignment ε.
On the right: The percentage difference between the methods.

4.2.2. Dipole sine field
If the angle of misalignment ε is non-zero, the deflection dipole sine field ψ1,sin arises to
the existence, and it is perpendicular to the original dipole cosine field ψ1,cos, see Fig 4.4.
Reduced dipole axial magnetic potential ψ1,sin expresses an effect that the magnitude of
the field is linearly dependent on the angle of misalignment ε for sin ε ≈ ε. However, it
is approximately three orders of magnitude lower compared to the main deflection field
ψ1,cos for ε = ±2°. The 3D FEM Comsol method appears to be saying that although
2D models vary slightly, results ultimately claim the validity of 2D models for ψ1,sin.
The percentage difference between the 2D and 3D FEM is under 1 % for global extrema,
see Fig 4.6, and under 3 % for the area under the curve, see Fig 4.7. The normalized
Fourier series coefficients method and the corrected multipole method present the same
results, see Fig 4.5.
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Fig. 4.4: On the left: Reduced dipole axial magnetic potential ψ1,sin(z) for the nor-
malized Fourier series coefficients method with a dependence on the angle of mis-
alignment ε ∈ {5°, 4°, 3°, 2°, 1°, 0°,−1°,−2°,−3°,−4°,−5°}. On the right: Visualiza-
tion of ψ1,sin(z, ε).

Fig. 4.5: On the left: The reduced dipole axial magnetic potential ψ1,sin(z) for the nor-
malized Fourier series coefficients method, the corrected multipole method, the 3D FEM
Comsol Multiphysics, and the infinite dipole method for the angle of misalignment ε = 2°.
On the right: The percentage difference between the methods.

36



4. RESULTS OF SIMULATIONS

Fig. 4.6: On the left: Global extrema of the reduced dipole axial magnetic potential
ψ1,sin(z) for the normalized Fourier series coefficients method, the corrected multipole
method, and the 3D FEM Comsol Multiphysics with a dependence on the angle of mis-
alignment ε. On the right: The percentage difference between the methods.

Fig. 4.7: On the left: Integral values of reduced dipole axial magnetic potential ψ1,sin(z)
for the normalized Fourier series coefficients method, the corrected multipole method,
and the 3D FEM Comsol Multiphysics with dependence on the angle of misalignment ε.
On the right: The percentage difference between the methods.

4.2.3. Quadrupole cosine field
The quadrupole cosine field shows that the reduced quadrupole axial magnetic potential
ψ2,cos comes into effect for the non-zero value of ε. It provides excellent examples of me-
chanical misalignment causing 2-fold astigmatism, see Fig 4.8. Underlying quadrupole
cosine field’s argument appears to be the fact that ψ2,cos is negative, and it does in-
crease approximately quadratically for ε = ±5°. The normalized Fourier series coeffi-
cients method and the corrected multipole method presents the same results, see Fig 4.9.
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The cardinal issue for the 3D FEM Comsol method appears to be the relative accuracy
of 10−9. So, it is only one order of magnitude above the values of ψ2,cos, see Fig 4.9.
However, the 3D FEM Comsol method approves the validity of the normalized Fourier
series coefficients method and the corrected multipole method. The percentage difference
between the 2D and 3D FEM is under 3 % for global extrema, see Fig 4.10, and under 5 %
for area under the curve, see Fig 4.11. Both see an increase in the percentage difference
around zero misalignment due to the relative accuracy of only 10−9 of the 3D FEM.

Fig. 4.8: On the left: The reduced quadrupole axial magnetic potential ψ2,cos(z) for
the normalized Fourier series coefficients method with a dependence on the angle of
misalignment ε ∈ {5°, 4°, 3°, 2°, 1°, 0°,−1°,−2°,−3°,−4°,−5°}. On the right: Visualiza-
tion of ψ2,cos(z, ε).

Fig. 4.9: On the left: Reduced quadrupole magnetic potential ψ2,cos(z) for the normalized
Fourier series coefficients method with a dependence on the angle of misalignment ε = 2°.
On the right: Visualization of ψ2,cos(z, ε).
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Fig. 4.10: On the left: Global extrema of reduced quadrupole axial magnetic potential
ψ2,cos(z) for the normalized Fourier series coefficients method, the corrected multipole
method, and the 3D FEM Comsol Multiphysics with a dependence on the angle of mis-
alignment ε. On the right: The percentage difference between the methods.

Fig. 4.11: On the left: Integral values of reduced quadrupole axial magnetic potential
ψ2,cos(z) for the normalized Fourier series coefficients method, the corrected multipole
method, and the 3D FEM Comsol Multiphysics with a dependence on the angle of mis-
alignment ε. On the right: The percentage difference between the methods.

4.2.4. Quadrupole sine field
The quadrupole sine field puts arguments forward that the reduced quadrupole axial
magnetic potential ψ2,sin is linearly increasing for sin ε ≈ ε and is approximately one
order of magnitude higher than ψ2,cos. Ultimately, the quadrupole sine field appears to
be the predominant cause of the 2-fold astigmatism for ε ± 2°. The normalized Fourier
series coefficients method and the corrected multipole method present the same results,
see Fig 4.12. The 3D FEM Comsol method approves the validity of the normalized Fourier
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series coefficients method and the corrected multipole method. The percentage difference
between the 2D and 3D FEM is under 0.5 % for global extrema, see Fig 4.14, and under
0.25 % for area under the curve, see Fig 4.15.

Fig. 4.12: On the left: The reduced quadrupole magnetic potential ψ2,sin(z) for the normal-
ized Fourier series coefficients method with dependence on the angle of misalignment ε ∈
{5°, 4°, 3°, 2°, 1°, 0°,−1°,−2°,−3°,−4°,−5°}. On the right: Visualization of ψ2,cos(z, ε).

Fig. 4.13: On the left: Reduced quadrupole axial magnetic potential ψ2,sin(z) for the nor-
malized Fourier series coefficients method, the corrected multipole method, the 3D FEM
Comsol Multiphysics, and the infinite dipole method for the angle of misalignment ε = 2°.
On the right: Visualization of ψ2,sin(z, ε).
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Fig. 4.14: On the left: Global extrema of reduced quadrupole axial magnetic potential
ψ2,sin(z) for the normalized Fourier series coefficients method, the corrected multipole
method, and the 3D FEM Comsol Multiphysics with dependence on the angle of mis-
alignment ε. On the right: The percentage difference between the methods.

Fig. 4.15: On the left: Integral values of reduced quadrupole axial magnetic potential
ψ2,cos(z) for the normalized Fourier series coefficients method, the corrected multipole
method, and the 3D FEM Comsol Multiphysics with dependence on the angle of mis-
alignment ε. On the right: The percentage difference between the methods.
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5. Experiment
Experiment and EOD simulations were conducted for Tecnai TF20 Super Twin for the

beam deflection coils in Fig. 5.1. Experiment and EOD simulations were performed by Dr.
Ondřej L. Sháněl due to my limited access to the TEM at the R&D department of Thermo
Fisher Scientific. The micro-CT scans were employed to precisely and non-destructively
measure the misalignment angles of the deflection coils, see Fig. 5.2 and 5.3. Micro-CT
scans were performed by Ing. František Zelenka. Subsequently, the misalignment angle
ε and the varying half-angles were measured for all deflectors. The limited structural
integrity of the winding and cracks in-between are observed. The values for upper and
lower deflectors are summarized in Tab. 5.1 and 5.2. A disturbing fact is that the winding
full-angles are not 120◦ or within the range of specified manufacturing inaccuracy ±2◦

and each half of the saddle coil windings has a different size. This will probably lead to
parasitic 3-fold astigmatism. Nevertheless, it is assumed that all half-angles are ϑε = 60◦

in simulations. So, the news calculation methods can be used.

Fig. 5.1: A scheme of the electron-optical system of TEM Tecnai TF20 Super Twin used
in the experiment. (a): First, the 2-fold astigmatism is minimized by stigmators. No cur-
rent flows through the deflectors, the electron beam is not deflected. (b): OnlyX deflectors
are used to deflect the electron beam to the front focal point (FFP) of the objective lens.
Thus, the electron beam is shifted and propagates perpendicularly to the sample. The 2-
fold astigmatism of the misaligned X deflectors is observed. The deflection system is
represented by its image from the X-ray micro-tomography (micro-CT).

The Tecnai system was fully calibrated according to standard alignment procedure
(accuracy for shift <1.5 % of the nominal value). The 2-fold astigmatism was calibrated
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via stigmator current and readout of the condenser astigmatism on the ronchigram. Then,
beam shift 1 µm by X-deflector was performed. So, only X-deflectors were used. Astigma-
tism measurement for the shifted beam was read out via the change of condenser stigmator
current.

Fig. 5.2: (a): Micro-CT cross-section of the upper saddle coil deflectors. Full-angles of
the X (green color) deflectors are 2vupper,X = 115.3± 0.3◦ and 2wupper,X = 119.2± 0.3◦.
Full-angles of the Y (blue color) deflectors are 2vupper,Y = 121.2 ± 0.3◦ and
2wupper,Y = 119.9 ± 0.3◦. (b): Micro-CT of the upper saddle coil deflectors. (c):
Micro-CT cross-section of the upper saddle coil deflectors to measure the misalignment
angles ε. Some dimensions of the deflection system are not mentioned due to the company
secret policy.

Table 5.1: Angles of the misaligned upper saddle coils
Upper X deflector Upper Y deflector

Misalignment angle ε εupper,X = −1.7± 0.2◦ εupper,Y = −1.7± 0.2◦

Half-angle v vupper,X = 57.65± 0.15◦ vupper,Y = 60.60± 0.15◦

Half-angle w wupper,X = 59.60± 0.15◦ wupper,Y = 59.95± 0.15◦

Table 5.2: Angles of the misaligned lower saddle coils
Lower X deflector Lower Y deflector

Misalignment angle ε εlower,X = −0.6± 0.2◦ εlower,Y = −1.3± 0.2◦

Half-angle v vlower,X = 58.95± 0.15◦ vlower,Y = 60.5± 0.15◦

Half-angle w wlower,X = 59.5± 0.15◦ wlower,Y = 60.8± 0.15◦

Simulations were performed in EOD 5.010. At first, only the deflection by the ideal
deflectors was simulated. Then, additional fields simulating the non-ideal beam deflection
coils system (both upper and lower) were introduced according to measured data from
the micro-CT tomogram and their field representation in the corrected multipole method

43



Fig. 5.3: (a): Micro-CT cross-section of the lower saddle coil deflectors. Full-angles of the
X (green color) deflectors are 2vlower,X = 117.9 ± 0.3◦ and 2wlower,X = 119.0 ± 0.3◦.
Full-angles of the Y (blue color) deflectors are 2vlower,Y = 121.0 ± 0.3◦ and
2wlower,Y = 121.6 ± 0.3◦. (b): Micro-CT of the lower saddle coil deflectors. (c):
Micro-CT cross-section of the lower saddle coil deflectors to measure the misalignment
angles ε. Some dimensions of the deflection system are not mentioned due to the company
secret policy.

– see Tab. 5.3 and Tab. 5.4. Excitation for 1 µm beam shift in the X-deflector axis was
calculated and applied to all correction fields. The beam spot of the ideal and non-ideal
system in the eucentric plane of the objective lens is shown in Fig. 5.4 (a).

The total error of the beam position due to the deflectors and stigmators astigmatism
∆wa is expressed as

∆wa = ∆wa,def +∆wa,stig = kaᾱγ
2 + Aaα (5.1)

where ∆wa,def error position due to the deflectors’ astigmatism, ∆wa,stig error position due
to the stigmators’ astigmatism, ka the astigmatism coefficient of deflectors. ᾱ is complex
conjugate of angles α = αx + iαy where αx is angle of particle with respect to optical axis
z in plane xz and αy in plane yz. γ is deflection of the beam and Aa is axial astigmatism
of the stigmators. Then, total astigmatism of the system for the deflection γ is

Ac = kaγ
2 + Aa. (5.2)

Fig. 5.4 (b) shows calculated additional coma and 2-fold astigmatism caused by the non-
ideal, misaligned deflection system. It was calculated by subtracting the two spots. It
is important to realize that the main objective lens is magnetic. It rotates the electron
beam from its original X-axis deflection to the eucentric plane (roughly in the center of
the objective lens). The detailed EOD model of the TEM Tecnai TF20 Super Twin is not
shared due to the company’s secret policy. The results are summarized in Tab. 5.5.
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5. EXPERIMENT

5.1. The corrected multipole method
Tab. 5.3 and Tab. 5.4 content the parameters for simulation of the misaligned Xdeflection
coils according to the corrected multipole method in EOD software. Half-angles are
considered to be ϑε = 60◦. Calculated according to the eq. (3.48) and (3.51).

Table 5.3: Angles ϑm,cos and ϑm,sin of the misaligned upper X saddle coil for the corrected
multipole method. The misalignment angle is εupper,X = −1.7± 0.2◦.

Multipole fields m ϑm,cos [◦] ϑm,sin [◦] αm [◦]
Dipole fields 1 59.979 −0.714 90
Quadrupole fields 2 −0.0103 −0.357 45

Table 5.4: Angles ϑm,cos and ϑm,sin of the misaligned lower X saddle coil for the corrected
multipole method. The misalignment angle is εlower,X = −0.6± 0.2◦.

Multipole fields m ϑm,cos [◦] ϑm,sin [◦] αm [◦]
Dipole fields 1 59.998 −0.238 90
Quadrupole fields 2 −0.0011 −0.119 45

Fig. 5.4: (a): Spot position comparison for 1 µm shift in X-deflector axis. The electron
beam is deflected by the ideal and non-ideal deflection system. (b): Additional coma
and 2-fold astigmatism caused by the non-ideal, misaligned deflection system. Calculated
by subtracting the two spots. Simulated by the module Combi in EOD software for the
corrected multipole method for values in Table 5.3 and 5.4.
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5.1. THE CORRECTED MULTIPOLE METHOD

Table 5.5: Total astigmatism Ac of the TEM Tecnai TF20 Super Twin for deflection for
the beam shift γ.

Ideal system simulation Non-ideal system simulation Experiment
Beam shift γ [nm] 920 930 1000
Simulated Ac [nm] 0.382 53.5 49.0

Comparison of measured results

The calculated deviation of beam position caused by the ideal deflection system astigma-
tism is 0.382 nm for the beam shift 920 nm. The calculated deviation due to the astig-
matisms is 53.5 nm for the non-ideal deflection coils and beam shift 930 nm. Measured
deviation due to the astigmatisms is 49.2 nm for the experiment for the beam shift 1 µm.
Therefore, the simulation corresponds well with the experiment. The difference can be
explained by the limited accuracy of the 2-fold astigmatism readout on TEM Tecnai Su-
per Twin 200kV (low-resolution camera) or by the measurement error of the misalignment
angles. However, it is important to keep in mind that the corrected multipole method
does not take into account the varying half-angles.
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6. CONCLUSION

6. Conclusion
The manufacturing of saddle deflection coils routinely suffers from a lack of precision,
ultimately leading to parasitic aberrations. In this thesis, I describe the effect of astig-
matism of saddle coils due to the mechanical misalignment by deriving a general formula
for calculating multipole field strength based on the angle of misalignment ε.

I implement novel methods for the multipole field calculations. Firstly, the normalized
Fourier series coefficients method, and secondly, the corrected multipole method. Using
the mentioned methods, the problem of the misaligned deflection coil reduces to the sum
of fields of perfect multipole, for which there are already known solutions.

The mapping allows for an easy implementation in Electron Optic Design software,
which has use in the manufacturing industry. The newly derived methods are ready
to be used during the design of electron-optical systems by industrial subjects. This
work gives a framework for the design of deflection systems aimed at mitigating 2-fold in
electron microscopes.

Furthermore, the concept of the normalized Fourier series coefficients method could be
applied to a general case of the misaligned multipole. The core principle could be suitable
not only for the misalignment angle ε but also for the varying half-angles. Consequently,
the application of the method could be broadened to the design process of quadrupole,
hexapole, and octupole.

I have verified the results of the normalized Fourier series coefficients method and
the corrected multipole method by directly comparing them with the 3D finite ele-
ments method. The relative difference between the compared methods is less than 3 %
for the characteristic values, such as the global extrema and the integral value of multipole
reduced axial magnetic potential.

The predicted astigmatism of the misaligned electron deflection system by the new cal-
culation methods was also verified experimentally. The measured astigmatism of the sad-
dle coils is in good agreement with the calculations. Moreover, the use of micro-CT
to determine the misalignment was essential since it provided a detailed description of
the manufacturing inaccuracy. The obtained measurements included the misalignment
angle ε, varying half-angles, and cracks in-between the copper wires, which are encased
in the resin.

Further research could focus on the effects of astigmatism due to the manufacturing
inaccuracies in height, radius, cylindricity, and circularity of the saddle coil. I believe
a complete theory of tolerances and misalignment aberrations is achievable and viable in
practical settings. Influence on 3-fold and 4-fold astigmatism could be explore as well.
The improvement of manufacturing precision of saddle coils could be an area of further
interest and, possibly, lead to a new paradigm in the manufacturing technology of saddle
coils.

In conclusion, this work introduces two new methods for calculating astigmatism
in saddle deflection coils and provides a solid foundation for improving the off-axis reso-
lution of transmission electron microscopes.
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