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Abstract. There are presented characteristics of the pipe junction for the case of the flow division 
in this paper. The pipe junction consists of one straight pipe, with the diameter 50 mm and one 
adjacent pipe with diameter 32 mm. The characteristics have been measured for five different angles 
of the adjacent pipe.  

1 Introductiona  
Many papers, about the fluid flow in the pipe junction, 
have been written by these authors. It is possible to use it 
for the fluid flow solution in the pipe line net. There are 
some other mathematical models but they are based on 
the unrealistic assumptions or their coefficients have not 
any physical meaning. [1, 2] The new mathematical 
model for the 90° pipe junction together with its 
coefficients is described in [3, 4]. The improved 
mathematical model for the arbitrary angle of the 
adjacent branch is introduced in the [5]. Some discussion 
about mathematical model for the unsteady fluid flow in 
pipe junction has been presented in [6]. A lot of 
numerical solutions and experiments of the fluid flow in 
the pipe junction have been done in past few years. For 
example numerical study of fluid flow has been presented 
in the [7, 8]. The PIV measurement of the fluid flow in 
the pipe junction has been described in [9] The 
Comparison of the PIV measurement with numerical 
solution of fluid flow in [10]. The first new 
characteristics obtained by measuring and its comparison 
with CFD calculations were presented at [11]. Many 
papers have been written about fluid flow in pipe junction 
as it was mentioned above and reader can get most of 
them on the internet. This paper will be therefore 
dedicated mainly to the presentation of the coefficients 
obtained by measurements. And more over the discussion 
about the results will be included in this paper.     

2 Mathematical model  
The pipe junction it is dealt with is drawn in the figure 1. 
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The mathematical model of the fluid flow in the pipe 
junction consists of three equations which describe the 
relationship between the flow rates and pressures at the 
border of the pipe junction area.  

 
Fig. 1. Pipe junction 

The border of the pipe junction area is delimited by the 
cross-sections S(a), S(b) and S(c) placed in such distance 
from the flow division domain where the flow is not 
disturbed by the pipe junction. The minimum distance to 
ensure this assumption is about 10 diameters at each 
branch.    
First equation of the mathematical model of the pipe 
junction is the power equation. This equation represents 
the mechanical energy conservation law in the pipe 
junction 
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The second equation is the momentum equation. This is a 
vector equation but we will take into consideration only 
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the component in the direction of branch “b” this 
direction is represented by the unit normal vector n(b)i. 
This is clear from the figure 1 
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This equation has to be multiplied by the vector n(b)i to 
get the component equation in that direction.  
The last third equation is continuity equation 

0 )mc()mb()ma( QQQ . (3) 

The summation convection is used in the above 
equations. This mathematical model is valid under these 
assumptions 
 

 Steady fluid flow 
 The gravity vector is perpendicular to the pipe 

junction plain. 
 The density is constant 
 The Coriolis numbers and Bousineques 

numbers on the cross-sections S(a), S(b), and S(c) 
are equal to 1. 

 
It is possible to remove all these assumptions in the 
general mathematical model [5 ].  
The index “X” in the above equations has to be replaced 
by the index “a”, “b” or “c”.  It depends on branch to 
which the coefficients (M)i and (P) will be related to.  

3 Pipe junction coefficients  
Two coefficients appear in the mathematical model. The 
power coefficient (P) can be expressed from the equation 
(1). This coefficient represents the energy losses in the 
pipe junction. It is proportional to the kinetic energy per 
time in one of the branches for which the coefficient will 
be derived.  
The momentum coefficient (M)i can be expressed from 
the equation (2). This coefficient is proportional to the 
force which the fluid impacts on the pipe junction. The 
total force can be obtained by multiplying of this 
coefficient with the total momentum of fluid in branch 
for which the coefficient was derived. In this case we will 
take into consideration the component of this coefficient 
only in the direction of branch “b”.  
The momentum coefficient depends also on the total 
pressure at all branches. If all parameters as shape of pipe 
junction, flow configuration, flow rates, differences of 
pressures between the branches are the same then the 
coefficients varies with total pressure. Therefore it is 
necessary to relates all pressures to the constant value 
pressure in some branch. In case of this paper the 
pressure value in branch “a” is taken as zero. It means 
that the momentum coefficient is derived for case zero 

pressure level in branch “a”. It means that the momentum 
coefficient will be expressed from this modified 
momentum equation 
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Where  

)a()b()ba( ppp   (5) 

and 

)a()c()ca( ppp  . (6) 

Now the unknowns are three mass flow rates Q(ma), Q(mb) 
and Q(mc) and absolute pressure p(a) and two pressure 
differences p(ba) and p(ca) instead of three absolute 
pressures p(a), p(b) and p(c).  
Both coefficients can be divided into two parts. First parts 
will be related to the friction losses in the pipe junction. 
They will be called friction coefficients. Second parts 
will be related to the shape of pipe junction. They will be 
called geometry coefficients. It can be expressed this way 

)PG()PF()P(    (7) 

and 

i)MG(i)MF(i)M(   . (8) 

The total coefficients can be obtained by the 
measurements. The friction coefficients can be obtained 
from the known friction losses, represented by the 
pressure drop, in straight pipes. The friction power 
coefficient can be expressed as follow  
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The friction momentum coefficient can be expressed as 
follow 
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(10) 

The component of friction momentum coefficient in 
direction branch “b” will be obtained by multiplying 
previous equation with unit normal vector n(b)i. 
The quantities i(a), i(b), and i(c) are pressure drops in the 
branches “a”,  “b” and “c” with flow rates Q(a), Q(b) and 
Q(c) without pipe junction influence. 
The geometry coefficients can be then evaluated from the 
expressions (11) and (12)  

)PF()P()PG(    (11) 

and 
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i)MF(i)M(i)MG(   . (12) 

Advantages of the geometry coefficients are  
 They are independent on the total flow rate in the 

pipe junction 
 They are the same for the all geometrically similar 

pipe junctions 
But it is necessary to remember that these coefficients 
depend on the flow configuration in the pipe junction and 
on the flow rate ratio between two branches. In case of 
flow divisions the three flow configurations are possible. 
It is apparent from a figure 2.  
 

   
“Div a”, (Da) “Div b”, (Db) “Div c”, (Dc) 

Fig. 2. Flow configuration for the flow division. 
 
It is necessary to know the function for momentum 
geometry coefficient and the function for power 
geometry coefficient. It means it is necessary to know 
two functions or characteristics for each flow 
configuration. 

    4 Experiment description 

The testing circuit was built in the Victor Kaplan’s 
Department of Fluid Engineering laboratory. The pipe 
junction was drilled in plastic blocks. It ensured the sharp 
edges at the division domain. Five pipe junctions, each 
for the different angle of the adjacent branch, were 
measured. The angles of the adjacent branch were 30°, 
45°, 60°, 75°, 90°. The gauged parameters was as follows  
Flow rates at each branch gauged by the magnetic flow 
meters, absolute pressure gauged by the pressure 
transducer, pressure differences between branches “b”-
“a” and “c”-“a”, pressure differences was gauged both by 
differential pressure manometer and also by U-tube 
manometer. It is necessary to say that for the 
characteristics evaluation the values from the U-tube 
manometer were used. The last gauged parameter was 
water temperature.  

 
Fig. 3. The diagram of the measuring circuit. 

The diagram of the test circuit is drawn in the figure 3. 
The flow rate was controlled by pump equipped by the 

frequency converter and by the valves placed at each 
branch.  
The fluid flow in some flow configurations was unstable 
therefore all parameters were gauged three times. Eleven 
flow rate ratios were measured for each flow 
configuration. Each configuration for all flow rate ratios 
was measured twice to ensure that the results are correct. 
There is a picture of testing circle in the figure 4 and the 
picture of PIV measurements at the figure 5.    

 
Fig. 4. The test circuit for the pipe junction characteristics 

measuring. 
 

 
Fig. 5. The picture of the PIV measuring. 

5 Characteristics of pipe junction 

The resultant characteristics will be presented in this 
chapter. The characteristics for nine different angles will 
be drawn in the charts. The characteristics for the angles 
bigger than 90° are recalculated from the characteristics 
for the angles less than 90°. 
. 
5.1. Flow configuration “Div a” 
The coefficients (PG) and (MG)1 are drawn as a function 
of flow rate ratio q(ca) in the figure 4 and 5 

)a(

)c(
)ca( Q

Q
q 

.
 (13) 

There are some interesting results. It is apparent, from the 
figure 6, that lowest losses are for low values q(ca) for 
angle 30°, for the middle values of q(ca)  are lowest losses 
for angle 45° and for high q(ca)  are the lowest losses for 
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angle 60°. The interesting result is that the losses are not 
lowest for whole range of q(ca) for pipe junction with 
angle 30°.   
In case of momentum coefficient it is interesting, that the 
coefficients for the angles 30° and 150°, 45° and 135°, 
60° and 120°, 75° and 105° are rather close to each other 
and the maximal values are for the angle 90°.  

 
Fig. 6. The (PG) coefficients for flow configuration “Div a” as a 

function of flow rate ratio q(ca). 
 

 
Fig. 7. The (MG)i coefficients for flow configuration “Div a” as 

a function of flow rate ratio q(ca). 
One will expect that the biggest momentum coefficient 
will be for the angle 150°. But this phenomenon can be 
explained this way. In case of the angle 150° the pressure 
in branch “b”, for big values of q(ca), increases a lot. This 
pressure acts against force caused by the flow direction 
change. Therefore the resulting force is less than the force 
for the angle 90°. 
 
5.2. Flow configuration “Div b” 
The comments of this case are almost identical to the the 
comments in case of flow configuration Div a. The 
variable for the pipe junction coefficients evaluation is 
flow rate ratio q(cb) in this case  

)b(

)c(
)cb( Q

Q
q 

.
 (14) 

The power geometry coefficient is identical to the one for 
the flow configuration Div a.  
In case of momentum geometry coefficient one will 
expect that the curves for the flow configuration “Div a” 
and angle 30° will be symmetrical about zero value with 
the flow configuration “Div b”  angle 150° and similarly 

for the other pairs of the angles. But this is not true. It is 
caused by the reference zero pressure in branch “a”.  
It would be symmetrical in case when all pressures will 
be related to the zero pressure p(b) in case of flow 
configuration “Div b”. This is the case where it is 
possible to see the influence of the absolute pressure in 
branches. 

 
Fig. 8. The (PG) coefficients for flow configuration “Div b” as a 

function of flow rate ratio q(ca). 
 

 
Fig. 9. The (MG)i coefficients for flow configuration “Div b” as 

a function of flow rate ratio q(ca). 
 
5.3. Flow configuration “Div c” 
The variable for the pipe junction coefficients evaluation 
is flow rate ratio q(ac) in this case 

)c(

)a(
)ac( Q

Q
q 

.
 (15) 

 
Fig. 10. The (PG) coefficients for flow configuration “Div c” as 

a function of flow rate ratio q(ca). 
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The results for the power geometry coefficient look rather 
reasonable. 

 
Fig. 11. The (MG)i coefficients for flow configuration “Div c” 

as a function of flow rate ratio q(ca). 
This flow configuration was very difficult to measure, 
because the flow was very unstable for the high values of 
q(ac).  
The curves for the pairs of the angles (30°-150°, 45°-135° 
and so on) are not symmetrical about the zero value of 
momentum coefficient. The reason is the same as in the 
case of flow configuration “Div a” and “Div b”. 

6 Characteristics of pipe junction as a 
polynomial functions 

Characteristics of the pipe junction as a polynomial 
functions will be presented in this chapter. The 
polynomial functions were drawn to approximate the 
measured values. The general form of the polynomial 
function is as follow   





N

i

i
)xy(iqA

0


.
 (16) 

The quantity q(xy) is the flow rate ratio related to the 
particular flow configuration. 
 Table 1. Polynom coefficients for the coefficient (PG) for the 

flow combination “Div a”. Variable is q(ca) 
Agl. A(0) A(1) A(2) A(3) A(4) 
30° 0.03996 0.21542 - 1.98045 5.96808  
45° 0.00494 0.69511 - 2.64166 5.30444  
60° - 0.03018 0.87583 - 2.18938 4.62091  
75° - 0.02644 0.54269 0.22227 2.77669  
90° - 0.01502 0.72022 - 0.50585 3.34952  
105° - 0.04975 0.13346 2.99545 2.13002  
120° - 0.04764 - 0.11965 4.90077 1.62379  
135° - 0.05694 0.02440 5.34726 2.24393  
150° - 0.04610 0.77084 3.13437 5.61312  
 
 Table 2. Polynom coefficients for the coefficient (MG)1 for the 

flow combination Diva. Variable is q(ca) 
Agl. A(0) A(1) A(2) A(3) A(4) 
30° 0.06386 - 0.03327 0.50067 -0.30472  
45°  0.04349 0.30411 0.01003 -0.17258  
60° 0.01982 0.52247 - 0.15851 -0.07909  
75° 0.00073 0.67438 0.13419 -0.31179  
90° - 0.01433 0.77718 0.18345 -0.27213  
105° - 0.04652 0.78045 0.14711 -0.15718  
120° - 0.06140 0.90204 - 0.22418 0.08071  
135° - 0.07597 0.92531 - 0.75895 0.43393  
150° - 0.06522 0.59853 - 0.65970 0.26504  

 
Table 3. Polynom coefficients for the coefficient (PG) for the 

flow combination “Div b”. Variable is q(cb) 
Agl. A(0) A(1) A(2) A(3) A(4) 
30° - 0.04610 0.77084 3.13437 5.61312  
45° - 0.05694 0.02440 5.34726 2.24393  
60° - 0.04764 - 0.11965 4.90077 1.62379  
75° - 0.04975 0.13346 2.99545 2.13002  
90° - 0.01502 0.72022 - 0.50585 3.34952  
105° - 0.02644 0.54269 0.22227 2.77669  
120° - 0.03018 0.87583 2.18938 4.62091  
135° 0.00494 0.69511 - 2.64166 5.30444  
150° 0.03996 0.21542 - 1.98045 5.96808  
  
Table 4. Polynom coefficients for the coefficient (MG)1 for the 

flow combination “Div b”. Variable is q(cb) 
Ang. A(0) A(1) A(2) A(3) A(4) 
30° - 0.02744 - 0.15783 0.48191 -0.35726  
45° 0.00565 - 0.55647 0.51469 -0.42874  
60° 0.01008 - 0.61420 - 0.02193 -0.03182  
75° 0.01988 - 0.62134 - 0.28020 0.18022  
90° 0.01433 - 0.77718 - 0.18345 0.27213  
105° 0.02839 - 0.83435 0.00595 0.28218  
120° 0.03744 - 0.83957 0.41874 0.03667  
135° 0.04040 - 0.73097 0.34852 0.10066  
150° 0.04242 - 0.49984 - 0.07477 0.23415  
 

Table 5. Polynom coefficients for the coefficient (PG) for the 
flow combination “Div c”. Variable is q(ac) 

Ang. A(0) A(1) A(2) A(3) A(4) 
30° 6.7239 1.10915 - 19.578 24.26525 -7.34314 
45° 7.4166 10.5006 - 81.598 118.1849 -51.384 
60° 8.475 3.53416 - 49.05 71.86643 -31.063 
75° 4.8848 18.66 - 76.133 108.396 -52.067 
90° 4.7174 18.2622 - 57.23 76.319 -37.769 
105° 3.7407 16.6857 -63.345 99.87026 -52.067 
120° 3.76249 3.21864 - 19.829 52.38555 -31.063 
135° 3.12062 3.67499 - 35.345 87.34959 -51.384 
150° 2.95850 - 3.1574 9.15858 5.10732 -7.3431 
  
Table 6. Polynom coefficients for the coefficient (MG)1 for the 

flow combination “Div c”. Variable is q(ac) 
Ang A(0) A(1) A(2) A(3) A(4) 
30° 0.45341 - 1.165 2.17698 1.82076 -2.9947 
45° 0.05468 - 2.706 13.51148 - 17.397 6.70083 
60° - 0.184 - 0.857 7.98778 - 12.606 5.75276 
75° 0.00097 - 0.2549 0.33661 -0.02042  
90° - 0.0566 0.07725 0.03645   
105° - 0.1144 0.59046 -0.30261   
120° - 0.0394 - 0.6178 2.42304 -1.10727  
135° - 0.0125 - 0.1635 - 2.57935 10.44418 -6.9974 
150° 0.04895 - 1.9576  7.45342 - 6.42768 1.49592 

7 Conclusion 

The characteristics of the pipe junction for flow division with 
the five different angles of the adjacent branch were presented 
in this article. All characteristics were derived calculated under 
the next assumptions   

 Steady fluid flow 
 The gravity vector is perpendicular to the pipe 

junction plain. 
 The density is constant 
 The Coriolis numbers and Bousineques 

numbers on the cross-sections S(a), S(b), and S(c) 
are equal to 1. 
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 The reference pressure is p(a)=0 
 
The discussion about the pipe junction coefficients and their 
explanation was also included in this paper. The interesting 
results was obtained for the minimum hydraulic losses for flow 
configuration “Div a” and “Div b”. The coefficients of 
polynomial functions for all measured characteristics were 
listed at the end of the paper. 
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