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ABSTRACT
This thesis deals with representation of non-stationary harmonic signals with time-varying
components. Its main focus is aimed at Harmonic Transform and its variant with sub-
quadratic computational complexity, the Fast Harmonic Transform. Two algorithms
using the Fast Harmonic Transform are presented. The first uses the gathered log-
spectrum as fundamental frequency change estimation method, the second uses analysis-
by-synthesis approach. Both algorithms are used on a speech segment to compare its
output. Further the analysis-by-synthesis algorithm is applied on several real sound sig-
nals to measure the increase in the ability to represent real frequency-modulated signals
using the Harmonic Transform.
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ABSTRAKT
Tato práce se zabývá reprezentací nestacionárních harmonických signálů s časově
proměnnými komponentami. Primárně je zaměřena na Harmonickou transformaci a
jeji variantu se subkvadratickou výpočetní složitostí, Rychlou harmonickou transformaci.
V této práci jsou prezentovány dva algoritmy využívající Rychlou harmonickou transfor-
maci. Prvni používá jako metodu odhadu změny základního kmitočtu sbírané logarit-
mické spektrum a druhá používá metodu analýzy syntézou. Oba algoritmy jsou použity
k analýze řečového segmentu pro porovnání vystupů. Nakonec je algoritmus využíva-
jící metody analýzy syntézou použit na reálné zvukové signály, aby bylo možné změřit
zlepšení reprezentace kmitočtově modulovaných signálů za použití Harmonické transfor-
mace.
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INTRODUCTION
From all mechanisms of communication, sound communication is by far the most
widely used by humans and at the same time easily processed using modern technol-
ogy, namely digital signal processing. Most mammals, including humans, commu-
nicate using air stream modulation ranging in frequency from infrasound (whales)
to ultrasound (bats). If the air stream modulation is constant, the produced sound
can be approximated using an impulse train. In the frequency domain, the impulse
train consists of a fundamenal frequency and harmonics at integer multiplies of the
fundamental frequency. Such signal can therefore be effectively analyzed using tra-
ditional tools like the Fourier Transform. However if the air stream modulation
changes in time, as is the case of most real signals, its frequency components also
change in time. While frequency variance of the fundamental frequency may not be
significant, it multiplies for each additional harmonic contained in the signal. When
using Fourier Transform to analyze such singal, the higher harmonics may span over
several frequency bins of the analyzed time interval depreciating the accuracy of
harmonic parameters that can be acquired from the signal.

There are many applications that rely on the analysis of harmonic signals with
time-varying components. Most of them deal with speech signals for speech coding,
gender and age classification, detection of alcohol intoxication, emotion detection, or
jitter estimation in Parkinsonian speech. Some musical instruments can be played
in a way that causes fundamental frequency modulation like viola, violin, trombone,
or guitar while some instruments create frequency modulation by their nature like
the Theremin or the Leslie speaker. Also most synthesizers can be modulated using
the pitch wheel which enables continous variation of the fundamental frequency.
Analysing such signals may be performed with higher precision with a method that
enables to take time-variant fundamental frequency into account.

This thesis therefore focuses on the representation of non-stationary signals with
time-varying components. First it provides a summary of the state-of-the-art me-
thods with main focus on Fan-Chirp Transform and Harmonic Transform. Then
the focus turns solely on the Harmonic Transform and its computational demands
which prevent its efficient use. A prerequisite to computing Harmonic Transform is
knowledge of fundamental frequency change and an approach to decrease its estima-
tion is presented. However the goal is decrease in computational complexity, which
is presented as the Fast Harmonic Transform. This introduces some artifacts to the
signal which is covered in the text. Then two algorithms for fundamental frequency
estimation are presented. One is based on the gathered log-spectrum and the other
on analysis-by-synthesis approach. Both algorithms are applied to a speech signal
to compare their output. The thesis finishes with experiments on real signals.
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1 STATE OF THE ART

1.1 Introduction
Many harmonic signals, including speech and music, exhibit frequency modulation
caused by varying fundamental frequency. A traditional instrument for the analysis
of speech and musical signals is Fourier Transform (FT) defined as

𝑆(𝜔) =
∫︁ +∞

−∞
𝑠(𝑡)e−j𝜔𝑡d𝑡. (1.1)

The original signal is recovered from the FT by inverse Fourier Transform (IFT)

𝑠(𝑡) = 1
2𝜋

∫︁ +∞

−∞
𝑆(𝜔)ej𝜔𝑡d𝜔. (1.2)

The FT is generally able to represent frequency content of a signal, when the sig-
nal is composed of components with invariant frequency. Such signals can be called
stationary harmonic signals and by using FT we can get their frequency represen-
tation with sufficient resolution in a specified frequency band. For shorter analysis
windows the FT gives better time resolution while sacrificing frequency resolution,
whereas for longer analysis windows the FT gives better frequency resolution at
the cost of lower time resolution as seen in Fig. 1.1. The ability of the FT to rep-
resent frequency content of a signal diminishes if the signals contains components
with varying frequency [1, 2]. This is represented in Fig. 1.2 showing a sinusoid
with constant frequency over time and its FT which forms a clearly defined peak,
whereas for the linearly modulated sinusoid, energy of the signal is spread between
several frequency bins, which causes difficulties in harmonic parameter estimation.
Especially if more harmonics are present in the signal. One solution of this problem
is to use Warped Fourier Transform (WFT) [3], where the signal is frequency or
time warped [4] before applying the FT, giving birth to warped wavelets [5, 6]. This
operation can be interpreted as change of the signal’s scale for the conversion of
time-varying frequency components to frequency invariant components. The scaling
operation can be generalized using the Scale Transform [7–9], where the scale is
taken as a physical property of the signal, or the scaling operation can be integrated
into the definition of transformation, as in Harmonic Transform [10]. Speech signals
and other harmonic signals with a formant structure require a method to preserve
the formant structure if modified. This can be done efficiently using frequency
warping [11, 12].

There are other means of representation of signals with variable frequency com-
ponents which are based on several models of speech. A family of transforms is
based on the similarity of voiced speech to a chirp-periodic signal. Fan-Chirp Trans-
form [13, 14] is suitable for signals with frequency components varying linearly on fan

13



 f 
[H

z]
 →

 t [s] →

(a) short analysis window

 f 
[H

z]
 →

 t [s] →

(b) long analysis window

Fig. 1.1: Resolution of time-frequency analysis depending on the length of analysis
window.

geometry, a property providing it with the best representation of chirp-like signals.
The Fractional Fourier Transform (FrFT) [15–19] uses rotation of the time-frequency
distribution to fit a signal with linearly changing frequency components, although
similar to the Chirp Transform (CT) [20, 21] and Chirplet transform (ChT) [22],
they cannot provide sufficient resolution for chirp-periodic signals both in lower and
higher frequency bands at the same time as the Fan-Chirp Transform can.

A different approach is to consider the speech signal as a sum of periodic and
aperiodic signals. This model takes into account that even the voiced part of speech
contains some noise caused by air turbulence, thus making it quasi-periodic. This
approach is used in Pitch Tracking Modified DFT (PTDFT) [23] and Time-Varying
DFT (TVDFT) [24]. The PTDFT uses a pitch detection algorithm and analysis-
by-synthesis approach in a closed loop to determine the fundamental frequency.
When the fundamental frequency is known at least in two segments, the signal’s
harmonic components are estimated directly in the harmonic domain. The TVDFT
also requires a pitch detection algorithm but the transformation kernel enables to
perform tracking of the fundamental frequency and its partials.

1.2 Quasi-Harmonic Model
The Quasi-Harmonic Model (QHM) [25] is representation of a signal 𝑠(𝑡) consisting
of 𝐾 complex sinusoids defined as

𝑠(𝑡) =
𝐾∑︁

𝑘=1
𝑐𝑘e2𝜋𝑓𝑘𝑡, (1.3)
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Fig. 1.2: Sinusoid with constant frequency over time and its FT (top); Linear chirp
over time and its FT, showing that the signal’s energy is spread over several fre-
quency bins (bottom).
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where 𝑓𝑘 and 𝑐𝑘 are the frequency and complex amplitude of the 𝑘-th sinusoid. To be
able to compute complex amplitudes using least squares (LS) approach, estimates of
frequencies {𝑓𝑘}𝐾

𝑘=1 are needed. The frequencies 𝑓𝑘 are defined from set of frequency
estimates as

𝑓𝑘 = 𝑓𝑘 + 𝜂𝑘, (1.4)

where 𝜂𝑘 is the frequency error. If it is high, then the estimation of complex am-
plitudes 𝑐𝑘 through LS will be biased. This has been addressed in [26] by the
representation of the signal as

𝑠(𝑡) =
𝐾∑︁

𝑘=1
(𝑎𝑘 + 𝑡𝑏𝑘)ej2𝜋𝑓𝑘𝑡, (1.5)

where 𝑎𝑘 and 𝑏𝑘 denote complex amplitude and complex slope of the 𝑘-th com-
ponent respectively. Parameters {𝑎𝑘, 𝑏𝑘}𝐾

𝑘=1 are then computed through iterative
minimization of the LS criterion ∑︀𝑇

𝑡=−𝑇 ((𝑠(𝑡) − 𝑠(𝑡))𝑤(𝑡))2, where 𝑤(𝑡) is the ana-
lysis window defined on interval [−𝑇, 𝑇 ]. The QHM is further improved by adaptive
Quasi-Harmonic Model [27] and enhanced adaptive Quasi-Harmonic Model [28],
which have been shown to provide better results for AM-FM modulated speech
signals [27, 28].

1.3 Sinusoidal Model
Sinusoidal model is based on the Fourier’s theorem, which states that any periodic
function can be modeled as a sum of sinusoids at various amplitudes and harmoni-
cally related frequencies [29]. In its most general expression it is a sum of complex
exponentials (or partials)

𝑠(𝑡) =
𝐾∑︁

𝑘=1
𝑎𝑘(𝑡)ej𝜑𝑘(𝑡), (1.6)

where 𝑎𝑘(𝑡) and 𝜑𝑘(𝑡) are the instantaneous amplitude and phase of the 𝑘-th sinusoid,
respectively [30, 31] and where 𝜔𝑘(𝑡) is the frequency of the 𝑘-th sinusoid defined as
the first derivative of phase 𝜑𝑘(𝑡).

Sinusoidal parameters of 𝑠(𝑡) from the observed signal 𝑠(𝑡) = 𝑠(𝑡) + 𝑣(𝑡) in the
non-stationary case, where 𝑣(𝑡) is an additive noise are modeled as [32]

𝑠(𝑡) = 𝑎(𝑡)e j𝜑(𝑡),

𝑎(𝑡) = exp
(︁∑︀𝐾

𝑘=0 ℜ{𝛼𝑘}𝑡𝑘
)︁
,

𝜑(𝑡) = ∑︀𝐾
𝑘=0 ℑ{𝛼𝑘}𝑡𝑘,

(1.7)
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where 𝛼𝑘 are the 𝐾 + 1 complex non-stationary sinusoidal parameters. The am-
plitude is represented by 𝑎(𝑡) and frequency is represented by 𝜑′(𝑡)/2𝜋. The log-
amplitude modulation parameters are given by the real time part of the parameters
𝛼𝑘,ℜ{𝛼𝑘}, and the phase modulation parameters are given by the imaginary part,
ℑ{𝛼𝑘}.

There are several methods for estimating the sinusoidal parameters in (1.7) which
have been generalized to the non-stationary case [32–37] and some of the significant
methods are now presented.

1.3.1 Quadratically Interpolated FFT

The quadratically interpolated FFT (QIFFT) is a maximum likelihood method that
has been used for sinusoidal parameter estimation in audio applications by means
of quadratic peak interpolation in a zero padded FFT [31]. An improved QIFFT
method to estimate first order amplitude and frequency rates of time-varying sinu-
soidal components has been presented in [38]. A sinusoid with first-order AM and
FM can be written as

𝑠(𝑡) = e𝛼0𝑡+𝜆0ej(𝛽0𝑡2+𝜔0𝑡+𝜑0), (1.8)

where 𝜔0 is instantaneous frequency at 𝑡 = 0, 𝜆0 is instantaneous log-amplitude at
𝑡 = 0, 𝜑0 is instantaneous phase at 𝑡 = 0, 𝛼0 is amplitude change rate, and 𝛽0 is
frequency change rate. The equation (1.8) is equivalent to (1.7) for 𝐾 = 2.

The QIFFT method for estimating sinusoidal parameters from peaks in spectral
magnitude data can be summarized as follows [38]:

1. Calculate amplitude and phase spectrum of audio data, by using a zero-padded
windowed FFT.

2. Find the maximum peak magnitude.
3. Quadratically interpolate log-amplitude of the peak using two neighboring

samples.
4. Estimate the frequency and amplitude from the interpolation.
5. Estimate the phase, if needed, by quadratically interpolating the phase spec-

trum based on the interpolated frequency estimate.
6. Remove the peak from FFT data for subsequent processing.
7. Repeat steps 2 − 6 above for each peak.

The QIFFT can be seen as approximating the nearly parabolic shape of the spectral
peak of a non-Gaussian window with the truly parabolic shape of a Gaussian window.
In practice, truncated Gaussian window is used on the observer signal 𝑠(𝑡), so the
log-magnitude and phase are not exactly quadratic. This is called the direct method.
For other non-Gaussian windows, including Hann, Hamming, and Blackman-Harris,
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an adapted method has been designed in [38]. An extension of this method for 𝑡 ̸= 0
can be found in [39].

1.3.2 Distributed Derivative Method

If we define the inner product of two signals 𝑥(𝑡) and 𝑦(𝑡) as

⟨𝑥, 𝑦⟩ =
∫︁ ∞

−∞
𝑥(𝜏)𝑦*(𝜏)d𝑡, (1.9)

then the distributed derivative method (DDM) [40] generates parameter estimators
for 𝛼𝑘 using the following system of equations

− ⟨𝑠, 𝛾′
𝑖⟩ =

𝐾∑︁
𝑘=1

𝛼𝑘

⟨
𝑘𝒯 𝑘−1𝑠, 𝛾𝑖

⟩
, 𝑖 = 1, ..., 𝐿, (1.10)

where 𝒯 is an operator defined by (𝒯 𝑥)(𝑡) = 𝑡𝑥(𝑡)) [32]. To solve for the 𝐾 param-
eters, 𝐿 ≥ 𝐾 equations with 𝐿 different atoms 𝛾𝑖(𝜏) are needed to solve the linear
system of 𝐿 equations. Generalization of this method for non-stationary signals can
be found in [41].

1.3.3 Generalized Derivative Method

In generalized derivative method (GDM) [42], we generate a linear system of 𝐿
equations by applying 𝐿 successive derivatives to 𝑠(𝑡) and taking the inner products
with only one atom 𝛾(𝑡) [32]. This results in the following system of equations

⟨
𝑠(𝑖), 𝛾

⟩
=

𝐾∑︁
𝑘=1

𝛼𝑘

⟨
(𝑘𝒯 𝑘−1𝑠)(𝑖−1), 𝛾

⟩
, 𝑖 = 1, ..., 𝐿, (1.11)

where superscript (𝑖) denotes differentiation 𝑖-times. This requires signal derivatives
up to order 𝐿, which, in practice, will be estimated with first-order differentiator
filter. With 𝐿 signal derivatives we have a linear system of 𝐿 equations from which
we can solve for 𝐾 model parameters [32].

1.3.4 General Reassignment Method

Taking 𝐿 derivatives of the signal in GDM can be avoided by the use of integration
by parts to move the differentiation from the signal to the atom 𝛾(𝑡) [32]. If we
assume the chosen atom is sufficiently continuous and all its derivatives up to order
𝐿 − 1 go to zero at 𝑡 ± ∞ such that the identity ⟨𝑥′, 𝑦⟩ = − ⟨𝑥, 𝑦′⟩ holds for each
successive derivative up to 𝐿. Then we get the following system of equations

−
⟨
𝑠, 𝛾(𝑖)

⟩
=

𝐾∑︁
𝑘=1

𝛼𝑘

⟨
𝑘𝒯 𝑘−1𝑠, 𝛾𝑖−1

⟩
, (1.12)
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which can be shown equivalent to (1.11), but here we use derivatives of the atom
rather than derivatives of the signal [32]. This is called the generalized reassignment
method (GRM) [42] and it is based on the earlier reassignment method found in [41].

1.3.5 Phase Vocoder for Non-Stationary Sinusoidal Model-
ing

This analysis method is based on the generalization of the phase vocoder approach
using signal spectra derivatives [43] to non-stationary sinusoidal modeling presented
in [44]. It is also the simplest possible method of non-stationary sinusoidal model-
ing [29]. If we consider consecutive signal segments 𝑥 (e.g. by a sliding FFT) of
length 𝑁 from the signal 𝑠, their discrete spectra 𝑋 can be obtained by zero-phase
DFT. Then 𝑋(𝜔) = 𝑆𝑤(𝑡, 𝜔) is the spectrum of the frame centered at the desired
estimation time and 𝑋±(𝜔) = 𝑆𝑤(𝑡 ± (1/𝑓s), 𝜔) be its left (one sample before) and
right (one sample after) neighboring spectra. Then the derivative can be approx-
imated by first-order difference. According to the model (1.7), the log-amplitude
and phase differences correspond to the real and imaginary parts of the logarithm
of spectral ratios

Δ𝜆(𝑋1, 𝑋2) = log |𝑋1| − log |𝑋2|
= ℜ(log(𝑋1/𝑋2)),

Δ𝜑(𝑋1, 𝑋2) = ∠𝑋1 − ∠𝑋2

= ℑ(log(𝑋1/𝑋2)),

(1.13)

where 𝑋1 and 𝑋2 denote complex spectra. The amplitude modulation �̂�0 can be
estimated from the mean of the left and right estimates by

𝜇− = Δ𝜆(𝑋,𝑋−)𝑓s,

𝜇+ = Δ𝜆(𝑋+, 𝑋)𝑓s,

�̂�0 = (𝜇− + 𝜇+)/2.
(1.14)

Similarly, the instantaneous frequency �̂�0 can be estimated from the left and right
phase spectra

𝜔− = unwrap(Δ𝜑(𝑋,𝑋−)𝑓s),
𝜔+ = unwrap(Δ𝜑(𝑋+, 𝑋)𝑓s),
�̂�0 = (𝜔− + 𝜔+)/2,

(1.15)

where unwrap(𝛽) is a function consisting of adding 2𝜋 to 𝛽 if it is lower than 0.
Using left and right estimates of the frequency, we can estimate the frequency

modulation by first-order difference

𝜓0 = (𝜔+ − 𝜔−)𝑓s. (1.16)
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1.4 Estimation of Instantaneous Harmonic Param-
eters Using Frequency-Modulated Bandpass
Filters

There are several methods for estimation of instantaneous harmonic parameters.
Some of them are connected with the notion of analytic signal based on the Hilbert
transform (HT) [45]. A unique complex signal 𝑧(𝑡) can be generated from a real one
𝑠(𝑡) using the Fourier transform [46]. This can be done as a time-domain procedure

𝑧(𝑡) = 𝑠(𝑡) + jℋ[𝑠(𝑡)] = 𝑎(𝑡)ej𝜙(𝑡), (1.17)

where ℋ is the Hilbert transform defined as

ℋ[𝑠(𝑡)] = 𝑝.𝑣.
∫︁ ∞

−∞

𝑠(𝑡− 𝜏)
𝜋𝜏

d𝜏, (1.18)

where 𝑝.𝑣. denotes Cauchy principle value of the integral, 𝑧(𝑡) is referred to as
Gabor’s complex signal, 𝑎(𝑡) and 𝜙(𝑡) can be considered the instantaneous amplitude
and phase, respectively. Signals 𝑠(𝑡) and ℋ[𝑠(𝑡)] are theoretically in quadrature.
Signal 𝑧(𝑡) can be expressed in polar coordinates, therefore 𝑎(𝑡) and 𝜙(𝑡) can be
calculated as

𝑎(𝑡) =
√︁
𝑠2(𝑡) + ℋ2[𝑠(𝑡)], (1.19)

𝜙(𝑡) = arctan
(︃

ℋ[𝑠(𝑡)]
𝑠(𝑡)

)︃
. (1.20)

Another way of estimating the instantaneous harmonic parameters is discrete
energy separation algorithm (DESA), which is based on the Teager energy opera-
tor [47]. The energy operator is defined as

𝜓[𝑠(𝑛)] = 𝑠2(𝑛) − 𝑠(𝑛− 1)𝑠(𝑛+ 1), (1.21)

where the derivative operation is approximated by the symmetric difference [45].
The instantaneous amplitude 𝑎(𝑛) and frequency 𝑓(𝑛) can be evaluated as

𝑎(𝑛) = 2𝜓[𝑠(𝑛)]√︁
𝜓[𝑠(𝑛+ 1) − 𝑠(𝑛− 1)]

, (1.22)

𝑓(𝑛) = arcsin

⎯⎸⎸⎷𝜓[𝑠(𝑛+ 1) − 𝑠(𝑛− 1)]
4𝜓[𝑠(𝑛)] . (1.23)

The Hilbert transform and DESA can be applied only to monocomponent sig-
nals. For multicomponent signals, the signal should be split into single components
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before using these techniques [45]. It is possible to use narrow-band filtering for this
purpose [48].

Now with the presented methods for estimating instantaneous frequency, am-
plitude and phase of monocomponent signals, we will use a harmonic+noise repre-
sentation of multicomponent speech [49] and audio signals [50] as a combination of
sinusoids with slowly varying amplitudes and frequencies

𝑠(𝑛) =
𝐾∑︁

𝑘=1
𝐴𝑘(𝑛) cos𝜙𝑘(𝑛) + 𝑟(𝑛), (1.24)

where 𝐴𝑘 is the instantaneous amplitude of 𝑘-th harmonic, 𝐾 is the number of
harmonics present in the signal, 𝑟(𝑛) is the noise component, 𝜙𝑘 is the instantaneous
phase of 𝑘-th harmonic defined as

𝜙𝑘(𝑛) =
𝑛∑︁

𝑖=0

2𝜋𝑓𝑘(𝑖)
𝑓s

+ 𝜙𝑘(0), (1.25)

where 𝑓𝑘 is the instantaneous frequency of the 𝑘-th harmonic, 𝑓s is the sampling
frequency and 𝜙𝑘(0) is the initial phase of the 𝑘-th harmonic. The harmonic model
assumes that the frequencies of the components are integer multiplies of fundamental
frequency 𝑓𝑘 = 𝑘𝑓0, where 𝑓0 is the fundamental frequency.

The instantaneous frequencies can deviate from the multiples of the fundamental
frequency for the value less than some specified 𝑓tr as

|𝑓𝑘 − 𝑘𝑓0| < 𝑓tr. (1.26)

To separate a certain harmonic from the others, it is necessary to use a bandpass
filter [47, 51]. The band-pass filters can be used for signal decomposition into non-
stationary periodic components with instantaneous frequency, amplitude and phase.
The method can be used for processing of frequency-modulated signals such as voiced
speech. Stationary filter can provide accurate results for estimation of the funda-
mental frequency, but it is not suitable for high-order harmonics [52]. The impulse
response of such filter for 𝑘-th signal component can be written as [52]

ℎ𝑘(𝑛) =
⎧⎨⎩ 2𝑓𝑘

Δ, 𝑛 = 0,
𝑓s
𝑛𝜋

cos
(︁

2𝜋𝑛
𝑓s
𝑓𝑘

𝑐

)︁
sin

(︁
2𝜋𝑛
𝑓s
𝑓𝑘

Δ

)︁
, 𝑛 ̸= 0,

(1.27)

where 𝑓𝑘
𝑐 = (𝑓𝑘−1 + 𝑓𝑘)/2, 𝐹 𝑘

Δ = (𝑓𝑘 − 𝑓𝑘−1)/2 and [𝑓𝑘−1, 𝑓𝑘] is the band-pass
filter’s pass band. Parameters 𝑓𝑘

𝑐 and 𝑓𝑘
Δ correspond to the center frequency of the

pass band and the half of the filter’s bandwidth, respectively. The convolution of
signal 𝑠(𝑛) and the impulse response ℎ𝑘(𝑛) produces a band-limited output signal
𝑠𝑘(𝑛) = 𝑠(𝑛) * ℎ𝑘(𝑛) which can be rewritten as [52]

𝑠𝑘(𝑛) = 𝐴(𝑛) cos(2𝜋
𝑓s
𝑛𝑓𝑐) +𝐵(𝑛) sin(2𝜋

𝑓s
𝑛𝑓𝑐), (1.28)
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where
𝐴(𝑛) = ∑︀𝑁−1

𝑖=0
2𝑠(𝑖)

𝜋(𝑛−𝑖) sin
(︁

2𝜋(𝑛−𝑖)
𝑓s

𝑓Δ
)︁

cos
(︁

2𝜋(𝑛−𝑖)
𝑓s

𝑓𝑐

)︁
,

𝐵(𝑛) = ∑︀𝑁−1
𝑖=0

−2𝑠(𝑖)
𝜋(𝑛−𝑖) sin

(︁
2𝜋(𝑛−𝑖)

𝑓s
𝑓Δ
)︁

sin
(︁

2𝜋(𝑛−𝑖)
𝑓s

𝑓𝑐

)︁
.

(1.29)

From (1.29), the instantaneous magnitude, phase and frequency can then be calcu-
lated as [52]

𝑎(𝑛) =
√︁
𝐴2(𝑛) +𝐵2(𝑛), (1.30)

𝜙(𝑛) = arctan
(︃

−𝐵(𝑛)
𝐴(𝑛)

)︃
, (1.31)

𝑓(𝑛) = 𝜙(𝑛+ 1) − 𝜙(𝑛)
2𝜋 𝑓s. (1.32)

Using instantaneous pitch contour obtained by stationary band-pass filters it
is possible to ensure appropriate processing of high-order harmonics [45] by using
frequency-modulated band-pass filters. The band-pass filters have a closed form
impulse response that can be adjusted according to instantaneous frequencies of the
harmonics and the fundamental frequency modulations of speech. The frequency
modulated filter has a warped pass band, aligned to the given frequency contour
𝑓𝑘

𝑐 (𝑛), that provides adequate analysis of periodic components with rapid frequency
alterations can be defined as [52]

𝐴(𝑛) = ∑︀𝑁−1
𝑖=0

2𝑠(𝑖)
𝜋(𝑛−𝑖) sin

(︁
2𝜋(𝑛−𝑖)

𝑓s
𝑓Δ
)︁

cos
(︁

2𝜋(𝑛−𝑖)
𝑓s

𝜙𝑐(𝑛, 𝑖)
)︁
,

𝐵(𝑛) = ∑︀𝑁−1
𝑖=0

−2𝑠(𝑖)
𝜋(𝑛−𝑖) sin

(︁
2𝜋(𝑛−𝑖)

𝑓s
𝑓Δ
)︁

sin
(︁

2𝜋(𝑛−𝑖)
𝑓s

𝜙𝑐(𝑛, 𝑖)
)︁ (1.33)

𝜙𝑐(𝑛, 𝑖) =

⎧⎪⎪⎨⎪⎪⎩
∑︀𝑖

𝑗=𝑛 𝑓
𝑘
𝑐 (𝑗), 𝑛 < 𝑖,

−∑︀𝑛
𝑗=𝑖 𝑓

𝑘
𝑐 (𝑗), 𝑛 > 𝑖,

0, 𝑛 = 𝑖.

(1.34)

This approach is an alternative to time warping that is used in Harmonic and
Fan-Chirp transforms (see below). It has been used for the improvement of the
RAPT [53] pitch estimation algorithm [54]. In [55] it has been used for pitch, tim-
bre and time-scale modifications, which has been improved and generalized in [56].
Further applications involve real-time speech conversion [57], estimation of spec-
tral envelopes by means of linear prediction [58], parametric coding of audio and
speech [59], and sinusoidal, transient and noise modeling [60].
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1.5 Harmonic Transform
Time-varying harmonic signal generally contains higher harmonics whose nominal
instantaneous frequencies are expressed by

𝑐𝑘(𝑡) = (𝑘 + 1)𝑐0(𝑡), 𝑘 = 1, 2, 3, . . . (1.35)

where 𝑐0(𝑡) is the frequency of the fundamental and 𝑐𝑘(𝑡) is the frequency of the
𝑘-th harmonic component.

Harmonic transform has been introduced in [10] and it is based on [61] [62]. Its
main difference from Fourier transform is the integrated time-warping function. It
is defined as

𝑆𝜑u(𝑡)(𝜔) =
∫︁ +∞

−∞
𝑠(𝑡)𝜑′

u(𝑡)e−j𝜔𝜑u(𝑡)d𝑡, (1.36)

where 𝜑u(𝑡) is a unit phase function, which is the phase of the fundamental harmonic
component divided by its nominal instantaneous frequency [10], and 𝜑′

u(𝑡) is first
derivation of 𝜑u(𝑡). The 𝜑u(𝑡) is required to be invertible and differentiable on
(−∞,+∞). When the 𝜑u(𝑡) = 𝑡, the HT reverts to the FT. The inverse harmonic
transform (IHT) is defined as [10]

𝑠(𝑡) = 1
2𝜋

∫︁ +∞

−∞
𝑆𝜑u(𝑡)(𝜔)ej𝜔𝜑u(𝑡)d𝜔. (1.37)

The relationship between 𝜑u(𝑡) and the nominal instantaneous frequency 𝑐𝑘(𝑡) as
represented by a harmonic signal 𝑓ℎ(𝑡) with instantaneous frequencies given in (1.35)
is

𝑓ℎ(𝑡) =
+∞∑︁
𝑘=0

𝑎𝑘ej(𝑘+1)𝛼(𝑡), (1.38)

where 𝑎𝑘 is the amplitude of the 𝑘-th harmonic and 𝛼(𝑡) is the phase function of
the fundamental. The relationship between 𝛼(𝑡) and 𝑐0(𝑡) is

𝑐0(𝑡) = 𝛼′(𝑡), (1.39)

assuming the nominal instantaneous frequency of the fundamental is normalized to
be one. When 𝜑u(𝑡) = 𝛼(𝑡), the HT of 𝑓ℎ(𝑡) is

𝑆𝛼(𝑡)(𝜔) =
∫︁ +∞

−∞

+∞∑︁
𝑘=0

𝑎𝑘ej(𝑘+1)𝛼(𝑡)𝛼′(𝑡)e−j𝜔𝛼(𝑡)d𝑡,

=
+∞∑︁
𝑘=0

𝑎𝑘

∫︁ +∞

−∞
ej(𝑘+1−𝜔)𝛼(𝑡)d𝛼(𝑡),

=
+∞∑︁
𝑘=0

2𝜋𝑎𝑘𝛿(𝜔 − 𝑘 − 1),

(1.40)
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which is an impulse-train for arbitrary 𝑐0(𝑡). Therefore with a certain unit phase
function, the HT can provide an impulse-train spectrum for a time-varying harmonic
signal.

1.5.1 Short-Time Harmonic Transform

Time-frequency transforms describe signal in the time-frequency plane. STFT is
one of the widely used time-frequency transforms. Many speech and music analysis
applications based on sinusoidal modeling use the STFT spectrum for estimation
of the harmonic parameters at one instant, providing instantaneous parameters and
assuming the signal is stationary over the length of the segment. A window function
𝑤(𝑡) is usually used to emphasize the signal around the instant and to suppress
artifacts caused by spectral leakage

STFT(𝜔, 𝑡) =
∫︁ +∞

−∞
𝑠(𝜏)𝑤(𝜏 − 𝑡)e−j𝜔𝜏 d𝜏. (1.41)

The STFT of a time-varying harmonic signal has poor resolution in theme and/or
frequency domain although there are ways to improve the resolution [10].

HT can be used to improve resolution of the STFT for time-varying harmonic
signals. After replacing the FT in (1.41) with the HT we get the short-time Harmonic
transform (STHT) as

STHT𝜑𝑢(𝑡)(𝜔, 𝑡) =
∫︁ +∞

−∞
𝑠(𝜏)𝑤(𝜏 − 𝑡)𝜑′

𝑢(𝜏)e−j𝜔𝜑𝑢(𝜏)d𝜏, (1.42)

where 𝑠(𝑡) is the signal and 𝑤(𝑡) is the window function. Linear change of funda-
mental frequency in a given segment is presumed, which is sufficiently satisfied by
selecting an analysis window of appropriate length [10].

Instantaneous phase 𝜙(𝑡) of a sinusoid with linear change of frequency [63] is
defined as

𝜙(𝑡) = 2𝜋
(︃
𝑓0𝑡+ 𝜖𝑡2

2

)︃
, (1.43)

where 𝑓0 is fundamental frequency and 𝜖 = Δ𝑓0/𝑇 is the change of fundamental
frequency divided by length of the segment. Assuming discrete signal segment of
the length 𝑁 , where 𝑇 = 𝑁/𝑓s, the discrete phase 𝜙(𝑛) of a sinusoid with linear
frequency variation [49] can be written as

𝜙(𝑛) = 2𝜋
(︃
𝑓0𝑛

𝑓s
+ Δ𝑓0𝑛

2

2𝑁𝑓s

)︃
, (1.44)

where 𝑓0 is discrete instantaneous frequency, 𝑁 is length of the analysis window,
and 𝑓s is sampling frequency (initial phase is disregarded for simplicity).
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Fig. 1.3: Illustration of the relationship between fundamental frequency 𝑓0, central
fundamental frequency 𝑓𝑐, and fundamental frequency change Δ𝑓0 in a segment of
length 𝑁 .

Initial fundamental frequency in a given segment can be written as

𝑓0 = 𝑓c − 𝑎𝑓c

2 , 𝑎 = Δ𝑓0

𝑓c
, (1.45)

where 𝑓c is the central fundamental frequency within a segment and 𝑎 is the slope of
fundamental frequency change within the segment, see Fig. 1.3. Substituting (1.45)
to (1.44) we get [49]

𝜙(𝑛) = 2𝜋
𝑁
𝛼(𝑛), 𝛼𝑎(𝑛) = 𝑛

(︂
1 − 𝑎

2 + 𝑎𝑛

2𝑁

)︂
, (1.46)

which is a non-linear relationship between the original and time-warped axis which
depends on the fundamental frequency slope 𝑎 as shown in Fig. 1.5.

Frequencies of spectral lines of the Fourier transform are given as

𝑓c = 𝑓s

𝑁
, (1.47)

and from the equation (1.46) it is obvious that the instantaneous phase is

𝜙(𝑛) = 2𝜋
𝑁
𝛼(𝑛). (1.48)

Discrete harmonic transform (DHT) of signals with linear fundamental frequency
variation [49] is defined as

𝑆𝑎(𝑘) = 1
𝑁

𝑁−1∑︁
𝑘=0

𝑠(𝑛)𝛼′(𝑛)ej 2𝜋𝑘
𝑁

𝛼(𝑛), (1.49)

where
𝛼′

𝑎(𝑛) = 1 − 𝑎

2 + 𝑎𝑛

𝑁
, (1.50)

25



0 50 100 150 200 250
−100

−80

−60

−40

−20

n →

A
(d

B
) 

→

0 50 100 150 200 250
−100

−80

−60

−40

−20

n →

A
(d

B
) 

→

Fig. 1.4: Fourier transform spectrum (bottom); Harmonic transform spectrum with
parameter 𝑎 = 0.2 (top); of sound sample happy child.

is first-order derivation of (1.46).
The difference between DFT and DHT at analysis of non-stationary harmonic

signals can be seen on a part of speech uttering from the PTDB-TUG1 database with
frequency modulation. In Fig. 1.4 (bottom) we can see that the higher frequencies
are smoothed due to frequency modulation. In Fig. 1.4 (top) even high frequency
peaks are clearly visible.

1.5.2 Estimation of Fundamental Frequency Change

Pitch estimation algorithm proposed in [64] consists of three stages. First, the fun-
damental frequency change rate within a frame is computed, then the best pitch
candidate is selected by analysis of harmonic spectrum and finally the pitch esti-
mation from several consecutive frames is analyzed in order to correct estimation
errors.

The algorithm starts from finding fundamental frequency change by minimizing
1Pitch Tracking Database from Graz University of Technology available at: http://www.spsc.

tugraz.at/tools/ptdb-tug

26

http://www.spsc.tugraz.at/tools/ptdb-tug
http://www.spsc.tugraz.at/tools/ptdb-tug


Spectral Flatness Measure (SFM)

arg min𝑆𝐹𝑀(𝑎) =
𝑁

√︁∏︀𝑁−1
𝑘=0 |𝑆𝑎(𝑘)|

1
𝑁

∑︀𝑁−1
𝑘=0 |𝑆𝑎(𝑘)|

, (1.51)

where 𝑆𝑎 is harmonic spectrum of given segment for given parameter 𝑎 and |.| denotes
absolute value. Minimal spectral flatness value indicated highest concentration,
which means optimal fit of signal and DHT kernel [64].

After determining 𝑓0 change rate DHT is computed using the estimated pitch
rate change 𝑎 and a peak-picking algorithm is used to find local maxima of the
harmonic spectrum (ideally on an interval suited to the spectral characteristic of
the analyzed signal). Then the confidence function is computed

𝑟(𝑓) =
∑︀𝐾

𝑘=1 |𝑆𝑎(𝑘𝑓)|2∑︀𝑁−1
𝑛=0 |𝑆𝑎(𝑛)|2

, (1.52)

where 𝑁 is the length of the segment. The confidence function is designed to show
how much energy of the frame is carried by particular pitch and its several first har-
monics. Procedure of selecting best fundamental frequency candidate is as follows:
take the highest local maximum of 𝑟(𝑓), if there is no corresponding local maxima
in harmonic spectrum, discard it and repeat the procedure, otherwise the frequency
corresponding to the current local maximum of 𝑟(𝑓) is initial fundamental frequency
estimation. Further, the pitch frequency is refined using method similar to the one
presented in [65]

𝑓𝑟 =
∑︀𝑛𝑘 max

𝑛−1
𝑓𝑛

𝑛

𝑛𝑘 max
, (1.53)

where 𝑓𝑛 is frequency of local maximum of harmonic spectrum corresponding to 𝑛-th
harmonic of the selected candidate in previous step, 𝑓𝑟 is refined pitch and 𝑛𝑘 max

is number of possible harmonics. Fundamental frequency is considered slowly time-
varying and cannot change rapidly between consecutive segments. In the presence
of noise, there are possible estimation errors. The estimates are held in a buffer
and tracking algorithm gives the final estimate. In the proposed approach, median
filtering is used as it has proved robust in the presence of noise [64].

1.5.3 Harmonic Parameters Estimation

The harmonic parameters are estimated on the basis of the harmonic+noise model (1.24),
which here is defined for the periodic component as [64]

ℎ̂(𝑛) =
𝐾∑︁

𝑘=1
𝐴𝑘 cos(𝑘𝜙(𝑛) + 𝜙𝑘(0)), (1.54)
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Fig. 1.5: Influence of parameter 𝑎 on the phase function 𝛼a(𝑡).

where 𝐴𝑘 is the amplitude of the 𝑘-th harmonic, 𝑘𝜙(𝑛) is the instantaneous phase of
the 𝑘-th harmonic component defined in (1.44) with 𝑓𝑐 as the fundamental frequency
and 𝜙(0) is the initial phase of the 𝑘-th harmonic component. The pitch harmonics
are not aligned with the spectral lines and cannot be directly estimated from the
HT spectrum. The DHT variant aligned with the fundamental frequency is defined
as [64]

𝑆(𝑘) =
𝑁−1∑︁
𝑛=0

𝑠(𝑛)𝛼′(𝑛)e−𝑗 2𝜋𝑘𝑓𝑟
𝑓s

𝛼(𝑛), (1.55)

where 𝑓𝑟 is the fundamental frequency and 𝑘 = 1, ..., 𝐾 is the number of harmonics.
The amplitudes and phases of the harmonics can be computed directly from 𝑆(𝑘)
coefficients

𝐴𝑘 =
√︁

ℜ𝑆(𝑘)2 + ℑ𝑆(𝑘)2,

𝜙𝑘(0) = − arctan
(︁

ℑ𝑆(𝑘)2

ℜ𝑆(𝑘)2

)︁
,

(1.56)

where ℜ and ℑ stands for the real and the imaginary parts of 𝑆(𝑘), respectively. The
periodic component can then be generated using (1.54) and the noise component
can be calculated from the input signal 𝑠(𝑛) as

𝑟(𝑛) = 𝑠(𝑛) − ℎ̂(𝑛). (1.57)
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1.6 Fan-Chirp Transform
The Fan-Chirp Transform (FChT) has been introduced in [14]. A variation of FChT
with different properties has been developed independently of the original work
in [66]. In the FChT, the basis functions are a set of linear frequency modulated
sinusoids with chirp rate tuned to the given signal [13, 14]. The term fan comes from
the FChT’s property of projecting the Wigner-Ville distribution according to a fan
geometry. The set of basis functions in FChT is consistent with a harmonic signal
whose fundamental frequency is changing linearly in time [67]. There have been at-
tempts at making sinewave analysis consistent with time-varying sinewave models.
This is particularly important in high-frequency speech regions where harmonic fre-
quency modulation can be significant. A sinewave analysis/synthesis system based
on the FChT has been presented in [67], where the short-time FChT is compared
to a STFT estimation of sinusoidal parameters of time-varying synthetic speech-like
signal. In [66] the FChT is used for melody extraction from polyphonic music and
shows combination of FChT with Constant-Q Transform (CQT) [68]. Performance
of the presented extraction system is compared to STFT using MIREX 2 and RWC 3

databases. The system has been improved further using spectral clustering [69] of
local 𝑓0 candidates to form pitch contours [70]. In [71] it has been enhanced with au-
tomatic detection of singing voice in polyphonic recordings, extraction of harmonic
sounds from the audio and their classification. And [72] presents an application of
the FChT based F0gram [73] to musicology. In [74] FChT is used for estimation of
pitch and pitch rate analysis of Vietnamese speech and points out an undesired spec-
tral envelope smoothing caused by the FChT. Another application is in [75], where
FChT has been used for hybrid sinusoidal plus noise modeling of polyphonic audio.
In presence of several musical instruments with different pitch variation simulta-
neously, the spectrum will show sharp peaks for instruments with the same chirp
rate. The estimates of individual chirp rates of individual harmonic partials follow a
multi-modal distribution that is approximated by a Gaussian mixture model. In [76]
FChT has been used in an algorithm for monoaural speech separation.

A fast version of FChT reduces computation [13] but this algorithm presents two
factors that affect sinewave parameter estimation. The phase of the fast FChT does
not match the phase of the original continuous-time transform and this interferes
with the estimation of sinewave phases. This has been solved in [77].

2available at http://www.music-ir.org/mirex
3available at http://staff.aist.go.jp/m.goto/RWC-MDB/
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1.6.1 Continuous Fan-Chirp Transform

The FChT is defined as

𝑋(𝑓, 𝛼) =
∫︁ ∞

−∞
𝑥(𝑡)

√︁
|𝜑′

𝛼(𝑡)| e−j2𝜋𝑓𝜑𝛼(𝑡)d𝑡, (1.58)

where 𝛼 is the chirp rate,

𝜑𝛼(𝑡) =
(︂

1 + 1
2𝛼

(︂
𝑡− 𝑇

2

)︂)︂(︂
𝑡+ 𝑇

2

)︂
− 𝑇

2 , (1.59)

is the time warping function and 𝜑′
𝛼(𝑡) denotes first derivative of 𝜑𝛼(𝑡). The param-

eter 𝑇 in (1.59) is the length of the interval centered at 𝑡 = 0 where the mapping
takes effect. Assuming the mapping interval is (−𝑇/2;𝑇/2) the time warping (1.59)
can written as

𝜑𝛼(𝑡) = (1 + 1
2𝛼𝑡)𝑡. (1.60)

In order to prevent the derivative of the phase function 𝜑𝛼(𝑡) (frequency of the
basis functions) from becoming zero the chirp rate 𝛼 is constrained to

|𝛼| < 2
𝑇
. (1.61)

The computation of FChT involves the inner product between 𝑥(𝑡) and the complex
signals

𝜉(𝑡, 𝑓, 𝛼) =
√︁

|1 + 𝛼𝑡|ej2𝜋𝑓(1+(1/2)𝛼𝑡)𝑡, (1.62)

which are chirps whose instantaneous frequency, defined as the time derivative of
the exponent, varies linearly over time as

𝑣(𝑡) = 𝜑−1
𝛼 (𝑡)𝑓 = (1 + 𝛼𝑡)𝑓, (1.63)

where 𝑓 refers to the instantaneous frequency at 𝑡 = 0. The signal 𝑥(𝑡) can be
recovered from its FChT as

𝑥(𝑡) =
∫︁ ∞

−∞
𝑋(𝑓, 𝛼)

√︁
|𝜑′

𝛼(𝑡)| ej2𝜋𝑓𝜑𝛼(𝑡)d𝑓. (1.64)

However, there is another condition that has to be met in (1.64) for perfect recon-
struction. According to (1.63), the sign of the instantaneous frequency of all basis
components switches at the instant 𝑡 = −1/𝛼 which is called ’focal point’ instant.
Therefore 𝑥(𝑡) has to fulfill

𝑥(𝑡) = 0 for 𝑡 < − 1
𝛼
, (1.65)

otherwise the synthesized signal will be overlaid with itself mirrored around the focal
time instant [13]. Also the chirp rate has to be in the range defined by (1.61) other-
wise the quadratic mapping 𝜑𝛼(𝑡) would not be bijective, i.e. one-to-one mapping.
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1.6.2 Discrete-Time Fan-Chirp Transform

For a signal 𝑥(𝑛), which is a discrete-time version of the signal 𝑥(𝑡) at sampling
frequency 𝑓s, the discrete-time FChT is defined as [14]

𝑋(𝑓, 𝛼) =
𝑁−1∑︁
𝑛=0

𝑥(𝑛)
√︁
𝜑′

�̂�(𝑛)e−j2𝜋 𝑘
𝑁

𝜑�̂�(𝑛), (1.66)

where 𝑘 is the frequency bin index, 𝑁 is the number of segment samples, �̂� is related
to its continuous-time counterpart �̂� = 𝛼/𝑓s, and 𝜑�̂� is the following mapping,
bijective in [0, 𝑁 ]

𝜑�̂� =
(︂

1 + 1
2 �̂�(𝑛−𝑁)

)︂
𝑛. (1.67)

The bijectivity of 𝜑�̂�(𝑛) results in the following limits for the chirp rate �̂�

− 2
𝑁
< �̂� <

2
𝑁
. (1.68)

The computational load required to implement is𝑁2 complex multiplications [13].

1.6.3 Fan-Chirp Transform as Time-warped Fourier Trans-
form

While the discrete-time FChT can be computed directly using (1.66), computational
load of the direct version is quadratic. A fast version of the FChT operates refor-
mulating the FChT as the FFT of a time-warped signal, substituting 𝜏 = 𝜑𝛼(𝑡) thus
significantly reducing computation [13]. The FChT with the variable substitution
becomes [77]

𝑋(𝑓, 𝛼) =
∫︁ 𝜑𝛼(− 𝑇

2 )

𝜑𝛼(− 𝑇
2 )

�̃�(𝜏)𝜌(𝜏)e−j2𝜋𝑓𝜏𝑑𝜏, (1.69)

where �̃�(𝜏) is a time-warped version of the signal 𝑥(𝑡) and 𝜌(𝜏) is a scaling function on
the time-warped axis. It can be seen, that the equation (1.69) is a Fourier transform
of the product �̃�(𝜏)𝜌(𝜏). To compute the time-warped input signal �̃�(𝜏) = 𝑥(𝜑𝛼(𝜏)),
we use inverse of the warping function 𝜓𝛼(𝜏) = 𝜑𝛼(𝜏)−1. Since 𝜑𝛼(𝑡) is a quadratic
function, its inverse function has two solutions. The solution of interest is

𝜓𝛼(𝑡) = − 1
𝛼

+
√

1 + 2𝛼𝑡
𝛼

. (1.70)

The scaling function 𝜌(𝜏) can be shown to be [77]

𝜌(𝜏) =
√︁

|𝜑′
𝛼(𝜓𝛼(𝜏))|𝜓′

𝛼(𝜏), (1.71)
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which can be expressed as
𝜌(𝜏) = 1

4
√

1 + 2𝛼𝜏
. (1.72)

This concludes the computation of FChT by first time warping and scaling the
input signal using (1.70) and (1.72), respectively and then computing the Fourier
transform of the result. In discrete time equation (1.69) can be written as

𝑋(𝑘, �̂�) =
∑︁
𝑚

�̃�(𝑚)𝜌(𝑚)e−j2𝜋 𝑘
𝐾

𝑚, (1.73)

where the range of 𝑚 will be defined below. Again the equation (1.73) can be
evaluated using FFT of the product �̃�(𝑚)𝜌(𝑚). The discrete-time signal �̃�(𝑚) is
created by uniformly sampling the continuous time signal �̃�(𝜏). Due to time warping,
the signal �̃�(𝜏) has greater bandwidth when �̂� is nonzero. In other words, the
warping rule has a slope greater than 𝜑′

𝛼(𝑡) > 1 for 𝛼𝑡 < 0. This implies that signal
�̃�(𝑚) is undersampled on that region, leading to undesired aliasing effects [13]. This
undesired aliasing is reduced or even suppressed by setting the length 𝑀 to a proper
value. It is clear that 𝑀 > 𝑁 . In order to have 𝑁 aliasing-free bins (out of 𝑀), 𝑀
has to be set as

𝑀 ≥ 1 − |�̂�|𝑁/4
1 − |�̂�|𝑁/2𝑁. (1.74)

The range of �̃�(𝜏) is 𝜑𝛼(−𝑇
2 ) ≥ 𝜏 ≥ 𝜑𝛼(𝑇

2 ) which can be shown to have duration
𝑇 [77]. In [13] the time warped signal �̃�(𝜏) is sampled at time instants

𝜏𝑚 = 𝜑𝛼

(︂
−𝑇

2

)︂
+
(︂
𝑚+ 1

2

)︂
𝑇

𝑀
for 0 ≤ 𝑚 ≤ 𝑀, (1.75)

where 𝑇
𝑀

is the sampling period on the time-warped axis. The definition (1.75)
of time instants 𝜏𝑚 at which the time-warped signal is sampled, is selected from
the 𝑀 samples symmetrically between the endpoints of the time-warped signal.
Unfortunately this definition has the side effect of adding a delay to the discrete-
time signal �̃�(𝑚) [77]. The delay changes the phase of the FChT such that it does
not match the phase of the continuous time FChT given in (1.69). This introduces
a phase shift, which has to be removed from the FChT before it can be used to
estimate phases of sinewave parameters properly [77]. An alternative method to
avoid the need for phase correction is to redefine the samples at which the time-
warped signal is sampled as

𝜏𝑚 = 𝑚
(︂
𝑇

𝑀

)︂
. (1.76)
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The range of 𝑚 in (1.76) is derived from the relationship 𝜑𝛼(−𝑇
2 ) ≥ 𝜏 ≥ 𝜑𝛼(𝑇

2 ),
which yields

𝑀
(︂1

8 �̂�𝑁 − 1
2

)︂
≤ 𝑚 ≤ 𝑀

(︂1
8 �̂�𝑁 + 1

2

)︂
. (1.77)

1.6.4 Fundamental Frequency and Chirp Rate Estimation

The most important aspect of the FChT regards the adequacy of the law (1.70)
to the actual time-frequency characteristics of the signal [13]. Considering segment-
wise processing, the chirp rate 𝛼(𝑡) that best matches time-frequency characteristics
of the segment is doubtlessly the decisive factor on using FChT-based spectrogram
instead of the STFT-based spectrogram. This estimation can be carried out using
two methodologies: inter-frame and intra-frame.

Inter-frame

Assuming the signal shows a continuous evolution of its fundamental frequency 𝑓0(𝑡)
according to the instantaneous frequency of the fan geometry, the best estimation
of the pitch rate is [13]

𝛼(𝑡) = 𝑓 ′
0(𝑡)
𝑓0(𝑡)

, (1.78)

where 𝑓 ′
0(𝑡) is time derivative of 𝑓0(𝑡). The intuitive approach would be to quantify

the evolution of pitch 𝑓0(𝑡) and then compute the chirp rate using (1.78). Many
methodologies for estimating 𝑓0 exist [78]. It is common in segment-wise processing,
that the 𝑓0 is estimated at instants 𝑡 = 𝑛𝑆, where 𝑆 is a shift interval between
segments. After the pitch has been estimated in the neighboring segments around
the 𝑛-th segment, the pitch rate can be obtained as [13]

𝛼(𝑛) = 𝑓0(𝑛+ 1) − 𝑓0(𝑛− 1)
2𝑆𝑓0(𝑛) , (1.79)

where 𝑆 is the shift interval between segments. Estimation of chirp rate for the 𝑛-th
segment using (1.78) requires the pitch of the next segment. This non-causal method
implies to step one segment back to recompute the FChT of the 𝑛-th segment once
that the pitch of the (𝑛+ 1)-th segment is available [13].

Intra-frame

While in the inter-frame approach used pitch information from adjacent segments,
the intra-frame method uses only information from the current segment. One
method of computing the chirp rate of the current segment is computing a dense
(𝛼, 𝑓) plane. The (𝛼, 𝑓) shows spread in the shape of a bow tie, which is typical in
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chirp-based transforms [13]. The chirp rate best representing the harmonic informa-
tion contained in the signal will be in the place of highest concentration of peaks
in the (𝛼, 𝑓) plane. To skip the large computational load of computing the redun-
dant (𝛼, 𝑓) plane, chirp rate can be estimated from 𝐿 FChT instances for different
chirp rates 𝛼. It has been shown that three instances (𝐿 = 3) are sufficient for that
purpose [13].

The pitch and pitch rate can be both estimated using pitch salience. Its aim is
to build a continuous function that gives a prominence value for each fundamental
frequency in a range of interest [66]. Ideally it shows pronounced peaks at the po-
sitions corresponding to the true pitches presented in a signal frame. The salience
of a given fundamental frequency candidate 𝑓0 can be obtained by gathering the
log-spectrum at the positions of the corresponding harmonics [14]

𝜌0(𝑓) = 1
𝑛H

𝑛H∑︁
𝑖=1

log |𝑆(𝑖𝑓)|, (1.80)

where |𝑆(𝑓)| is the power spectrum, 𝑛H is hypothetical number of harmonics in the
Nyquist band and 𝑖 is order of harmonic component. Linear interpolation from the
discrete log-spectrum is applied to estimate the values at arbitrary frequency posi-
tions [66]. Gathering the linear spectrum was initially proposed [79] as a method for
detecting periodic signal when the period is unknown. However, the same gathering
procedure on the logarithmic power spectrum delivers higher accuracy and noise
robustness than working on the linear spectrum, as well as robustness against the
formant structure [14]. Since the harmonic accumulation when using (1.80) shows
peaks not only at the position of the true pitch, but also at multiples and submulti-
ples. To handle the ambiguity produced by multiples, a simple non-linear processing
is proposed in [14]

𝜌(𝑓) = 𝜌0(𝑓) − max𝑞∈N𝜌0(𝑓/𝑞) 𝑞 = 1, 2, 3, ... (1.81)

This is effective in removing pitch candidates multiples of the actual one. Submulti-
ple spurious peaks do not affect the estimation because their amplitude is necessarily
lower than the true pitch for the monophonic case [66].
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2 THESIS OBJECTIVES
From the methods for representation of non-stationary signals with time-variant
frequency components presented in the previous chapter this thesis will deal with
the Harmonic Transform. Specifically with decreasing its computational demands.
Knowledge of fundamental frequency change is required before computing the Har-
monic Transform. This is done by Spectral Flatness Measure and our first focus will
be on optimizing its computation. Unfortunately, the Harmonic Transform compu-
tation still employs 𝒪(𝑁2) computational complexity. So the next focus will be on
obtaining a Harmonic Transform which employs subquadratic computational com-
plexity. This will be attempted substituting the time-warping kernel of Harmonic
Transform with time-warping of the time axis. Since we usually only have discrete
signals available, it is necessary to use interpolation which introduces noise into
the signal. This renders Spectral Flatness Measure ineffective for the computation
of fundamental frequency change as will be shown in the next chapter. Therefore
a different method of fundamental frequency change estimation is needed. Two
methods will be presented in this thesis. The first one computes fundamental fre-
quency change using a method which has been used in computation of Fan-Chirp
Trasnform, the gathered log-spectrum which performs gathering of the logarithm of
the magnitude spectrum at the places of the fundamental frequency and its multi-
ples. The second method selects the optimal fit of fundamental frequency change
by comparing the reconstruction error of the harmonic part of the signal which is
estimated using the Harmonic Transform centered on the fundamental frequency.
Both of these methods will be tested on the same speech signal to compare their
approach.

Since the Fast Harmonic Transform uses interpolation for its fast computation,
there will inevitably be artifacts caused by the interpolation. This will be even
more pronounced in the signal reconstructed using Inverse Fast Harmonic Transform
from the harmonic domain. The reconstruction error will be measured for several
interpolation methods. Another artifact present in the Fast Harmonic Transform
image is aliasing and it will be addressed using oversampling and evaluated for
different oversampling factors and interpolation methods.

All of the papers dedicated to Harmonic Transform present improvment of rep-
resentation of non-stationary signals with time-varying components only on speech
signals sampled at sampling frequency 8 kHz. One of the goals of this thesis is
to attempt the application of Harmonic Transform on real signals such as vocals
or instruments with significant frequency modulation which have been sampled at
sampling frequency 44.1 kHz.

To summarize the goals of this thesis, they can be divided into these main areas:
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• Fast Harmonic Transform Algorithm
• Fast Inverse Harmonic Transform Algorithm
• Computational load of the Fast Harmonic Transform
• Fundamental frequency change estimation using gathered log-spectrum
• Fundamental frequency change estimation using analysis-by-synthesis approach
• Aliasing artifacts and anti-aliasing by oversampling
• Experiments on real frequency-modulated signals
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3 RESEARCH RESULTS
This chapter deals with efficient implementation of the Harmonic Transform. The
original implementation requires 𝒪(𝑁2) operations. The first approach to reduce
the number of computations required to compute HT is to reduce the number of
operations for computation of spectral frequency measure. This is done by exploit-
ing redundancy in its algorithm. Since the Harmonic Transform does not produce
mirrored double-sided spectrum and only the left side spectrum represents the har-
monic information of the analyzed signal, the SFM computation can be carried out
on half of the spectrum, reducing the number of operations needed.

This however still leaves an algorithm with quadratic computational complexity,
so the research is then focused on producing an algorithm with subquadratic com-
putational complexity. This is achieved by time-warping the input signal, where the
relationship between the warped axis and original axis is given by the transformation
kernel of the HT. By this reduction of computational complexity, another problem
emerges. The interpolation used in time-warping introduces some noise to the signal
if spectral flatness is used for fundamental frequency change computation. Methods
which can be used for fundamental frequency change estimation instead of SFM
have been used with the Fan-Chirp Transform and are presented in chapter 1.6.4.
The general approach is to compute several transformations with different values of
fundamental frequency and fundamental frequency change where the most suitable
parameters are picked from a 2D representation of the analyzed data.

Several audio samples are used for demonstration of the presented methods.
Their list can be found in appendix A. In some cases a synthetic linear chirp signal
(test signal) is used for demonstration. It is defined as

𝑥(𝑡) =
∑︁

𝑖

sin(2𝜋(𝑓0𝑖+ 𝑖
𝑘

2 𝑡
2)) 𝑖 = 1, ..., 12 (3.1)

where 𝑡 ∈ (0, 𝑇 ), 𝑇 is length of the segment, 𝑓0 is fundamental frequency, 𝑖 is the
number of harmonic, and 𝑘 is the chirp rate defined as 𝑘 = Δ𝑓

𝑇
.

3.1 Reducing The Number Of Computations Of
The Harmonic Transform

One of the crucial steps in computation of the Harmonic Transform is to estimate
the fundamental frequency change of the analyzed signal. So far, algorithm based
on SFM has been used and can be found in section 1.5.2. When exploring this algo-
rithm, several observations have been made. When using (1.51) the SFM has several
minimums and if a search algorithm was used, it could fall into local minimum. It is
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also noteworthy that it is possible the harmonic transform |DHT(𝑎, 𝑘)| will be equal
to zero for some values of 𝑘, which could mean that the spectral flatness will be
zero for all 𝑎. Removing zero values solves this problem and leads to band-limited
spectral flatness measure [80].

Harmonic spectrum of the Harmonic Transform computed using (1.49) is not
complex conjugated even for real signals (which is true for Fourier transform). From
the frequency axis point of view, the unit phase function 𝜑u(𝑡) shifts the spectrum
towards lower frequencies if 𝑎 is positive, and to higher frequencies if it is negative.
Using the formula (1.49) we get only one-sided spectrum (see Fig. 3.2), the right part
will not represent harmonic components of the analysed signal [80]. When estimating
𝑎, (1.51) has two minimums (see Fig. 3.1). For harmonic signal analysis, only left
side of the spectrum is useful, because it appropriately represents non-stationary
harmonic signal. Using the modified spectral flatness measure (MSFM)

arg min
𝑎

MSFM(𝑎) =

√︁∏︀𝑁/2
𝑘=0 |DHT(𝑎, 𝑘)|

1
𝑁/2+1

∑︀𝑁/2
𝑘=0|DHT(𝑎, 𝑘)|

(3.2)

we can get function of 𝑎 which has clearly defined minimum [81]. This is caused
by using only left side of the spectrum when computing SFM and it consequently
leads to reducing the number of operations needed to compute spectral flatness by
𝑁
2 − 1 [81].

While this approach reduces the number of operations needed to compute the
Harmonic Transform, it does not reduce the asymptotic computational complexity
and the computation has 𝒪(𝑁2) complexity. Further research on the reduction of
the number of operations used to compute Harmonic Transform has been therefore
focused on developing a subquadratic method of Harmonic Transform computation.

3.2 Fast Harmonic Transform
The number of operations in direct computation of the HT from (1.49) raises
quadratically, similarly to direct computation of Fourier transform. The goal of this
section is to present an algorithm to compute the HT which shows sub-quadratic
complexity. When there is a transform with quadratic complexity, then its sub-
quadratic form is referred to as the fast version of the transform. In this case it is
the Fast Harmonic Transform (FHT). One of the ways to produce a fast transform
of a transform which depends on time-warping of the time axis, is to separate it
into a time-warping operation and a Fast Fourier Transform. This has been demon-
strated in the case of Fan-Chirp Transform [14] and Mellin Transform [82]. And this
principle is also used here for devising the FHT.
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showing one-sided spectrum.
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By substituting 𝜏 = 𝛼𝑎(𝑡) in (1.36) it becomes

𝑆(𝜔, 𝑎) =
∫︁ 𝛼𝑎(𝑇 )

𝛼𝑎(0)
𝑠(𝜏)𝜌(𝜏)e−j𝜔𝜏 d𝜏, (3.3)

where 𝑠(𝜏) is a time-warped version of 𝑠(𝑡) and 𝜌(𝜏) is a scaling function on the time-
warped axis. To compute the time-warped input signal 𝑠(𝜏) we need the inverse of
the warping function 𝜓𝑎(𝜏) = 𝛼−1

𝑎 (𝜏) which then gives 𝑠(𝜏) = 𝑠(𝜓𝑎(𝜏)). The inverse
of 𝛼𝑎(𝜏) is a quadratic function which has two solutions. The solution of interest is

𝜓𝑎(𝜏) = 𝑇

2 − 𝑇

𝑎
+
𝑇
√︁

(𝑎2

4 − 𝑎+ 2𝑎𝜏
𝑇

+ 1)
𝑎

, (3.4)

where 𝑇 is the length of the analyzed segment. The scaling function is then defined
as

𝜌(𝜏) = 𝛼′
𝑎(𝜓𝑎(𝜏))𝜓′

𝑎(𝜏). (3.5)

Equation (3.3) can be seen as Fourier Transform of the product of 𝑠(𝜏)𝜌(𝜏). This
enables efficient implementation in discrete time based on the FFT. Further analysis
will therefore be focused on the discrete-time FHT.

Discrete-Time Fast Harmonic Transform

The equation (3.3) can be written in discrete time as

𝑆(𝑘, 𝑎) =
𝑁∑︁

𝑛=0
𝑠(𝑛)𝜌(𝑛)e−j2𝜋 𝑘

𝐾
𝑛 (3.6)

which is a FFT of the product 𝑠(𝑛)𝜌(𝑛) which is the uniformly sampled product
𝑠(𝜏)𝜌(𝜏). Since we usually only have discrete signals available, we will use discrete-
time intervals 𝑛 even though its value can be non-integer. Any values at non-integer
intervals will be enumerated using interpolation from the signal samples. Now to
get a discrete-time counterpart of (3.4) we take 𝛼𝑎(𝑛) which is a quadratic function
and its inverse 𝛼−1

𝑎 (𝑛) yields two results. The result of interest is

𝜓𝑎(𝑛) = 𝑁

2 − 𝑁

𝑎
+
𝑁
√︁

(𝑎2

4 − 𝑎+ 2𝑎𝑛
𝑁

+ 1)
𝑎

, (3.7)

where 𝑛 is sample index and 𝑁 is number of samples [83]. Plot of the warping
function 𝛼𝑎(𝑛) and its inverse warping function 𝜓𝑎(𝑛) can be seen in Fig. 3.3. A
demonstration of the warping function (3.7) on a signal with linear frequency change
can be seen in Fig. 3.4. The warping function is used to time-warp the signal with
linear frequency change to a signal with stationary frequency 𝑓c which corresponds
to the frequency of the signal with linear frequency change at time 𝑡 = 0, or 𝑛 = 𝑁/2
for discrete-time signals.
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Fig. 3.3: Mapping from the original time axis to the time-warped axis given by the
discrete-time warping function 𝜓𝑎(𝑛).

With (3.7) we can define the discrete-time time-warped signal from (1.49) as

𝑠𝑎(𝑛) = 𝜌(𝑛)𝑠(𝜓𝑎(𝑛)), (3.8)

where 𝜌(𝑛) = 𝜑′
𝑎(𝜓𝑎(𝑛))−1 is the scaling factor which can be written as

𝜌(𝑛) =

⎛⎜⎝−𝑎

2 +
𝑁
2 − 𝑁

𝑎
+ 𝑁

√
𝑎2/4−𝑎+ 2𝑎𝑛

𝑁
+1

𝑎

𝑁
+ 1

⎞⎟⎠
−1

(3.9)

and 𝑠(𝜓𝑎(𝑛)) is the time-warped signal [83]. The last step to compute the HT is
using FFT on the time-warped signal 𝑠𝑎(𝑛) as follows [83]

𝑆(𝑘, 𝑎) =
𝑁−1∑︁
𝑛=0

𝑠𝑎(𝑛)e−j2𝜋 𝑘
𝑁

𝑛. (3.10)

Now we have a Fast Harmonic Transform for harmonic signals with linear frequency
change which in the next step will be turned into an algorithm which will enable its
use for analysis and synthesis in the harmonic domain.

Harmonic Transform Algorithm

It has been stated in 1.5.2, that fundamental frequency change estimation is needed
for correct representation of a signal using the HT. The fundamental frequency
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change estimation has been carried out using spectral flatness measure. The search-
ing algorithm for fundamental frequency change estimation is following: It starts by
searching the fundamental frequency change by measuring harmonic spectrum for
different unit phase functions, i.e. phase functions with different fundamental fre-
quency slope 𝑎. The optimal parameter 𝑎 is defined by the harmonic spectrum with
the lowest SFM as can be seen in Fig. 3.6. It indicates the highest concentration
of spectral peaks, an optimal fit of the transformation kernel for the signal. This
means the optimal fundamental frequency change also has been found. In FHT,
we are using interpolation to obtain a time-warped version of the analyzed signal.
The interpolation adds noise and errors to the signal, creating more peaks in the
spectrum that do not represent the analyzed signal, even when using high-quality
interpolation, which renders spectral flatness inaccurate as can be seen in Fig. 3.7.
It is therefore necessary to use a different method for fundamental frequency change
estimation which will be covered in sections 3.3 and 3.4. Fundamental frequency
change can also be computed from fundamental frequencies obtained by another
fundamental frequency estimating algorithm. If we use the estimation algorithm to
estimate fundamental frequencies at the beginning and at the end of segment, the
slope of linear frequency change can be computed from (1.45) as

𝑎 = 𝑓(𝑁) − 𝑓(0)
𝑓(𝑁/2) , (3.11)

where 𝑓(0), 𝑓(𝑁/2), and 𝑓(𝑁) is the instantaneous frequency of the fundamental
frequency at the beginning, middle, and the end of the segment respectively [83].

Fast implementation of the Harmonic Transformation is based on (3.10), though
its actual implementation employs several improvements. Block diagram of the
Harmonic Transform algorithm is shown in Fig. 3.5. The algorithm consists of:

1. Upsampling - Since the interpolation introduces noise to the signal, which is
most pronounced in higher frequencies, it may be advantageous, depending on
the application, to introduce upsampling to increase the quality of the trans-
formed signal. This operation increases the number of samples and operations
by the upsampling factor. Chapter 3.6 deals with the aliasing problem.

2. Windowing - Hann window is used for windowing.
3. Normalization - When the analyzed signal has fundamental frequency change,

the transformation can introduce energy leakage to neighboring spectral lines.
To deal with this phenomenon, the window is adapted to the frequency change.

4. Interpolation - Since the phase function 𝜓𝑎(𝑡) will likely not fit the discrete-
time signal sampled at uniform time intervals, interpolation of the signal values
is necessary.

5. Zero-phase zero padding - If we want to be able to determine phases of the
harmonics, we need a zero-phase Fourier Transform implementation. This
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bounds the transformation length to odd number of samples. In this phase,
zero samples are appended to the signal buffer.

6. FFTshift - This block carries out the actual zero-phase zero padding as defined
by

𝑓(𝑛) =
⎧⎨⎩ 𝑛+𝑁 − (𝑀−1)

2 for 𝑛 ≤ 𝑀−1
2 ,

𝑛− (𝑀−1)
2 + 1 for 𝑛 > 𝑀−1

2 ,
(3.12)

where 𝑀 is the input buffer length and 𝑁 is the total number of samples
used for the transform including zero samples from zero-padding. The first
(𝑀 − 1)/2 samples of the windowed data is stored at the end of the buffer
from sample 𝑁 − (𝑀 − 1)/2 to 𝑁 − 1. The remaining samples will be stored
starting at the beginning of the buffer from sample 0 to sample (𝑀 − 1)/2.
All zero padding occurs in the middle of the FFT buffer.

7. FFT - Preforms the Fast Fourier Transform.
Now we should have an efficient algorithm to compute the FHT. It is noteworthy

that the harmonic spectrum of the FHT is double-sided as seen in Fig. 3.8, whereas
the harmonic spectrum of DHT is one-sided. This allows for modifications in the
spectrum like linear filtration, convolution, or correlation. After we obtain the
harmonic spectrum and perform some modifications, an algorithm to return the
signal to the time domains is required. This will be the contents of the following
section.

3.2.1 Inverse Fast Harmonic Transform

Inverse Fast Harmonic Transform (IFHT) is the inverse transform to the Fast Har-
monic Transform. It can be used to obtain a time domain signal from a harmonic
spectrum and its estimated fundamental frequency slope 𝑎. The IFHT is defined as

𝑠(𝑛) = 1
𝑁

𝑁−1∑︁
𝑛=0

𝑆(𝑘, 𝑎)e j2𝜋 𝑘
𝑁

𝑛. (3.13)

An algorithm to compute the IFHT is very similar to the algorithm of FHT with
reversed block order. The block diagram is in Fig. 3.9. Description of the blocks
follows.

Inverse Harmonic Transform Algorithm

1. IFFT - Performs the inverse Fast Fourier Transform.
2. FFTshift - Returns the shifted samples in the buffer to their correct order.

This is done simply by applying the formula (3.12) again. Any added zeroes
are simply discarded if zero padding was used.
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Fig. 3.6: Spectral flatness measure obtained using Harmonic Transform for a voiced
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Fig. 3.8: Discrete Harmonic Transform of happychild sound sample shows that its
double-sided harmonic spectrum is not mirrored, while the Fast Harmonic Transform
with linear interpolation shows mirrored two-sided spectrum with aliasing.

3. Interpolation - Since mapping from the warped time axis 𝜓𝑎(𝑡) to the natural
time axis 𝑡 will likely not fit the discrete-time signal sampled at time-warped
intervals, interpolation of the signal values is necessary.

4. Normalization - This is the inverse of the normalization operation in the for-
ward Fast Harmonic Transform. It simply relieves the fundamental frequency-
adapted windowing of the forward Fast Harmonic Transform.

5. Downsampling - If upsampling has been used in the forward harmonic trans-
form, the time domain signal is downsampled.

Tab. 3.1: SNR (dB) of a speech signal micf01sa02 reconstructed using IFHT from
a harmonic spectrum obtained by FHT.

interpolation oversampling
method 1x 2x 4x
linear 17.9 28.0 37.1
cubic 22.0 37.7 42.6
spline 28.0 42.4 42.9
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Fig. 3.10: Reconstruction error of a segment of a speech signal micf01sa02 ; a) orig-
inal signal; b) reconstructed signal; c) residual signal.

The interpolation methods used for linear, cubic, and spline interpolation are
the matlab interp1 parameters ’linear’, ’cubic’, and ’spline’, respectively. Since
the IFHT contains a second interpolation (the first one is used in obtaining the
harmonic spectrum using FHT), the reconstructed signal is quite likely to have
more noise than the input signal. This is depicted in Fig. 3.10, where the input
and reconstructed signals are subtracted to obtain the noise signal. To quantify the
reconstruction error, we have enumerated the SNR of reconstructed signals using
IFHT for different interpolations and several oversampling factors for the signal
micf01sa02 in Tab. 3.1. It can be seen from the table that we can use a cheaper
interpolation method if we use oversampling. The relationship betwen noise in the
reconstructed signal and oversampling factor is further explored in section 3.6.

The signal-to-noise ratio (SNR) is computed using

SNR = 10 log
(︂
𝑃s

𝑃n

)︂
, (3.14)

where 𝑃s is the power of measured signal and 𝑃n is the power of noise. The power
is computed using

𝑃 = 1
𝑁

𝑁−1∑︁
𝑛−1

𝑥2(𝑛), (3.15)

where 𝑃 is the power, 𝑥(𝑛) is the signal sample, 𝑁 is the signal length. The actual
implementation of signal power estimation employs the Matlab function NORM which
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computes the signal power through ℒ2

𝑃 = ||𝑥||22
𝑁

, (3.16)

with the norm defined as

||x||p =
(︃

𝑁−1∑︁
𝑛=0

|𝑥(𝑛)|𝑝
)︃ 1

𝑝

. (3.17)

The ℒ2 norm can also be viewed as the Euclidean distance.

3.3 Estimation of Fundamental Frequency Change
Using Gathered Log-Spectrum

If the Harmonic Transform is to accurately represent a harmonic signal with linear
frequency change, estimation of the signal’s fundamental frequency is its indispens-
able part. This method for fundamental frequency estimation is inspired by the
method used in Fan-Chirp Transform which is presented in Section 1.6.4. A block
diagram of this method can be seen in Fig. 3.11. Its principle is computation of
gathered log-spectrum (1.80) for a predefined range of fundamental frequencies and
fundamental frequency changes based on the nature of the analyzed signal. Then
(𝑎, 𝑓0) plane is constructed from the gathered log-spectrum values (as shown in Fig.
3.12) which represent pitch salience and the most likely candidates for fundamental
frequency are represented as peak values. For signals with dominant first harmonic
component the first candidate with highest value is usually equal to the fundamental
frequency in the analyzed signal. The resulting fundamental frequency 𝑓0 and its
slope 𝑎 is taken from the maximum value of the gathered log-spectrum.

The equation (1.80) computes logarithm of the magnitude spectrum, where the
logarithm provides better results compared to the gathering of the linear spectrum
making it more robust against formant structure [66]. In [66] 𝑝-norm with 0 < 𝑝 < 1
has been used to obtain similar results. Therefore the gathered log-spectrum used
here is defined as

𝜌0(𝑓) = 1
𝑛H

𝑛H∑︁
𝑖=1

log 𝛾|𝑆(𝑖𝑓)| + 1, (3.18)

where higher 𝛾 tends to 0-norm and lower 𝛾 tends to 1-norm.
During experiments with this method, it has been observed that the number of

harmonics 𝑛H used in computation of (3.18) influences fundamental frequency esti-
mation. At higher 𝑛H, the 𝑓0 estimation precision improved at the cost of increased
noise sensitivity. At lower 𝑛H, the 𝑓0 estimation was less sensitive to noise at the
cost of decreased 𝑓0 estimation precision. The same conclusion can be reached by
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Fig. 3.12: Pitch salience on (𝑎, 𝑓0) plane for a speech signal micf01sa02 at 𝑡 = 359.6
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reasoning. Considering we are analyzing speech signals, the presence of a Gaussian
noise in the signal could mask higher harmonic components as they tend to have
lower energy, while the lower harmonic components can still be prominent in the
magnitude spectrum since most of the speech signals’ energy is concentrated in the
lower frequencies. Now if we take the same speech signal with higher harmonic
components unaffected by noise and take a sum of several harmonic components,
the fundamental frequency estimate will have to be more precise to hit the peak in
gathered log-spectrum plane, as the higher frequency components will have greater
frequency fluctuation and will require more precise input fundamental frequency
in (3.18) to fit the higher frequency component.

Algorithm outline

The algorithm consists of several steps defined as follows:
1. Segmentation - The audio signal is divided into segments for segment-wise

processing. Length of the segments depends on the analyzed signal, specifically
on its fundamental frequency change. It is necessary to adjust the length
of the segment so that the fundamental change throughout the segment is
approximately linear. This will make sure the harmonic transform will give a
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fine representation of the frequency-modulated harmonic content of the signal.
2. Windowing - is usually used to suppress spectral leakage on the borders of the

segment. Hann and Hamming windows have given good results.
3. Harmonic Transform - computes the harmonic transform using the algorithm

presented in 3.2.
4. Gathered log-Spectrum - computes the pitch salinity on (𝑎, 𝑓0) plane. This

method is based on the gathered log-spectrum introduced in section 1.6.4 for
FChT, but uses the harmonic spectrum instead. The number of harmonics
used for computation of gathered log-spectrum 𝑛H has an impact on 𝑓0 es-
timation. For lower 𝑛H, the 𝑓0 estimation is less precise but has a higher
resistance to noise, whereas for higher 𝑛H the 𝑓0 estimation is more precise
though the resistance to noise is lower.

5. Argmax - denotes an operation which chooses the highest pitch salinity as a
maximum of the (𝑎, 𝑓0) plane, giving the most likely values of 𝑓0 and 𝑎.

6. Harmonic Spectrum - is the output of the harmonic transform for the estimated
fundamental frequency change 𝑎.

Using the estimated values 𝑎 and 𝑓0 we can compute the harmonic parameters of
the fundamental frequency and its harmonics using (1.55) and (1.56). The harmonic
part of the analyzed segment can then be constructed using (1.54).

To show a typical output of the presented algorithm, it has been run on a signal
micf01sa02 with parameters 𝑀 = 511, 𝑁𝐹𝐹𝑇 = 511, overlap = 5 ms, 𝑓s = 8 kHz,
𝑛H = 4, for 𝑓0 ∈< 80; 350 > and 𝑎 ∈< −0.3; 0.3 > without oversampling. Fig. 3.13
shows the pitch salience where the fundamental frequency contour can be seen as
peak values. The maximum values of pitch salience for each segment are shown in
Fig. 3.14. It should be noted many of the values are indeed maximum values though
they represent a non-voiced segment, which does not have any fundamental. Spec-
trogram constructed from the outputs of Harmonic Transform is shown in Fig. 3.15
and a STFT spectrogram is shown in Fig. 3.16 for reference. It is evident the
Harmonic Transform based spectrogram has sharper peaks without spectral smear-
ing where a harmonic structure is present in the signal, specifically in the higher
frequencies. Fig. 3.17 represents fundamental frequency change 𝑎 which is one of
the input parameters of the HT. Only values corresponding to voiced segments are
meaningful. Even though there are several octave errors in estimating the funda-
mental frequency as can be seen at time between 2.3 s and 2.5 s in Fig. 3.14, the
fundamental frequency slope is correctly estimated as there are sharp continuous
peaks at the same time interval in Fig. 3.15.
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Fig. 3.13: Pitch salience shown on gathered log-spectrum of micf01sa02 signal for
a range of 𝑓0’s in time showing the most likely 𝑓0 trajectory as peak values.
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Fig. 3.14: Fundamental frequency of the speech segment micf01sa02 obtained from
maximum values of the gathered log-spectrum.
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Fig. 3.15: Spectrogram of the micf01sa02 signal obtained using Fast Harmonic
Transform with gathered log-spectrum as the 𝑓0 change estimation algorithm.
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Fig. 3.16: Spectrogram of the signal micf01sa02 obtained using STFT.
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Fig. 3.17: Fundamental frequency slope of the signal micf01sa02 obtained from each
segment using the gathered log-spectrum based method.

3.4 Estimation of Fundamental Frequency Change
Using Analysis-by-Synthesis Approach

In this approach we will use the (𝑎, 𝑓0) plane to estimate the fundamental frequency
as in 3.3 but with harmonic-to-noise ratio instead of pitch salinity. This approach
assumes analysis of signals which are composed of a fundamental frequency and
its harmonics. We will try to estimate harmonic parameters of each harmonic of
such signal using (1.55), where the hypothetical number of harmonics 𝑛H, range of
fundamental frequencies 𝑓0 and range of fundamental frequency changes 𝑎 is based
on previous knowledge of the nature of the analyzed signal. After the harmonic
parameters have been estimated, they are used to construct the harmonic part of
the analyzed signal which is then subtracted from the analyzed signal to get the
residual signal. Then harmonic-to-noise ratio is computed from the harmonic and
residual signal for all values of 𝑎 and 𝑓0 which are then assembled on the (𝑎, 𝑓0)
plane as can be seen in Fig. 3.18. For 𝑎 and 𝑓0 that match the analyzed signal there
will be a peak in the (𝑎, 𝑓0) plane and these values are evaluated as the final values.

FFT cannot be used to compute (1.55) though its computational complexity is
𝒪(𝑘𝑁), where 𝑘 is the number of harmonic components and 𝑁 is length of the
transformation. Computational requirements can be kept reasonable through suit-

56



a (−) →

f 0 (
H

z)
 →

 

 

−0.4 −0.2 0 0.2 0.4 0.6
50

100

150

200

250

300

350

400

450

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 3.18: HNR (dB) of speech signal micf01sa02 estimated using at 𝑡 = 359.6 ms,
𝑀 = 255, 𝑁𝐹𝐹𝑇 = 255, 𝑓s = 8000 Hz, 𝑛H = 4, with estimated 𝑓0 = 212.4 Hz,
𝑎 = −0.17, and HNR = 5.16 dB at the peak.

able choice of input parameters.

Algorithm outline

Block diagram of the algorithm can be seen in Fig. 3.19. Block diagram description
is as follows:

1. Segmentation - The audio signal is divided into segments for segment-wise
processing. Length of the segments depends on the analyzed signal, specifically
on its fundamental frequency change. It is necessary to adjust the length
of the segment so that the fundamental change throughout the segment is
approximately linear. This will make sure the harmonic transform will give a
fine representation of the frequency-modulated harmonic content of the signal.

2. Windowing - is usually used to suppress spectral leakage on the borders of the
segment. Hann and Hamming windows have given good results.

3. Harmonic transform aligned at 𝑓0 - is performed by the DHT aligned with
the fundamental frequency 𝑓0 using (1.55). The transformation is performed
several times for a range of fundamental frequencies and a range of funda-
mental frequency slopes. The fundamental frequency and fundamental fre-
quency slope ranges are chosen so they are sensible to the analyzed data (e.g.

57



𝑓0 ∈< 80; 450 > Hz for adult speech). The transform is performed over fun-
damental frequency and a selected number of harmonics. The output consists
of harmonic coefficients of each harmonic.

4. Sinusoidal generator - generates the harmonic signal from its harmonic param-
eters. Amplitudes and phases of the harmonics can be computed directly from
the 𝑆(𝑘) coefficients using (1.56) and the periodic component of the signal is
computed using (1.54). The noise signal 𝑟(𝑛), required for the next step is
computed by subtracting the reconstructed harmonic component ℎ̂(𝑛) from
the input signal 𝑠(𝑛) as in (1.57).

5. Argmax(HNR) - denotes the maximum value on the (𝑎, 𝑓0) plane which is
constructed using harmonic-to-noise ratios (HNR) where the harmonic signal
is constructed using values from the previous step and the residual signal is
computed using (3.19). This value should represent the best fit of fundamental
frequency 𝑓0 and its change 𝑎 for the analyzed segment. If the fundamental fre-
quency 𝑓0 of the analyzed signal is absent, the fundamental frequency change
𝑎 can still be estimated accurately. The succeeding steps are performed with
the 𝑎 and 𝑓0 parameters found at the peak of the (𝑎, 𝑓0) plane.

6. Harmonic transform - performs FHT with 𝑎 and 𝑓0 parameters obtained from
the previous step.

7. Harmonic parameters - outputs the harmonic parameters of the estimated
harmonic signal with 𝑎 and 𝑓0 parameters from step 5.

8. Harmonic spectrum - outputs the amplitude-frequency and phase-frequency
spectrum of the transform from step 6.

Harmonic-to-noise ratio (HNR) is a ratio between the energy of the harmonic com-
ponent of a signal and its noise component. It can be computed as

HNR = 10 log 𝐸ĥ
𝐸n
, (3.19)

where 𝐸ĥ is energy of synthesized harmonic component ℎ̂(𝑛) and 𝐸n is energy of
the noise-like component 𝑟(𝑛). The noise-like component or the residual signal 𝑟(𝑛)
is defined as the difference between original signal and the synthesized harmonic
component.

The algorithm has been tested on a signal micf01sa02 with the same parame-
ters as in case of the method presented in Section 3.3: 𝑀 = 511, 𝑁𝐹𝐹𝑇 = 511,
overlap = 5 ms, 𝑓s = 8 kHz, 𝑛H = 4, for 𝑓0 ∈< 80; 350 > and 𝑎 ∈< −0.3; 0.3 >

without oversampling. Fig. 3.20 shows HNR of each analyzed segment with the
fundamental frequency slope selected for that segment. Maximum values of HNR of
each analyzed segment form the fundamental frequency in Fig. 3.21. Compared to
fundamental frequency obtained using gathered log-spectrum in Fig. 3.14 we can see
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Fig. 3.19: Block diagram of Fast Harmonic Transform algorithm using harmonic
parameters for 𝑓0 change estimation.

the former has a smoother contour while the latter is usually much faster to com-
pute. From Fig. 3.22 we can see the harmonic spectrogram provides much sharper
peaks compared to the STFT spectrogram in Fig. 3.16 and it is very similar to
the harmonic spectrogram obtained using gathered log-spectrum as can be seen in
Fig. 3.15. There are also parts where the harmonic spectrogram provides doubtful
results occuring usually at transients e.g. at time intervals (0.8 s;1 s) and (2.3 s;
2.5 s). Fig. 3.23 shows the fundamental frequency slope 𝑎 selected for each segment
from maximum values of the (𝑎, 𝑓0) plane for each segment. It is only meaningful
for voiced segments.

59



t (s) →

f 0 (
H

z)
 →

 

 

0.5 1 1.5 2 2.5

100

150

200

250

300

350

0

2

4

6

8

10

12

14

16

18

20

Fig. 3.20: HNR (dB) of the synthesized harmonic component from the signal
micf01sa02 with harmonic parameters extracted using the analysis-by-synthesis
method.
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Fig. 3.21: Fundamental frequency of the signal micf01sa02 extracted using the the
analysis-by-synthesis method.
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Fig. 3.22: Spectrogram of the signal micf01sa02 obtained using the analysis-by-
synthesis method.
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Fig. 3.23: Fundamental frequency slope of segments of the signal micf01sa02 ex-
tracted using the analysis-by-synthesis method.
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Tab. 3.2: Computational steps of the Fast Harmonic Transform algorithm

Operation Description Operations
Normalization 𝑧𝑎(𝑛) = 𝑥(𝑛)𝑤(𝑛)

𝜑′
𝑎(𝑛) 2𝑁

Warped index 𝜏𝑎 = 𝜓𝑎(𝑛) 𝑁

𝑠𝑎(𝑛) = 𝑧𝑎(𝜏𝑎)
Resampling Hermite spline interpolation [13] 4𝑁

linear interpolation [13] 2𝑁
DFT 𝑆(𝑘, 𝑎) = DFT(𝑠𝑎(𝑛)) 𝑁 log𝑁

3.5 Computational Load
The computational load of the fast algorithm can be enumerated using the number
of operations required for analysis of one segment of length 𝑁 . The algorithm can
be divided into: normalization, warped index computation, resampling, and FFT.
In normalization stage, the input signal 𝑥(𝑛) is multiplied by the window function
which has been divided by the scaling factor 𝜑′(𝑛). Warped index computation
estimates time instants of the signal time-warped according to the warping function
𝜓𝑎(𝑛). The time-warped discrete-time signal 𝑠𝑎(𝑛) is obtained using interpolation
from the normalized input signal 𝑧𝑎(𝑛). Finally the output harmonic spectrum
𝑆(𝑘, 𝑎) is computed using FFT, assuming the length of analyzed segment 𝑁 is
power of two. Each step of the algorithm is summarized in Table 3.2 together
with the number of operations involved for every length of analyzed segment. The
resulting computational load is 𝑁(log𝑁 + 7) for the Hermite spline interpolation
and 𝑁(log𝑁 + 5) for the linear interpolation.

Computational load of the gathered log-spectrum computation depends on the
number of analyzed fundamental frequencies, the range of fundamental frequency
change, length of the FFT, choice of interpolation method, and number of pre-
sumed harmonics in the signal. Analyzing the computational load of a fundamental
frequency estimation algorithm is out of scope of this thesis.

3.6 Effect of Aliasing
Spectrum of a linear chirp signal test signal obtained using Harmonic Transform
computed directly from the equation (1.49) is without artifacts (as can be seen
in Fig. 3.8), except the usual artifacts caused by windowing. The Fast Harmonic
Transform uses interpolation of the input signal which introduces errors, namely,
aliasing. To demonstrate the effect of aliasing we have used test signal which is a
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linear chirp with 17 harmonics. Its STFT spectrum can be seen in Fig. 3.25 where
the spectral smearing can be seen as wider peaks with lower magnitude which blend
together, specifically towards higher frequencies.

Time warping performed using (3.7) maps one axis with equidistant intervals to
a time-warped axis where the intervals between samples get shorter towards one of
the ends of analysis segment as shown in Fig. 3.24. This causes the signal on the
warped axis to be undersampled. Aliasing can be seen in Fig. 3.26 as a noise floor
which increases with frequency. Fig. 3.27 shows the contribution of each harmonic
of the test signal to the noise floor caused by aliasing.

One of the straightforward means of diminishing aliasing is oversampling. Over-
sampling consists of increasing the sampling frequency by adding zeroes to the signal
and then filtering the signal by a low-pass filter to eliminate mirroring artifacts. The
resulting signal will have a multiple number of samples which in principle reduces
the intervals between samples of the signal on the original axis and therefore the
time-warped signal is interpolated with higher precision. This also allows us to use
a cheaper interpolation method, if advantageous. A case where linear interpolation
was used on the test signal with 2x and 4x oversampling is shown in Fig. 3.28.
In the case of test signal, the 4x oversampling is performing close to DHT which
can be seen in Fig. 3.26. A more thorough analysis has been performed on signal
micf01sa02 as shown in Tab. 3.1.

3.7 PTDFT and HT
This section addresses the similarity between Pitch Tracking Modified DFT (PTDFT)
and Harmonic Transform. The PTDFT is a modified DFT transform for analysis
in harmonic domain. It is enumerated by direct computation and its computational
complexity is therefore quadratic. It can be shown that the transformation kernel of
PTDFT and HT is identical for linear frequency change over the length of analyzed
segment. The PTDFT is defined as [23]

𝑆𝑖(𝑘) =
𝑁−1∑︁

𝑛

𝑠𝑖(𝑛)𝑤𝑖(𝑛)e−j 2𝜋𝑛𝑘
𝑓s

(︁
𝑓0+ Δ𝑓0𝑛

2𝑁

)︁
, (3.20)

where 𝑠𝑖(𝑛) is 𝑛-th sample of the 𝑖-th frame, 𝑓0 fundamental frequency, Δ𝑓0 fun-
damental frequency change, 𝑤𝑖(𝑛) time window of 𝑖-th frame. It can be seen, that
after substitutions from (1.44), the phase of a linear chirp signal can be written as

𝜙(𝑛) = 2𝜋𝑛
𝑓s

(︃
𝑓0 + Δ𝑓0𝑛

2𝑁

)︃
, (3.21)
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Fig. 3.24: Relationship between the original and warped axis showing the distance
between samples gets smaller at the end of segment for 𝑎 = 0.9.
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Fig. 3.25: Magnitude spectrum of the test signal, a linear chirp with 17 harmonics.
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Fig. 3.26: Spectra comparison of linear chirp test signal between Fast Harmonic
Transform with linear interpolation and aliasing and Discrete Harmonic Transform.
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Fig. 3.27: Contribution of each harmonic to aliasing in Fast Harmonic Transform
with linear interpolation to the spectrum of linear chrip test signal.
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Fig. 3.28: The effect of oversampling on aliasing. Fast Harmonic Transform with
linear interpolation was used on test signal.

which is the transformation kernel of PTDFT and with substitutions from (1.45),

𝜙(𝑛) = 2𝜋𝑛
𝑓s

(︃
𝑓𝑐 − 𝑎𝑓𝑐

2 + 𝑓𝑐𝑛

2𝑁

)︃
,

𝜙(𝑛) = 2𝜋𝑛𝑓𝑐

𝑓s

(︂
1 − 𝑎

2 + 𝑎𝑛

2𝑁

)︂
,

(3.22)

and since 𝑓𝑐 = 𝑁
𝑓s

, which is shown in transition from (1.43) to (1.44), the result is

𝜙(𝑛) = 2𝜋𝑛
𝑁

𝛼(𝑛), (3.23)

which is the Harmonic transform kernel from (1.48).
This enables to apply methods presented in this thesis to increase performance

of algorithms based on the PTDFT. Simultaneously, many of the improvements and
applications of PTDFT such as time-varying Kaiser window design, fundamental
frequency estimation based on cross-correllation, or real-time speech coding that
have been successfully proven to work with PTDFT, can be applied to HT.

It should be noted, that the PTDFT is a special case of HT for linear frequency
change of fundamental frequency. The HT is designed to represent any general form
of continuous fundamental frequency change (e.g. quadratic).
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3.8 Experiments
The purpose of this chapter is to present use of the algorithm presented in 3.4 on real
audio signals. From now on it will be referred to as the ABS (analysis-by-synthesis)
algorithm. Since we are analyzing real signals, there is no ground truth for the
signal’s harmonic parameters at each instant as opposed to analyzing synthesized
signals, where the parameters are known and can be directly compared. Therefore we
will analyze the signal using the ABS algorithm and use it to extract the fundamental
frequency which will be used as input to harmonic parameter estimation. The
signal will then be reconstructed using the harmonic parameters when using the
knowledge of fundamental frequency slope and without this knowledge. This will
produce a synthetic harmonic signal, an estimate of the input signal, with (further
referred to as ABS-FM) and without frequency modulation (ABS-S). The ABS-S
algorithm is essentially the same algorithm as ABS-FM with 𝑎 = 0. This synthetic
harmonic signal will then be subtracted from the input signal, leaving a residual
signal. The better the harmonic parameter estimation, the lesser the residual signal
energy. By measuring the harmonic-to-noise ratio for different signals with frequency
modulation while using the knowledge of fundamental frequency change and without
it, we can quantify the increase of harmonic parameter estimation accuracy which
we get by using ABS-FM algorithm.

So far, the Harmonic Transform has been used on speech signals which are usu-
ally conveniently sampled at 8 kHz. Yet, for many applications higher sampling
frequencies are required. Experiments in this section are done on audio signals with
sampling frequency 44.1 kHz. This causes two effects that change the efficiency of
Harmonic Transform. First, the analysis windows used for audio signals sampled at
44.1 kHz are only two to four times longer, while the sampling frequency is more
than five times higher. The fundamental frequency change of the same signal in the
analysis window will therefore be smaller. Second, energy of the audio signals is
still mostly in the lower frequency region so the improvement in terms of energy will
likely be subtle. These two factors are going to diminish the HNR gain of signals
reconstructed using the knowledge of fundamental frequency slope and without it.

3.8.1 Viola

This experiment has been performed on a viola sound sample. It contains glissando
and vibrato, which are both frequency modulation techniques on stringed instru-
ments. Spectrogram of this sound is shown in Fig. 3.29 where we can see most of
the signals energy lies bellow 5 kHz though there is more spectral content in higher
frequencies. The improvement in resolution of the harmonic spectrogram can be
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Fig. 3.29: Spectrogram of viola sound sample.

seen in Fig. 3.30, specifically between the 180-th and 190-th segment where the
glissando takes place. In Fig. 3.29 the spectral lines around 5 kHz are considerably
smeared while in Fig. 3.30 they follow the change of the fundamental frequency
which can be seen in Fig. 3.31. Fundamental frequency change 𝑎 shown in Fig. 3.32
has the shape of a fundamental frequency differential. Fig. 3.33 shows the HNR
of the reconstructed harmonic part over the residual signal. The sharp notches in
HNR are due to poor spectral content caused by string damping when using the
glissando technique. And it can be seen from Fig. 3.34 the highest increase in HNR
of the ABS-FM is at time intervals where glissando and vibrato (i.e. intervals with
the highest frequency modulation) takes place.

3.8.2 Artificial vibrato

In this experiment we would like to apply frequency modulation on a harmonic signal
with known and nearly stationary fundamental frequency to compare the ability to
estimate harmonic parameters from a signal in our system from section 3.4 when
using ABS-FM and ABS-S. The selected harmonic signal is a vocal excerpt. The
frequency modulation is created using a vibrato audio effect.

Modulation frequency used in this experiment is 6 Hz, which is well within the
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Fig. 3.30: Harmonic spectrogram of viola sound sample.
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Fig. 3.31: Fundamental frequency of viola sound sample.
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Fig. 3.32: Fundamental frequency change of viola sound sample.
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Fig. 3.33: HNR of viola sound sample for ABS-FM and ABS-S.
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Fig. 3.34: Increase of HNR when using ABS-FM over ABS-S on sound sample viola.
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Fig. 3.35: Phase modulation by delay line modulation [85].

range of what the combination of vocalis muscle and diaphragm allows and it is
also within the range of modulation frequencies for phase modulation algorithms in
terms of musicality [84].

The vibrato used in this experiment is a simple delay line modulation based phase
modulator [85]. This technique periodically changes the frequency of the fundamen-
tal and its harmonics. While it is easy to implement, it has some disadvantages. If
the signal has spectral content close to half of the fundamental frequency, it may
cause aliasing after applying the vibrato. It also changes the frequency of harmonic
components without regard for spectral envelope of the instrument or vocal tract.
Accordingly, the resulting modulated signal may not sound natural. This, however,
should not interfere with this experiment.

As stated above, the vibrato used in this experiment is implemented using phase

71



modulation (see Fig. 3.35 for block diagram) by a modulation signal 𝑚(𝑛) and

𝑦(𝑛) = 𝑥(𝑛−𝑚(𝑛)), (3.24)

where 𝑦(𝑛) is the vibrato output and 𝑚(𝑛) is a continuous variable, which changes
for every signal sample [85]. It is therefore decomposed into integer and fractional
part [86] where the integer part is implemented using unit delays and the fractional
part is implemented using interpolation. For sinusoidal modulation, the modulation
signal is defined as

𝑚(𝑛) = 𝐿+ DEPTH · sin(𝜔M𝑛𝑇 ), (3.25)

where DEPTH is modulation depth in samples, 𝜔M is angular modulation frequency,
𝐿 is the number of unit delays, and 𝑇 is the sampling period. The resulting fun-
damental freuqency is a product of the fundamental frequency and fundamental
frequency ratio

𝛽(𝑛) = 𝜔I

𝜔
= 1 − DEPTH · 𝜔M𝑇 cos(𝜔M𝑛𝑇 ), (3.26)

where 𝜔I is instantaneous phase, where 𝛽(𝑛) is also the resampling factor of the
fractional part of the modulation signal.

If we now apply the vibrato on a harmonic signal with quasi-stationary fun-
damental frequency, we can predict the expected fundamental frequency at each
moment using (3.26) and compare it with the output of our algorithm. Spectro-
gram of the salvation sound sample without modulation is shown in Fig. 3.36. It
is a decaying vocal sample of average fundamental frequency 392 Hz. When using
depth of modulation 1 ms, the resulting maximal and minimal frequency ratio is
1.04 and 1/1.04 , giving high an low extreme of the vibrato which is at 407.9 Hz
and 376.8 Hz respectively. This can also be observed from Fig. 3.37 which shows
the computed vibrato as the predicted sinusoid and the estimated sinusoid shows
the estimated fundamental frequency from the ABS-FM algorithm. Spectrogram of
the sound sample with vibrato is shown in Fig. 3.38. The harmonic spectrogram
in Fig. 3.39 has more clearly defined peaks with less noise, especially around 1 kHz
when compared to the STFT spectrogram. The HNR in Fig. 3.40 is copying the
decaying tendency of the sound sample by decreasing in time. Again, the difference
between ABS-FM and ABS-S as shown in Fig. 3.41 shows increase in harmonic
component separation at intervals whith frequency modulation.

3.8.3 Soprano

This is an analysis of the soprano sound sample. It is a sound of a female opera
singer singing a vowel /i:/. From spectrogram in Fig. 3.43 it is clear most of the sig-
nals energy is concentrated below 5 kHz. The harmonic spectrogram (see Fig. 3.42)
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Fig. 3.36: Spectrogram of the sound sample salvation without modulation.
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Fig. 3.37: Fundamental frequency of vocal sample salvation with artificial vibrato.
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Fig. 3.38: Spectrogram of the sound sample salvation with frequency modulation.

Fig. 3.39: Harmonic spectrogram of the sound sample salvation with frequency mod-
ulation.
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Fig. 3.40: HNR of reconstructed harmonic part of the sound sample salvation for
ASB-FM and ABS-S.
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the sound sample salvation.
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Fig. 3.42: Spectrogram of the sound sample soprano.

in this case provides some reduction of noise which can be seen as vertical lines in
Fig. 3.43. However at around 44-th and 75-th segment, there is an error in fun-
damental frequency estimation which can be seen in Fig. 3.44 as a sharp spikes in
fundamental frequency at around 44-th and 75-th segment. This error can also be
seen in fundamental frequency change estimation in Fig. 3.45 where the fundamental
frequency change at 44-th and 75-th segment is too steep for a voice signal. This
error of fundamental frequency estimation is most likely due to amplitude modu-
lation. Fig. 3.48 shows the 44-th analyzed segment and its reconstruction. The
reconstruction does not represent the amplitude modulation well which decreases
the HNR of the reconstructed harmonic part. The HNR is shown in Fig. 3.46 which
shows that both algorithms perform similarly well which is confirmed in Fig. 3.47
where the increase of HNR for the ABS-FM algorithm is mostly under 1 dB. This
is most likely due to lack of high frequency content in the analyzed signal.
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Fig. 3.43: Harmonic spectrogram of the sound sample soprano.
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Fig. 3.44: Fundamental frequency of the sound sample soprano extracted using ABS-
FM.
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4 CONCLUSION
This thesis was focused on methods for representation of harmonic signals with
time-varying frequency components. In section 1.1 a problem which occurs when
such signals are analyzed using traditional methods is presented as well as state-
of-the-art methods which aim at accurate representation of these signals. Most of
the focus of this section is on the Fan-Chirp Transform and Harmonic Transform
which are both generalizations of the Fourier Transform for harmonic signals with
time-varying frequency components and therefore they share some resemblances.

The chapter 3.1 is dedicated to Harmonic Transform and its computation speed.
Fundamental frequency estimation is a prerequisite to computing the Harmonic
Transform which has so far been computed using Spectral Flatness Measure. An
algorithm to decrease the number of operations needed for SFM computation is pre-
sented based on the fact that the Harmonic Transform’s image is one-sided. However
the Harmonic Transform is enumerated using direct computation from (1.49) which
employs 𝒪(𝑁2) computational complexity. Therefore further research was aimed at
decreasing the computational complexity of Harmonic Transform.

Section 3.2 introduces the Fast Harmonic Transform. The fast transform has
been designed by splitting the Harmonic Transform into time-warping of the input
signal and performing FFT. This allows for subquadratic computational complexity.
Analysis of the number of operations requred to compute FHT can be found on Ta-
ble 3.2. However the time-warping operation involves interpolation which introduces
noise to the signal and renders SFM ineffective as fundamental frequency change es-
timation algorithm. It also introduces aliasing which is dealt with in section 3.6
using oversampling and different interpolation methods.

Since SFM cannot be used as a fundamental frequency change algorithm for
FHT, we have introduced two methods of its estimation. First method is based
on computing a gathered log-spectrum on a range of fundamental frequencies and
its changes. This method is rather fast though it suffers in fundamental frequency
resolution. Second method is based on reconstruction error of harmonic part of
the signal using harmonic parameter estimation. This method is slower than the
first method, though it offers better resolution in fundamental frequency estimation.
Both of these methods have been run on a speech signal micf01sa02 to compare their
results.

Finally, since until now all papers published on the HT have been applied on
speech signals sampled at 8 kHz, we wanted to analyze real signals with frequency
modulation sampled at 44.1 kHz, which is a common sampling frequency in digital
audio. The selected signals are composed of vocal and instrument samples and the
results can be seen in section 3.8. Generally it can be said that the HT decreases re-
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construction error (i.e. the ability to represent the signal) for signals with frequency
modulation.

Another transform, Pitch Tracking Modified DFT, introduced concurrently with
the HT is analyzed in this thesis and section 3.7 provides proof it is equivalent to
the HT.
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A SOUND SAMPLES
A list of the sound samples used in this thesis and their location on the included
DVD in the /samples directory.

• happychild.wav
• viola.wav
• salvation.wav
• salvationmod.wav
• soprano.wav
• sopranoshort.wav
• micf01sa2.wav
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B MATLAB SCRIPTS OF THE PRESENTED
ALGORITHMS

1 function [ S ] = DHT( x, a )

2 %DHT Summary of this function goes here

3 % Detailed explanation goes here

4 % x − input signal

5 % a − phase function

6

7 % length of the segment

8 N = length(x);

9

10 % input samples indices

11 n = 0:N−1;
12 % phase function

13 alpha = n.*(1−a/2+a.*n/(2*N));
14 % normalization − derivative of the phase function

15 alphad = 1−a/2+(a.*n)/N;
16

17 % preallocate the output buffer

18 S = zeros(N,1);

19 % compute the direct Harmonic transform

20 parfor k = 0:N−1
21 for n = 0:N−1
22 S(k+1) = S(k+1) + ...

alphad(n+1).*x(n+1).*exp(((−1j*2*pi*k)/N)*alpha(n+1));
23 end

24 end

25

26 end

1 function [ S ] = DHTF0( x, a, fr, fs, nh )

2 %DHTF0 Computes nh harmonics starting from fundamental frequency fr

3 % Detailed explanation goes here

4 % x − input signal

5 % a − phase function

6 % fr − fundamental frequency

7 % fs − sampling frequency

8 % nh − number of harmonics

9

10 % length of the segment

11 N = length(x);

12
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13 % input samples indices

14 n = 0:N−1;
15 % phase function

16 alpha = n.*(1−a/2+a.*n/(2*N));
17 % normalization − derivative of the phase function

18 alphad = 1−a/2+(a.*n)/N;
19

20 % preallocate the output buffer

21 S = zeros(nh,1);

22 % compute the fundamental frequency aligned direct Harmonic ...

transform

23 parfor k = 1:nh

24 for n = 0:N−1
25 S(k) = S(k) + alphad(n+1).*x(n+1) .* ...

exp(((−1j*2*pi*k*fr)/fs)*alpha(n+1));
26 end

27 end

28 end

1 function [ sfm ] = SFM( S, sfscale )

2 %SFM Computes Spectral flatness measure for double sided spectrum

3 % input − S double−sided spectrum

4 % sfscale 'lin' for SFM

5 % 'log' for SFM_dB

6

7 % input spectrum length

8 N = length(S);

9

10 % take the absolute value of the spectrum and take only the ...

positive values

11 absS = abs(S);

12 absS = absS(absS>0);

13

14 % compute the nominator of the SFM

15 num = exp((1/N)*sum(log(absS)));

16 % compute the denominator of the SFM

17 den = (1/N) * sum(absS);

18

19 % Select linear or logarithmic scale

20 switch sfscale

21 case 'log'

22 sfm = 20*log10(num/den);

23 case 'lin'

24 sfm = num/den;

25 otherwise
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26 sfm = 20*log10(num/den);

27 end

1 function [ msfm ] = MSFM( S, sfscale )

2 %MSFM Computes Modified Spectral flatness measure for signle ...

sided spectrum

3 % input − S double−sided spectrum

4 % sfscale 'lin' for MSFM

5 % 'log' for MSFM_dB

6

7 % number of samples of the first half of the input spectrum

8 N = (length(S)/2)+1;

9 % take half of the input spectrum

10 S = S(1:N);

11

12 % take the absolute value of the spectrum and take only the ...

positive values

13 absS = abs(S);

14 absS = absS(absS>0);

15

16 % compute the nominator of the SFM

17 nom = exp((1/N)*sum(log(absS)));

18 % compute the denominator of the SFM

19 den = (1/N) * sum(absS);

20

21 % Select linear or logarithmic scale

22 switch sfscale

23 case 'log'

24 msfm = 20*log10(nom/den);

25 case 'lin'

26 msfm = nom/den;

27 otherwise

28 msfm = 20*log10(nom/den);

29 end

1 function [ S ] = FHT( x, a, os, NFFT )

2 %FHT Computation of Fast Harmonic Transform

3 % x − input signal

4 % a − phase function

5 % os − oversampling factor

6 % NFFT − length of fft

7 % zero−phase zero−padding = M−1/2+1:N−(M−1)/2−1
8

9 % number of input samples multiplied by the oversampling factor
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10 M = length(x)*os;

11

12 % fill in missing arguments

13 if nargin < 4

14 N = length(x)*os;

15 else

16 N = NFFT;

17 end

18

19 % resampling of the input signal

20 x = resample(x, os, 1)./os;

21 % indices of the input samples

22 n = 0:M−1;
23

24 % inverse phase function

25 alpha = M/2 − M/a + (M*(a^2/4 − a + (2*a*n)/M + 1).^(1/2))/a;

26 % inverse normalization function

27 alphad = 1./((a*(M/2 − M/a + (M*(a^2/4 − a + (2*a*n)/M + ...

1).^(1/2))/a))/M − a/2 + 1);

28

29 % of the phase function is zero, do not interpolate

30 if a == 0

31 xa = x';

32 else

33 % normalize and interpolate the input segment at indices of the ...

warped time axis given by the phase function

34 x = x.*alphad';

35 xa = interp1(n,x,alpha,'sinc','extrap');

36 end

37

38 % If we are using zero−padding, insert the zero samples in the ...

middle of the segment

39 if N > M % zero−padding
40 if ¬rem((M−1),2)
41 Mo = (M−1)/2;
42 xa = [xa(Mo+1:M) zeros(1,N−M) xa(1:Mo)];

43 else

44 Mo = ceil((M−1)/2);
45 xa = [xa(Mo+1:M) zeros(1,N−M) xa(1:Mo)];

46 end

47 else

48 % if we are not using zero−padding, do only fftshift

49 xa = fftshift(xa);

50 end

51

52 % perform FFT algorithm
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53 S = fft(xa,NFFT);

54

55 end

1 function [ x ] = IFHT( S, a, os, NFFT )

2 %IFHT Computation of Inverse Harmonic Transform

3 % Detailed explanation goes here

4 % x − input signal

5 % a − phase function

6 % os − oversampling factor

7 % NFFT − length of fft

8

9 % take length of the input segment

10 M = length(S);

11 NFFT = M;

12 % perform the inverse Fourier transform

13 xa = real(ifft(S));

14

15 % If we are using zero−padding, remove the zero samples from the ...

middle of the segment

16 if NFFT > M

17 if ¬rem((M−1),2)
18 % zero−padding for even segment lengths

19 Mo = (M−1)/2;
20 xa = [xa(Mo+1:M) zeros(1,N−M) xa(1:Mo)];

21 else

22 % zero−padding for odd segment lengths

23 Mo = ceil((M−1)/2);
24 xa = [xa(Mo+1:M) zeros(1,N−M) xa(1:Mo)];

25 end

26 else

27 % if we are not using zero−padding, do only fftshift

28 xa = fftshift(xa);

29 end

30

31 % input samples indices

32 n = 0:M−1;
33

34 % phase function

35 alpha = M/2 − M/a + (M*(a^2/4 − a + (2*a*n)/M + 1).^(1/2))/a;

36 % normalization function

37 alphad = 1./((a − 2).^2/4 + (2*a.*n)/M).^(1/2);

38

39 % if the phase function is zero, do not perform interpolation

40 if a == 0
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41 xa = xa';

42 else

43 % interpolate the input segment at the samples indices of the ...

original signal and normalize

44 x = interp1(alpha,xa,n,'cubic','extrap');

45 x = x./alphad;

46 end

47

48 % resample the signal to its orignal length

49 x = resample(x, 1, os).*os;

50

51 end

1 %% Script for computation of Harmonic transform using gathered ...

log−Spectrum as the fundamental frequency estimating algorithm

2 clear all;

3

4 os = 2; % oversampling factor

5 M = 512; % segment length

6 NFFT = 1024; % analysis window length

7 FMIN = 40; % minimum analyzed fundamental frequency

8 FMAX = 450; % maximum analyzed fundamental frequency

9

10 [x, fs] = wavread('mic_F01_sa2_8k');

11

12 hops = ceil((5e−3)*fs);
13 hop = M−hops;
14 Z=segmentace(x,M,hop);

15 [M, N] = size(Z);

16 N = 1:N;

17

18 win = hamming(M);

19 nwin = win./sum(win); % normalize the window

20 ar = −0.3:0.01:0.3; % range of fundamental frequency change

21

22 f = os*fs/2*linspace(0,1,NFFT/2+1);

23 freqs = (logspace(log10(FMIN),log10(FMAX),1000)); % 1000 ...

logarithmically spaced values between FMIN and FMAX

24

25 nh = 4; % number of hypothetical harmonics in the analyzed segment

26 bt = 1:nh;

27 Sharma = zeros(length(freqs),length(ar));

28 Sharmaout = zeros(length(freqs), length(N));

29 Sout = zeros(NFFT,N); % output spectrogram

30 Hout = Sout; %
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31 Aout = zeros(1,N); %

32 f0out = Aout;

33 S = zeros(NFFT,length(ar));

34 for g = N

35 Zx = Z(:,g).*win;

36 for i = 1:length(ar)

37 S(:,i) = FHT(Zx, ar(i), os, NFFT); % Fast Harmonic Transform

38 end

39

40 Sx = S(1:floor(NFFT/2+1),:); % take left side of the spectrum

41 absS = abs(Sx); % its magnitude value

42 parfor f0s = 1:length(freqs) % for all input fundamental ...

frequencies

43 Sharma(f0s,:) = (1/nh) * ...

sum(log(1+10*interp1(f,absS,freqs(f0s).*bt,'linear'))); ...

% gathered log−Spectrum
44 end

45

46 [G, I] = max(Sharma);

47 [H, Y] = max(G); % find the maximum value of the glogS

48 Aout(g) = ar(Y); % selected fundamental frequency change

49 f0out(g) = freqs(I(Y)); %selected fundamental frequency

50 Sharmaout(:,g) = Sharma(:,Y); % glogS of spectrogram with the ...

selected fundamental frequency change

51 Sout(:,g) = FHT(Zx, ar(Y), os, NFFT); % output spectrogram

52

53 end

1 %% Script for computation of Harmonic transform using ...

analysis−by−synthesis as the fundamental frequency ...

estimating algorithm

2 M = 512; % segment length

3 NFFT = 512; % analysis window length

4 FMIN = 80; % minimum analyzed fundamental frequency

5 FSTEP = 0.5;

6 FMAX = 450; % maximum analyzed fundamental frequency

7

8 [x, fs] = wavread('mic_M01_sa2_8k');

9

10 hops = ceil((5e−3)*fs); % hop size

11 ovl = M−hops; % overlap from hop size

12 hop = ovl;

13 Z=segmentace(x,M,ovl);

14 [M, N] = size(Z);

15 N = 1:N;
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16 win = hann(M); % analysis window

17 win = win./sum(win); % window normalization

18

19 ar = −0.05:0.001:0.05; % fundamental frequency change range

20

21 f = fs/2*linspace(0,1,NFFT/2+1);

22 freqs = FMIN:FSTEP:FMAX; % input fundamental frequencies

23

24 nh = 6; % hypothetical harmonics in the analyzed segment

25 bt = 1:nh;

26 Sharma = zeros(length(freqs),length(ar));

27 Sout = zeros(NFFT,length(N));

28 Hout = Sout;

29 Aout = zeros(1,length(N));

30 f0out = Aout;

31 S = zeros(NFFT,length(ar));

32 St = zeros(nh,1);

33 SNRe = zeros(length(freqs), length(ar));

34 SNReout = zeros(length(freqs), length(N));

35

36 k = 0:M−1;
37 for i = 1:length(ar)

38 a(:,i) = k.*(1−ar(i)/2+ar(i).*k/(2*M)); % precomputation of ...

the phase modifier for input fundamental frequency ...

change range

39 end

40

41 for g = N

42 Zx = Z(:,g).*win;

43 sumZx = sum(Zx.^2);

44 for i = 1:length(ar)

45 alp = ar(i);

46 parfor f0s = 1:length(freqs)

47 St = DHTF0(Zx,alp,freqs(f0s),fs,nh); % complex ...

coefficients of the fundamental and its harmonics

48 A = sqrt(real(St).^2 + imag(St).^2); % amplitude of ...

the harmonics

49 phi0 = atan2(imag(St), real(St)); % phase of the ...

harmonics

50 phi0 = unwrap(phi0);

51

52 R = zeros(1,M);

53 ph = (2*pi*freqs(f0s)/fs).*a(:,i)'; % phase

54 for k = 1:length(St)

55 R = R + 2*A(k) * cos(k.*ph + phi0(k)); % ...

reconstruction of the input signal from the ...
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harmonic parameters

56 end

57 HNRe(f0s,i) = ...

10*log10(sumZx/(sum((Zx−win.*R').^2))); % HNR ...

computation

58 end

59 end

60

61 [maxhnrval, ind] = max(HNRe(:));

62 [freqsind, arind] = ind2sub(size(HNRe),ind);

63

64 Aout(g) = ar(arind); % output fundamental frequency change

65 f0out(g) = freqs(freqsind); % output fundamental frequency

66 Hr(g) = maxhnrval; % output HNR value

67 Hr0(g) = HNRe(freqsind,ar==0); % output HNR value for a signal ...

reconstructed without account for frequency modulation

68 Sout(:,g) = FHT(Zx, ar(arind), 1, NFFT); % output spectrogram

69

70 end
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