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Abstract: This articlepresents new control algorithm for induction machine based on linear model
predictive control (MPC). Controller works in similar manners as field oriented control (FOC), but
control is performed in stator coordinates. This reduces computational demands as Park’s transforma-
tion is absent and induction machine mathematical model in stator coordinates contains less nonlinear
elements. Another aim of proposed controller was to achieve fast torque response.
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1 INTRODUCTION

Induction machine (ACIM) is the most widespread type of AC machine today. Thanks to its simple
construction lacking any expensive permanent magnets or brushes, the ACIM has the advantage of
high reliability and low price. Most common control strategies of AC machines are the scalar control
and field oriented control (FOC). More and more attention is however being paid to predictive control,
especially the model predictive control (MPC) algorithms. The MPC has several advantages over the
classical PID control. It can be simply implemented to systems with multiple inputs and outputs
and it enables to introduce constraints of system inputs, outputs and states in a simple way. This
advantages however come with relatively high computational demands of MPC, which restricts the
use of these algorithms only to systems with slower dynamics. That’s why MPC is mostly used in
chemical industry. The MPC algorithms share characteristics like use of explicitly given model of
controlled system to predict future values of outputs and states, optimisation of the control sequence
through minimizing cost function and use of receding horizon control (RHC). The RHC means that
in each control step, the entire control sequence over prediction horizon of constant lengthN is being
calculated in order to minimize value of cost functionJN. However only the first value of this sequence
is applied to the system and new sequence is calculated in following step. This ensures closed-loop
control. [2, 6, 4],

The algorithm described in this paper belongs to linear MPC class of algorithms. The linear MPC
algorithms combine the equations of the state space model of system, the cost function and the con-
straints defined as linear combination of system states, inputs and outputs to obtain the quadratic
programming optimisation problem. This problem can be solved using fast solvers, which (especially
considering possibility of use of explicit controller) allows to employ the algorithms for systems
with very fast dynamics. Following chapters describe the mathematical model of induction machine,
functional principle of proposed algorithm and results of simulation in MATLAB-Simulink. [3]

2 MATHEMATICAL MODEL OF INDUCTION MACHINE

The most common mechanical construction of induction machine consists of three-phase, harmoni-
cally distributed stator windings and the squirrel cage rotor. Unlike other types of AC machines, the
rotor magnetic field is created subsequently as the effect of rotating stator magnetic field and is not
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mechanically aligned withrotor, which complicates mathematical model. The discrete-time model
obtained using Euler’s discretisation method inα, β stator coordinates can be expressed as

isα(k+1) = (1−Tsγ)isα(k)+TsβηΨrα(k)+TsβPpωm(k)Ψrβ(k)+
Ts

σLs
usα(k), (1)

isβ(k+1) = (1−Tsγ)isβ(k)+TsβηΨrβ(k)−TsβPpωm(k)Ψrα(k)+
Ts

σLs
usβ(k), (2)

Ψrα(k+1) = (1−Tsη)Ψrα(k)−TsPpωm(k)Ψrβ(k)+TsηLmisα(k), (3)

Ψrβ(k+1) = (1−Tsη)Ψrβ(k)+TsPpωm(k)Ψrα(k)+TsηLmisβ(k), (4)

where~isαβ = [isα isβ]
T is stator currentvector,~Ψrαβ = [Ψrα Ψrβ]

T is rotor magneticflux vector,
~usαβ = [usα usβ]

T is stator voltage vector,ωm is mechanical speed,η = Rr/Lr is inverse rotor time
constant,γ =

(
Rs+RrL2

h/L2
r

)
/(σLs) is inverse stator time constant,σ = 1− L2

h/(LsLr) is leakage
coefficient,β = Lh/(σLsLr) is coupling factor,Rs andRr is stator androtor resistance,Ls, Lr andLm

is stator,rotor and mutual inductance,Pp is number ofmachine pole pairs,Ts is sampling periodand
k denotes discrete time step. Equations (1) and (2) are called stator model while equations (3) and (4)
are rotor model. Speedωm, stator current~isαβ and voltage~usαβ are all known, only the rotor flux~Ψrαβ
has to beobtained using observer. The equation

Tm =
3
2

Pp
Lh

Lr

(
Ψrαisβ−Ψrβisα

)
. (5)

defines mechanical torqueof induction machine. [6]

3 PROPOSED CONTROL ALGORITHM

Block diagram of proposed algorithm is shown in figure 1. The control is conducted inα, β stator
coordinates. This, compared to FOC, eliminates the need of Park’s transformation and with it the
calculation of sine and cosine of angle of rotor flux vector, which is usually performed using division
and square root functions. This significantly reduces computational demands. Similarly to FOC,
there are two outer control loops, both of them using PI controller. First control loop keeps the
square value of rotor magnetic flux amplitude|~Ψrαβ|2 = Ψ2

rα + Ψ2
rβ at the referencevalue |~Ψ∗

rαβ|
2.

Just likein case of FOC, the amplitude of rotor flux is kept constant, unless the field weakening is
required. It was chosen to control squared values because it eliminate need for calculation of square
root function. The output of rotor flux controllerhΨ is then usedfor calculation of stator current
reference. Second PI controller sets the mechanical torque referenceT∗

m so that themechanical speed
ωm follows its referenceω∗

m. Both PIcontrollers outputhΨ andT∗
m, speedωm, stator current~isαβ and

rotor~Ψrαβ are used insystem state calculation (SSC) block to prepare input for linear MPC controller
of stator currents. The inner loop linear MPC controller generates the stator voltages~usαβ. These are
modulatedusing standard vector modulation (SVM) technique and then applied to stator. [2, 5]

Figure 1: Block diagram of proposed control algorithm of ACIM
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The task oflinear MPC current controller is to ensure, that stator current~isαβ follows its reference
~i∗sαβ = [i∗sα i∗sβ]

T. The currentreference is calculated in SSC block in a way that emulates FOC.

It means that the part of the stator current~i∗sαβT = [i∗sαT i∗sβT]
T is perpendicular to~Ψrαβ and is respon-

sible for torque, while part~i∗sαβΨ = [i∗sαΨ i∗sβΨ]T is parallel with~Ψrαβ and maintains therotor flux.

Final current reference can then be calculated as~i∗sαβ =~i∗sαβT +~i∗sαβΨ.

To calculatetorque-creating current reference~i∗sαβT we first considerequation (5). If the current parts
are set to its referencesi∗sαT = −hTΨrβ and i∗sβT = hTΨrα, wherehT is arbitrary scalar, the torque
reference will be

T∗
m =

3
2

Pp
Lh

Lr

(
Ψrαi∗sβT−Ψrβi∗sαT

)
=

3
2

Pp
Lh

Lr

(
hTΨ2

rα −hTΨ2
rβ

)
=

3
2

Pp
Lh

Lr
|~Ψrαβ|

2hT . (6)

If |~Ψrαβ|2 is replaced withits reference, the torque-producing current reference is then going to be

~i∗sαβT =
2Lr

3PpLh|~Ψ∗
rαβ|

2

[
−Ψrβ Ψrα

]T
T∗

m = const
[
−Ψrβ Ψrα

]T
T∗

m. (7)

The flux-producing statorcurrent reference~i∗sαβΨ can be obtainedfrom rotor model equations (3) and

(4). When considering steady state~Ψrαβ(k+ 1) = ~Ψrαβ(k) and speedωm = 0 it canbe derived that
~i∗sαβΨ = 1

Lm

[
Ψrα Ψrβ

]T
. However these simplifications cannot be met during nonzero speed. Rotor

flux-controlling PI controller is therefore introduced to correct any disturbances. Final reference then
can be obtained as

~i∗sαβΨ =
1

Lm

[
Ψrα Ψrβ

]T
hΨ = const

[
Ψrα Ψrβ

]T
hΨ, (8)

wherehΨ is output value of rotor flux PI controller. This way of rotor flux control however cannot
startup the induction machine because at the beginning~Ψrαβ =~0. It is therefore necessary to apply

small but sufficiently high voltage vector~usαβ 6=~0 before theminimal rotor flux~Ψrαβ is reached
and theproposed algorithm can be used. It should be noted that only mathematical operation used
in equations (7) and (8) is multiplication, which makes them easy to compute. [5]

Mathematical model of induction machine was described with equations (1) to (4). The model un-
fortunately contains nonlinear operation of multiplication of two states. This prevents it from being
expressed using state space representation~x(k+ 1) = A~x(k) + B~u(k), where~x is state vector,~u is
system input vector,A is system matrix andB is system input matrix. Usual practice is to declare
nonlinear elements as measured disturbances, constant over prediction horizon. From this point of
view the ACIM model inα,β coordinates is more beneficial then the model ind,q coordinates as it
contains less nonlinear operations. In our case we introduce new state variablesω̂mΨrα andω̂mΨrβ.
Another states wehave to add are stator current references~i∗sαβ so we canpenalise difference between
stator currents and its references in cost function. [1] This leads us to extended state vector

~x =
[
isα isβ Ψrα Ψrβ ω̂mΨrα ω̂mΨrβ i∗sα i∗sβ

]T
. (9)

Considering equations (1)to (4) and state vector (9), the system matrix will take form

A =















1−Tsγ 0 Tsβη 0 0 TsβPp 0 0
0 1−Tsγ 0 Tsβη −TsβPp 0 0 0

TsηLm 0 1−Tsη 0 0 −TsPp 0 0
0 TsηLm 0 1−Tsη TsPp 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1















, (10)
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B =

[
Ts

σLs
0 0 0 0 0 0 0

0 Ts
σLs

0 0 0 0 0 0

]T

. (11)

The cost functionin form of L2-norm can bein most simple case defined as

JN (k) =
1
2

N−1

∑
i=1

[~x(k+ i)TQ~x(k+ i)+~u(k+ i −1)TR~u(k+ i −1)], (12)

whereN is length ofprediction horizon,Q � 0 is state cost matrix andR � 0 is system input cost
matrix. The prediction horizon can be only few steps long as measured disturbanceŝωmΨrα and
ω̂mΨrβ were defined withno dynamics, while in reality they change rapidly at higher speed. Only
goal of proposed linear MPC controller is that stator current vector~isαβ follows its reference~i∗sαβ as
close as possible.This leads us to

Q =















Ci 0 0 0 0 0 −Ci 0
0 Ci 0 0 0 0 0 −Ci

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−Ci 0 0 0 0 0 Ci 0
0 −Ci 0 0 0 0 0 Ci















, R =

[
Cu 0
0 Cu

]

, (13)

wherecoefficientCi > 0 penalizes difference between stator current and its reference andCu > 0 pe-
nalizes systeminput (only to ensure positive definiteness of matrixR). Constraints in linear MPC are
defined as affine function of system states, inputs and outputs.
In our case the stator voltage and current constraints need to be implemented. If the PWM modu-

lation technique was used, the nonlinear equations
√

i2sα+ i2sβ ≤ Imax and
√

u2
sα+u2

sβ ≤Umax, where

Imax andUmax are respective amplitude limits, would have to be approximated. But since the control
problem is defined in stator coordinates the SVM technique offers more benefits as it can generate
stator voltage with hexagon border with

√
3

2 Umax outer radius. Currentand voltage constraints can be

therefore defined asM~isαβ ≤~b
√

3
2 Imax andM~usαβ ≤~b

√
3

2 Umax, where

M =

[
−1 −1 0 0 1 1
− 1√3

1√3
2√3 − 2√3 − 1√3 − 2√3

]T

, ~b =
[

1 1 1 1 1 1
]T

. (14)

4 RESULTSOF SIMULATION

Proposed algorithm was simulated in MATLAB-Simulink version 8.0.0.783 using the MPT toolbox
version 3.0.20 and Gurobi version 6.0 as a solver. Parameters of simulation are stated in table 1. Due
to nonlinearity of linear MPC controller, the PI controllers had to be tuned experimentally. Propor-
tional gain was set toKΨ = 20 andKωm = 2 and integral time constantTiΨ = 0,06sandTiωm = 0,02s
for rotor fluxand speed controller. Prediction horizon was set to 3steps.

Parameter Unit Value Parameter Unit Value

Rs [Ω] 2,66 J
[
kgm2

]
0,01

Rr [Ω] 2,27 Imax [A] 7
Ls [mH] 255 Umax [V] 150
Lr [mH] 255 Ts [ms] 0,2
Lh [mH] 266 Ci [−] 100
Pp [−] 1 Cu [−] 1 ∙10−3

Table 1: Parameters used in simulation [6]
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The resulting chartscan be seen in figure 2. We can notice that both torque and rotor flux begins
to mildly oscillate when maximal torque or speed is achieved. It is caused by hexagon-shaped con-
straints of current and voltage. Generally very fast torque response can be observed, especially when
1 Nm load torque is applied in 1,5 s. Due to the absence of integrator, the linear MPC controller acts
as proportional controller and the referenceT∗

m is not followed exactly, but the difference is negligible.
_
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Figure 2: Simulatedrotor flux amplitude, torque and speed response

5 CONCLUSION

New control algorithm for induction machine based on linear MPC was proposed in this paper. Algo-
rithm emulates behavior of FOC without necessity of using the Park’s transformation. Stator voltage
and current limitation was set to utilize maximal possibilities of SVM modulation, which would be
difficult to implement with classic PI controllers in stator coordinates. The functional principle of pro-
posed algorithm was described in third section. Fourth section was dedicated to results of simulation
in MATLAB-Simulink. Figure 2 shows very fast torque response of linear MPC controller. Future re-
search will be focused on controller robustness and further optimisation to achieve low computational
demands and possible future use on real motor.
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