
Math. Appl. 7 (2018), 85–109
DOI: 10.13164/ma.2018.08

ON REAL AND COMPLEX CONVEXITY

JAMEL ABIDI

Abstract. We show that the holomorphic differential equation k′′(k+ c) = γ(k′)2 is
fundamental for the study of a special class of convex and strictly plurisubharmonic

functions (k : C → C be holomorphic and γ, c ∈ C). We characterize all the 4

holomorphic non-constant functions F1, F2 : C → C and g1, g2 : Cn → C such that
the function u is convex on Cn × C, where u(z, w) = |F1(w) − g1(z)|2 + |F2(w) −
g2(z)|2, (z, w) ∈ Cn × C.

1. Introduction

Let f : D → C be a function and ψ(z, w) = |w − f(z)|s, where D is a convex
domain of Cn, n ∈ N \ {0} and s ∈ R+. The function ψ is convex on D×C if and
only if f is an affine function on D and s ≥ 1.

Now using the paper [3], we can establish that ψ is a function of class C2, convex
and strictly plurisubharmonic (psh) on D×C if and only if f is an affine function

on D, n = 1, s = 2 and ∂f
∂z (z) 6= 0, for each z ∈ D. Now we can observe that the

above two situations are different and the last case is important for studying the
complex function theory.

Let f1(z) =< z/a > +< z/b >+ c, a, b ∈ Cn, c ∈ C, z ∈ Cn. Denote ψ1(z, w) =
|w − f1(z)|2, (z, w) ∈ Cn × C. Then ψ1 is convex on Cn × C and not strictly
plurisubharmonic on Cn×C if and only if (n ≥ 2), or (n = 1 and b = 0). Therefore,
for b = 0, the function ψ1 is convex and not strictly plurisubharmonic on Cn ×C.
In one complex variable, we consider the function ψ2(z) = x21 + x22 + 4x1x2, for
z = (x1 + ix2) ∈ C, x1, x2 ∈ R. Then, ψ2 is a function of class C∞ and strictly
subharmonic on C, but ψ2 is not convex at all points of C.

Now put ψ3(z, w) = |w − e(a1z1+b1)|2 + · · · + |w − e(anzn+bn)|2 for (z, w) =
(z1, . . . , zn, w) ∈ Cn×C, where a1, . . . , an ∈ C\{0} and b1, . . . , bn ∈ C. ψ3 is strictly
plurisubharmonic on Cn×C, but it is not convex in any non-empty euclidean open
ball of Cn × C (for the proof, we can consider the function ψ3(z, w)).

Moreover, if we consider ψ4(z, w) = x1, for z = (z1, . . . , zn) and z1 = x1 + iy1,
where x1, y1 ∈ R, then ψ4 is convex on D × C, but ψ4 is not strictly plurisubhar-
monic at any point of this domain.

Therefore, there is a great difference between the class of (convex functions) and
the class of (strictly plurisubharmonic functions) over any convex domain of CN ,
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for each N ≥ 1. Therefore, it is clear to study the new special class consisting of
convex and strictly plurisubharmonic functions over convex domains of Cn, n ≥ 1.

Now denote by ψ5(z, w) = |w − bz|2, for (z, w) ∈ C2. Then, ψ5 is C∞, convex
and strictly plurisubharmonic on C2, but ψ5 is not strictly convex at any point
of C2. Therefore we have a great difference between the special class (convex and
strictly plurisubharmonic functions) and the class (strictly convex functions) over
all convex domains of Cn, n ≥ 1.

Observe that we can prove for each n ≥ 1, for all convex domains G of Cn
and every function h : G → C, that the function ψ6 is not strictly convex in
any non-empty euclidean open ball subset of G × C. ψ6(z, w) = |w − h(z)|2, for
(z, w) ∈ G× C.

Problem 1.1. Find exactly all the holomorphic non-constant functions

F1, F2, F3, F4 : C→ C

and all the holomorphic functions ϕ1, ϕ2, ϕ3, ϕ4 : Cn → C, such that v1 and v2 are
convex on Cn × C and v is strictly plurisubharmonic on Cn × C.

v1(z, w) = |F1(w)− ϕ1(z)|2 + |F2(w)− ϕ2(z)|2,
v2(z, w) = |F3(w)− ϕ3(z)|2 + |F4(w)− ϕ4(z)|2

and v = (v1 + v2), where (z, w) ∈ Cn × C.
In this paper, we consider the case where we characterize F1, ϕ1, F2, ϕ2 such

that v1 is convex and u is strictly plurisubharmonic on Cn×C, u(z, w) = v1(z, w),
for (z, w) ∈ Cn × C.

Remark 1.2. We have the following result for holomorphic functions. Let
f : Cn → C be a holomorphic function. Assume that there exist

(A1, . . . , AN ), (B1, . . . , BN ) ∈ CN \ {0}, (α1, . . . , αN ), (β1, . . . , βN ) ∈ CN

such that
A1α1 + · · ·+ANαN
‖(A1, . . . , AN )‖2

6= B1β1 + · · ·+BNβN
‖(B1, . . . , BN )‖2

.

Assume that

|A1f − α1|2 + · · ·+ |ANf − αN |2

and

|B1f − β1|2 + · · ·+ |BNf − βN |2

are convex functions on CN . Using the holomorphic differential equation k′′(k +
c) = γ(k′)2, (γ, c ∈ C and k : C→ C be analytic) and the paper [2], we prove that
f is an affine function over Cn. Observe that the complex structure is fundamental
in this situation. Because if we consider F (z) = x41 + 1 for z = (z1, . . . , zn) ∈ Cn,
z1 = x1 + iy1, (x1, y1) ∈ R2. F is real analytic on Cn, |F |2 and |F + 1|2 are convex
functions on Cn, but F is not an affine function on Cn.

Let U be a domain of Rd, (d ≥ 2). We denote by sh(U) the subharmonic func-
tions on U. md is the Lebesgue measure on Rd. Let f : U → C be a function. |f | is
the modulus of f, Re(f) and Im(f) are respectively the real and imaginary parts
of f.
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Let g : D → C be an analytic function, D a domain of C. We denote by
g(0) = g, g(1) = g′ the holomorphic derivative of g over D. g(2) = g′′, g(3) = g′′′.

In general, g(m) = ∂mg
∂zm is the holomorphic derivative of g of order m, for all

m ∈ N. Let z ∈ Cn, z = (z1, . . . , zn), n ≥ 1. If ξ = (ξ1, . . . , ξn) ∈ Cn, we denote
< z/ξ >= z1ξ1 + · · ·+ znξn and B(ξ, r) = {ζ ∈ Cn/‖ζ − ξ‖ < r} for r > 0, where

‖ξ‖ =
√
< ξ/ξ >.

C(U) = {ϕ : U → C/ϕ is continuous on U}.
Ck(U) = {ϕ : U → C/ϕ is of class Ck on U}, k ∈ N ∪ {∞} and k ≥ 1.
Let ϕ : U → C be a function of class C2. ∆(ϕ) is the Laplacian of ϕ.
Let D be a domain of Cn (n ≥ 1), psh(D) and prh(D) the class of plurisub-

harmonic and pluriharmonic functions on D, respectively. For all a ∈ C, |a| is the
modulus of a. Re(a) is the real part of a. D(a, r) = {z ∈ C/|z − a| < r}.

If p is an analytic polynomial over C, deg(p) is the degree of p.
For the study of the theory and extension problems of analytic and plurisub-

harmonic functions we cite the references [1, 5–10, 12, 14, 16–19, 22–24, 27–30, 32,
33,35–39]. The class of n-harmonic functions is first introduced by Rudin in [36].
There are several investigations of the plurisubharmonic functions announced in
[2, 13,21,25,26,31,32,34] and [11].

Good references for the study of convex functions in complex convex domains
are [15,20,24].

2. The real and complex convexity

We begin this section by the following lemma.

Lemma 2.1. Consider the holomorphic functions k1, k2, k3 and k4 defined by
k1(z) = z2, k2(z) = −z2, k3(z) = Azs, k4(z) = −Azs, for z ∈ C, where A ∈ C\{0},
s ∈ N \ {0, 1}. Define

u(z, w) = |w − z2|2 + |w + z2|2 + |w − z|2,
v(z, w) = |w −Azs|2 + |w +Azs|2 + |w − (az + b)|2,
ϕ(z, w) = |w −Azs|2 + |w +Azs|2,
ϕ1(z, w) = |w −Azs|2 + |w +Azs|2 + |w −A(z + 1)s|2 + |w +A(z + 1)s|2,
ϕ2(z, w) = |w −Azs|2 + |w +Azs|2 + |w −A(z + 1)s|2 + |w +A(z + 1)s|2,
ϕ3(z, w) = |w − z −Az2|2 + |w − z +Az2|2

+ |w −A(z + 1)2|2 + |w +A(z + 1)2|2,

(z, w) ∈ C2, a ∈ C \ {0} and b ∈ C. Then, we have the following 5 properties.

(1) u and v are strictly convex functions on C2, but kj is not an affine function
for all j ∈ {1, 2, 3, 4}.

(2) ϕ is convex on C2 but kj is not an affine holomorphic function for all
j ∈ {3, 4}. Moreover, ϕ is strictly convex on C \ {0} × C, but ϕ is not
strictly convex on C2.

(3) ϕ1 is strictly convex on C2, but fj , kj are not affine functions for all
j ∈ {3, 4}, where f3(z) = k3(z + 1) and f4(z) = k4(z + 1) for all z ∈ C.
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(4) ϕ2 is strictly convex on C2. But k3, k4, f3 and f4 are not affine functions
over C.

(5) ϕ3 is strictly convex on C2, but gj and fj are not affine functions for all
j ∈ {3, 4}, with g3(z) = z +Az2 and g4(z) = z −Az2 for z ∈ C.

Proof. Let ψ : D → R be a function of class C2, D is a convex domain of Cn,
n ≥ 1. Recall that ψ is convex on D if and only if∣∣∣ n∑

j,k=1

∂2ψ

∂zj∂zk
(z)αjαk

∣∣∣ ≤ n∑
j,k=1

∂2ψ

∂zj∂zk
(z)αjαk,

for each z = (z1, . . . , zn) ∈ D and α = (α1, . . . , αn) ∈ Cn. Now ψ is strictly convex
on D if and only if∣∣∣ n∑

j,k=1

∂2ψ

∂zj∂zk
(z)αjαk

∣∣∣ < n∑
j,k=1

∂2ψ

∂zj∂zk
(z)αjαk,

for each z ∈ D and α = (α1, . . . , αn) ∈ Cn \ {0}.
(1) We have u a function of class C∞ on C2.

u(z, w) = 2|w|2 + 2|z|4 + |w − z|2,

for (z, w) ∈ C2. Therefore,∣∣∣∂2u
∂z2

(z, w)α2 +
∂2u

∂w2
(z, w)β2 + 2

∂2u

∂z∂w
(z, w)αβ

∣∣∣
=4|z|2|α|2 < ∂2u

∂z∂z
(z, w)αα+

∂2u

∂w∂w
(z, w)ββ + 2Re

( ∂2u

∂z∂w
(z, w)αβ

)
=|β − 2zα|2 + |β + 2zα|2 + |β − α|2,

for each (z, w) ∈ C2 and (α, β) ∈ C2 \ {0}. Consequently, u is strictly convex on
C2. Using the above 2 inequalities, we obtain the proof of the lemma. �

The above result suggests the following natural problem.

Question 2.2. Find all the holomorphic functions k1, k2 : C→ C such that ϕ
is strictly convex on C2, ϕ(z, w) = |w − k1(z)|2 + |w − k2(z)|2, for (z, w) ∈ C2. Is
the number of holomorphic functions fundamental in this situation?

We have an answer to this question which is given by

Theorem 2.3. Let g1, g2 : C→ C be 2 holomorphic functions. Given A1, A2 ∈
C \ {0}, c1, c2 ∈ C, put

u(z, w) = |A1w − g1(z)|2 + |A2w − g2(z)|2,
v(z, w) = |A1w − g1(z) + c1|2 + |A2w − g2(z) + c2|2,

(z, w) ∈ C2. The following are equivalent

(I) u is strictly convex on C2;
(II) g1 and g2 are affine holomorphic functions, g1(z) = a1z + b1, g2(z) =

a2 + b2, for z ∈ C, where a1, b1, a2, b2 ∈ C with (a1A2 6= a2A1);
(III) v is strictly convex on C2.
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Proof. (I) implies (II). Note that u is a function of class C∞ on C2. Since u is
strictly convex on C2, we have∣∣∣∂2u

∂z2
(z, w)α2 +

∂2u

∂w2
(z, w)β2 + 2

∂2u

∂z∂w
(z, w)αβ

∣∣∣
<

∂2u

∂z∂z
(z, w)αα+

∂2u

∂w∂w
(z, w)ββ + 2Re

( ∂2u

∂z∂w
(z, w)αβ

)
,

for all (z, w) ∈ C2 and for all (α, β) ∈ C2 \ {0}. Fix z ∈ D. Then, we have

(1) |(g′′1 (z)g1(z)−A1wg
′′
1 (z) + g′′2 (z)g2(z)−A2wg

′′
2 (z))α2|

< |A1β − g′1(z)α|2 + |A2β − g′2(z)α|2,

for all w ∈ C and (α, β) fixed in C2 with α 6= 0. Now if (A1g
′′
1 (z) +A2g

′′
2 (z)) 6= 0,

then the subset C is bounded. We get a contradiction. Consequently, A1g
′′
1 +

A2g
′′
2 = 0 over C. We have

|g′′1 (z)g1(z) + g′′2 (z)g2(z)||α|2 < |A1β − g′1(z)α|2 + |A2β − g′2(z)α|2,

∀z ∈ C, ∀(α, β) ∈ C2 \ {0}. Put A = A1

A2
∈ C \ {0}. Thus, we have

|g′′1 (g1 −Ag2)||α|2

< (|A1|2 + |A2|2)|β|2 + |g′1α|2 + |g′2α|2 − 2Re
(
g′1A1αβ + g′2A2αβ

)
over C and for all (α, β) ∈ C2 \ {0}. It follows that

(|A1|2 + |A2|2)|β|2 + [|g′1|2 + |g′2|2 − |g′′1 (g1 −Ag2)|]|α|2

− 2Re
(
(g′1A1 + g′2A2)αβ

)
> 0

over C, for all (α, β) ∈ C2 \ {0}. By the below Lemma 2.7 we have

|g′1A1 + g′2A2|2 < (|A1|2 + |A2|2)[|g′1|2 + |g′2|2 − |g′′1 (g1 −Ag2)|],

over C. Thus,

|A1|2|g′1|2 + |A2|2|g′2|2 + 2Re
(
g′1A1g′2A2

)
< (|A1|2 + |A2|2)[|g′1|2 + |g′2|2]− (|A1|2 + |A2|2)|g′′1 (g1 −Ag2)|,

over C. Then,

|A2|2|g′1|2 + |A1|2|g′2|2

− 2Re
(
g′1A2g′2A1

)
− (|A1|2 + |A2|2)|g′′1 (g1 −Ag2)| > 0,

over C. Therefore, |A2g
′
1−A1g

′
2|2− (|A1|2 + |A2|2)|g′′1 (g1−Ag2)| > 0, on C. Then,

we have

(2) |g′′1 (g1 −Ag2)| < |A2|2

|A1|2 + |A2|2
|g′1 −Ag′2|2,
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over C. Replace now g′′1 by −A2

A1
g′′2 = −1

A
g′′2 . It follows that |g′′2 ( 1

Ag1 − g2)| <
|A1|2

|A1|2+|A2|2 |g
′
2 − 1

Ag
′
1|2, over C, and then

1

|A|2
|Ag′′2 (g1 −Ag2)| <

|A1|2| 1A |
2

|A1|2 + |A2|2
|g′1 −Ag′2|2,

over C. Then,

(3) | −Ag′′2 (g1 −Ag2)| < |A1|2

|A1|2 + |A2|2
|g′1 −Ag′2|2,

over C. The sum of (2) and (3) implies that

|g′′1 (g1 −Ag2)|+ | −Ag′′2 (g1 −Ag2)| < |A2|2 + |A1|2

|A1|2 + |A2|2
|g′1 −Ag′2|2,

over C. By the triangle inequality, we have then |(g′′1−Ag′′2 )(g1−Ag2)| < |g′1−Ag′2|2,
over C.

Now put k = g1 − Ag2. Observe that the function k is holomorphic on C, k is
not constant and k satisfies the holomorphic differential inequality |k′′k| < |k′|2
over C. Therefore, k′′(z)k(z) = γ(k′(z))2, ∀z ∈ C, where γ ∈ C and |γ| < 1 (the
above strict inequality is very important in this situation). By [2, Théorème 21]
it follows that |k|2 is convex on C and γ ∈ { s−1s , 1/s ∈ N \ {0}}. Indeed, we have

k(z) = (az + b)s, for each z ∈ C, where a, b ∈ C and s ∈ N, or k(z) = e(cz+d),
for each z ∈ C, where c, d ∈ C. Put k1(z) = e(cz+d), for z ∈ C. We see that
k1 is analytic on C, and |k′′1 (z)k1(z)| = |k′1(z)|2, for each z ∈ C. Consequently,
k(z) = (az + b)s, where a, b ∈ C and s ∈ N. Observe that s 6= 0 because k is not
constant on C. g1(z)−Ag2(z) = (az+ b)s, for all z ∈ C. Suppose that s ≥ 2. Then
g′1(− b

a )−Ag′2(− b
a ) = 0. But we have

0 ≤
∣∣∣(g′′1(− ba)−Ag′′2(− ba)))(g1(− ba)−Ag2(− ba))∣∣∣

<
∣∣∣g′1(− ba)−Ag′2(− ba)∣∣∣2 = 0.

This is a contradiction. It follows that s = 1. Therefore, g1(z)−Ag2(z) = az + b,
for all z ∈ C. In this case, we have g′′1 − Ag′′2 = 0 on C. Thus, g′′1 − A1

A2
g′′2 = 0 and

then A2g
′′
1 −A1g

′′
2 = 0 on C.

Now recall that we have A1g
′′
1 +A2g

′′
2 = 0 on C. Finally, we have the system of

holomorphic differential equations over C{
A2g

′′
1 −A1g

′′
2 = 0

A1g
′′
1 +A2g

′′
2 = 0.

Now since (|A1|2 + |A2|2) > 0, we have g′′1 = g′′2 = 0 over C. It follows that g1 and
g2 are holomorphic affine functions on C. g1(z) = a1z+ b1, g2(z) = a2z+ b2 for all
z ∈ C, where a1, a2, b1, b2 ∈ C. Since now the function u is strictly convex on C2,
0 < |A1β − a1α|2 + |A2β − a2α|2, ∀(α, β) ∈ C2 \ {0}. Therefore, the system{

A1β − a1α = 0
A2β − a2α = 0
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for (α, β) ∈ C2 has only one solution (α, β) = (0, 0). It follows that (−A1a2 +
a1A2) 6= 0 and, consequently, A1a2 6= a1A2.

(II) implies (I) and (II) implies (III) are in fact classical cases. (III) implies
(II). In this situation we consider the above proof and replace g1 by (g1 − c1) and
g2 by (g2 − c2), we conclude this proof. �

Remark 2.4. Let g1, . . . , gN : C → C be N holomorphic functions, N ≥ 2.
Put

u(z, w) = |w − g1(z)|2 + · · ·+ |w − gN (z)|2, for (z, w) ∈ C2.

We prove that if the number N of the holomorphic functions satisfies N ≥ 3,
the above theorem is false. Define g1(z) = z2, g2(z) = −z2, g3(z) = z, . . . ,
gN (z) = z, for z ∈ C. g1 and g2 are not affine functions over C. But u is strictly
convex on C2 because, if N ≥ 4, the function u1 is strictly convex on C2, where
u1(z, w) = |w − z2|2 + |w + z2|2 + |w − z|2, for (z, w) ∈ C2. The function u2 is
convex on C2, where u2(z, w) = (N−3)|w−z|2. Therefore, u = (u1+u2) is strictly
convex on C2. If N = 3, u = u1 is strictly convex on C2.

We have

Lemma 2.5. Let n ≥ 2. For (z, w) = (z1, . . . , zn, w) ∈ Cn × C, we define

v(z, w) = |w−(z1+· · ·+zn)2|2+|w+(z1+· · ·+zn)2|2+|w−z1|2+· · ·+|w−zn|2.
Then, v is strictly convex on Cn × C.

Proof. Note that v is the sum of (n+ 2) functions, v = v1 + · · ·+ vn+2, where
v1(z, w) = |w−(z1 + · · ·+zn)2|2 = |w−g1(z)|2, v2(z, w) = |w+(z1 + · · ·+zn)2|2 =
|w − g2(z)|2, v3(z, w) = |w − z1|2 = |w − g3(z)|2, . . . , vn+2(z, w) = |w − zn|2 =
|w− gn+2(z)|2. g1(z) = (z1 + · · ·+ zn)2, g2(z) = −(z1 + · · ·+ zn)2, g3(z) = z1, . . . ,
gn(z) = zn, for each z = (z1, . . . , zn) ∈ Cn. g1 and g2 are not affine functions over
Cn. But v is strictly convex on Cn, because, if we put w = zn+1 ∈ C, we have∣∣∣ n+1∑

j,k=1

∂2v

∂zj∂zk
(z, zn+1)αjαk

∣∣∣ < n+1∑
j,k=1

∂2v

∂zj∂zk
(z, zn+1)αjαk

for each (α1, . . . , αn, αn+1) = (α1, . . . , αn, β) ∈ Cn+1 \ {0}. Thus, we have

4|z1 + z2 + · · ·+ zn|2|α1 + α2 + · · ·+ αn|2

< 2|β|2 + 4|z1 + z2 + · · ·+ zn|2|α1 + α2 + · · ·+ αn|2

+ |β − α1|2 + |β − α2|2 + · · ·+ |β − αn|2.
Therefore,

ϕ(α1, α2, . . . , αn, β) = 2|β|2 + |β − α1|2 + |β − α2|2 + · · ·+ |β − αn|2 > 0.

In fact, if β = 0, then ϕ(α1, α2, . . . , αn, β) = |α1|2 + |α2|2 + · · ·+ |αn|2 > 0. Now, if
β 6= 0, then ϕ(α1, α2, . . . , αn, β) > 0. Consequently, v is strictly convex on Cn×C.
The number of functions in this case is (n+ 2). �

Proposition 2.6. Over C2 × C, there exist 3 functions g1, g2, g3 : C2 → C
such that gj is holomorphic not affine over C, for all j ∈ {1, 2, 3} and the function
u is convex on C2 × C; u(z, w) = |w − g1(z)|2 + |w − g2(z)|2 + |w − g3(z)|2, for
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(z, w) ∈ C2 × C. But u is not strictly convex at any point of C3 (then u is not
strictly convex in any not empty Euclidean open ball subset of C3).

Proof. For z = (z1, z2) ∈ C2, we define g1(z) = (z1 + z2)2, g2(z) = (z1 + z2)2

and g3(z) = −2(z1 + z2)2. Then, g1, g2 and g3 satisfy the condition of the above
proposition 1. Observe that, in this case, the number of functions is 3. �

The following lemma is fundamental in this paper:

Lemma 2.7. Let a, b, c ∈ C. Then

(1) aαα + bββ + 2Re(cαβ) > 0 for each (α, β) ∈ C2 \ {(0, 0)} if and only if
a > 0, b > 0 and |c|2 < ab.

(2) aαα + bββ + 2Re(cαβ) ≥ 0 for all (α, β) ∈ C2 if and only if a ≥ 0, b ≥
0 and |c|2 ≤ ab.

Proof. A proof of this lemma can be found in [2]. �

Remark 2.8. Let D = D(2, 14 ) = {z ∈ C/|z − 2| < 1
4}. Define g(z) = z2 + 1,

z ∈ D. g is a holomorphic function on C. Put g1 = g and g2 = −g. Let u(z, w) =
|w − g(z)|2 + |w + g(z)|2, (z, w) ∈ D × C. We can verify that u is strictly convex
on D × C, but g1 and g2 are not affine functions over D. This proves that, in
Theorem 2.3, it is fundamental to consider the subset C globally. On the other
hand, we also conclude that the above Theorem 2.3 is false on all convex domains
in the form G× C, where G is a non-empty bounded convex domain of C.

For future analysis, we have the following question.

Question 2.9. Characterize exactly all the analytic functions g1, g2 : C →
C such that the function u is convex on C2 (u(z, w) = |w − g1(z)|2 + |w −
g2(z)|2, (z, w) ∈ C2).

Characterize exactly all the analytic functions g1, g2 : C → C such that the
function u is strictly psh and convex on C2.

Characterize exactly all the analytic functions g1, g2 : C → C such that the
function u is strictly psh and not convex on C2.

Characterize exactly all the analytic functions g1, g2 : C → C such that the
function u is convex and not strictly psh on C2 (or convex and not strictly psh
on all not empty euclidean open ball subsets of C2, convex strictly psh and not
strictly convex on all not empty euclidean open ball subsets of C2, convex and not
strictly convex on all not empty euclidean open ball subsets of C2).

Using the holomorphic differential equation k′′(k + c) = γ(k′)2 (k : C → C is
a holomorphic function and (γ, c) ∈ C2), we have the following characterization in
complex analysis.

Theorem 2.10. Given two holomorphic functions g1, g2 : C→ C, let v(z, w) =
|w − g1(z)|2 + |w − g2(z)|2, for (z, w) ∈ C2. Then, the following assertions are
equivalent

(I) v is convex on C2;
(II) g1(z) = az + b + (cz + d)m and g2(z) = az + b − (cz + d)m for each

z ∈ C, with (a, b, c and d ∈ C), or g1(z) = a1z + b1 + e(c1z+d1) and
g2(z) = a1z + b1 − e(c1z+d1) for each z ∈ C, where (a1, b1, c1 and d1 ∈ C).
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Proof. (I) implies (II). Note that u is a function of class C∞ on C2. Since u is
convex on C2, we have∣∣∣∣∂2u∂z2

(z, w)α2 +
∂2u

∂w2
(z, w)β2 + 2

∂2u

∂z∂w
(z, w)αβ

∣∣∣∣
≤ ∂2u

∂z∂z
(z, w)αα+

∂2u

∂w∂w
(z, w)ββ + 2Re

(
∂2u

∂z∂w
(z, w)αβ

)
,

for all (z, w) ∈ C2 and for all (α, β) ∈ C2.
Fix z ∈ D. Then, we have

(1) |(g′′1 (z)g1(z)− wg′′1 (z) + g′′2 (z)g2(z)− wg′′2 (z))α2|
≤ |β − g′1(z)α|2 + |β − g′2(z)α|2,

for all w ∈ C and (α, β) fixed in C2 with α 6= 0. Now if (g′′1 (z) + g′′2 (z)) 6= 0, then
the subset C is bounded. We get a contradiction. Consequently, g′′1 + g′′2 = 0 over
C. We have

|g′′1 (z)g1(z) + g′′2 (z)g2(z)||α|2 ≤ |β − g′1(z)α|2 + |β − g′2(z)α|2,

∀z ∈ C, ∀(α, β) ∈ C2. Thus, we have

|g′′1 (g1 − g2)||α|2 ≤ 2|β|2 + |g′1α|2 + |g′2α|2 − 2Re
(
g′1αβ + g′2αβ

)
over C and for all (α, β) ∈ C2. It follows that

2|β|2 + [|g′1|2 + |g′2|2 − |g′′1 (g1 − g2)|]|α|2 − 2Re
(
(g′1 + g′2)αβ

)
≥ 0 over C,

for all (α, β) ∈ C2. By the above Lemma 2.7, we have

|g′1 + g′2|2 ≤ 2[|g′1|2 + |g′2|2 − |g′′1 (g1 − g2)|], over C.

Thus,

|g′1|2 + |g′2|2 + 2Re[g′1g
′
2] ≤ 2[|g′1|2 + |g′2|2]− 2|g′′1 (g1 − g2)|, over C.

Then,

|g′1|2 + |g′2|2 − 2Re[g′1g
′
2]− 2|g′′1 (g1 − g2)| ≥ 0, over C.

Therefore, |g′1 − g′2|2 − 2|g′′1 (g1 − g2)| ≥ 0, on C. Then, we have

(2) |g′′1 (g1 − g2)| ≤ 1

2
|g′1 − g′2|2, over C.

Now we replace g′′1 by (−g′′2 ), we have |g′′2 (g1 − g2)| ≤ 1
2 |g
′
1 − g′2|2, over C. Then,

(3) | − g′′2 (g1 − g2)| ≤ 1

2
|g′1 − g′2|2, over C.

The sum of (2) and (3) implies that |g′′1 (g1−g2)|+ |−g′′2 (g1−g2)| ≤ |g′1−g′2|2, over
C. By the triangle inequality, we have |(g′′1 −g′′2 )(g1−g2)| ≤ |g′1−g′2|2, over C. Now
put k = g1− g2. Observe that the function k is holomorphic on C and satisfies the
holomorphic differential inequality |k′′k| ≤ |k′|2 over C. Therefore, k′′(z)k(z) =
γ(k′(z))2, for each z ∈ C, where γ ∈ C and |γ| ≤ 1. By [2, Théorème 21], we have
k(z) = (cz + d)s, for every z ∈ C, where c, d ∈ C and s ∈ N, or k(z) = e(cz+d), for
each z ∈ C, where c, d ∈ C.
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Case 1. k(z) = (cz + d)s, for each z ∈ C. Then, g1(z)− g2(z) = (cz + d)s, for
all z ∈ C. Now recall that we have g′′1 + g′′2 = 0 on C. Thus, g1(z) + g2(z) = az+ b,
for all z ∈ C, where a, b ∈ C. Now we have{

g1(z)− g2(z) = (cz + d)s

g1(z) + g2(z) = az + b

for each z ∈ C. Then, {
g1(z) = a1z + b1 + (c1z + d1)s

g2(z) = a1z + b1 − (c1z + d1)s

for each z ∈ C, with a1, b1, c1 and d1 ∈ C.
Case 2. k(z) = e(cz+d), for all z ∈ C. Then, g1(z)− g2(z) = e(cz+d), for z ∈ C.

Now recall that we have g′′1 + g′′2 = 0 on C. It follows that g1(z) + g2(z) = az + b
for all z ∈ C where a, b ∈ C. We have{

g1(z)− g2(z) = e(cz+d)

g1(z) + g2(z) = az + b

Thus, {
g1(z) = a2z + b2 + e(c2z+d2)

g2(z) = a2z + b2 − e(c2z+d2)

for each z ∈ C, with a2, b2, c2 and d2 ∈ C.
(II) implies (I) is evident. �

Now a number of fundamental properties can be deduced from the above The-
orem 2.10. We have

Corollary 2.11. Given A1, A2 ∈ C\{0} and two holomorphic functions g1, g2 :
C→ C, let v(z, w) = |A1w−g1(z)|2+|A2w−g2(z)|2, for (z, w) ∈ C2. The following
assertions are equivalent

(I) v is convex on C2;
(II) g1(z) = A1(az + b) +A2(cz + d)m and g2(z) = A2(az + b)−A1(cz + d)m,

for each z ∈ C, with a, b, c, d ∈ C and m ∈ N, or g1(z) = A1(a1z + b1) +
A2e

(c1z+d1) and g2(z) = A2(a1z+b1)−A1e
(c1z+d1), for every z ∈ C, where

a1, b1, c1, d1 ∈ C.

Proof. This is a consequence of the proof of Theorem 2.3 and the proof of
Theorem 2.10. �

Proposition 2.12. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1. Put
u(z, w) = |w−g1(z)|2 + |w−g2(z)|2, for (z, w) ∈ Cn×C. Suppose that u is convex
on Cn ×C. Let α1, . . . , αn ∈ N, α1 + · · ·+ αn = m. Then, v is convex on Cn ×C,

v(z, w) =

∣∣∣∣w − ∂mg1
∂zα1

1 . . . ∂zαn
n

(z)

∣∣∣∣2 +

∣∣∣∣w − ∂mg2
∂zα1

1 . . . ∂zαn
n

(z)

∣∣∣∣2 ,
for (z, w) ∈ Cn × C. ∆(u) is convex on Cn × C, for all s ∈ N \ {0}.

∆ = 4

(
∂2

∂z1∂z1
+ · · ·+ ∂2

∂zn∂zn

)
is the Laplace operator acting on Cn.
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Remark 2.13. For 3 functions, the above Theorem 2.3 does not hold. In fact,
we have the following fundamental 3 examples. Define 9 holomorphic functions
over C by g1(z) = z+z2, g2(z) = (z−z2), g3(z) = 4(z+1), k1(z) = z2, k2(z) = z2,
k3(z) = −2z2, f1(z) = z − ez, f2(z) = −(z + ez), f3(z) = 2ez, for z ∈ C. Put
u1(z, w) = |w− g1(z)|2 + |w− g2(z)|2 + |w− g3(z)|2, u2(z, w) = |w−k1(z)|2 + |w−
k2(z)|2 + |w − k3(z)|2 and u3(z, w) = |w − f1(z)|2 + |w − f2(z)|2 + |w − f3(z)|2,
(z, w) ∈ C2. We have the following 2 properties.

(I) g1, g2, kj and fj are not affine functions on C, for all j ∈ {1, 2, 3}.
(II) u1 and u3 are strictly convex on C2. u2 is convex on C2 and strictly convex

on C2 \ {0} × C but u2 is not strictly convex on C2.

Theorem 2.14. Given two numbers A1, A2 ∈ C \ {0} and two holomorphic
functions g1, g2 : Cn → C, n ≥ 2, lG aet v(z, w) = |A1w−g1(z)|2 + |A2w−g2(z)|2,
for (z, w) ∈ Cn × C. The following assertions are equivalent

(I) v is convex on Cn × C;
(II) g1(z) = A1(< z/a > +b) + A2(< z/c > +d)m and g2(z) = A2(< z/a >

+b) − A1(< z/c > +d)m, (for each z ∈ Cn, with a, c ∈ Cn and b, d ∈ C),
or g1(z) = A1(< z/a1 > +b1) +A2e

(<z/c1>+d1) and g2(z) = A2(< z/a1 >
+b1)−A1e

(<z/c1>+d1) for every z ∈ Cn, where a1, c1 ∈ Cn and b1, d1 ∈ C.

Proof. v is a function of class C∞ on Cn × C. Put w = zn+1. We have

∣∣∣ n+1∑
j,k=1

∂2v

∂zj∂zk
(z)αjαk

∣∣∣ ≤ n+1∑
j,k=1

∂2v

∂zj∂zk
(z)αjαk

for each (z, w) ∈ Cn × C and (α1 . . . , αn, αn+1) = (α1, . . . , αn, β) ∈ Cn+1. There-
fore,

(E)

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαkg1(z) +

n∑
j,k=1

∂2g2
∂zj∂zk

(z)αjαkg2(z)

− w
(
A1

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαk −A2

n∑
j,k=1

∂2g2
∂zj∂zk

(z)αjαk

)
≤
∣∣∣A1β −

n∑
j=1

∂g1
∂zj

(z)αj

∣∣∣2 +
∣∣∣A2β −

n∑
j=1

∂g2
∂zj

(z)αj

∣∣∣2,
for each (z, w) ∈ Cn × C and (α1, . . . , αn, β) ∈ Cn+1. Now fix z ∈ Cn and
(α1, . . . , αn, β) ∈ Cn+1. It follows that, for each w ∈ C, we obtain inequality
(E). If (

A1

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαk +A2

n∑
j,k=1

∂2g2
∂zj∂zk

(z)αjαk

)
6= 0,

then the subset C is bounded. We get a contradiction. Consequently,

A1

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαk +A2

n∑
j,k=1

∂2g2
∂zj∂zk

(z)αjαk = 0,
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for each z = (z1, . . . zn) ∈ Cn, and (α1, . . . , αn) ∈ Cn. Thus, (A1g1 + A2g2) is an
affine function on Cn. Now we have

(E)
∣∣∣ n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαkg1(z) +

n∑
j,k=1

∂2g2
∂zj∂zk

(z)αjαkg2(z)
∣∣∣

≤
∣∣∣A1β −

n∑
j=1

∂g1
∂zj

(z)αj

∣∣∣2 +
∣∣∣A2β −

n∑
j=1

∂g2
∂zj

(z)αj

∣∣∣2,
for each (z, w) ∈ Cn × C and (α1, . . . , αn, β) ∈ Cn+1. Now fix (γ1, . . . , γn) ∈ Cn
and define (α1, . . . , αn) = δ(γ1, . . . , γn), where δ ∈ C. Then,

∣∣∣ n∑
j,k=1

∂2g1
∂zj∂zk

(z)γjγkg1(z) +

n∑
j,k=1

∂2g2
∂zj∂zk

(z)γjγkg2(z)
∣∣∣|δ|2

≤
∣∣∣A1β −

( n∑
j=1

∂g1
∂zj

(z)αj

)
δ
∣∣∣2 +

∣∣∣A2β −
( n∑
j=1

∂g2
∂zj

(z)αj

)
δ
∣∣∣2,

for each (β, δ) ∈ C2. This condition implies that the holomorphic function ϕ =
(A2g1−A1g2) that satisfies |ϕ|2 is convex on Cn. Therefore, we have the following
2 possible cases.

Case 1. |ϕ| > 0 on Cn. Therefore, ϕ = eK , where K : Cn → C is a holomorphic
function. Now we use the following result proved in [3, Theorem 9]: If g : Cn → C
is an analytic function, n ≥ 1, such that |g| is convex and satisfying |g| > 0 on
Cn, then g(z) = eF (z), for all z ∈ Cn, where F : Cn → C is analytic and affine
on Cn. We conclude that K is an affine function on Cn. Consequently, for each
z ∈ Cn, we have (A1g1(z) + A2g2(z)) =< z/a > +b, where (a, b) ∈ Cn × C and
A2g1(z)−A1g2(z) = eK(z). Since (|A1|2 + |A2|2) > 0, we calculate the expressions
of g1 and g2 (thus having two representations of the functions g1 and g2).

Case 2. There exists z0 ∈ Cn, such that ϕ(z0) = 0. It was proved in [4,
Theorem 10] that, if g : Cn → C is a holomorphic function, n ≥ 1, such that |g| is
convex on Cn and g(z0) = 0, where z0 ∈ Cn, then g(z) = (< z/λ > +µ)m, for all
z ∈ Cn, where λ ∈ Cn, µ ∈ C and m ∈ N. Therefore, we have ϕ(z) = (< z/λ >
+µ)m, for each z ∈ Cn, where (λ, µ) ∈ Cn × C. Thus, (A1g1(z) + A2g2(z)) =<
z/a > +b and A2g1(z) − A1g2(z) = ϕ(z) = (< z/λ > +µ)m, for each z ∈ Cn.
Since (|A1|2 + |A2|2) > 0, we can calculate the two representations of g1 and g2 on
Cn. �

Theorem 2.15. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1 and
A1, A2 ∈ C \ {0}. Put u(z, w) = |A1w− g1(z)|2 + |A2w− g2(z)|2, (z, w) ∈ Cn ×C.
The following are equivalent

(I) u is convex and strictly psh on Cn × C;
(II) n = 1 and {

g1(z) = A1(az + b) +A2(cz + d)
g2(z) = A2(az + b)−A1(cz + d)
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for each z ∈ C, where a, b, c, d ∈ C, c 6= 0), or{
g1(z) = A1(a1z + b1) +A2e

(c1z+d1)

g2(z) = A2(a1z + b1)−A1e
(c1z+d1)

for every z ∈ C, with a1, b1, c1, d1 ∈ C, c1 6= 0).

Proof. (I) implies (II). We have{
g1(z) = A1(< z/a > +b) +A2(< z/c > +d)m

g2(z) = A2(< z/a > +b)−A1(< z/c > +d)m

for each z ∈ Cn, with (a, c ∈ Cn and b, d ∈ C,m ∈ N), or{
g1(z) = A1(< z/a1 > +b1) +A2e

(<z/c1>+d1)

g2(z) = A2(< z/a1 > +b1)−A1e
(<z/c1>+d1)

for every z ∈ Cn, where (a1, c1 ∈ Cn and b1, d1 ∈ C).
Case 1. {

g1(z) = A1(< z/a > +b) +A2(< z/c > +d)m

g2(z) = A2(< z/a > +b)−A1(< z/c > +d)m

for each z ∈ Cn. For (z, w) ∈ Cn × C, u(z, w) = (|A1|2 + |A2|2)[|w− < z/a >
−b|2 + | < z/c > +d|2m]. Define v(z, w) = |w− < z/a > −b|2 + | < z/c > +d|2m.
u and v are C∞ functions on Cn × C. For z ∈ Cn, we denote z = (z1, . . . , zn).
Note that u is strictly psh on Cn × C if and only if v is strictly psh on Cn × C.
Now define T by T (z, w) = (z, w+ < z/a >) ∈ Cn × C, for all (z, w) ∈ Cn × C.
T is a C linear bijective transformation over Cn × C. Let v1(z, w) = voT (z, w) =
|w − b|2 + | < z/c > +d|2m, (z, w) ∈ Cn × C. v1 is a function of class C∞ on
Cn × C. v is strictly psh on Cn × C if and only if v1 is strictly psh on Cn × C.
Let (α1, . . . , αn, β) ∈ Cn+1 \ {0}; α = (α1, . . . , αn). The Hermitian Levi form of
v1 is L(v1)(z, w)(α1, . . . , αn, β) = |β|2 + m2| < α/c > |2| < z/c > +d|2m−2 > 0,
∀(α, β) ∈ (Cn × C) \ {0}. But the above strict inequality is true if and only if
v2(α) = m2| < α/c > |2| < z/c > +d|2m−2 > 0, ∀α ∈ Cn \ {0}, ∀z ∈ Cn. Thus,
m = 1, n = 1 and c ∈ C \ {0}.

Case 2. {
g1(z) = A1(< z/a1 > +b1) +A2e

(<z/c1>+d1)

g2(z) = A2(< z/a1 > +b1)−A1e
(<z/c1>+d1)

for all z ∈ Cn.

u(z, w) = (|A1|2 + |A2|2)
[
|w− < z/a1 > −b1|2 + |e(<z/c1>+d1)|2

]
,

(z, w) ∈ Cn × C. Let ϕ(z, w) = |w− < z/a1 > −b1|2 + |e(<z/c1>+d1)|2, (z, w) ∈
Cn × C. ϕ and u are C∞ functions on Cn × C. Now u is strictly psh on Cn × C
if and only if ϕ is strictly psh on Cn × C. For (z, w) ∈ Cn × C, let T (z, w) =
(z, w+ < z/a1 >) ∈ Cn ×C. T is a C linear bijective transformation over Cn ×C.
Let ϕ1(z, w) = ϕoT (z, w) = |w − b1|2 + |e(<z/c1>+d1)|2, for (z, w) ∈ Cn × C. ϕ1 is
a function of class C∞ on Cn ×C, so that ϕ is strictly psh on Cn ×C if and only
if ϕ1 is strictly psh on Cn ×C. Let (α1, . . . , αn, β) ∈ Cn+1 \ {0}, α = (α1, . . . , αn)
and (z, w) ∈ Cn×C. The Hermitian Levi form of ϕ1 is L(ϕ1)(z, w)(α, β) = |β|2 +
| < α/c1 > |2|e(<z/c1>+d1)|2 > 0. But this last strict inequality is true for any
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(α, β) ∈ Cn+1 \{0} if and only if ϕ2(α) = | < α/c1 > |2 > 0, for each α ∈ Cn \{0}.
But now ϕ2(α) > 0, for every α ∈ Cn \ {0} if and only if n = 1 and c1 ∈ C \ {0}.

(II) implies (I) is a classical case and the proof is finished. �

An original question in complex analysis is

Question 2.16. Let n ≥ 1 and N ≥ 2. Find all the analytic functions

g1, g2, . . . , gN : Cn → C
such that the function v is psh on Cn × Cn (or strictly psh on Cn × Cn, psh and
not strictly psh on Cn ×Cn, psh and not strictly psh on any not empty open ball
subset of Cn×Cn), where v(z, w) = |g1(w− z)|2 + |g2(w− z)|2 + · · ·+ |gN (w− z)|2
for (z, w) ∈ Cn × Cn.

For example the case of one holomorphic function was studied by Abidi in the
earlier paper [2]. In this case we find all the real numbers α > 0 and all the
families of holomorphic functions f : C→ C such that u is psh (or strictly psh) on
Cn × Cn; u(z, w) = |f(w − z)|α, for (z, w) ∈ Cn × Cn. In this situation, we have
proved that u is psh over Cn × Cn if and only if f(z) = (< z/a > +b)m for each
z ∈ Cn, with (m ∈ N,mα ≥ 1, a ∈ Cn, and b ∈ C); or f(z) = e(<z/c>+d) for every
z ∈ Cn, where (c ∈ Cn and d ∈ C).

On the other hand, we can study the above problem for g1, . . . , gN : Cn → C are
N pluriharmonic (prh) functions. We can also study the case of Re(g1), . . . ,Re(gN )
or ( Im(g1), . . . , Im(gN )). The same question for the case of g1, . . . , gN being n-
harmonic functions.

On the other hand, fix T1, τ1, . . . , TN , τN : Cn → Cn are (2N)− complex linear
bijective transformations. Find all the subharmonic functions u1, . . . , uN ∈ sh(Cn)
(or sh(Cn) ∩ C(Cn)) such that v is psh (or strictly psh) over Cn × Cn, where
v(z, w) = u1(T1(w) − τ1(z)) + · · · + uN (TN (w) − τN (z)), for (z, w) ∈ Cn × Cn,
n,N ≥ 1.

Proposition 2.17. Let p be an analytic polynomial over C with deg(p) ≤ 3.
Then, it has the following 2 properties.

(1) Assume that deg(p) ≤ 2. Then, there exists an analytic polynomial q over
C, deg(q) ≤ 1 and u = (|p|2 + |q|2) is strictly convex on C.

(2) Suppose that deg(p) = 3. Then, there exists a polynomial q over C, deg(q) =
3 and u = (|p|2 + |q|2) is convex on C.

Proof. (1) If deg(p) ∈ {0, 1}, we choose q(z) = z, for all z ∈ C. Suppose
that deg(p) = 2. Write p(z) = az2 + bz + c, a ∈ C \ {0}, b, c ∈ C. We prove
that there exists an analytic polynomial q, deg(q) = 1 and (|p|2 + |q|2) = u is
strictly convex on C. Let B ∈ R+ \ {0}. We study the strict convexity of u,
u(z) = |az2 + bz + c|2 +B|z|2, for z ∈ C. u is strictly convex on C if∣∣∣∣2a2[(z +

b

2a

)2
−
(b2 − 4ac

4a2

)]∣∣∣∣ < |2az + b|2 +B

for each z ∈ C. Take z0 = −b
2a . We choose B satisfying the condition

2B > |b2 − 4ac|.
In this situation, we observe that, by the triangle inequality,
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∂z2

(z)
∣∣∣ =

∣∣∣2a(az2 + bz + c)
∣∣∣ =

∣∣∣2a2[(z +
b

2a

)2
−
(b2 − 4ac

4a2

)]∣∣∣
≤
∣∣∣2a2(z +

b

2a

)2∣∣∣+ 2|a|2
∣∣∣b2 − 4ac

4a2

∣∣∣
<
∣∣∣4a2(z +

b

2a

)2∣∣∣+ 2|a|2
∣∣∣ 2B
4a2

∣∣∣ = |2az + b|2 +B =
∂2u

∂z∂z
(z),

for each z ∈ C. Therefore, u is strictly convex on C.
(2) Write p(z) = az3 + bz2 + cz + d, a ∈ C \ {0}, b, c, d ∈ C. In this case,

p(z) = a(z + b
3a )3 + (γz + δ), where γ, δ ∈ C. Let q(z) = a(z + b

3a )3 − (γz + δ),

for z ∈ C. Then, u(z) = 2|a|2|z + b
3a |

6 + 2|γz + δ|2. Consequently, u is convex on
C. �

Lemma 2.18. (A) There does not exist an n ≥ 1, a convex domain D of Cn and
a holomorphic function g : D → C such that u ( or v) is strictly convex on D×C,
where u(z, w) = |w − g(z)|2 + |w − g(z)|2 and v(z, w) = |w − g(z)|2 + |w + g(z)|2,
for (z, w) ∈ D×C. But u is convex on D×C if and only if v is convex on D×C
(if and only if g is an affine function).

(B) There does not exist an n ≥ 2, a convex domain G of Cn and a holomorphic
function k : G→ C such that v is strictly psh (or strictly psh and convex) on G×C,
where v(z, w) = |w − k(z)|2 + |w − k(z)|2, for (z, w) ∈ G× C.

Proof. (A) Suppose that u is strictly convex on D×C, where D is a non-empty
convex domain of Cn, n ≥ 1 and g : D → C be an holomorphic function. Note that
u is a function of class C∞ over D × C. By the problem of fibration, we assume
that n = 1. Then, we have∣∣∣∂2u

∂z2
(z, w)α2 +

∂2u

∂w2
(z, w)β2 + 2

∂2u

∂z∂w
(z, w)αβ

∣∣∣
<

∂2u

∂z∂z
(z, w)αα+

∂2u

∂w∂w
(z, w)ββ + 2Re

(
∂2u

∂z∂w
(z, w)αβ

)
,

∀(z, w) ∈ D × C, ∀(α, β) ∈ C2 \ {0}. Let (z, w) ∈ D × C. Then, we have

∂2u

∂w2
(z, w) = 0,

∂2u

∂z2
(z, w) = g′′(z)g(z)− (w + w)g′′(z)

and
∂2u

∂z∂w
(z, w) = −g′(z).

∂2u

∂w∂w
(z, w) = 2,

∂2u

∂z∂z
(z, w) = 2|g′(z)|2 and

∂2u

∂z∂w
(z, w) = −g′(z).

Fix z ∈ D and (α, β) ∈ C2 \ {0}, with the condition α 6= 0. It follows that
|g′′(z)g(z)α2 − (w + w)g′′(z)α2 − 2g′(z)αβ| < |β − g′(z)α|2 + |β|2 + |g′(z)α|2,
∀w ∈ C. Therefore, |g′′(z)g(z)α2− 2wg′′(z)α2− 2g′(z)αβ| < |β− g′(z)α|2 + |β|2 +
|g′(z)α|2, ∀w ∈ R. Suppose that g′′(z) 6= 0. Then, the subset R is bounded. We
get a contradiction.

Consequently, g′′(z) = 0, for all z ∈ D. Thus, | − 2g′(z)αβ| < |β − g′(z)α|2 +
|β|2 + |g′(z)α|2, for each z ∈ D and any (α, β) ∈ C2 \ {0}. Then, we have

|β − g′(z)α|2 + (|β| − |g′(z)α|)2 > 0 for all (α, β) ∈ C2 \ {0}.
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Now take β = g′(z)α, where α ∈ C\{0}. We conclude that the last strict inequality
above is not possible. �

Now,

Corollary 2.19. For each n ≥ 1, for each D, a convex domain of Cn, and for
each holomorphic function g : D → C, we have the following 2 properties.

(a) ϕ is not strictly convex on D×C, where ϕ(z, w) = |w−g(z)|2+ |w+g(z)|2,
for (z, w) ∈ D × C.

(b) ϕ1 is not strictly convex on D × C, ϕ1(z, w) = |w − g(z)|2, for (z, w) ∈
D×C. But there exist several possible cases for n = 1 where ϕ1 is strictly
psh and convex on D × C.

Proof. Let v : D → R be a function of class C2, D is a convex domain of Cn.
Recall that v is convex on D if and only if∣∣∣ n∑

j,k=1

∂2v

∂zj∂zk
(z)αjαk

∣∣∣ ≤ n∑
j,k=1

∂2v

∂zj∂zk
(z)αjαk

for each z = (z1, . . . , zn) ∈ D and all α = (α1, . . . , αn) ∈ Cn.
v is strictly convex on D if and only if

|
n∑

j,k=1

∂2v

∂zj∂zk
(z)αjαk| <

n∑
j,k=1

∂2v

∂zj∂zk
(z)αjαk

for each z ∈ D and every α = (α1, . . . , αn) ∈ Cn \ {0}. �

Question 2.20. Let g1, . . . , gN : Cn → C be N analytic functions, n,N ≥ 1.
Put

u(z, w) =

∫
B(0,1)

(|w − g1(z + ξ)|2 + · · ·+ |w − gN (z + ξ)|2)dm2n(ξ),

for (z, w) ∈ Cn×C. Find the condition satisfied by g1, . . . , gN such that u is convex
on Cn × C.

3. Some extensions

Now the following theorems plays a classical role in many problems of complex
analysis.

Theorem 3.1. Let A1, A2 ∈ C \ {0}. Put k(w) = e(aw+b), for w ∈ C, where
a ∈ C \ {0}, b ∈ C and n ≥ 1.
Let g1, g2 : Cn → C be two analytic functions. Define

u(z, w) = |A1k(w)− g1(z)|2 + |A2k(w)− g2(z)|2,

for (z, w) ∈ Cn × C. The following are equivalent

(A) u is convex on Cn × C;
(B) We have 2 representations{

g1(z) = A2(< z/λ > +µ)s

g2(z) = −A1(< z/λ > +µ)s
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for each z ∈ Cn, where λ ∈ Cn, µ ∈ C and s ∈ N or{
g1(z) = A2e

(<z/λ1>+µ1)

g2(z) = −A1e
(<z/λ1>+µ1)

for each z ∈ Cn, where λ1 ∈ Cn and µ1 ∈ C.

Proof. (A) implies (B). After effectuating a holomorphic C linear change of vari-
able, we assume that a = 1. Since convex functions are invariant by a translation,
we assume that b = 0. Therefore, k(w) = ew, for each w ∈ C. Now u is a function
of class C∞ on Cn × C. Observe that, if n = 1, we have∣∣∣∂2u

∂z2
(z, w)α2 +

∂2u

∂w2
(z, w)β2 + 2

∂2u

∂z∂w
(z, w)αβ

∣∣∣
≤ ∂2u

∂z∂z
(z, w)αα+

∂2u

∂w∂w
(z, w)ββ2Re

( ∂2u

∂z∂w
(z, w)αβ

)
,

∀(z, w) ∈ C2, ∀(α, β) ∈ C2. It follows that

|(g′′1 (z)g1(z) + g′′2 (z)g2(z))α2 − ew(A1g
′′
1 (z) +A2g

′′
2 (z))α2

+ (|A1|2 + |A2|2)|ew|2β2 − (A1g1(z) +A2g2(z))ewβ2|
≤ |A1βe

w − g′1(z)α|2 + |A2βe
w − g′2(z)α|2.

If α0 = 0 and β0 = 1, then

|(|A1|2 + |A2|2)e2x1 − (A1g1(z) +A2g2(z))ex1 | ≤ (|A1|2 + |A2|2)e2x1 , ∀x1 ∈ R.
Then,

|(|A1|2 + |A2|2)ex1 − (A1g1(z) +A2g2(z))| ≤ (|A1|2 + |A2|2)ex1

for each x1 ∈ R. Therefore,

0 ≤ |A1g1(z) +A2g2(z)| = lim
x1→−∞

|(|A1|2 + |A2|2)ex1 − (A1g1(z) +A2g2(z))|

≤ (|A1|2 + |A2|2) lim
x1→−∞

ex1 = 0.

Thus, A1g1(z) + A2g2(z) = 0 for each z ∈ C. The case with n ≥ 2, is identical to

the one above. Now since g2 = −A1

A2
g1,

u(z, w) = |A1e
w − g1(z)|2 +

∣∣∣A2e
w +

A1

A2

g1(z)
∣∣∣2

= (|A1|2 + |A2|2)|ew|2 +
(

1 +
|A1|2

|A2|2
)
|g1(z)|2,

for each (z, w) ∈ Cn × C. u(., 0) is convex on Cn, thus |g1|2 is convex on Cn.
Therefore, g1(z) = A2(< z/λ > +µ)s, for each z ∈ Cn, where λ ∈ Cn, µ ∈ C and
s ∈ N, or g1(z) = A2e

(<z/λ1>+µ1), for each z ∈ Cn, with λ1 ∈ Cn and µ1 ∈ C.
Consequently, we get the 2 representations. �

Theorem 3.2. Let A1, A2 ∈ C\{0} and n ≥ 1. Put k(w) = (aw+b)m, for w ∈
C, where a ∈ C \ {0}, b ∈ C and m ∈ N, m ≥ 2. Given two holomorphic functions
g1, g2 : Cn → C, define u(z, w) = |A1(aw+ b)m− g1(z)|2 + |A2(aw+ b)m− g2(z)|2,
for (z, w) ∈ Cn × C. The following conditions are equivalent
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(A) u is convex on Cn × C;
(B) We have the 2 representations.{

g1(z) = A2(< z/λ > +µ)s

g2(z) = −A1(< z/λ > +µ)s

for each z ∈ Cn, where λ ∈ Cn, µ ∈ C and s ∈ N, or{
g1(z) = A2e

(<z/λ1>+µ1)

g2(z) = −A1e
(<z/λ1>+µ1)

for every z ∈ Cn, where λ1 ∈ Cn and µ1 ∈ C).

Proof. This is similar to the proof of Theorem 4.3. �

The following is true:

Theorem 3.3. Let k : C → C be analytic non-constant, A1, A2 ∈ C \ {0}
and n ≥ 1. Suppose that |k| is convex on C. Given g1, g2 : Cn → C are two
analytic functions. Define u(z, w) = |A1k(w) − g1(z)|2 + |A2k(w) − g2(z)|2, for
(z, w) ∈ Cn × C. Then the following conditions are equivalent

(A) u is convex and strictly psh on Cn × C;
(B) n = 1 and we have one of the following cases:

(I) k(w) = aw + b for w ∈ C, a ∈ C \ {0}, b ∈ C (the representation for
g1, g2 is given in Theorem 2.15).

(II) k(w) = e(aw+b) for each w ∈ C, with (a ∈ C \ {0}, b ∈ C), in which
case there are the following two representations:{

g1(z) = A2(λz + µ)
g2(z) = −A1(λz + µ)

for each z ∈ C with λ ∈ C \ {0} and µ ∈ C, or{
g1(z) = A2e

(λ1z+µ1)

g2(z) = −A1e
(λ1z+µ1)

for each z ∈ C with λ1 ∈ C \ {0} and µ1 ∈ C.

Proof. We will prove that (A) implies (B). The proof of the opposite implication
is a standard exercise. From the assumptions of the theorem, it follows that k is
of one of the following two forms: k(w) = e(aw+b), (a ∈ C \ {0}, b ∈ C), or
k(w) = (aw + b)m, m ∈ N, a ∈ C \ {0}, b ∈ C. First we consider the former case
k(w) = e(aw+b). Since u is convex on Cn × C,{

g1(z) = A2(< z/λ > +µ)s

g2(z) = −A1(< z/λ > +µ)s

for each z ∈ Cn where λ ∈ Cn, µ ∈ C and s ∈ N, or{
g1(z) = A2e

(<z/λ1>+µ1)

g2(z) = −A1e
(<z/λ1>+µ1)

for each z ∈ Cn, where λ1 ∈ Cn and µ1 ∈ C).
Case 1. {

g1(z) = A2(< z/λ > +µ)s

g2(z) = −A1(< z/λ > +µ)s
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for each z ∈ Cn. Therefore, u(z, w) = (|A1|2 + |A2|2)[|e(aw+b)|2 + | < z/λ > +µ|2s],
for (z, w) ∈ Cn × C. Put u1 = u

|A1|2+|A2|2 . Note that u and u1 are functions of

class C∞ on Cn × C and, therefore, u is strictly psh on Cn × C if and only if u1
is strictly psh on Cn × C. The Levi Hermitian form of u1 is L(u1)(z, w)(α, β) =
|a|2|β|2|e(aw+b)|2 + s2| < α/λ > |2| < z/λ > +µ|2s−2 > 0, for each (z, w) ∈ Cn×C
and any (α, β) ∈ Cn × C \ {0}. Now observe that

L(u1(z, w)(α, β) > 0, ∀(z, w) ∈ Cn × C, ∀(α, β) ∈ Cn × C \ {0}

if and only if

ϕ(z, α) = s2| < α/λ > |2| < z/λ > +µ|2s−2 > 0, ∀z ∈ Cn, ∀α ∈ Cn \ {0}.

Therefore, s = 1, n = 1 and λ ∈ C \ {0}.
Case 2. {

g1(z) = A2e
(<z/λ1>+µ1)

g2(z) = −A1e
(<z/λ1>+µ1)

for each z ∈ Cn. Then,

u(z, w) = (|A1|2 + |A2|2)
[
|e(aw+b)|2 + |e(<z/+λ1>+µ1)|2

]
,

for (z, w) ∈ Cn × C. Define v1 = u
|A1|2+|A2|2 . Note that u and v1 are functions of

class C∞ on Cn×C. u is strictly psh on Cn×C if and only if v1 is strictly psh on
Cn × C. The Hermitian Levi form of v1 is

L(v1)(z, w)(α, β) = |a|2|β|2|e(aw+b)|2 + | < α/λ1 > |2|e(<z/λ1>+µ1)|2 > 0,

for each (z, w) ∈ Cn × C, for every (α, β) ∈ Cn × C \ {0}. Therefore,

| < α/λ1 > |2|e(<z/λ1>+µ1)|2 > 0,

for each z ∈ Cn and every α ∈ Cn \ {0}. Then, n = 1 and λ1 ∈ C \ {0}.
Now we assume that k(w) = (aw + b)m. This case is, in fact, treated in

Theorem 2.15 and its proof. Note that, in particular, we get m = 1. �

4. A complete characterization

We have the following theorem

Theorem 4.1. Let k : C → C be an analytic non-constant function, A1, A2 ∈
C \ {0} and n ≥ 1. Suppose that |k| is convex on C. Given two analytic functions
g1, g2 : Cn → C, define u(z, w) = |A1k(w)− g1(z)|2 + |A2k(w)− g2(z)|2, v(z, w) =
u(z, w) + |A1k(w) − g1(z)|2 + |A2k(w) − g2(z)|2, for (z, w) ∈ Cn × C. Then, the
following are equivalent

(A) u is convex on Cn × C and v is strictly psh on Cn × C;
(B) n ∈ {1, 2} and we have the following 2 cases.
(I) k(w) = aw + b, for each w ∈ C, where a ∈ C \ {0} and b ∈ C. Then, we

have the 2 representations.{
g1(z) = A1(< z/λ > +µ) +A2(< z/λ1 > +µ1)m,
g2(z) = A2(< z/λ > +µ)−A1(< z/λ1 > µ1)m.
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For each z ∈ Cn with n = 2,m = 1, λ, λ1 ∈ C2 and (λ, λ1) is a basis of the
complex vector space C2, or n = 1,m = 1, λ, λ1 ∈ C and λλ1 6= 0, or{

g1(z) = A1(< z/λ2 > +µ2) +A2e
(<z/λ3>+µ3),

g2(z) = A2(< z/λ2 > +µ2)−A1e
(<z/λ3>+µ3).

For each z ∈ C with n = 2, λ2, λ3 ∈ C2 and (λ2, λ3) is a basis of the
complex vector space C2), or n = 1, λ2, λ3 ∈ C, λ2 6= 0 or λ3 6= 0.

(II) k(w) = e(aw+b), for each w ∈ C, with a ∈ C \ {0} and b ∈ C.
Then, n = 1 and {

g1(z) = A2(λz + µ),
g2(z) = −A1(λz + µ).

For each z ∈ C with λ ∈ C \ {0} and µ ∈ C or{
g1(z) = A2e

(λ1z+µ1),
g2(z) = −A1e

(λ1z+µ1).

For each z ∈ C with λ1 ∈ C \ {0} and µ1 ∈ C.

For the proof of this theorem we use the following lemma which is fundamental
in the theory of psh and strictly psh functions.

Lemma 4.2. Let f, g : D → CN , n,N ≥ 1. f = (f1, . . . , fN ), g = (g1, . . . , gN ).
Suppose that f and g are holomorphic on D. Then, ‖f +g‖2 and ‖f‖2 +‖g‖2 have
the same Hermitian Levi form on D. Moreover, let u : D → R be a function of
class C2 on D. Denote u1 = u+ ‖f + g‖2 and u2 = u+ (‖f‖2 + ‖g‖2). Then, u1
is strictly psh on D if and only if u2 is strictly psh on D.

Proof. We have

‖f + g‖2 = |f1 + g1|2 + · · ·+ |fN + gN |2 =

|f1|2 + |g1|2 + · · ·+ |fN |2 + |gN |2

+ (f1g1 + f1g1 + · · ·+ fNgN + fNgN )

on D. Since (f1g1 + f1g1 + · · · + fNgN + fNgN ) is pluriharmonic (prh) and real
valued, the functions ‖f + g‖2 and

|f1|2 + |g1|2 + · · ·+ |fN |2 + |gN |2 = ‖f‖2 + ‖g‖2

have the same Hermitian Levi form on D. �

This lemma is fundamental in complex analysis and plays a classical role in
many problems in several questions of pluripotential theory.

Proof of Theorem 4.1. (A) implies (B). We study the case where k(w) = e(aw+b)

for each w ∈ C, where a ∈ C \ {0} and b ∈ C. Define

v1(z, w) = |A1k(w)− g1(z)|2 + |A2k(w)− g2(z)|2,

for (z, w) ∈ Cn ×C. u, v and v1 are functions of class C∞ on Cn ×C. v is strictly
psh on Cn × C if and only if v1 is strictly psh on Cn × C by Lemma 4.2. Since u
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is convex on Cn × C, then g2 = −A1

A2
g1 on Cn. We have

v1(z, w) = (|A1|2 + |A2|2)|k(w)|2 +
(

1 +
|A1|2

|A2|2
)
|g1(z)|2 + ψ(z, w),

for each (z, w) ∈ Cn×C, where ψ is a pluriharmonic (prh) function on Cn×C. By
Lemma 4.2, v is strictly psh on Cn ×C if and only if v1 is strictly psh on Cn ×C.
Let v2(z, w) = |k(w)|2 + |g1(z)|2, for (z, w) ∈ Cn ×C. v2 is a function of class C∞

on Cn ×C. v1 is strictly psh on Cn ×C if and only if v2 is strictly psh on Cn ×C.
The Levi Hermitian form of v2 is

L(v2)(z, w)(α, β) = |k′(w)β|2 +
∣∣∣ n∑
j=1

∂g1
∂zj

(z)αj

∣∣∣2,
for each (z, w) = (z1, . . . , zn, w) ∈ Cn × C, for every (α, β) ∈ Cn × C, α =
(α1, . . . , αn). |k′(w)β|2 = |a|2|β|2|e(aw+b)|2 > 0, for each β ∈ C \ {0}. There-
fore, v2 is strictly psh on Cn×C if and only if |g1|2 is strictly psh on Cn. Since g1
is holomorphic on Cn, n = 1 (observe that |g1|2 is not strictly psh at any point of
Cn for each n ≥ 2). It follows that |g′1| > 0 on C. In fact{

g1(z) = A2(λz + µ)
g2(z) = −A1(λz + µ)

For each z ∈ C with λ ∈ C \ {0} and µ ∈ C, or{
g1(z) = A2e

(λ1z+µ1)

g2(z) = −A1e
(λ1z+µ1)

For each z ∈ C, with λ1 ∈ C \ {0} and µ1 ∈ C. �

Theorem 4.3. Let A1, A2 ∈ C \ {0}. Put p(w) = w3 +w2 and k(w) = ew
2

, for
w ∈ C (|p|2 and |k|2 are not convex functions on C). We have the following

(A) There does not exist n ≥ 1 and 2 holomorphic functions g1, g2 : Cn → C
such that u is convex on Cn × C;

u(z, w) = |A1p(w)− g1(z)|2 + |A2p(w)− g2(z)|2,

(z, w) ∈ Cn × C.
(B) There does not exist n ≥ 1 and 2 holomorphic functions f1, f2 : Cn → C

such that v is convex on Cn × C;

v(z, w) = |A1k(w)− f1(z)|2 + |A2k(w)− f2(z)|2,

for (z, w) ∈ Cn × C.

Proof. (A) Suppose that there exists n ≥ 1 and 2 holomorphic functions g1, g2 :
Cn → C such that u is convex on Cn ×C. u is a function of class C∞ on Cn ×C.
Then, for all fixed z ∈ Cn, the function u(z, .) is convex on C. Therefore,∣∣∣ ∂2u

∂w2
(z, w)

∣∣∣ ≤ ∂2u

∂w∂w
(z, w) for each w ∈ C.

Then,

|A1p
′′(w)(A1p(w)− g1(z)) +A2p

′′(w)(A2p(w)− g2(z))| ≤ (|A1|2 + |A2|2)|p′(w)|2,



106 J. ABIDI

for each (w, z) ∈ C × Cn. Since p′(0) = 0, | − 2A1g1(z) − 2A2g2(z)| ≤ 0. Thus,
A1g1(z) +A2g2(z) = 0, for each z ∈ Cn. Therefore,

u(z, w) = |A1p(w)− g1(z)|2 +
∣∣∣A2p(w) +

A1

A2

g1(z)
∣∣∣2

= (|A1|2 + |A2|2)|p(w)|2 +
(

1 +
|A1|2

|A2|2
)
|g1(z)|2,

for (z, w) ∈ Cn × C. Since u(0, .) is convex on C, |p|2 is convex on C and,
consequently, |p′′(w)p(w)| ≤ |p′(w)|2, for each w ∈ C. Let w0 = − 2

3 . We have

p′′(− 2
3 )p(− 2

3 ) 6= 0, but p′(− 2
3 ) = 0. This is a contradiction.

(B) Suppose that there exists n ≥ 1 and 2 holomorphic functions f1, f2 : Cn →
C such that v is convex on Cn × C. v is a function of class C∞ on Cn × C. Let
z ∈ Cn. Then, v(z, .) is convex on C. Thus, | ∂

2v
∂w2 (z, w)| ≤ ∂2v

∂w∂w (z, w), for each
w ∈ C. Then,

(S) |A1(2 + 4w2)(A1k(w)− f1(z)) +A2(2 + 4w2)(A2k(w)− f2(z))|
≤ 4(|A1|2 + |A2|2)|w|2,

for every w ∈ C. Put w0 = 0. Then, we have

|2|A1|2 + 2|A2|2 − 2A1f1(z)− 2A2f2(z)| ≤ 0,

for every z ∈ Cn. Then A1f1(z)+A2f2(z) = c = |A1|2+|A2|2, for each z ∈ Cn. Note
that c > 0. Therefore, the inequality (S) implies that |ck′′(w)(k(w)−1)| ≤ |k′(w)|2,
for each w ∈ C. Then, c|k′′(w)(k(w)−1)| ≤ |k′(w)|2, for every w ∈ C. Put k1 = k−
1. k1 is an analytic function on C. k1 satisfies the holomorphic differential inequality
|k′′1k1| ≤ 1

c |k
′
1|2 on C. Consequently, k′′1 (w)k1(w) = γ(k′1(w))2, for each w ∈ C,

where γ ∈ C. By [2], |k1|2 = |k − 1|2 is convex on C. We get a contradiction. �

Note that the function k defined by the above theorem has the following prop-
erty. For every holomorphic functions ϕ1, ϕ2 : Cn → C, for every B1, B2 ∈ C \ {0}
and m ∈ N\{0}, if we define ψ(z, w) = |B1k

(m)(w)−ϕ1(z)|2+|B2k
(m)(w)−ϕ2(z)|2,

for (z, w) ∈ Cn×C, we get that the function ψ is not convex on Cn×C. But p satis-
fies for every C1, C2 ∈ C\{0}, there exist p1, p2 : Cn → C 2 holomorphic functions
such that ψ1 is convex on Cn×C; ψ1(z, w) = |C1p(w)−p1(z)|2+ |C2p(w)−p2(z)|2,
for (z, w) ∈ Cn × C.

5. The convexity and the complex structure

In this section we study some fundamental properties concerning plurisubhar-
monic, convex, strictly plurisubharmonic (or convex and strictly psh) and strictly
convex functions. For analytic functions g1, k1, g2, k2 : Cn → C (n ≥ 1), put
ϕ1(z, w) = (|w− g1(z)− k1(z)|2 + |w− g2(z)− k2(z)|2), ϕ2(z, w) = (|w− g1(z)|2 +
|k1(z)|2 + |w − g2(z)|2 + |k2(z)|2), (z, w) ∈ Cn × C. Recall that ϕ1 is strictly psh
on Cn × C if and only if ϕ2 is strictly psh on Cn × C. This is not true for strictly
convex functions. Indeed, we have

Theorem 5.1. Let g1(z) = k1(z) = z, g2(z) = k2(z) = 2z, for z ∈ C. Define

u(z, w) = |w − g1(z)− k1(z)|2 + |w − g2(z)− k2(z)|2,
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v(z, w) = |w − g1(z)|2 + |k1(z)|2 + |w − g2(z)|2 + |k2(z)|2

for (z, w) ∈ C2. Then, we get that u and v are C∞ and strictly psh functions over
C2. v is strictly convex on C2. But u is not strictly convex at all points of C2 (then,
u is not strictly convex on all not empty euclidean open ball subsets of C2).

Proof. u(z, w) = |w − 2x1|2 + |w − 4x1|2, z = (x1 + ix2), w = (x3 + ix4) ∈ C,
(x1, x2, x3, x4 ∈ R). u is a function of class C∞ on C2. u is independent of the
variable x2. It follows that u is not strictly convex at all points of C2. But u is
convex and strictly psh on C2. �

Claim 5.2. Let v(z, w) = |w− g1(z)|2 + |w− g2(z)|2 + |g1(z)|2 + |g2(z)|2, where
g1(z) = z − z2, g2(z) = z + z2, for (z, w) ∈ C2. Then, v is strictly convex on C2,
but g1 and g2 are not affine functions.

Remark 5.3. Put g1(z) = g2(z) = z, k1(z) = k2(z) = z2, for z ∈ C.

u(z, w) = |w − g1(z)− k1(z)|2 + |w − g2(z)− k2(z)|2,
v(z, w) = |w − g1(z)|2 + |k1(z)|2 + |w − g2(z)|2 + |k2(z)|2,

(z, w) ∈ C2. Then, v is convex on C2, but u is not convex on any non-empty
euclidean open ball subset of C2. Put f1(z) = −1, f2(z) = 1, k1(z) = −k2(z) =
z2 + 1, for z ∈ C. For (z, w) ∈ C2, let

u1(z, w) = |w − f1(z)− k1(z)|2 + |w − f2(z)− k2(z)|2 = 2|w|2 + 2|z2|2.

Therefore, u1 is convex on C2. Let

v1(z, w) = |w − f1(z)|2 + |k1(z)|2 + |w − f2(z)|2 + |k2(z)|2.

v1 is not convex on C2. Consequently, we cannot compare the convexity of ϕ1 and
ϕ2 (ϕ1 and ϕ2 as defined above).

Theorem 5.4. Let g1(z) = a(z2 − 1), g2(z) = 2az, z ∈ C, a ∈ C \ {0}. For
(z, w) ∈ C2, define

v1(z, w) = |g1(w − z)|2 + |g2(w − z)|2,
v2(z, w) = |g1(w − z)|2 + |g2(w − z)|2,
v3(z, w) = |g1(w − z)|2 + |g2(w − z)|2,
v4(z, w) = |g1(w − z)|2 + |g2(w − z)|2.

Then, we have the following 5 properties.

(1) |g1|2 + |g2|2 is strictly convex on C.
(2) v1 is convex on C2, but v1 is not strictly psh at all point of C2.
(3) v2 is convex and strictly psh on C2, but v2 is not strictly convex on any

non-empty open ball of C2.
(4) v3 is strictly psh on C2, v3 is not convex on C2, but v3 is not strictly convex

at any point of C2.
(5) v4 is strictly psh on C2, v4 is not convex on C2, but v4 is not strictly convex

on any non-empty open ball of C2.

Proof. Obvious. �
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Observe that there is a great differences between the 2 families of functions
(convex and strictly psh) and (strictly convex) in C2. However, there is also a great
difference between the classes of convex function and strictly psh functions in
general in convex domains of Cn, n ≥ 1.
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[28] P. Lelong, Définition des fonctions plurisousharmoniques, Comptes Rendus Mathematique
Academie des Sciences, Paris 215 (1942), 398–400.

[29] P. Lelong, Sur les suites des fonctions plurisousharmoniques, Comptes Rendus Mathema-

tique Academie des Sciences, Paris 215 (1942), 454–456.

[30] P. Lelong, Les fonctions plurisousharmoniques, Annales scientifiques de l’École normale
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